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Genus two Heegaard splittings: an omission

MARTIN SCHARLEMANN

In Rubinstein and Scharlemann [4], the given list of ways in which a closed orientable
3–manifold could have distinct genus two Heegaard splittings misses a significant
case. A brief description of the case (discovered by John Berge) is given here, and
the proof that the list is complete is corrected, now incorporating the missed case.
Full details and further discussion appear elsewhere.

57N10; 57M50

1 Preliminaries

The argument in Rubinstein and Scharlemann [4, Theorem 9.4] contains a significant
gap1, discovered in 2008 by John Berge. The details and significance of the omitted case
are discussed elsewhere (see Berge [1; 2], Berge and Scharlemann [3], and Scharlemann
[5]); the present short note simply indicates how the proof of [4, Theorem 9.4] should
be corrected.

Definition 1.1 A simple closed curve � in the boundary of a handlebody H is
primitive if there is a properly embedded disk D �H whose boundary intersects � in
a single point.

For such a primitive curve, let ˛ be the curve obtained by pushing � slightly into the
interior of H . We can view H as the boundary connect sum of a handlebody H 0 and
a solid torus W , with the curve � a longitude of W . Then ˛ is a core curve of W , so
Dehn surgery on ˛ �W still gives a solid torus. Hence any Dehn surgery on ˛ �H

leaves H still a handlebody.

Definition 1.2 Suppose M0 D Ha [S Hb is a Heegaard splitting of a closed 3–
manifold M0 . A simple closed curve � � S is doubly primitive if � is a primitive
curve in both handlebodies Ha and Hb .

1The error is on page 533: The last sentence of the first paragraph of Case 2 should have read, “The
same curves cannot then be twisted in X since M is hyperbolike." This leaves open an additional
possibility for PX , PY , which appears as Subcase B in Section 2 below.
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Suppose M0 is a closed orientable 3–manifold and that M0 DHa[S Hb is a genus
2 Heegaard splitting of M0 . Suppose further that �1; �2 � S are two disjoint doubly
primitive curves in S .

Proposition 1.3 Suppose M is a manifold obtained by some specified Dehn surgeries
on �1 and �2 . For i D 1; 2, let Ai (respectively Bi ) be the manifold obtained from the
handlebody Ha (respectively Hb ) by pushing the curve �i into int.Ha/ (respectively
int.Hb/) and performing the specified Dehn surgery on the curve.

Then A1[S B2 and A2[S B1 are two (possibly different) genus 2 Heegaard splittings
of M .

Proof Ai (respectively Bi ) is obtained from Ha (resp Hb ) by Dehn surgery on a
pushed in copy ˛ i of a single primitive curve in S . It was just observed that this
makes each Ai (respectively Bi ) a handlebody.

Definition 1.4 Two genus 2 Heegaard splittings X [Q Y and A[P B of a closed
3–manifold M are called Dehn derived (from the splitting M0 D Ha [S Hb via
�1[�2 � S ) if the two splittings are created as in Proposition 1.3.

Berge has a nice classification of pairs of disjoint primitive curves in a genus 2 handle-
body. The classification leads to concrete descriptions of how Dehn-derived pairs of
splittings can arise. See [1; 3].

2 Filling the gap in [4]

The gap in [4] arises because of a faulty sentence in the midst of a long and technical
argument which would be difficult to summarize. Here we jump in on p. 533, in the
midst of trying to prove that all cases of multiple genus 2 Heegaard splittings have
been covered in the earlier examples listed in that paper. M is a closed hyperbolike
3–manifold with Heegaard splittings M D A[P B D X [Q Y . The two splitting
surfaces P and Q have been made to coincide on sub-surfaces P0 � P and Q0 �Q.
Then P �P0 consists of annular components PX and PY properly embedded in the
handlebodies X and Y respectively, and Q�Q0 consists of annular components
QA;QB properly embedded in the handlebodies A;B respectively. With this as
background, we now re-enter the proof of [4, Theorem 9.4, Case 2] on page 533, at
first echoing what is written there as the proof of Subcase A below. In filling the gap in
the argument we also broaden the possible outcome, as expressed in Proposition 2.1.

Case 2 PX and PY are both non-empty and the end of each curve in @PX [ @PY is
parallel to one of c1 or c2 .
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Proposition 2.1 In this case, either

(I) the splittings M D A[P B D X [Q Y are related as in [4, Example 4.4] or

(II) the two splittings M D A[P B D X [Q Y are Dehn-derived from a single
genus 2 Heegaard splitting of another manifold M0:

Proof If at least one annulus in each of PX or PY is non-separating, then together
they would give a non-separating, hence essential, torus in M . This contradicts our
assumption that M is hyperbolike. So we may as well assume that each annulus in PY

is separating. Hence the ends of PY are twisted in Y (see [4, Definition 5.4]). No end
of PY can also be twisted in X , for the union along the curve of the solid tori (one in
X , one in Y ) on which the curve is a torus knot would be a Seifert submanifold of
M , contradicting the assumption that M is hyperbolike.

Subcase A Some end of PY is parallel to an end of PX . [The gap in [4] was to view
this as the only possibility.]

In this case, by [4, Lemma 5.6] all of PX is a collection of parallel non-separating
longitudinal annuli in X . If PY has ends at both c1 and c2 then neither curve can be
twisted in X . In this case each annulus in PX is non-separating and so has ends that
are non-parallel in Q. This implies that each annulus in PX has one end at c1 and
one at c2 . Attach such an annulus in X to the tori in Y on which the ci are twisted.
The boundary of the thickened result would exhibit a Seifert manifold in M , again
contradicting the assumption that M is hyperbolike. We conclude that PY has ends
only at c2 , say.

If there were three or more annuli in PY (hence six or more ends of @PY at c2 ) then
there would be at least four ends of PX at c2 . No annulus in PX could have both ends
at c2 (since c2 is not twisted in X ) so there would also be at least four ends of PX at
c1 . This would contradict [4, Lemma 9.5]. So we conclude that PY is made up of one
or two annuli. If it’s two annuli, necessarily separating and parallel in Y , then, again
by [4, Lemma 9.5] some annulus in PX has an end at c2 . It cannot have both ends
at c2 and must be non-separating and longitudinal in X , since c2 is not twisted in
X . In this case the relation between P and Q can be seen as follows (See [4, Figure
32]): In [4, Example 4.4, Variation 2], let P be the splitting given there with Dehn
surgery curve in �aC and Q be the same splitting given there but with Dehn surgery
curve in �a� . To view these simultaneously as splittings of the same manifold M , of
course, the Dehn surgery curve has to be moved from �aC to �a� , dragging some
annuli along, until the splitting surfaces P and Q intersect as described.

Suppose then that PY is a single annulus. It may have both ends on P0 or it may have
one end on P0 and one end on an end of PX . (If both ends of PY were also ends of
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PX then these, together with ends of PX at @P0 parallel to c2 would exhibit more than
two annuli in PX , hence more than two ends of PX at c1 , contradicting [4, Lemma
9.5].) If PY has one end on P0 and one end on an end of PX , the initial splitting by
Q is as in [4, Example 4.4, Variation 1] (X D A� [ � ), with a Dehn surgery curve
lying in �bC , say. If the splitting is altered by first putting the Dehn surgery curve
in �aC (yielding the same manifold M ), then altering as in [4, Example 4.4] (i. e.
considering A[P B where B D B�[ � ) and then dragging the Dehn surgery curve
from �aC to �bC , pushing before it an annulus from the 4-punctured sphere along
which A� and B� are identified, we get the splitting surface P , intersecting Q as
required. (See [4, Figure 33].) This completes the proof that Proposition 2.1, (I) holds
in Subcase A.

Subcase B No end of PY is parallel to an end of PX .

In view of [4, Lemma 9.5], in this subcase PY and PX each consist of exactly one
separating annulus, PY twisted in Y with boundary curves parallel to c2 (say) and PX

twisted in X with boundary curves parallel to c1 . This case is symmetric: the annulus
in Q lying between the ends of PY is QA (say) and the annulus in Q lying between
the ends of PX is exactly QB . The annulus PY cannot be parallel to the annulus QA

(else P0 and Q0 could be extended to include both) but rather the region between them
is a solid torus W2DA\Y on whose boundary the cores of the annuli are torus knots.
Similarly B \X is a solid torus W1 on whose boundary the cores of the annuli QB

and PX are torus knots. The annulus PY @ -compresses in Y to become a separating
disk; it follows that Y �W2 D B \ Y is a genus 2 handlebody HBY on which the
core a2 of the annulus PY is primitive. Symmetrically, the curve c1 (viewed as the
core of the annulus QB ) is primitive in HBY , the curve c2 is primitive in the genus 2

handlebody HAX DX �W1 DX \A, as is the core curve a1 of PX .

Here is another way to describe the manifold M above: begin with the two genus
2 handlebodies HAX (which contains disjoint primitive simple closed curves a1; c2

on its boundary) and HBY (which contains disjoint primitive simple closed curves
a2; c1 on its boundary). Construct a closed 3–manifold M0 by identifying @HAX to
@HBY by a homeomorphism that identifies ai with ci , i D 1; 2. Call the resulting
curves ˛1; ˛2 . Now recover M from M0 by removing a tubular neighborhood of
each ˛ i and replacing with the solid torus Wi ; equivalently, do an appropriate surgery
on each ˛ i in M0 . The two Heegaard splittings of M are then seen as follows: if
˛1 is pushed into HAX and ˛2 into HBY before the surgery on the curves, then the
resulting Heegaard splitting is M DX [Q Y ; if ˛1 is pushed into HBY and ˛2 into
HAX before the surgery then the resulting splitting is M D A[P B . That is, the
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splittings of M are both Dehn-derived from the Heegaard splitting M0DHAX [HBY .
Thus Proposition 2.1, (II) holds in Subcase B.
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