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Existence theorem for higher local fields

Kazuya Kato

0. Introduction

Afield K iscalledan n-dimensional local fieldif thereisasequenceof fields k., . .., ko
satisfying the following conditions: kg isafinitefield, k; isacomplete discrete valu-
ation field with residuefield k;_1 for i =1, ...,n,and k, = K.

In [9] we defined a canonical homomorphism from the n th Milnor group K, (K)
(cf. [14]) of an n-dimensional local field K to the Galois group Gal(K®/K) of the
maximal abelian extension of K and generalized the familiar results of the usual local
classfield theory to the case of arbitrary dimension except the “ existence theorem”.

An essential difficulty with the existence theorem lies in the fact that K (resp. the
multiplicative group K*) has no appropriate topology in the case where n > 2 (resp.
n > 3) which would be compatible with the ring (resp. group) structure and which
would take the topologies of the residue fields into account. Thus we abandon the
familiar tool “topology” and define the openness of subgroups and the continuity of
maps from a new point of view.

In the following main theorems the words “open” and “ continuous’ are not used in
the topological sense. They are explained below.

Theorem 1. Let K bean n-dimensional local field. Then the correspondence
L — NL/KKn(L)

is a bijection from the set of all finite abelian extensions of K to the set of all open
subgroups of K, (K) of finite index.

This existence theorem is essentially contained in the following theorem which
expresses certain Galois cohomology groups of K (for example the Brauer group of
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166 K. Kato

K') by using the Milnor K-group of K. For afield & we define the group H” (k)
(r > 0) asfollows (cf. [9, §3.1]). In the case where char (k) = O let

r — I T ®(r—1)
(the Galois cohomology). In the case where char (k) =p > 0 let
T — i r R(r-1) ; r
H' (k) = lim H (k. a2 ) + lim Hy (k).

Herein each case m runsover all integersinvertiblein &, u,, denotesthegroup of al
mth roots of 1 in the separable closure k% of k, and p2("—D denotesits (r — 1) th
tensor power as a Z/m-module on which Gal(k%F/k) actsin the natural way. Inthe
case where char (k) = p > 0 wedenote by H o (k) the cokernel of

F— 107X k) — I Y k) /{C2(k), T}

where C; isthe group defined in [3, Ch.11,§7] (see also Milne [13, §3]). For example,
HY(k) isisomorphic to the group of all continuous characters of the compact abelian
group Gal(k®/k) and H2(k) isisomorphic to the Brauer group of k.

Theorem 2. Let K beasin Theorem 1. Then H"(K) vanishesfor r > n+1 andis
isomor phic to the group of all continuous characters of finite order of K,,+1_,.(K) in
thecasewhere 0 < r < n+1.

We shall explain the contents of each section.

For acategory C the category of pro-objects pro(C) and the category of ind-objects
ind(€) aredefined asin Deligne [5]. Let F bethe category of finite sets, and let F1,
F,, ... bethe categories defined by F,+1 = ind(pro(&,)). Let F = U, F,. In
section 1 we shall show that »n-dimensional local fields can be viewed as ring objects
of F,. More precisely we shall define aring object K of F,, corresponding to an
n-dimensional local field K such that K is identified with the ring [e, K]y of
morphisms from the one-point set e (an object of Fp) to K, and a group object K*
suchthat K* isidentified with [e, K*]5_ . Wecall asubgroup N of K,(K) openif
and only if the map

K*%x ... x K* —>K'q(K')/]\f7 (z1, ...,.’L'q)»—> {xl, ...,.’L'q} mod N

comes from a morphism K* x --- x K* — K, (K)/N of ¥, where K,(K)/N is
viewed as an object of ind(Fp) C F1. We call ahomomorphism ¢: K,(K) — Q/Z a
continuous character if and only if the induced map

K*x -« xK*—=Q/Z, (z1,...,29)— ¢({x1, ..., 24})

comesfrom amorphismof F., where Q/Z isviewed asan object of ind(Fp). Ineach
case such amorphism of ¥, isuniqueif it exists (cf. Lemma1 of section 1).

In section 2 we shall generalize the self-duality of the additive group of a one-
dimensional local field in the sense of Pontryagin to arbitrary dimension.
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Existence theorem for higher local fields 167

Section 3isapreliminary onefor section4. Thereweshall provesomering-theoretic
propertiesof [X, K]s_ for objects X of F.

In section 4 we shall treat the norm groups of cohomological objects. For afield &
denote by (k) the category of all finite extensions of & in afixed algebraic closure of
k withtheinclusion mapsasmorphisms. Let H beafunctor from £(k) to the category
Ab of all abelian groups such that Ii_r)n,«ee% H(K') = 0. For wy, ...,wy, € H(K)
definethe K ,-normgroup N, (w1, ...,w,) asthesubgroup of K, (k) generated by the
subgroups Ny, K, (k') where k' runsover all fieldsin £(k) suchthat {ws, ..., w,} €
ker(H (k) — H(k')) and where Ny, denotes the canonical norm homomorphism of
the Milnor K -groups (Bass and Tate [2, §5] and [9, §1.7]). For example, if H = H!
and x1, ..., Xy € HY(K) then N,(x1, --,X,) iSnothing but Ny K q(E") where £/
isthefinite abelian extension of & correspondingto N; ker(y;: Gal(k®/k) — Q/Z). If
H = H? and w € H?(k) then Ny(w) istheimage of the reduced normmap A* — k*
where A isacentra simple algebraover k corresponding to w.

Asit iswell known for a one-dimensional local field £ the group N1(x1, ..., Xxg)
is an open subgroup of £* of finite index for any x1, ..., x4 € H(k) and the group
Ni(w) = k* forany w € H?(k). We generalize these facts as follows.

Theorem 3. Let K bean n-dimensional local field and let » > 1.

(1) Letwy,...,w, € H"(K). Thenthenormgroup Ny+1—,(w1, ...,w,) isanopen
subgroup of K, +1_,(K) of finiteindex.

(2) Let M be a discrete torsion abelian group endowed with a continuous action
of Ga(K**/K). Let H be the Galois cohomology functor H"( , M). Then for
every w € H"(K, M) thegroup N,,+1_,-(w) isan open subgroup of K,+1_,.(K)
of finite index.

Let k beafield andlet ¢, > 0. We define a condition (Vg , k) as follows: for
every k' € E(k) andevery discretetorsion abeliangroup M endowed with acontinuous
action of Gal(k'>®/k")

Ny(wa, ..., wy) = Ky (k)
for every i > r, wa, ...,w, € H{(K'), w1, ...,w, € H(k', M), and in addition
|k : kP| < p?™" inthe case where char (k) = p > 0.

For example, if k is a perfect field then the condition (INj, k) is equivalent to

cd(k) < r where cd denotes the cohomological dimension (Serre[16]).

Proposition 1. Let K be a complete discrete valuation field with residue field k. Let
q > 1 and r > 0. Then the two conditions (/V;, K) and (N;“_l, k) areequivalent.

On the other hand by [11] the conditions (Ng, K) and (N ™%, k) are equivalent
forany » > 1. By induction on n we obtain
Corollary. Let K bean n-dimensional local field. Then the condition (7, K) holds
ifandonlyif g+r >n+1.
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168 K. Kato

We conjecture that if ¢ +r = ¢’ + 7' then the two conditions (N, k) and (N, ;",/ k)
are eguivalent for any field k.

Finally in section 5 we shall prove Theorem 2. Then Theorem 1 will be a corollary
of Theorem 2 for » = 1 and of [9, §3, Theorem 1] which claims that the canonical
homomorphism

K, (K) — Ga(K®/K)

induces an isomorphism K., (K)/Ny,x K,(L) = Ga(L/K) for each finite abelian
extension L of K.

| would liketo thank Shuji Saito for hel pful discussionsand for the stimulation given
by hisresearchin thisarea(e.g. hisduality theorem of Galois cohomology groupswith
locally compact topologies for two-dimensional local fields).
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1. Definition of the continuity for higher local fields.
2. Additive duality.
3. Properties of thering of K -valued morphisms.
4. Norm groups.
5. Proof of Theorem 2.

Notation.

We follow the notation in the beginning of this volume. References to sectionsin
this text mean referencesto sections of this work and not of the whole volume.

All fields and ringsin this paper are assumed to be commutative.

Denote by Sets, Ab, Rings the categories of sets, of abelian groups and of rings
respectively.

If C isacategory and X,Y are objects of € then [X,Y]e (or smply [X,Y])
denotes the set of morphisms X — Y.

1. Definition of the continuity for higher local fields

1.1. Ring abjectsof a category corresponding torings.

For acategory € let C° bethedual category of C. If € hasafinal object we always
denoteit by e. Then, if 0: X — Y isamorphism of C, [e,f] denotes the induced
map [e, X] — [e, Y].

In this subsection we prove the following

Proposition 2. Let C be a category with a final object e in which the product of any
two objects exists. Let R bearing abject of € such that for a prime p the morphism
R — R, x — pzx isthe zero morphism, and via the morphism R — R, x — 2P the
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latter R isa free module of finite rank over the former R. Let R =[e, R], and let A
be a ring with a nilpotent ideal I suchthat R = A/I and suchthat I*/I*** isafree
R-module of finite rank for any i.

Then:

(1) Thereexistsaringobject A of C equippedwitharingisomorphism j: A = [e, A]
and with a homomor phism of ring objects #: A — R having the following prop-
erties:

(@ [e,0]0j:A— R coincideswith the canonical projection.
(b) For any object X of @, [X, A] isaformally etalering over A in the sense
of Grothendieck [7, Ch. 0§19], and 6 induces an isomor phism

[X, A]/I[X, A] ~ [X, R].

(2) Theabovetriple (4, j,0) isuniqueinthefollowing sense. If (4’, 7/, 6’) isanother
triple satisfying the same condition in (1), then there exists a unique isomor phism
of ring objects ¢: A = A’ suchthat [e,y)] oj =7 and 6 =6’ o 1.

(3) Theaobject A isisomorphic (if oneforgetsthe ring-object structure) to the product
of finitely many copiesof R.

(4) If C hasfiniteinverselimits, the above assertions (1) and (2) arevalid if conditions
“ free module of finiterank” on R and I°/I**! arereplaced by conditions* direct
summand of a free module of finite rank” .

Example. Let R beanon-discretelocally compact field and A alocal ring of finite
length with residuefield R. Then in the case where char (R) > 0 Proposition 2 shows
that there exists a canonical topology on A compatible with the ring structure such
that A is homeomorphic to the product of finitely many copies of R. On the other
hand, in the case where char (R) = 0O it isimpossible in general to define canonically
such atopology on A. Of course, by taking a section s: R — A (asrings), A asa
vector space over s(R) hasthe vector space topology, but this topology depends on the
choiceof s ingeneral. Thisreflectsthe fact that in the case of char (R) = 0 thering of
R-valued continuous functions on atopological spaceis not in general formally smooth
over R contrary to the case of char (R) > 0.

Proof of Proposition2. Let X beanobjectof C; put Rx =[X, R]. Theassumptions
on R show that the homomorphism

R® ©p Rx — Rx, @y xyP

is bijective, where R(?) = R asaring and the structure homomorphism R — R® is
x — zP. Henceby[10, §1 Lemmal] thereexistsaformally etalering Ax over A with
aring isomorphism 6x: Ax /IAx ~ Rx. The property “formally etale’ shows that
the correspondence X — Ax isafunctor C° — Rings, and that the system 6y forms
amorphism of functors. More explicitly, let n and r be sufficiently large integers, let
W.,.(R) bethering of p-Witt vectorsover R of length n, andlet ¢: W, (R) — A be
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the homomorphism

s

(@o, 21, ...) = Y _P'ES

=0
where z; isarepresentativeof x; € R in A. Then Ax isdefined asthe tensor product

Wi (Rx) ®w,(r) A
induced by . Since Tor 3" (W, (Rx), R) = 0 we have

—1

Tor "W, (Rx), 4/I) = 0
for every i. This provesthat the canonical homomorphism
I'JI" @ Rx — I'Ax [T Ax

is bijective for every i. Hence each functor X — I'Ax/I**'Ax is representable
by afinite product of copies of R, and it follows immediately that the functor Ax is
represented by the product of finitely many copiesof R. O

1.2. n-dimensional local fields asobjectsof F,, .

Let K bean n-dimensional local field. In this subsection we define a ring object
K and agroup object K* by induction on n.

Let ko, ..., k, = K beasintheintroduction. For each ¢ suchthat char(k;,_1) =0
(if such an 7 exists) choose a ring morphism s;: k;_1 — O, such that the composite
ki—1 — Ok, — O, /My, istheindentity map. Assume n > 1 and let k,,_1 bethe
ring object of F,,_; corresponding to k,,_1 by induction on n.

If char(k,_1) =p > 0, the construction of K below will show by induction on n
that the assumptions of Proposition 2 are satisfied when onetakes &, 1, k,_1, kn_1
and O / M} (r >1)asC, R, R and A. Henceweobtainaringobject O 5 /M7, of
Fn—1. Weidentify O /M’ with [e, O /MY] viatheisomorphism j of Proposition
2.

If char(k,—1) =0, let Ox /M) bethering object of F,_1 which representsthe
functor

3:7(;71 - Rings? X = OK/MTK ®kn,1 [X7 kn—1]7

where O g /M, isviewed asaring over k,_1 via s,_1.
Ineach caselet O g betheobject"[i_nw" O /MY of pro(F,,_1). Wedefine K as
the ring object of JF,, which correspondsto the functor
pro(?nfl)o - RIngS, X—K ®ox [Xa O_K]
Thus, K isdefined canonically in the case of char (k,,_1) > 0, and it depends (and
doesn’'t depend) on the choices of s; in the case of char (k,,_1) = 0 in the following
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sense. Assumethat another choice of sections s; yields k;” and K’. Thenthere exists
an isomorphism of ring objects K = K’ which induces_lﬁ — k;' for each . Butin
general there is no isomorphism of ring objects ¢: K — K’ suchthat [e,¢]: K — K
is the indentity map.

Now let K* bethe object of F,, which representsthe functor

5 - Sets, X — [X,K]".

This functor is representable because F,, has finite inverse limits as can be shown by
induction on n.

Definition 1. We define fine (resp. cofine) objects of &, by induction on n. All
objectsin Fy are called fine (resp. cofine) objects of F3. Anobjectof F,, (n > 1)is
called afine (resp. cofine) object of F,, if and only if itisexpressedas X =" I|_r>n "X
for some objects X, of pro(F,,_1) andeach X, isexpressedas X, =I<ln X, for
someobjects X, of F,_1 satisfying the conditionthat all X, arefine(resp. cofine)
objectsof F,,_1 andthemaps [e, X,] — [e, X»,] aresurjectiveforall A, p (resp. the
maps [e, X,] — [e, X] areinjectivefor al \).

Recall that if ¢ < j then J; isafull subcategory of F;. Thuseach J; isafull
subcategory of ¥, = U;F;.

Lemma 1.
(1) Let K bean n-dimensional local field. Then an object of JF,, of theform

Kx .. KxK'x ---x K*

isafineand cofine object of F,,. Every set S viewed asan object of ind(Fp) isa
fine and cofine object of F;.

(2) Let X and Y be objects of F,,, and assume that X is a fine object of F,,
for some n and Y is a cofine object of F,,, for some m. Then two morphisms
0,6': X — Y coincideif [e,0] = [e,0'].

Asexplainedin 1.1 thedefinition of theobject K dependsonthesections s;: k;_1 —
Ok, chosen for each i suchthat char (k;_1) = 0. Still we have the following:

Lemma 2.

(1) Let N be a subgroup of K,(K) of finite index. Then openness of N doesn't
depend on the choice of sections s;.

(2) Let ¢: K (K) — Q/Z be a homomorphism of finite order. Then the continuity of
x doesn’t depend on the choice of sections s;.

The exact meaning of Theorems 1,2,3 is now clear.
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2. Additive duality

2.1. Category of locally compact objects.

If C isthe category of finite abelian groups, let € bethe category of topological
abelian groups G which possessatotally disconnected open compact subgroup H such
that G/H isatorsion group. If C isthe category of finite dimensional vector spaces
over afixed (discrete) field &, let ¢ bethe category of locally linearly compact vector
spacesover k (cf. Lefschetz [12]). In both cases the canonical self-duality of € iswell
known. These two examples are special cases of the following general construction.

Definition 2. For acategory € define afull subcategory ¢ of ind(pro(®)) asfollows.
An object X of ind(pro(C)) belongsto ¢ if and only if it is expressed in the form
I|_r>n "jeJ"[iLn"ielX(z',j) for some directly ordered sets I and J viewed as small
categoriesinthe usua way andfor somefunctor X: I° x J — € satisfyingthefollowing
conditions.

(i) Ifid,i eI, ¢<i thenthemorphism X (i, ) — X(i,7) issurjective for every
jedJ. If 4,5 € J, j<j thenthemorphism X (i, j) — X(i,5’) isinjectivefor
every i € I.

(i) If 4,4/ eI, i< and j,5' € J, j < j' thenthe square

X(Zla.]) - X(ilaj,)

l l

X(@,j) —— X(@,j5")
is cartesian and cocartesian.

It is not difficult to prove that e is equivalent to the full subcategory of pro(ind(C))
(as well as ind(pro(C))) consisting of all objects which are expressed in the form
" I(ﬂw ier " h_ng " jesX(i,7) forsometriple (I, J, X) satisfying the same conditions as
above. In this equivalence the object
"lim " e " lim™ ;e X (4, j) correspondsto”lim™;c; " lim " ;e ; X (i, j).

Definition 3. Let Ag bethe category of finite abelian groups, and let A1, Ay, ... be
the categories defined as A,+1 = A,,.

It is easy to check by induction on n that A,, isafull subcategory of the category
F2 of all abelian group objects of F,, with additive morphisms.
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2.2. Pontryagin duality.
The category Ag isequivalent to its dual viathe functor
Do: Ag = Ao, X — Hom(X,Q/Z).
By induction on n we get an equivalence

n—1 "

— — D
Dy ;-Aru 'Aq(; = (‘An—l)o = 'ASL_]_ — A 1= Ap

n

where we use (€)° = €°. Asin the case of ¥, each A, isa full subcategory of
A =UpA,. Thefunctors D,, induce an equivalence

DiA°, = As
suchthat D o D coincides with the indentity functor.
Lemma 3. View Q/Z asan object of ind(Ag) C A C FX. Then:
(1) For everyobject X of A
[X,Q/Z]a.., ~[e, D(X)]7.. -

(2) Forallobjects X,Y of A [X,D(Y)]a,., iscanonicallyisomorphictothegroup
of biadditive morphisms X x Y — Q/Z in F.

Proof. Theisomorphism of (1) is given by
[X,Q/Z)a. ~[DQ/Z), D(X)|a.. =[Z,D(X)]a.. =[e,DX)]s..

(i isthetotally disconnected compact abelian group I(in -0 Z/n andthelast arrow is

theevaluationat 1 € 2). Theisomorphism of (2) isinduced by the canonical biadditive
morphism D(Y) x Y — Q/Z which is defined naturally by induction on n. O

Compare the following Proposition 3 with Weil [17, Ch. Il §5 Theorem 3].

Proposition 3. Let K be an n-dimensional local field, and let V' be a vector space
over K of finitedimension, V' = Homg (V, K). Then

(1) The abelian group object V' of F,, which represents the functor X — V ®g
[X, K] belongsto A,,.

(2) [K,Q/Z)a_ isone-dimensional with respect to the natural K -module structure
and its non-zero element induces dueto Lemma 3 (2) anisomorphism V/ ~ D(V).
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3. Propertiesof thering of K -valued morphisms

3.1. Multiplicative groups of certain completerings.

Proposition 4. Let A be aring and let = be a non-zero element of A such that
A=limA/r"A. Let R = A/rA and B = A[r~1]. Assume that at least one of the
following two conditions is satisfied.

(i) R isreduced (i.e. having no nilpotent elements except zero) and thereis a ring
homomorphism s: R — A such that the composite R > A — A/7A isthe
identity.

(if) For aprime p thering R isannihilated by p and viathe homomorphism R — R,
x — xP thelatter R isafinitely generated projective module over the former R.

Then we have

B* ~ A* x ['(Spec(R), Z)

where I' (Spec(R), Z) isthegroup of global sectionsof the constant sheaf Z on Spec(R)
with Zariski topology. The isomorphism is given by the homomorphism of sheaves
Z — Ogpee(pys 17— m, themap

I (Spec(R), Z) ~ T (Spec(A), Z) — T (Spec(B), Z)
and theinclusion map A* — B*.

Proof. Let Affp bethe category of affine schemesover R. Incase (i) let C = Affg.
In case (ii) let C be the category of al affine schemes Spec(R’) over R such that the
map

RV @pr R — R, z®y— zyP

(cf. the proof of Proposition 2) is bijective. Then in case (ii) every finite inverse limit
and finite sum existsin € and coincides with that taken in Affz. Furthermore, in this
casetheinclusion functor ¢ — Affr hasaright adjoint. Indeed, for any affine scheme
X over R the corresponding object in € is [i_n1Xi where X; isthe Weil restriction

of X with respect to the homomorphism R — R, x — xP".

Let R bethering object of € which represents the functor X — IN'(X,0x), and
let R* be the abject which represents the functor X — [X, R]*, and O be the fina
object e regarded as a closed subscheme of R viathe zero morphism ¢ — R.

Lemma 4. Let X be an object of ¢ and assume that X is reduced as a scheme
(this condition is always satisfied in case (ii)). Let #: X — R be a morphism of C.
If ~1(R*) is a closed subscheme of X, then X is the direct sum of 6—1(R*) and
6—1(0) (where the inverse image notation are used for the fibre product).
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The group B* is generated by elements = of A such that 7" € Ax for some
n > 0. Incase(i) let A/7"*1A bethe ring object of € which represents the functor

X — A/n"" ' A®Rr[X, R] where A/n"*1A isviewed asan R-ring viaafixed section
s. Incase (ii) we get aring object A/7"*1A of @ by Proposition 2 (4).

In both cases there are morhisms 6;: R — A/W”HA (0< i< n)in € such that
the morphism

Rx - x R— A/ 4, (a0, ....20) = ) i)’
=0
is an isomorphism.
Now assume zy = 7™ for some z,y € A and take elements z;,y; € R = [e, R]
(0 <7 < n)suchthat

n n
z mod 77"t = Z 0;(z;)r', y mod 7" = Z 0, (y;)m".
=0 =0

An easy computation showsthat for every » =0, ..., n

n—r—1

r—1 r—1
(N =z @)@ = (N = @) () » ).
=0 =0

=0
By Lemma 4 and induction on » we deduce that e = Spec(R) is the direct sum of the
closed open subschemes (N7-;'z;2(0)) Nz %(R*) on which the restriction of = has
theform ax”™ for aninvertible element a € A. 0

3.2. Propertiesof thering [ X, K].
Results of this subsection will be used in section 4.
Definition 4. For anobject X of ¥, andaset S let
ICf(Xa S) = Ii_r>nl [X7 I]
where I runsover al finitesubsetsof S (consideringeach I asanobjectof Fp C F ).

Lemma 5. Let K be an n-dimensional local field and let X be an object of F..
Then:

(1) Thering [X, K] isreduced.
(2) For everyset S thereisa canonical bijection

lcf(X, S) = (Spec([X, K1), S)
where S ontheright hand sideis regarded as a constant sheaf on Spec([ X, K]).
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Proof of (2). If I isafinitesetand 6: X — I isamorphism of F,, then X is
the direct sum of the objects 6-1(i) = X x; {i} in T, (i € I). Hence we get the
canonical map of (2). To prove its bijectivity we may assume S = {0,1}. Note that
I"(Spec(R), {0, 1}) isthe set of idempotentsin R for any ring R. We may assume that
X isanobject of pro(F,_1).
Let k,,_1 betheresiduefield of k,, = K. Then
I (Spec([X, K1), {0,1}) ~ I'(Spec([ X, k;,—1]), {0, 1})

by (1) applied to thering [ X, k,—1]. O

Lemma6. Let K bean n-dimensional local field of characteristic p > 0. Let

ko, ...,k, beasintheintroduction. Foreachi =1, ...,n let w; bealiftingto K of
a prime element of k;. Then for each object X of F,, [X, K]* isgenerated by the
subgroups

[X, KP(r)]*

where s runs over all functions {1, ...,n} — {0,1,...,p — 1} and 7(*) denotes
@ st KP(xls)) isthe subring object of K correspondingto K7(x()), i.e.

[X, KP(@9)] = KP(x™)) @0 [X, K].
Proof. Indeed, Proposition 4 and induction on n yield morphisms
00): K* — KP(x(¥)*

such that the product of al 6¢) in K* istheidentity morphism K* — K*. O

The following similar result is also proved by induction on n.

Lemma7. Let K, ko and (m;)1<i<n bEasSin Lemma 6. Then there exists a morphism
of A
(cf. section 2)

(03,620: Q% — Qe x kg
such that
x = (1— C)1(x) + Ox(x)dmy/m1L A -+ Ndmy [Ty,

for every object X of F, and for every = € [X, Q] where QF. isthe object which
representsthe functor X — Q% @k [X, K] and C denotesthe Cartier operator ([4],
or see4.2in Part | for the definition).

Generalize the Milnor K -groups as follows.
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Definition 5. For aring R let ['o(R) = I'(Spec(R), Z). The morphism of sheaves
Z x ngec(R) — ngec(R)» (’/L, 33) — "
determines the I'o(R)-module structureon R*. Put I'1(R) = R* andfor ¢ > 2 put
My(R) = ®?0(R)r1(R)/Jq

where ®?0(R)I'1(R) is the ¢th tensor power of '1(R) over I'o(R) and J, is the
subgroup of the tensor power generated by elements =1 ® --- ® z, which satisfy
x;+x;=1or z;+x; =0 forsome: Zj. Anelement 21 ® --- ® x, mod J, will
be denoted by {z1, ...,z4}.

Note that ,(k) = K,(k) for eachfield £ and I',(R1 x R2) ~ 4(R1) x I'4(R2)
forrings R1, R>.

Lemma 8. In one of the following two cases
() A,R,B,rn asinProposition 4
(if) an n-dimensional local field K, anobject X of F,, A=[X,Ok],
R= [Xaknfl]’ B = [X7[_(]1

let U;l",(B) bethesubgroupof I',(B) generated by elements {1+ 7'z, y1, ..., y,-1}
suchthat « € A, y; € B*, ¢,i > 1.

Then:
(1) Thereisahomomorphism pd: T ,(R) — I'4(B)/U1l4(B) such that

po{x1, - xq}) ={x1, ..., 7q} mod Uil 4(B)
where z; € A isarepresentativeof z;. Incase (i) (resp. (ii)) the induced map
[o(R) +T—1(R) — To(B)/UT (B), (x,y) — pd(@) + {p§ (), 7}

(resp.
Fq(R)/m +Ty_1(R)/m — T¢(B)/(U1l ¢(B) + ml¢(B)),
(2, 9) = () + {p§ (), 7})
is bijective (resp. hijective for every non-zero integer m ).
(2) If m isaninteger invertiblein R then Uyl ,(B) is m-divisible.
(3 Incase (i) assumethat R isadditively generated by R*. In case (ii) assume that
char (k,,_1) = p > 0. Then there exists a unique homomor phism

pi: Q?{l — Uil ¢(B)/ Uil 4(B)

such that
pl@dy/yi A -+ Adyg-1/ye-1) = {1+T1", 41, ..., yg—1} mod Uil o(B)
for every x € R, y1, ...,y,—1 € R*. Theinduced map

Q1 e QL2 UT (B) /Uil o(B),  (z,y) — pl() + {p? (), 7}
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issurjective. If ¢ isinvertiblein R then the homomorphism pf is surjective.

Proof. In case (i) these results follow from Proposition 4 by Bass-Tate’'s method
[2, Proposition 4.3] for (1), Bloch's method [3, §3] for (3) and by writing down the
kernel of R ® R* — Qk, x ® y +— xdy/y asin[9, §1 Lemmas].

If X isanobjectof pro(F,,_1) thencase(ii) isaspecial caseof (i) except n = 1 and
ko =Fo where [ X, ko] isnot generated by [ X, ko]* in general. But in this exceptional
caseit is easy to check directly all the assertions.

For an arbitrary X we present here only the proof of (3) because the proof of (1) is
rather similar.

Put £ = k,_1. For the existence of p} it suffices to consider the cases where

X = Qz_l and X =k x Hq_lk_* (IT"Y denotes the product of r copiesof Y).
Note that these objectsarein pro(¥,,_1) since [X,(ﬁ‘i] = Q?X,k] forany X and q.

The unigqueness follows from the fact that [X, Qz_l] is generated by elements of
theform zdcy/cy A -+ Adeg—1/cq—1 Suchthat mm, k]l and cq, ..., cq—1 € K*.
To provethe surjectivity wemay assume X = (1+70 ) x Hq_l K* andit suffices
to prove in this case that the typical element in U, ,(B)/U;+1l 4(B) belongs to the
image of the homomorphism introduced in (3). Let Ux be the object of F,, which
representsthe functor X — [X, Ox]*. By Proposition 4 there exist
morphisms 61: K* — [ %o U (thedirect sumin ,,) and 6: K* — K*
such that = = 01(x)02(z)? foreach X in F,, andeach x € [X, K*] (in the proof of
(1) p isreplaced by m). Since ]_[f:_ol Ugm® belongsto pro(F,_1) and
(1+7[X,0k])P C 1+ X, O] wearereduced to the case where X' isan object
of pro(F,,_1). O

4. Norm groups

In this section we prove Theorem 3 and Proposition 1. In subsection 4.1 we reduce
these results to Proposition 6.

4.1. Reduction steps.

Definition 6. Let k£ beafieldand let H: £(k) — Ab be afunctor such that
@k/eg(k) H(K') =0. Let w € H(k) (cf. Introduction). For aring R over k and
q = 1 define the subgroup N,(w, R) (resp. L,(w, R)) of T',(R) asfollows,
Anelement = belongsto N,(w, R) (resp. L,(w, R)) if and only if there exist
afiniteset J andelement 0 ¢ J,
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amap f:J — J suchthat for some n > 0 the nthiteration f™ with respect to
the composite is a constant map with value O,
andafamily (E;,x;)jes (E; € E(k)), z; € T ((E; ® R)) satisfying the follow-
ing conditions:
(I) Eo=k and zg = z.
(i) Eyy C E; forevery j e J.
(iii) Let j € f(J). Thenthereexistsafamily (y:, 2t);c p-1(;)
(yt € (Et Rp R)*, Zt € rq_l(Ej Rk R)) such that Ty = {ytht} for al
te f~4() and

L5 = Z {NEt®kR/Ej®kR(yt)7zt}
tef=1()
where Ng, o, /5,0, r denotesthe norm homomorphism
(E: @k R)" — (B; @ R)".

(iv) If j € J\ f(J) then w belongsto the kernel of H(k) — H(E,)
(resp. then one of the following two assertionsis valid:
(@ w belongsto the kernel of H(k) — H(E);),
(b) z; belongstotheimage of ' (Spec(E; @ R), K4(E;)) — T 4(E; @ R),
where K,(E;) denotes the constant sheaf on Spec(E; ®; R) defined by the
set K, (E))):

Remark. If the groups I',(E; ®; R) have asuitable “norm” homomorphism then «
is the sum of the “norms” of x; such that f=1() = 0. In particular, in the case where

R =

k weget Ny(w, k) C Ny(w) and Ni(w, k) = N1(w).

Definition 7. For a field & let [E(k), Ab] be the abelian category of all functors
E(k) — Ab.

(D

(2)

For ¢ > O let N, ;. denotethefull subcategory of [E(k), Ab] consisting of functors
H such that @kleg(k) H(K") = 0 and such that for every k&’ € E(k), w € H(K')
the norm group N,(w) coincides with K,(k"). Here N,(w) is defined with
respect to the functor &(k’) — Ab.

If K isan n-dimensional local field and ¢ > 1, let N, x (resp. £, k) denote
the full subcategory of [E(K), Ab] consisting of functors H such that

H N —
lim ey H(K') =0

and such that for every K’ € £(K), w € H(K') and every object X of F, the
group Ny(w,[X, K']) (resp. L,(w,[X, K'])) coincideswith T, ([X, K']).

Lemma 9. Let K be an n-dimensional local field and let ' be an object of L, x.
Then for every w € H(K) the group N,(w) isan open subgroup of K ,(K) of finite
index.
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Proof. Consider the casewhere X =[]? K*. Wecantakeasystem (E;, z;)jcs asin
Definition 6 such that Eg = K, z¢ isthe canonical element in I',([X, K]) and such
that if j ¢ f(J) and w & ker(H(K) — H(E;)) then z; istheimage of an element
0; of Icf(X, K,(E))). Let 0 € Icf(X, K((K)/Ny(w)) be the sum of Ng, /x o 0;
mod N, (w). Then the canonical map [e, X] =[] K* — K ,(K)/N,(w) comesfrom
6. O

Definition 8. Let k& beafield. A collection {Cj}yrce(r) Of full subcategories €y of
[E(K"),AD] iscaled admissibleif and only if it satisfies conditions (i) — (iii) below.
(i) Let E € E(k). Then every subobject, quotient object, extension and filtered
inductive limit (in the category of [E(FE), Ab]) of objectsof Cr belongsto Cg.
(i) Let E,F" € &k) and E C E'. If H isin Cg then the composite functor
&(E") — &(F) L Ab isin Cp.
(iii) Let E € E(k) and H isin [E(F),Ab]. Then H isin Cg if conditions (a) and
(b) below are satisfied for aprime p.
(8) Forsome E’ € £(E) suchthat |E' : E| isprimeto p the composite functor
(E") — (BE) 2L Abisin Cp.
(b) Let ¢ beaprimenumber distinct from p and let .S beadirect subordered set
of E(F). If the degree of every finite extension of the field Ii_n)E/es E' isa

power of p then H_r)nEES H(E") =0.

Lemma 10.

(1) For eachfield k and ¢ the collection {Ng i/} ce(r) iS admissible. If K isan
n-dimensional local field then the collections {N i/ }ieer) and {Lg i Frreer)
areadmissible.

(2) Let k beafield. Assumethat a collection {Cj}r/cer) isadmissible. Let r > 1
and for every prime p there exist £ € E(k) such that |F : k| is primeto p
and such that the functor H"( ,Z/p"):E(E) — Ab isin Cg. Then for each
k' € &(k), each discrete torsion abelian group M endowed with a continuous
action of Gal(k’*®/k’) and each i > r the functor

Hi( ,M): &) — Ab
isin C.

Definition 9. For afield k£, » > 0 and anon-zero integer m define the group H;, (k)
asfollows.
If char(k) =0 let

Hy, (k) = H (k, u" ).
If char (k) =p > 0 and m =m/p’ where m’ isprimeto p and i > O let

Hr (k) = HE, (k, 125~y @ coker(F — 1: CI=Y(k) — CT (k) /{C~2(k), TY)
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(where C; isthe group definedin [3, Ch.I1,§7], C7 =0 for r < 0).

By the above results it suffices for the proof of Theorem 3 to prove the following
Proposition 5 in the case where m isa prime number.

Proposition 5. Let K be an n-dimensional local field. Let ¢,» > 1 and let m be a
non-zero integer. Then the functor H),:E(K) — Abisin L,k if ¢+7r=n+1 and
in Ny g if g+tr>n+1.

Now we begin the proofs of Proposition 1 and Proposition 5.

Definition 10. Let K be a complete discrete valuation field, » > 0 and m be a

non-zero integer.

(1) Let H], , and H],/H], . bethefunctors E(K) — Ab:

Hy, w(K') = ker(Hy, (K') — Hy, (Kly),
(Hp/ Hpp u)(K') = Hy, (K') [ Hy, i (K)
where K|, isthe maximal unramified extension of K.

(2) Let I, (resp. J! ) be the functor £(K) — Ab such that I}, (K') = H (k')
(resp. JI(K') = H! (k")) where k' isthe residue field of K’ and such that the
homomorphism I] (K') — I (K") (resp. J! (K') — J (K")) for K/ ¢ K"
is jk”/k’ (resp. e(K”]K’)jk///k/ ) where k" istheresiduefield of K", jk”/k’ is
the canonical homomorphism induced by theinclusion k&’ C k" and e(K"|K’) is
the index of ramification of K"/ K’.

Lemmall. Let K and m beasin Definition 10.
(1) For r > 1 there exists an exact sequence of functors

0— I, — Hp\ o — Jot— 0.

(2) J;, isin Ny g for every r > 0.
(3) Let ¢,r > 1. Then I}, isin Ny g if and only if H],:E(k) — Abisin N,_1
where k istheresiduefield of K.

Proof. The assertion (1) follows from [11]. The assertion (3) follows from the facts
that 1+Mx C Ny, k(L") for every unramified extension L of K andthat there exists
acanonical split exact sequence

0 — Ky(k) — Ky(K)/U1K((K) — K,_1(k) — 0. 0

The following proposition will be provedin 4.4.

Proposition 6. Let K be a complete discrete valuation field with residue field k. Let
¢, > 1 and m be a non-zero integer. Assume that [k : k?| < p?*"—2 if char (k) =
p > 0. Then:

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



182 K. Kato

(1) H},/Hy, o isin Ny k.
(2) If K isan n-dimensional local field with n > 1 then Hy, /HY, v isin Ny k.

Proposition 1 followsfrom this proposition by Lemma 10 and Lemma 11 (note that
if char (k) =p > 0and i > 0 then H,(k) isisomorphic to ker(p': H" (k) — H"(k))
asit follows from [11]).

Lemma 12. Let K be an n-dimensional local field and let X be an object of F..
Consider the following cases.

(i) ¢>n+1andm isanon-zerointeger.

(i) ¢g=n+1, char(K)=p>0 and m isapower of p.

(iii) ¢g=n+1 and m isanon-zero integer.

Let x € T ,([X, K]. Thenincases (i) and (ii) (resp. in case (iii)) thereexist a triple
(J,0, f) and afamily (£}, x;);es which satisfy all the conditions in Definition 6 with
k = K except condition (iv), and which satisfy the following condition:

(iv) If j € J\ f(J) then z; € ml',([X, E;])
(resp. z; belongsto ml,([X, E;])
or to theimage of Icf(X, K,(E;)) — T, (X, E;])).

Corollary. Let K be an n-dimensional local field. Then mK,+1(K) is an open
subgroup of finite index of K,,+1(K) for every non-zero integer m.

This corollary follows from case (iii) above by the argument in the proof of Lemma
9.

Proof of Lemma 12. We may assumethat m isa prime number.

First we consider case (ii). By Lemma 6 we may assume that there are elements
b1, ..., bpe1 € [X, K" and ¢y, ...,cpe1 € K* suchthat = {b1, ...,b,41} and
b; € [X, KP(c;)]* for each i. We may assume that |K?(c1, ...,c.) @ KP| = p"
and c,+1 € KP(c1,...,c.) forsome r < n. Let J ={0,1,...,r}, and define
fid —J by f(j)=j—1forj>1and f(0)=0. Put E; = K(cy/”, ..., c}'") and
;= {by", ..., 03P bjer, ... bysa}. Then

2 = p{b7'7, 0P byag, b} N T (X, EL)).

Next we consider cases (i) and (iii). If K is afinite field then the assertion for
(i) follows from Lemma 13 below and the assertion for (iii) istrivial. Assume n > 1
and let k& be the residue field of K. By induction on n Lemma 8 (1) (2) and case
(if) of Lemma 12 show that we may assume z € Uil ,([X, K]), char(K) = 0 and
m = char (k) = p > 0. Furthermore we may assumethat K contains a primitive pth
root ¢ of 1. Let ex = v (p) andlet m beaprimeelement of K. Then

Uil 4([X, Ok]) € pUrl4([X, Ok]), if i > pex/(p—1).

Fromthisand Lemma8 (3) (and acomputation of themap = — xP on U1l 4([X, Ok]))
it followsthat U1l ,([X, K]) is p-divisibleif ¢ > n + 1 and that there is a surjective
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homomorphism

[X,Qp /(1 OLX, Q¢ 1] — U1l ((X, K1)/pULT nea (X, K1),

rdy1/yt A - ANdyp—1/yn—1— {1+ 2(C = 1P, 91, -+, Yny, T}
where C isthe Cartier operator. By Lemma 7

[X,Q; 71/ - O[X, Q1] =lef(X, Qp /(1 - Q). O

Lemma 13. Let K beafinitefield andlet X bean object of F.,. Then

(1) M[X,K]=0for q>2.

(2) For every finite extension L of K the norm homomorphism [X, L]* — [X, K]*
is surjective.

Proof. Followsfrom Lemmab (2). 0

Proof of Proposition 5 assuming Proposition 6. If K isafinitefield, the assertion of
Proposition 5 follows from Lemma 13.

Let n > 1. Let k£ betheresiduefield of K. Let I], and J), beasin Definition
10. Assume g +r=n+1 (resp. ¢ +r > n+1). Using Lemma8 (1) and the fact that

Urlo([X, K]) € Nkl qo([X, L])

for every unramified extension L /K we can deducethat I7, isin L, x (resp. Ny )
from the induction hypothesis H;,: £(k) — Ab isin L, 1 (resp. Ny_1). Wecan
deduce J7 1 isin L,k (resp. N, i ) from the hypothesis H~1: €(k) — Ab isin
Ly (resp. Ny ). Thus Hy, \ isin Ly (resp. Ny ). O

4.2. Proof of Proposition 6.

Let k& beafieldandlet m beanon-zerointeger. Then ©,>oH,, (k) (cf. Definition
9) hasanatural right ©,>0K,(k)-modulestructure(if m isinvertiblein £ thisstructure
is defined by the cohomological symbol 7 ,: K (k)/m — H(k, u57) and the cup-

product, cf. [9, §3.1]). We denote the product in this structure by {w, a}
(a € ®g=0Ky(k), we ®r>0H,,(k)).

Definition 11. Let K beacomplete discrete valuation field with residuefield & such

that char(k) =p > 0. Let r > 1. Wecall an element w of H(K) standard if and

only if w isin one of the following forms (i) or (ii).

(i) w={x,a1,...,a,_1} where y isan element of H;(K) corresponding to a
totally ramified cyclic extensionof K of degree p, and ay, ..., a,_1 areelements
of O} suchthat

|kP(aq, ...,a,—1) : kP| :p’ul
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(a; denotestheresidueof a; ).

(i) w={x,a1,...,a,_2, 7} where x isan element of HI}(K) corresponding to a
cyclic extension of K of degree p whose residuefield is an inseparable extension
of k of degree p, = isaprimeedement of K and ayq, ...,a,_o are elements of
O% suchthat |kP(a, ..., a—): kP| =p 2.

Lemma 14. Let K and k be asin Definition 11. Assume that |k : k7| = p"~L. Then
for every element w € H)(K) \ H] ,(K) there exists a finite extension L of K such
that |L : K| isprimeto p and such that theimage of w in H (L) isstandard.

Proof. If char (K) = p the proof goes just as in the proof of [8, §4 Lemma 5] where
the case of r = 2 was treated.

If char (K) = 0 we may assumethat K contains a primitive pth root of 1. Then
the cohomological symbol A @ K,.(K)/p — H(K) issurjective and

coker(f, i UL, (K) — Hj(K)) ~ v,_1(k)

by [11] and |k : kP| = p" 1.
Here we are making the following:

Definition 12. Let K be a complete discrete valuation field. Then U; K, (K) for
i,q > 1 denotes Ul ,(K) of Lemma8 case (i) (take A = Ok and B = K).

Definition 13. Let £ be afield of characteristic p > 0. Asin Milne [13] denote by
v-(k) the kernel of the homomorphism

Qr — Q/d(QY),  adyr/yi A - Adye/yr — (@P — 2)dyr/yr A -+ A dye /Y

By [11, Lemma2] for every element « of v,._1(k) thereisafinite extension k' of
k such that
|k’ : k| isprimeto p and theimageof « in v,._1(k’) isthe sum of elements of type

dri/x1 N - Ndx, [z,

Hence we can follow the method of the proof of [8, §4 Lemma5 or §2 Proposition 2].

Proof of Proposition 6. If m isinvertiblein k£ then H] = HJ, . Hence we may
assume that char(k) = p > 0 and m = p’, i > 1. Since ker(p: Hy /] —
H/H; ) isisomorphicto Hy/Hy . by [11], we may assume m = p.

The proof of part (1) is rather similar to the proof of part (2). So we present here
only the proof of part (2), but the method is directly applicable to the proof of (1).

The proof is divided in several steps. In the following K always denotes an
n-dimensional local field with n > 1 and with residue field k£ such that
char (k) = p > 0, exceptin Lemma21. X denotesan object of F..
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Step 1. Inthis step w denotes a standard element of H(K) and w isitsimage
in (Hy/H] ,)(K). We shal prove here that Uil',([X, K]) C N(w,[X, K]). We
fix a presentation of w asin (i) or (ii) of Definition 11. Let L be a cyclic extension
of K corresponding to x. In case (i) (resp. (ii)) let h be a prime element of L
(resp. an element of O, such that the residue class i is not contained in k). Let
G bethe subgroup of K* generated by a1, ...,a,_1 (resp. by ag, ...,a,_2,m), by
1+Mpg and Np i (h). Let [ bethesubfield of k generated by the residue classes of
a1, « oo, Qp_1 (r&sp ai, ...,Q0p_2, NL/K(h))

Leti> 1. Let G, , bethesubgroup of U;l",([X, K]) generated by
{U;l —1([X, K1), G} and U1l 4([X, K]). Under these notation we have the follow-
ing Lemma 15, 16 ,17.

Lemma 15.
(D Giq C Ny(w,[X, K]) + Uil ([ X, K]).
(2) The homomorphism p! of Lemma 8 (3) induces the surjections

[X, Q)Y — [X,Q,11 25 UhT (X, K1)/Gi g

(3 If p!is defined_using a prime element 7= which belongs to G then the above
homomorphism p? annihilates the image of the exterior derivation

d:[X, Q17 — [X, Q1

Lemma 16. Let a bean element of K* suchthat vg(a) =+ and

a= ai(l) ... aigil)NL/K(h)s(T)

(resp. a = ai(l) . aj(ingz)ﬁs(T_l)NL/K(h)s(r))

where s isamap {0, ...,r} — Z suchthat p t s(j) for some j #r.
Then 1 — zPa € Ny(w,[X, K]) for each z € [ X, Ok].

Proof. It follows from the fact that w € {H}~}(K),a} and 1 — zPa isthe norm of
1— za'/? € [X,K(a¥?)]* (K(a/?) denotes the ring object which represents the
functor X — K(a'/?) @k [X, K]). O

Lemmal?7. Let o beagenerator of Gal(L/K) andlet a = h=1o(h)—1, b= Nk (a),
t=vg(b). Let f=1incase(i)andlet f =p incase(ii). Let N:[X,L]* — [X, K]*
be the norm homomor phism. Then:

(1) If fli and 1< i <t thenfor every = € MY//[X,0,]

N(@+z)=1+N(z) mod MAX,0k].
(2) Forevery z € [X,0k]
N1 +za)=1+(a? —2)b mod MEX, Okl
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In case (ii) for every integer » primeto p andevery = € [ X, Ok]
N(L+zh"a) = 1+2PN(h)"b mod MEX, Ok].
©)
1+ MEX, 0k] € NA+MYT X, 0L)).

Proof. Follows from the computation of the norm homomorphism L* — K* in Serre
[15, Ch. V §3] and [8, §1]. O

From these lemmas we have
(1) If 0< i<t then

Uil ([X, K]) C Ny(w,[X, K]) + Uil ([ X, K]).
(2 Ul 4([X, K]) C No(w,[X, K]).
(3) Incase(ii)let a,_1 = Nk (h). theninboth cases (i) and (ii) the homomorphism
[X,QF" %) — Ui, (X, K1)/ N, (w, [X, K]),
zdai/ai A -+ ANday—1/@ =i Adyr/ya A - A dyg-1/Yg-1
= {1+2b,y1, ..., Yg—1},
(z € [X, K], 5 € [X,k*]) annihilates (1 — C)[X, Q¥ 7.

Lemma 7 and (1), (2), (3) imply that U1l ,([X, K]) is contained in the sum of
Ny(w, [X, K]) and theimage of Icf(X, U1 K4 (K)).

Lemma 18. For each u € Ok there exists an element ¢ of Hg',ur(K) such that
(1+ub)NL/K(h)—1 is contained in the normgroup Ny, L' where L’ isthe cyclic
extension of K correspondingto x + (x correspondsto L/K).

Proof. Followsfrom[9, §3.3 Lemma 15] (can be proved using the formula
Ny k(L +za) =1+ @P — )b mod bM g,

for x € Ok, - O

Lemma 18 showsthat 1+ ub is contained in the subgroup generated by Ny, L*
and Nk L'", xr =0, xrr € H} ,((L)).
Step 2. Next we prove that
Ul ([X, K]) € N(w,[X, K])

for every w € H)(K) where @ istheimage of w in (H,/H, ,)(K).
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Lemma 19. Let ¢, > 1 and let w € H;(K). Then there exists + > 1 such that
p'To([X, K']) and Ui k)T o([X, K']) arecontainedin Ny(wg+,[X, K']) for every
K' € &(K) where wk denotestheimage of w in H}(K') and e(K'|K) denotesthe
ramification index of K’/ K.

Lemma20. Let i > 1 and = € Uil ,([X, K]); (resp. = = {ug, ..., u,} With
u; € [X,0%k]; resp. z € [4([X, K])).
Then there exists a triple (J,0, f) and a family (£}, x;),;c; which satisfy all the
conditions of Definition 6 except (iv) and satisfy condition (iv)’ below.
(iv) If j & f(J) then z; satisfy one of the following three properties:
@ ;€ pT (X, E).
() 25 € Ui, syl o (X, Ej); (resp. (b) z; € Ul (X, E)).

(c) Let E; betheresiduefield of E;. Thereareelements cy, ..., c, 1 of 0%,
such that
T € {U]_F]_([X,%]),Cl, ...,Cq_]_} and |E_jp(cl, ...,Cq_]_) . E_jp| =pq_1;
(resp. (c) Thereareelements by, ..., b, of [X, 0% ] and cy, ..., ¢cq Of OF,
such that x; = {by, ...,b,} and such that for each m the residue class
bm € [X, E;] belongsto [X, E;]7[,] and |E;P(ca, ..., cq) @ E;P| =p?);
(resp. (c) There are elements by, ..., b, 1 Of [X,0% ] and c1, ... ¢, 1 oOf

O3, suchthat z; € {[X, E;]*,by, ..., bg-1} and such that for each m the
residueclass b,,, € [X, E;] belongsto [X, E;]7[,,] and
|EjP(ct, - s eq1) D EjP[ = pT7h).

Using Lemma 19 and 20 it suffices for the purpose of this step to consider the
following elements
{u,c1, ..., cq-1} € Ul (([X, K]) suchthat v € Uil 1([X, K]), c1, ..., cq—1 € Of
and |kP(G1, ..., Cq 1t kP| = p? L.

Foreach¢=1,...,¢— 1 andeach s > O takea p°throot c; ; of —c; satisfying
€} o1 = Cis- NOtethat Ny, y/k(c; .)(—Cis+1) = —ci,s. Foreach m > 0 write m
intheform (¢ —1)s+r (s >0, 0<r <q—1). Let E,, bethefinite extension of
K of degree p™ generatedby c; ;+1 (1<i<r)and ¢, (r+1<i<g—1)andlet

Tm = {u7 —Cl s+l - ooy T Cpstly TCr+lsy - _qul,s} € rq([Xa Ell])

Then E. = limE,, is a henselian discrete valuation field with residue field E.

satisfying |Eo : E.?| < p"~!. Hence by Lemma 14 and Lemma 21 below there
exists m < oo such that for some finite extension E/, of FE,, of degree primeto p
theimage of w in Hy(E},) isstandard. Let J={0,1,...,m,m'}, f(j)=j— 1 for
1<j<m, f(0)=0, f(m')=m, E,, =E/, and

— (., 1/|E. E,
T = {1 /B |,cl,...,cq_1}.
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Then from Step 1 we deduce {u,cq, ...,c—1} € Ny(@,[X, K]).

LemmaZ2l. Let K beahenselian discretevaluation field, andlet K beits completion.
Then H) (K) ~ H] (K) for every r and m.

Proof. If m isinvertiblein K this follows from the isomorphism Gal(f(sep/l?) ~
Ga(K*P/K) (cf. [1, Lemma 2.2.1]). Assume char(K) = p > 0 and m = p
(¢ > 1). For afield k of characteristic p > 0 the group H;i(l-c) is isomorphic to
(H Z}i k)®k*® ---®k*)/J where J isthe subgroup of the tensor product generated
by elements of the form (cf. [9, §2.2 Corollary 4 to Proposition 2])
(i) x®a1® ---®a,_1 suchthat a; = a; for somei 7 j,
(i) x®a1® ---®a,_1 suchthat a; € N, 1k, for some i where &, istheextension
of k correspondingto .
By the aboveisomorphism of the Galoisgroups H. (K) ~ H_. (K). Furthermoreif
L isacyclicextensionof K then 1+M% C N/ L* and 1+M’[k( C NL;?/?((LK)*

for sufficiently large n. Since K*/(1+M},) ~ IA(*/(1+M%), the lemma follows. [

Step 3. In this step we prove that the subgroup of I, ([ X, K]) generated by
U1l ([ X, K]) and elements of the form {u1, ..., u,} (u; € [X,0%]) is contained
in N,(w,[X, K]). By Lemma 20 it suffices to consider elements {b1, ...,b,} such
that b; € [X, O%] and such that there are elements ¢; € O} satisfying

|kP(c1, ..., Cq) - KP| = p?

and b; € [X,k]”[c] for each i. Definefields E,, asin Step 2 replacing q — 1 by
g. Then E = Ii_r}nEm is a henselian discrete valuation field with residue field F.,
satisfying |E : E-.P| < p"—2. Hence H;(l/?;) = H;,ur(Eo\O)- By Lemma 21 there
exists m < oo suchthat wg,, € Hy (En)-

Step 4. Let w be a standard element. Then there exists a prime element © of K
suchthat m € Ni(w, [X, K]) = T,([X, K]).

Step 5. Let w beany elementof H(K). Toshowthat I'y([X, K]) = Ny(w, [X, K])
it suffices using Lemma 20 to consider elements of I, ([X, K]) of theform
{z,b1, ..., bg—1} (z € [X,K]*, b; € [X, O%]) such that there are elements
C1, .. Cq 1 € O satisfying |kP(c1, ..., c5-1) @ kP| = p?~ 1 and b; € [X, k][]
for each ¢. Thefields E,, are defined again asin Step 2, and we are reduced to the
case where w is standard. O
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5. Proof of Theorem 2

Let K bean n-dimensional local field. By [9, §3 Proposition 1] H"(K) =0 for
r > n + 1 and there exists a canonical isomorphism H"*Y(K) ~ Q/Z.
For 0 < r < n+1 thecanonical pairing

{, }H(K) x Kps1_(K) — H"™(K)
(see subsection 4.2) induces a homomorphism
Ot H'(K) — HOM(K 41, (K), Q/Z).

if we H"(K) with r > 1 (resp. r = 0) then ®%(w) annihilates the norm group
Np+1-r(w) (resp. @’ (w) annihilates mK,,+1(K) where m isthe order of w). Since
Ny+1—r(w) (resp. mK,+1(K)) isopenin K,+1_,(K) by Theorem 3 (resp. Corollary
to Lemma 12), ®% (w) isacontinuous character of K,,+1_,.(K) of finite order.

5.1. Continuous charactersof prime order.

Inthissubsectionwe shall provethat for every prime p themap @7 (0 < r < n+l)
induces a bijection between H (K) (cf. Definition 10) and the group of all continuous
characters of order p of K,+1_,.(K). Wemay assumethat n > 1 and 1 < r < n.
Let & betheresiduefield of K. Inthe case where char (k) # p the above assertion
follows by induction on n from the isomorphisms

Hy(k) © Hy ' (k) > Hy(K),  Kq(k)/p ® Ko(k)/p = K(K)/p.
Now we consider the case of char (k) = p.

Definition 14. Let K be a complete discrete valuation field with residue field & of

characteristic p > 0. For » > 1 and i > O we define the subgroup T;H(K) of

H)(K) asfollows.

(1) If char(K) = p then let §5:Qjt = C77}(K) — HJ(K) be the canonical
projection. Then T;H(K) isthe subgroup of H;(K) generated by elements of
the form

5;((xdy1/y1 JAYRERIAN dy'rfl/y’l“*l)v U K7 Y1, -5 Yr—1 S K*7UK('I) 2 —1.

(2) If char(K) =0 thenlet ¢ beaprimitive pthroot of 1, and let L = K(().
Let j = (pex/(p — 1) — i)e(L|K) where ex = vk (p) and e(L|K) is the ram-
ification index of L/K. If j > 1 let U;H} (L) betheimage of U;K,.(L) (cf.
Definition 12) under the cohomological symbol K,.(L)/p — H,(L). If j <0,
let U; Hy (L) = Hy(L). Then T; Hj(K) istheinverseimage of U;H (L) under
the canonical injection H;(K) — H(L).
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Remark. TiHZ}(K ) coincides with the subgroup consisting of elements which cor-
responds to cyclic extensions of K of degree p with ramification number < ¢ (the
ramification number is defined as ¢ of Lemma 17).

Let K beasinDefinition 14, and assumethat |k : kP| < co. Fix ¢,r > 1 suchthat
|k kP|=p?* =2, Let T; = T,H5(K), for i > 0; let U; betheimage of U; K (K) in
K (K)/p for i > 1, andlet Uy = K,(K)/p. Let e = vg(p) (= oo if char(K) =p).
Fix aprime element = of K. Viathe homomorphism

(z,9) = pl(@) +{p{ (), 7}
of Lemma 8 whose kernel is known by [11], we identify U;/U;+1 with the following
groups:
(1) K, (k)/p® K, 1(k)/p if i =0.
2 QU tif0<i<pe/(p— 1) and i isprimeto p.
(3 QI /Ql Lo Qi ?/Ql 2y it 0<i<pe/(p—1) and pli.
4 QI- 1/Dq W Qi?/Dey 5 if char(K) =0, pe/(p — 1) isan integer and i =

pe/ (-
(5) 0if i >pe/(p
Herein (3) Qf .d=0 (q 0) denotes the kernel of the exterior derivation

d:Qf — QZ‘Ll. In(4) a denotestheresidueclassof pm—¢ where e = vi (p) and D, i
denotes the subgroup of Qf generated by d(QZ_l) and elements of the form

(@? + ax)dy1/y1 N -+ Ndyq/yq-

Notethat H7*™(K) ~ He*" (k) by [11]. Let 6 = 67" Q"2 — HI" (k)
(Definition 14).

Lemma 22. Inthe canonical pairing
Hy (K) x Ko(K)/p — HI"(K) ~ HI" (k)

T; annihilates U;+; for each ¢ > 0. Furthermore,
(1) To=H} (k) ~ H} (k)& H;~*(k), and the induced pairing

To x Uo/Ur — HE" (k)
is identified with the direct sum of the canonical pairings
Hy (k) x Kqa(R)/p — HF" 1K), Hy 7 (k) x Ky(R)/p — HP" (k).
(2 If0<i<pe/(p—1) and i isprimeto p then there exists an isomorphism
T;)Ty g ~ Qi1
such that the induced pairing 7; /T; -1 x U; /U;+1 — Hg*’“—l(k:) isidentified with
Q; 7t x QI - HITYE),  (w,v) = 8w A ).
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(3) If0<i<pe/(p—1) and p|i then there exists an isomorphism
Ti/Timy = Q7 Q70 © Q%9
such that the induced pairing is identified with
(wy ® wa, vy B v2) — d(dwy A vo + dwy A vy).

(4) If char (K) =0 and pe/(p—1) isnotaninteger, then H(K) = T; for the maximal
integer ¢ smaller than pe/(p — 1). Assume that char (K) = 0 and pe/(p — 1) is
an integer. Let a betheresidue element of pr—¢ andletfor s > 0

vs(a, F) = ker(Qj 40 — Qj, w+— C(w) +aw)
(C denotesthe Cartier operator). Then there exists an isomorphism
Tye/-1)/Tpe(p—1)—1 = vr(a, k) @ vy _1(a, k)
such that the induced pairing is identified with
(w1 ® wo,v1 B v2) — d(wy A vy +wo A vy).

Proof. If char(K) = p the lemma follows from a computation in the differential
modules Q3. (s =7—1,¢+r—1). Inthecasewhere char (/) = 0 let ¢ beaprimitive
pthrootof 1andlet L = K(¢). Then the cohomological symbol K,.(L)/p — H, (L)
is surjective and the structure of H (L) isexplicitly givenin[11]. Since

H)(K)~{z € H)(L):o(z) =2 fordl o € Ga(L/K)},

the structure of H(K) is deduced from that of H, (L) and the description of the
pairing

Hy(K) x Ko(K)/p — HE" (K)
follows from a computation of the pairing

K (L)/p x Kq(L)/p — Kg+r(L)/p- O
Lemma 23. Let K bean n-dimensional local field such that char (K) = p > 0. Then

the canonical map &% Q% — HIM*YK) ~ Z/p (cf. Definition 14) comes from a
morphism Q- — Z/p of Aw.

Proof. Indeed it comes from the composite morphism of F ..

62 T kg/ep
oy 2 1y 0,

defined by Lemma 7. O
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Now let K bean n-dimensional local field (n > 1) with residuefield & such that
char(k)=p>0. Let 1<r<n, g=n+1—r,andlet T; and U; (i > 0) beasin
Lemma 22.

The injectivity of the map induced by @’

H;(K) - Hom(Kn+lfT(K)/p7 Z/p)

follows by induction on n from the injectivity of T;/7;_1 — Hom(U;/U;+1,7Z/p),
i > 1. Note that thisinjectivity for al prime p impliestheinjectivity of ®7 .

Now let ¢: K,+1_-(K) — Z/p be a continuous character of order p. We prove
that thereis an element w of H,(K) suchthat ¢ = ®% (w).

The continuity of ¢ impliesthat there exists ¢ > 1 such that

o({x1, ..., xpr1_,}) =0 foral zq, ... 2+, € 1+ M.

Using Graham’s method [ 6, Lemma 6] we deduce that ¢(U;) = 0 for some i > 1. We
prove the following assertion ( A;) (¢ > 0) by downward induction on 1.
(A;) The restriction of ¢ to U; coincides with the restriction of ®% (w) for some
w € HI(K).

Indeed, by induction on i there exists w € H,(K) such that the continuous
character ¢’ = ¢ — ®%(w) annihilates U,+1.

In the case where i > 1 the continuity of ' implies that the map

Qp— @ QT Emas o 2 g
comes from a morphism of F.,. By additive duality of Proposition 3 and Lemma 23
applied to & the above map is expressed in the form
(v1,v2) = O (w1 A vz + w2 A vg)

for some wy € Q},ws € Q;‘l. By the following argument the restriction of ¢’ to
U;/U;+1 isinduced by an element of T;/T;_1. For example, assume char (K) = 0
and i = pe/(p — 1) (the other cases are treated similarly and more easily). Since ¢’
annihilates d(Q7 ") @ d(QI'~"~2?) and 67 annihilates d(Q!'?) we get

5ﬁ(dw1 Awvg) = :t(52(w2 Advp) =0 foral vy.

Therefore dw, =0. Forevery x € F', y1, ..., Yn—r—1 € F* wehave
d Ay —r_ d Ay —r_

oy ((C(w1)+awl)/\xﬂ/\ LAY 1) =0 (wl/\(xp+a33)ﬂ/\ LAY 1) =0
Y1 Yn—r—1 Y1 Yn—r—1

(where a isasinLemma?22 (4)). Hence w; € v,-(a, k) andsimilarly wy € v,._1(a, k).
In the case where ¢« = 0 Lemma 22 (1) and induction on n imply that there is an
element w € Tp suchthat ¢’ = @7 (w).

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Existence theorem for higher local fields 193

5.2. Continuous char actersof higher orders.

In treatment of continuous characters of higher order the following proposition will
play akey role.

Proposition 7. Let K be an n-dimensional local field. Let p be a prime number
distinct fromthe characteristic of K. Assumethat K containsa primitive pthroot ¢
of 1. Let » > 0 and w € H"(K). Then the following two conditions are equivalent.
(1) w=puw' for some w' € H"(K).

2 {w,¢}=0in HY(K).

Proof. We may assumethat 0 < r < n. Let §,: H"(K) — H"™(K,Z/p) be the
connecting homomorphism induced by the exact sequence of Gal(K %"/ K)-modules

(r=1) p

i ® i, ®(r=1)
O—>Z/p—>||_r>nzﬂpi —>||_r>nZM. — 0.

pl
Condition (1) isclearly equivalent to §,.(w) = 0.
First we prove the proposition in the case where » = n. Since the kernel of

0n: HM(K) — H"™NK, Z/p) ~ Z/p

is contained in the kernel of the homomorphism { ,¢}: H™(K) — H™(K) it suffices
to provethat the latter homomorphism is not a zero map. Let 7 be the maximal natural
number such that K contains a primitive p‘th root of 1. Since the image y of a
primitive p’ th root of 1 under the composite map

K*/K*P ~ HY(K, u,) ~ HYK,Z/p) — HYK)

is not zero, the injectivity of ®3}, shows that there is an element a of K,,(K) such
that {x,a} # 0. Let w betheimage of a under the composite map induced by the
cohomological symbol

i n n n n—1 n
Ko (K)/p' — H'EK, 5" = H"(K, u5"™) — H"(K).

Then {x.a} = %{w,}.

Next we consider the general caseof 0 < r < n. Let w bean element of H"(K)
such that {w,(} = 0. Since the proposition holds for » = n we get {J,(w),a} =
6n({w,a}) =0 foral a € K,,_,(K). Theinjectivity of @31 implies 6,(w) =0. [

Remark. We conjecturethat condition (1) is equivalent to condition (2) for every field
K.

This conjectureistrueif @,>1H"(K) isgenerated by H(K) as
a @40k (K)-module.

Completion of the proof of Theorem 2. Let ¢ be a non-zero continuous character
of K,+1_,(K) of finite order, and let p be a prime divisor of the order of . By
induction on the order there exists an element w of H"(K) such that py = @’ (w).
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If char(K) = p then H"(K) is p-divisible. If char (K) # p, let L = K({) where
¢ is a primitive pth root of 1 and let w; be the image of w in H"(L). Then
®7 (wr): Kp+1—(L) — Q/Z coincides with the composite

N
Kpr1—r(L) —5 Ko (K) 25 Q/Z

and hence {wr,(,a} =0 in H™Y(L) fordl a € K,,_,.(L). Theinjectivity of ®7*1
and Proposition 7 imply that w;, € pH"(L). Since |L : K| isprimeto p, w belongs
to pH"(K).

Thusthereisan element w’ of H"(K) suchthat w = pw’. Then ¢ — @ (') is

a continuous character annihilated by p. 0
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