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Small surfaces and Dehn filling
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Abstract We give a summary of known results on the maximal distances
between Dehn fillings on a hyperbolic 3–manifold that yield 3–manifolds
containing a surface of non-negative Euler characteristic that is either
essential or Heegaard.
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0 Introduction

By a small surface we mean one with non-negative Euler characteristic, ie a
sphere, disk, annulus or torus. In this paper we give a survey of the results that
are known on the distances between Dehn fillings on a hyperbolic 3–manifold
that yield 3–manifolds containing small surfaces that are either essential or
Heegaard. We also give some new examples in this context.

In Section 1 we describe the role of small surfaces in the theory of 3–manifolds,
and in Section 2 we summarize known results on the distances ∆ between Dehn
fillings on a hyperbolic 3–manifold M that create such surfaces. Section 3
discusses the question of how many manifolds M realize the various maximal
values of ∆, while Section 4 considers the situation where the manifold M is
large in the sense of Wu [53]. Finally, in Section 5 we consider the values of ∆
for fillings on a hyperbolic manifold M with k torus boundary components, as
k increases.
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1 Small surfaces and 3–manifolds

The importance of small surfaces in the theory of 3–manifolds is well known.
For example, every 3–manifold (for convenience we shall assume that all 3–
manifolds are compact and orientable) can be decomposed into canonical pieces
by cutting it up along such surfaces.

For spheres, this is due to Kneser [38] (see also Milnor [41]), and goes as follows.
If a 3–manifold M contains a sphere S which does not bound a ball in M ,
then S is essential and M is reducible. Otherwise, M is irreducible. Then any
oriented 3–manifold M can be expressed as a connected sum M1# . . .#Mn ,
where each Mi is either irreducible or homeomorphic to S2×S1 . Furthermore,
if we insist that no Mi is the 3–sphere, then the summands Mi are unique up
to orientation-preserving homeomorphism.

Turning to disks, a properly embedded disk D in a 3–manifold M is said to be
essential if ∂D does not bound a disk in ∂M . If M contains such a disk, ie, if
∂M is compressible, then M is boundary reducible; otherwise M is boundary
irreducible. Then we have the following statement about essential disks in a
3–manifold, proved by Bonahon in [6]: In any irreducible 3–manifold M , if
W is a maximal (up to isotopy) disjoint union of compression bodies on the
components of ∂M , then W is unique up to isotopy, any essential disk in
M can be isotoped (rel ∂) into W , and M −W is irreducible and boundary
irreducible. Note that M −W is obtained from M by cutting M along a
collection of essential disks that is maximal in the appropriate sense.

Now, let us say that a connected, orientable, properly embedded surface F ,
not a sphere or disk, in a 3–manifold M is essential if it is incompressible and
not parallel to a subsurface of ∂M . With this definition, an essential surface
may be boundary compressible. However, if F is an essential annulus and M
is irreducible and boundary irreducible, then F is boundary incompressible.

Then, in an irreducible, boundary irreducible 3–manifold M , there is a canon-
ical (up to isotopy) collection F of disjoint essential annuli and tori, such that
each component of M cut along F is either a Seifert fiber space, an I –bundle
over a surface, or a 3–manifold that contains no essential annulus or torus. This
is the JSJ–decomposition of M , due to Jaco and Shalen [36] and Johannson
[37].

Following Wu [53], let us call a 3–manifold simple if it contains no essential
sphere, disk, annulus or torus. Then Thurston has shown [49], [50] that a 3–
manifold M with non-empty boundary (other than B3 ) is simple if and only
if it is hyperbolic, in the sense that M with its boundary tori removed has a
complete hyperbolic structure with totally geodesic boundary.

Cameron McA Gordon

Geometry and Topology Monographs, Volume 2 (1999)

178



For closed 3–manifolds M , if π1(M) is finite then Thurston’s geometrization
conjecture [49], [50] asserts that M has a spherical structure. Equivalently, M
is either S3 , a lens space, or a Seifert fiber space of type S2(p1, p2, p3) with 1

p1
+

1
p2

+ 1
p3
> 1. (We shall say that a Seifert fiber space is of type F (p1, p2, . . . , pn)

if it has base surface F and n singular fibers with multiplicities p1, p2, . . . , pn .)
Note that S3 contains a Heegaard sphere, while a lens space contains a Heegaard
torus. For closed 3–manifolds M with infinite fundamental group, there are two
cases. If π1(M) has no Z × Z subgroup, then the geometrization conjecture
says that M is hyperbolic. If π1(M) does have a Z × Z subgroup, then by
work of Mess [40], Scott [47], [48], and, ultimately, Casson and Jungreis [12]
and Gabai [20], M either contains an essential torus or is a Seifert fiber space
of type S2(p1, p2, p3).

Summarizing, we may say that if a 3–manifold is not hyperbolic then it either

(1) contains an essential sphere, disk, annulus or torus; or

(2) contains a Heegaard sphere or torus; or

(3) is a Seifert fiber space of type S2(p1, p2, p3); or

(4) is a counterexample to the geometrization conjecture.

2 Distances between small surface Dehn fillings

Recall that if M is a 3–manifold with a torus boundary component T0 , and α is
a slope (the isotopy class of an essential unoriented simple closed curve) on T0 ,
then the manifold obtained by α–Dehn filling on M is M(α) = M ∪ V , where
V is a solid torus, glued to M along T0 in such a way that α bounds a disk in
V . If M is hyperbolic, then the set of exceptional slopes E(M) = {α : M(α) is
not hyperbolic} is finite [49], [50], and we are interested in obtaining universal
upper bounds on the size of E(M). Note that if α ∈ E(M) then M(α) satisfies
(1), (2), (3) or (4) above. Here we shall focus on (1) and (2), in other words,
where M(α) contains a small surface that is either essential or Heegaard. (For
results on case (3), see Boyer’s survey article [7] and references therein, and
also [10].)

Following Wu [53], let us say that a 3–manifold is of type S , D , A or T if it
contains an essential sphere, disk, annulus or torus. Let us also say that it is
of type SH or TH if it contains a Heegaard sphere or torus. Recall that the
distance ∆(α1, α2) between two slopes on a torus is their minimal geometric
intersection number. Then, for Xi ∈ {S,D,A, T, SH , TH} we define
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∆(X1,X2) = max{∆(α1, α2) : there is a hyperbolic 3–manifold M
and slopes α1, α2 on a torus component of ∂M
such that M(αi) is of type Xi , i = 1, 2}.

The numbers ∆(X1,X2) are now known in almost all cases, and are summarized
in Table 2.1.

S D A T SH TH

S 1 0 2 3 ? 1

D 1 2 2 – –

A 5 5 – –

T 8 2 ?

SH 0 1

TH 1

Table 2.1 ∆(X1, X2)

(The entries ∆(X1,X2) for X1 = D or A and X2 = SH or TH are blank
because the first case applies only to manifolds with boundary, while the second
case applies only to closed manifolds.)

The upper bounds in the various cases indicated in Table 2.1 are due to the
following. (S, S): Gordon and Luecke [28]; (S,D): Scharlemann [46]; (S,A):
Wu [53]; (S, T ): Oh [44], Qiu [45], and Wu [53]; (S, TH): Boyer and Zhang [9];
(D,D): Wu [51]; (D,A): Gordon and Wu [33]; (D,T ): Gordon and Luecke
[31]; (A,A), (A,T ), and (T, T ): Gordon [22]; (T, SH): Gordon and Luecke
[29]; (SH , SH): Gordon and Luecke [27]; (SH , TH) and (TH , TH): Culler,
Gordon, Luecke and Shalen [13].

References for the existence of examples realizing these upper bounds are as
follows:

(S, S) An example of a hyperbolic 3–manifold, with two torus boundary com-
ponents, having a pair of reducible Dehn fillings at distance 1, is given by
Gordon and Litherland in [25]. By doing suitable Dehn filling along the other
boundary component one obtains infinitely many hyperbolic 3–manifolds with
a single torus boundary component, having reducible fillings at distance 1. In-
finitely many such examples with two torus boundary components are given by
Eudave-Muñoz and Wu in [15].
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(S,A), (D,A) and (D,T ) An example of a hyperbolic 3–manifold M , with
two torus boundary components, with Dehn fillings M(α1), M(α2) such that
M(α1) is reducible and boundary reducible, M(α2) is annular and toroidal, and
∆(α1, α2) = 2, is given by Hayashi and Motegi in [35; section 12]. Infinitely
many such examples are constructed by Eudave-Muñoz and Wu in [15].

(S, T ) and (S, TH) Boyer and Zhang point out in [8] and [9; Example 7.8],
that the hyperbolic 3–manifold M = W (6), obtained by 6–Dehn filling (using
the usual meridian–latitude slope co-ordinates) on the exterior W of the White-
head link, has the property that M(1) is reducible, M(4) is toroidal, and M(∞)
is the lens space L(6, 1). Infinitely many such hyperbolic 3–manifolds M are
given by Eudave-Muñoz and Wu in [15; Lemma 4.1 and Theorem 4.2]; ie, each
M has Dehn fillings M(α1), M(α2), M(α3) such that M(α1) is reducible,
M(α2) is toroidal, M(α3) is a lens space, ∆(α1, α2) = 3, and ∆(α1, α3)
(= ∆(α2, α3)) = 1.

(D,D) Infinitely many examples of hyperbolic knots in a solid torus, with a
non-trivial Dehn surgery yielding a solid torus, have been given by Berge [1]
and [18].

(A,A) and (A,T ) Miyazaki and Motegi [42] and, independently, Gordon and
Wu [32], have shown that the exterior M of the Whitehead sister link has a
pair of Dehn fillings M(α1), M(α2), each of which is annular and toroidal, with
∆(α1, α2) = 5.

(T, T ) Thurston has shown [49] that if M is the exterior of the figure eight
knot then M(4) and M(−4) are toroidal.

(T, SH) Infinitely many examples of hyperbolic knots in S3 with half-integral
toroidal Dehn surgeries are given by Eudave-Muñoz in [14].

(SH , TH) and (TH , TH) Infinitely many hyperbolic knots in S3 with lens
space surgeries are described by Fintushel and Stern in [16]. A general con-
struction of such knots is given by Berge in [2], who has subsequently shown
[3] that the knots listed in [2] are the only ones obtainable in this way. He has
also suggested [2] that any knot in S3 with a lens space surgery might be of
this form.

There is a (unique) hyperbolic knot K in S1×D2 with two non-trivial surgeries
which yield S1 × D2 ; see [1]. Under an unknotted embedding of S1 × D2 in
S3 with n meridional twists, the image of K is a hyperbolic knot Kn in S3

with two lens space surgeries; see [1]. (The simplest example of this kind is the
(−2, 3, 7) pretzel knot, which is one of the knots constructed in [16].) Hence
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there are infinitely many hyperbolic 3–manifolds M with Dehn fillings M(α1),
M(α2), M(α3) such that M(α1) ∼= S3 , M(α2) and M(α3) are lens spaces,
and ∆(α1, α2) = ∆(α1, α3) = ∆(α2, α3) = 1.

We see that only two values of ∆(X1,X2) are unknown, namely: ∆(S, SH)
and ∆(T, TH). The conjectured values are −∞ and 3, and the best bounds to
date are 1 [26] and 5 [24], respectively.

The assertion that ∆(S, SH) = −∞ says that no Dehn surgery on a hyperbolic
knot in S3 gives a reducible manifold. This would follow from the

Cabling Conjecture (González-Acuña and Short [21]) If Dehn surgery on
a non-trivial knot K in S3 gives a reducible manifold then K is a cable knot.

(Here, it is convenient to regard a torus knot as a cable of the unknot.)

In fact, the cabling conjecture and the assertion ∆(S, SH) = −∞ are equivalent,
since Scharlemann has shown [46] that the former is true for satellite knots.

Regarding ∆(T, TH), the figure eight sister manifold M has slopes α1, α2

on ∂M such that M(α1) is toroidal, M(α2) is the lens space L(5, 1), and
∆(α1, α2) = 3 [5]. In fact, there are infinitely many such hyperbolic manifolds
M , and also infinitely many such M where M(α2) is the lens space L(7, 2);
see Section 3. On the other hand, it is shown in [24] that ∆(T, TH) ≤ 5. Pre-
sumably ∆(T, TH) = 3: there is nothing in the argument of [24] to suggest
that the bound of 5 obtained there is best possible, while 4 is not a Fibonacci
number.

Question 2.1 Is there a hyperbolic manifold with a toroidal filling and a lens
space filling at distance 4 or 5?

3 The manifolds realizing ∆(X1, X2)

Having determined ∆(X1,X2), one can ask about the manifolds M that have
fillings realizing ∆(X1,X2). Regarding the number of such manifolds, we have

Theorem 3.1 In the cases where ∆(X1,X2) is known, there are infinitely
many hyperbolic manifolds M realizing ∆(X1,X2), except when (X1,X2) =
(A,A), (A,T ) or (T, T ).
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This is well known when ∆(X1,X2) = 0. References in the other cases are
given in Section 2 above.

Turning to the exceptional cases (A,A), (A,T ) and (T, T ), the first two are
simultaneously described in the following theorem. (Here, and in Theorem 3.3,
∆ denotes ∆(α1, α2).)

Theorem 3.2 (Gordon–Wu [32], [34]) Let M be a hyperbolic 3–manifold
such that M(α1) is annular and M(α2) is annular (toroidal). Then there are:

(1) exactly one such manifold with ∆ = 5;

(2) exactly two such manifolds with ∆ = 4; and

(3) infinitely many such manifolds with ∆ = 3.

The manifolds in (1) and (2) are the same in both the annular and the toroidal
case. They are: in (1), the exterior of the Whitehead sister (or (−2, 3, 8)
pretzel) link, and in (2), the exteriors of the Whitehead link and the 2–bridge
link associated with the rational number 3/10.

Although the statements in Theorem 3.2 are identical in both cases (A,A) and
(A,T ), the proofs are necessarily quite different.

The next theorem describes the case (T, T ).

Theorem 3.3 (Gordon [22]) Let M be a hyperbolic 3–manifold such that
M(α1) and M(α2) are toroidal. Then there are:

(1) exactly two such manifolds with ∆ = 8;

(2) exactly one such manifold with ∆ = 7;

(3) exactly one such manifold with ∆ = 6; and

(4) infinitely many such manifolds with ∆ = 5.

Here the manifolds in (1), (2) and (3) are all Dehn fillings on the exterior W
of the Whitehead link. Specifically, (using the usual meridian–latitude slope
co-ordinates) they are: in (1), W (1) and W (−5) (these are the figure eight
knot exterior and the figure eight sister manifold), in (2), W (−5/2), and in (3),
W (2).

Of the two cases where ∆(X1,X2) is not known, namely (X1,X2) = (S, SH)
and (T, TH), recall that it is expected that there are no examples at all realizing
(S, SH). For the other case, (T, TH), there are no examples known with ∆ > 3.
However, the following theorem says that there are infinitely many examples
with ∆ = 3.
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Theorem 3.4 For any integer m > 0 there are infinitely many hyperbolic
3–manifolds M with Dehn fillings M(α1), M(α2) such that M(α1) is toroidal,
M(α2) is the lens space L(6m± 1, 3m∓ 1), and ∆(α1, α2) = 3.

Proof We will construct these manifolds by suitably modifying the examples
of hyperbolic manifolds with toroidal and reducible fillings at distance 3 given
by Eudave-Muñoz and Wu in [15; section 4].

For p, q ∈ Z let Tp,q be the tangle in the 3–ball S3− IntB shown in Figure 3.1,
where n denotes n positive half-twists, if n ≥ 0, and |n| negative half-twists,
if n < 0; this is obtained from the tangle Tp shown in [15; Figure 4.1(a)] by
adding q horizontal half-twists beneath the p vertical half-twists. Let Tp,q(r)
be the knot or link obtained by inserting into the 3–ball B the rational tangle
parametrized (in the usual way) by r ∈ Q ∪ {∞}. Let Mp,q be the 2–fold
branched covering of Tp,q . Thus ∂Mp,q is a torus, and Mp,q(r) is the 2–fold
branched covering of Tp,q(r).

- (p+2)

B

p

q

Figure 3.1

Assume that p ≥ 3 and q 6= 0. Then, as in [15; Proof of Lemma 4.1], Mp,q(∞)
is a non Seifert fibered, irreducible, toroidal manifold, Mp,q(0) is the 2–fold
branched cover of the 2–bridge knot corresponding to the rational number
1/(−(p + 3) + 1/(−(p + 1) + 1/q)), ie, the lens space L((p + 3)(q(p − 1) −
1) + q, q(p− 1) + 1), and Mp,q(1) and Mp,q(1/2) are Seifert fiber spaces of type
S2(p1, p2, p3).

Also, Tp,q(1/3) is the knot Kq shown in Figure 3.2; compare [15; Figure 4.1(f)].
Thus Kq is the 2–bridge knot corresponding to the rational number 1/(−2 +
1/(−q + 1/3)) = (1− 3q)/(6q + 1). Hence Mp,q(1/3) is (up to orientation) the
lens space L(6q + 1, 3q − 1). Setting m = |q| gives the lens spaces described in
the theorem. Note that ∆(∞, 1/3) = 3.
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qq =

Figure 3.2

It remains to show that for any q ( 6= 0) there are infinitely many distinct
hyperbolic manifolds of the form Mp,q . But the proof given by Eudave-Muñoz
and Wu of the corresponding assertion for their manifolds Mp [15; Proof of
Theorem 4.2], applies virtually unchanged in our present situation, the only
modifications necessary being to replace the reference to [26] by one to [13],
and to delete the references to [28] and [9].

Question 3.1 For which lens spaces L are there infinitely many hyperbolic
3–manifolds M with Dehn fillings M(α1), M(α2) such that M(α1) is toroidal,
M(α2) is homeomorphic to L, and ∆(α1, α2) = 3?

4 Large Manifolds

Wu has shown [53] that for manifolds M which are large in the sense that
H2(M,∂M − T0) 6= 0, the bounds in Table 2.1 can often be improved. (Note
that M is not large if and only if it is a Q–homology S1×D2 or a Q–homology
T 2 × I .) Thus we define (for Xi ∈ {S,D,A, T})

∆∗(X1,X2) = max{∆(α1, α2) : there is a large hyperbolic 3–manifold M
and slopes α1, α2 on a torus component of ∂M
such that M(αi) is of type Xi , i = 1, 2}.

(It is clear that if M is large then M(α) can never contain a Heegaard sphere
or torus.) Then the values of ∆∗(X1,X2) are as shown in Table 4.1.
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S D A T

S 0 0 1 1

D 1 1− 2 1

A 4 4

T 4− 5

Table 4.1 ∆∗(X1,X2)

The following are references for the fact that the relevant entries in Table 4.1
are upper bounds for ∆∗(X1,X2).

(S, S) For manifolds with boundary a union of tori this is due to Gabai [17;
Corollary 2.4]. The general case follows from this by a trick due to John Luecke;
see [53; Remark 4.2].

(S,D), (D,D) and (D,A) Here the upper bounds are the same as those for
∆(X1,X2) in Table 2.1.

(S,A), (S, T ) and (D,T ) These are due to Wu [53; Theorems 4.1 and 4.6].

(A,A) and (A,T ) By [34] and [32] (see Theorem 3.2), the only hyperbolic
manifold with annular/annular or annular/toroidal fillings at distance 5 is the
Whitehead sister link exterior, which is a Q–homology T 2 × I .

(T, T ) By [22] (see Theorem 3.3), the only hyperbolic manifolds with a pair
of toroidal fillings at distance greater than 5 are the fillings W (1), W (−5),
W (−5/2) and W (2) on the Whitehead link exterior W . These are all Q–
homology S1 ×D2 ’s.

References for the fact that the relevant entries in Table 4.1 are lower bounds
for ∆∗(X1,X2) are as follows.

(S, T ) and (D,T ) In [53; Example 4.7] Wu gives the example of the Bor-
romean rings exterior M , which has M(∞) reducible and boundary reducible
and M(0) toroidal.

(S,A) and (D,A) In [53; Example 4.8] Wu constructs a hyperbolic manifold
M whose boundary consists of four tori, with slopes α1 and α2 such that M(α1)
is reducible and boundary reducible, M(α2) is annular, and ∆(α1, α2) = 1.
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(D,D) Berge [4] and Gabai [19] have given examples of simple manifolds M
with distinct slopes α1 and α2 such that M(αi) is a handlebody of genus g ≥ 2,
i = 1, 2.

(A,A), (A,T ) and (T, T ) It is shown in [32; Lemma 7.1] that the White-
head link exterior M has fillings M(α1), M(α2), each of which is annular and
toroidal, with ∆(α1, α2) = 4. Since the Whitehead link has linking number
zero, M is large.

The two unknown values of ∆∗(X1,X2) in Table 4.1 give rise to the following
questions.

Question 4.1 Is there a large hyperbolic manifold with a boundary reducible
filling and an annular filling at distance 2?

Question 4.2 Is there a large hyperbolic manifold with two toroidal fillings
at distance 5?

5 Manifolds with boundary a union of tori

Restricting attention to hyperbolic 3–manifolds whose boundary components
are tori, we can consider what happens to the maximal distances between excep-
tional fillings as the number of boundary components increases. More precisely,
we can define, for Xi ∈ {S,D,A, T},
∆k(X1,X2) = max{∆(α1, α2) : there is a hyperbolic 3–manifold M such that

∂M is a disjoint union of k tori, and slopes α1, α2 on some
component of ∂M , such that M(αi) is of type Xi, i = 1, 2}.

This is defined for k ≥ 1 if X1,X2 ∈ {S, T}, and for k ≥ 2 otherwise.

Since a 3–manifold with more than two torus boundary components is large,
we have

∆∗(X1,X2) ≥ ∆k(X1,X2) if k ≥ 3.

If a 3–manifold whose boundary consists of ` tori contains an essential disk,
then it also contains an essential sphere, provided ` ≥ 2, and if it contains an
essential annulus, and is irreducible, then it also contains an essential torus,
provided ` ≥ 4. Hence

∆k(S,X) ≥ ∆k(D,X), if k ≥ 3 ;
∆k(T,X) ≥ ∆k(A,X), if k ≥ 5 and ∆k(A,X) > ∆k(S,X).
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Now suppose M is a hyperbolic 3–manifold with slopes α1, α2 on some torus
component of ∂M such that M(αi) is of type Xi , where Xi = S,D,A or T ,
i = 1, 2. Let Fi be the corresponding essential surface in M(αi), i = 1, 2. If
there is a torus component T of ∂M which does not meet F1 or F2 , then known
results imply that there are infinitely many slopes β on T such that Fi remains
essential in M(αi)(β), i = 1, 2. Since M(β) is hyperbolic for all but finitely
many β , there are infinitely many slopes β such that M(β) is hyperbolic and
M(β)(αi) is of type Xi , i = 1, 2. Thus

∆k−1(X1,X2) ≥ ∆k(X1,X2),

provided k is large enough that there is guaranteed to be a boundary component
which misses F1 and F2 ; this depends on the pair X1,X2 .

The values of ∆2(X1,X2) and ∆3(X1,X2) are shown in Tables 5.1 and 5.2.

S D A T

S 1 0 2 2− 3

D 1 2 2

A 5 5

T 5

Table 5.1 ∆2(X1,X2)

S D A T

S 0 0 1 1

D 0 1 1

A 3 3

T 3− 5

Table 5.2 ∆3(X1, X2)

The upper bounds for ∆2(X1,X2) in Table 5.1 are the same as the upper
bounds for ∆(X1,X2) in Table 2.1, except for (T, T ). This case follows from
[22] (see Theorem 3.3), since the manifolds listed there with a pair of toroidal
fillings at distance greater than 5 all have a single boundary component.

References for examples realizing the (lower) bounds in Table 5.1 are among
those listed for Table 2.1 in Section 2, ie, (S, S): [25], [15]; (S, T ), (D,A) and
(D,T ): [35], [15]; (D,D): [1], [18]; (A,A), (A,T ) and (T, T ): [42], [32].

Turning to ∆3(X1,X2), the upper bounds are the same as those for ∆∗(X1,X2)
(see Table 4.1), except in the cases (D,A), (A,A) and (A,T ). For (D,A),
we have ∆3(D,A) ≤ ∆3(S,A) ≤ 1, while the facts that ∆3(A,A) ≤ 3 and
∆3(A,T ) ≤ 3 follow from [34] and [32] respectively; see Theorem 3.2.

References for examples realizing the lower bounds in Table 5.2 are as follows.

(S, T ) and (D,T ) [53; Example 4.7]; see Section 4 above.
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(S,A) Let M be the hyperbolic manifold constructed by Wu in [53; Exam-
ple 4.8], with four torus boundary components, and slopes α1, α2 (on T0 , say)
such that M(α1) is reducible, M(α2) is annular, and ∆(α1, α2) = 1. By doing
a suitable Dehn filling on the boundary component T1 which is neither T0 nor
either of the components containing the boundary components of the annulus in
M(α2), we get a hyperbolic 3–manifold M ′ with three torus boundary compo-
nents, such that M ′(α1) is reducible and M ′(α2) is annular. Another example
is given in Theorem 5.1 below.

(D,A) See Theorem 5.1. (Note that although in Wu’s example [53; Exam-
ple 4.7] M(α1) is also boundary reducible, it is T1 that is compressible in
M(α1), so we cannot use the argument given above in the case (S,A) to con-
clude that ∆3(D,A) = 1.)

(A,A), (A,T ) and (T, T ) In [32; Section 7] is described a hyperbolic 3–man-
ifold M , called the magic manifold , which is the exterior of a certain 3–
component link in S3 and has Dehn fillings M(α1), M(α2), each of which
is annular and toroidal, with ∆(α1, α2) = 3.

The following theorem shows that ∆3(D,A) = 1.

Theorem 5.1 There exists a hyperbolic 3–component link in S3 whose exte-
rior M has Dehn fillings M(α1),M(α2) such that M(α1) is boundary reducible,
M(α2) is annular, and ∆(α1, α2) = 1.

Proof Let L = K1∪K2∪K3 be the 3–component link illustrated in Figure 5.1.
Let M be the exterior of L.

K1

K2 K3

Figure 5.1

Claim M is hyperbolic.
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Proof First, since (with appropriate orientations) we have linking numbers
lk(K1,K2) = 5, lk(K1,K3) = 2, M is irreducible. Second, it follows easily
from [11], again by considering linking numbers, that M is not a Seifert fiber
space. Hence it suffices to show that M is atoroidal.

So let T be an essential torus in M . We see from Figure 5.1 that K1 bounds
a Möbius band B that is punctured once by K2 and is disjoint from K3 . This
gives rise to a once-punctured Möbius band F in M . By an isotopy of T , we
may suppose that T intersects F transversely in a finite disjoint union of simple
closed curves, each being orientation preserving and essential in F . Hence we
can choose an orientation reversing curve C in F such that C ∩ T = ∅. Up
to isotopy in F , there are two possibilities for C (because of the puncture),
but in each case we see from Figure 5.1 that the link L′ = C ∪K2 ∪K3 has a
connected, prime, alternating diagram, and is not a (2, q) torus link, and hence
by [39], is hyperbolic. It follows that T is either

(i) compressible in S3 − L′ ; or

(ii) parallel in S3 − L′ to ∂N(C); or

(iii) parallel in S3 − L′ to ∂N(K2); or

(iv) parallel in S3 − L′ to ∂N(K3).

In case (i), let D be a compressing disk for T in S3 − L′ . Then T bounds a
solid torus V in S3 containing D . Since T is incompressible in S3 − L, D
must meet K1 . Hence K1 ⊂ V . We now distinguish two subcases: (a) K1 is
not contained in a ball in V ; and (b) K1 is contained in a ball in V .

In subcase (a), since K1 is unknotted in S3 , it follows that V is also, and
hence, since T is incompressible in S3−L, we must have K2 or K3 ⊂ S3− V .
If any component of L′ were contained in V , then it would lie in a ball in V ,
and so L′ would be a split link. Hence L′ ⊂ S3 − V . But K1 ∪ C is a Hopf
link, and so K1 is a core of V , contradicting the essentiality of T in M .

In subcase (b), first note that since each of C , K2 and K3 has non-zero linking
number with K1 , we must have C ∪ K2 ∪ K3 ⊂ V , and hence V is knotted
in S3 . Now consider T ∩ B = T ∩ F ; any component of T ∩ B either bounds
a disk in B containing the point K2 ∩ B , or is parallel in B to K1 . If there
are components of the first type, let γ be one that is innermost in B ; thus
γ bounds a disk E in B which meets K2 in a single point and has interior
disjoint from T . If γ were inessential on T , then we would get a 2–sphere in
S3 meeting K2 transversely in a single point, which is impossible. Hence E is
a meridian disk of V . But D is a meridian disk of V which misses K2 , so again
we get a contradiction. It follows that each component of T ∩ B is parallel in
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B to K1 . If T ∩B 6= ∅, then the annulus in B between K1 and an outermost
component γ of T ∩B defines an isotopy of K1 , fixing K3 , which takes K1 to
γ . But since the meridian disk D of V misses K3 , K3 lies in a ball in V , and
hence lk(γ,K3) = 0. Since lk(K1,K3) = 2, this is a contradiction.

We therefore have T ∩ B = ∅. Thus B ⊂ V , and T is an essential torus in
S3 − Int N(B ∪ K2 ∪ K3). Now B ∪ K2 ∪ K3 collapses to the graph Γ ⊂ S3

shown in Figure 5.2, and S3− Int N(Γ) is homeomorphic to the exterior of the
tangle t in B3 shown in Figure 5.3. Since t is not a split tangle, ∂B3 − t is
incompressible in B3 − t. (To see that t is not split, observe that if it were,
it would be a trivial 2–string tangle together with a meridional linking circle
of one of the components. Hence any 2–component link, with each component
unknotted, obtained by capping off (B3, t) with a trivial tangle, would be a
Hopf link. But joining the N and E , and S and W , arc endpoints of t in
the obvious way gives the 2–bridge link corresponding to the rational number
5/18.) Also, two copies of (B3, t) may be glued together along their boundaries
so as to get a link in S3 that has a connected, prime, alternating diagram. By
[39], the exterior of this link is atoroidal, and hence the exterior of t in B3

is also atoroidal. This contradiction completes the proof of subcase (b), and
hence of case (i).

Figure 5.2 Figure 5.3

In case (ii), T bounds a solid torus V in S3 with C as a core, and K1 ⊂ V .
Hence lk(K1,K2) = 5 is a multiple of lk(C,K2) = 2 or 3, a contradiction.
Similarly, in case (iii) we get that lk(K1, C) = 1 is a multiple of lk(K2, C) = 2
or 3, and in case (iv), that lk(K1,K2) = 5 is a multiple of lk(K3,K2) = 0.

This completes the proof of the claim.

Let T0 be the boundary component of M corresponding to the component
K1 of L. Then, since L−K1 is the 2-component unlink, M(∞) is boundary
reducible. Also, the Möbius band B bounded by K1 , which is punctured
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once by K2 , has boundary slope 2. Hence M(2) contains a Möbius band
whose boundary is a meridian of K2 . Hence (see [25; Proof of Proposition 1.3,
Case (1)]) M(2) ∼= X ∪T Q, where Q is a (1, 2)–cable space, glued to X along
a torus T , with Q ∩ ∂M(2) = ∂N(K2). Since M(∞) is boundary reducible,
M(0) is irreducible, by [46], and hence T is incompressible in X . Therefore
M(2) is annular.

Regarding the one unknown value of ∆2(X1,X2) in Table 5.1 we have the
following question.

Question 5.1 Is there a hyperbolic manifold with boundary a union of two
tori, having a reducible filling and a toroidal filling at distance 3?

Similarly, the one unknown value of ∆3(X1,X2) in Table 5.2 leads to the fol-
lowing question.

Question 5.2 Is there a hyperbolic manifold with boundary a union of three
tori, having two toroidal fillings at distance 4 or 5?

Seeing the values in the tables for ∆(X1,X2), ∆2(X1,X2) and ∆3(X1,X2)
decreasing leads one to ask if ∆k(X1,X2) is eventually zero; equivalently, if
a hyperbolic 3–manifold with k torus boundary components has at most one
exceptional Dehn filling (on any given boundary component) for k sufficiently
large. However, the following two theorems show that this is not the case.

The first is essentially due to Wu [53].

Theorem 5.2 (Wu [53]) For any k ≥ 4 there are infinitely many hyperbolic
3–manifolds M such that ∂M consists of k tori, with Dehn fillings M(α1),
M(α2) such that M(α1) is reducible and boundary reducible, M(α2) is annular
and toroidal, and ∆(α1, α2) = 1.

Proof This is essentially Example 4.8 of [53]. We simply modify Wu’s con-
struction by taking X to be a simple manifold with ∂X a genus 2 surface
together with (k − 4) tori. Then M = M1 ∪P X is simple, with ∂M consist-
ing of k tori. Let T0 be the component of ∂M corresponding to K1 in [53;
Figure 4.2]. Then M(∞) is reducible and boundary reducible, and M(0) is an-
nular. It remains to show that M(0) is toroidal. Now M(0) is irreducible (since
M is large and M(∞) is reducible), and hence M(0) will be toroidal unless
k = 4 and M(0) ∼= (pair of pants)× S1 . But since M1(∞) is reducible, M1(0)
is boundary irreducible by [46], and hence M(0) contains an incompressible
genus 2 surface, so we are done.
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Remark Examples as in Theorem 5.2 can also be obtained by generalizing the
construction given in the proof of Theorem 5.1 to links with k ≥ 4 components.

It follows from Theorem 5.2 that ∆k(X1,X2) ≥ 1 for k ≥ 4, where X1 ∈ {S,D}
and X2 ∈ {A,T}. The next theorem shows that for k ≥ 4, ∆k(A,A), ∆k(A,T )
and ∆k(T, T ) are ≥ 2.

Theorem 5.3 For any k ≥ 4 there exists a k–component hyperbolic link in
S2 × S1 whose exterior M has Dehn fillings M(α1),M(α2), each of which is
annular and toroidal, with ∆(α1, α2) = 2.

Proof Consider the tangle in S2 × I illustrated in Figure 5.4, consisting of
three arcs and a closed loop K1 (The tangle is shown lying in the solid cylinder
D2

+×I , where we regard S2 as the union of two hemispheres D2
+∪D2

− .) Gluing
together the two ends S2 × {0} and S2 × {1}, in such a way that the pairs of
points {a, a′}, {b, b′} and {c, c′} are identified, we obtain a 2–component link
L = K1 ∪K2 in S2 × S1 . For convenience we have chosen the knot K2 to be
the (reflection of the) one considered by Nanyes in [43], so that we can appeal
to some of the properties of K2 established there.

K1

a'

b'

c'

a

b

c

Figure 5.4

We see from Figure 5.4 that K1 bounds a Möbius band, with boundary slope 2,
which is punctured once by K2 . Hence, doing 2–Dehn filling on the exterior of
L along the boundary component T0 corresponding to K1 , we get a manifold
containing a Möbius band, whose boundary is a meridian of K2 .

Redrawing K1 as in Figure 5.5, we also see that K1 bounds a disk, with bound-
ary slope 0, which K2 intersects in two points, with the same sign. Hence
0–Dehn filling the exterior of L along T0 gives a manifold that contains an
annulus, whose boundary consists of two coherently oriented meridians of K2 .
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K1

x

a

b

c

a'

b'

c'

Figure 5.5

One can show that L is hyperbolic, and the idea is to enlarge L to a k–
component hyperbolic link Lk , k ≥ 4, without disturbing the Möbius band and
annulus described above. We do this by successively inserting (k−2) additional
components K3, . . . ,Kk in a small neighborhood of the crossing x indicated in
Figure 5.5, as follows. First insert K3 around x as shown in Figure 5.6; then,
in the same manner, insert K4 around one of the crossings of K3 with (say)
K2 ; then insert K5 around one of the crossings of K4 with K3 (say), etc.. Let
M denote the exterior of Lk in S2×S1 . Then we still have that M(2) contains
a Möbius band, and M(0) contains an annulus, as described earlier.

 
Figure 5.6

We shall show that M is hyperbolic, and that M(2) and M(0) are annular and
toroidal.

First, let t be the tangle in S2 × I that corresponds to the link Lk , ie, the
tangle obtained from that illustrated in Figure 5.5 by inserting the components
K3, . . . ,Kk as described above. Let N be the exterior of t in S2 × I .

Claim 1 N is irreducible and atoroidal.

Proof The arc of t with endpoints a′ and b may be isotoped away from
the rest of t, so N is homeomorphic to the exterior of the tangle t0 in D2 ×
I ∼= B3 , obtained from that shown in Figure 5.7 by inserting K3, . . . ,Kk .
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Gluing two copies of (B3, t0) along their boundaries, in such a way that the
arc endpoints a and c in each copy are identified with b′ and c′ respectively in
the other copy, we obtain a link in S3 with a diagram that is connected, prime
and alternating. Therefore, by [39], the exterior of this link is irreducible and
atoroidal. Moreover, since t0 is not a split tangle, ∂B3 − t0 is incompressible
in B3 − t0 . It follows that the exterior N of t0 in B3 is also irreducible and
atoroidal.

This completes the proof of Claim 1.

a

c

b'

c'

 

Figure 5.7

Claim 2 M is hyperbolic.

Proof The two thrice-punctured spheres Pi = S2 × {i} − Int N(t), i = 0, 1,
are incompressible in the exterior of t in S2 × I , as they are incompressible in
the exterior in S2 × I of the three arcs that make up K2 ; see [43]. Let P be
the thrice-punctured sphere P1 = P2 in M . Since N is irreducible by Claim 1,
and P1 and P2 are incompressible in N , it follows that M is irreducible.

If M were a Seifert fiber space, then the incompressible surface P would be
horizontal, which is impossible since M has at least four boundary components.

Hence it suffices to show that M is atoroidal. So let T be an essential torus in
M , which we isotop to minimize the number of components of T ∩P . Then no
component of T ∩ P is inessential in P , and hence either T ∩ P = ∅, or some
component γ of T∩P bounds a disk D in the 2–sphere S = S2×{0} = S2×{1},
such that D meets K2 transversely in a single point and has interior disjoint
from T . Now γ is essential on T , otherwise we get a 2–sphere in S2 × S1

meeting K2 in a single point, contradicting [43]. Hence compressing T along
D gives a 2–sphere Σ meeting K2 in two points. Since K2 is locally unknotted
(see [43]), Σ bounds a 3–ball B in S2 × S1 such that (B,B ∩K2) ∼= (B3, B1).
Let T ′ be the boundary of the solid torus V = B− Int N(K2). Note that T is
obtained from Σ by adding a tube. If this tube lies in B , then T is isotopic to
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T ′ ; if it lies outside B , then T is parallel, in the exterior of K2 , to ∂N(K2).
Since T is essential in M , in both cases we must have (L −K2) ∩ B 6= ∅. If
T ′ were compressible in V −L, then L would be a split link, contradicting the
fact that M is irreducible. Hence T ′ is an essential torus in M . Note also that
T ′ may be isotoped off P . This gives an essential torus in N , contradicting
Claim 1.

This completes the proof of Claim 2.

Claim 3 M(2) and M(0) are annular and toroidal.

Proof As observed above, M(2) contains a Möbius band. Hence, as in the
proof of Theorem 5.1, M(2) ∼= X ∪T Q, where Q is a (1, 2)–cable space, glued
to X along a torus T . If T is incompressible in X , then M(2) is annular and
toroidal. On the other hand, if T compresses in X , then M(2) is reducible.

Now consider M(0). First note that, since M(2) is either annular or reducible,
and ∆k(S,A) = 1, ∆k(S, S) = 0, for k ≥ 4, M(0) is irreducible. Now, as
we saw earlier, M(0) contains an annulus A, whose boundary components are
coherently oriented on ∂N(K2). It follows that A is not boundary parallel
in M(0). If A were compressible in M(0), then M(0) would be boundary
reducible, and hence reducible, a contradiction. We conclude that M(0) is
annular. Now, since ∆k(S,A) = 1, k ≥ 4, M(2) cannot be reducible, and
hence it is annular and toroidal.

Finally, tubing A along ∂N(K2) gives a Klein bottle F in M(0). The boundary
of a regular neighborhood of F is a torus T which is essential since M(0) is
irreducible. Hence M(0) is toroidal.

This completes the proof of Claim 3 and hence of Theorem 5.3.

Theorems 5.2 and 5.3 (together with Theorems 3.2 and 3.3) show that the
values of ∆k(X1,X2), k ≥ 4, are as indicated in Table 5.3.

S D A T

S 0 0 1 1

D 0 1 1

A 2− 3 2− 3

T 2− 5

Table 5.3 ∆k(X1, X2), k ≥ 4
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Question 5.3 What are the values of ∆k(A,A), ∆k(A,T ) and ∆k(T, T ) for
k ≥ 4?
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