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Existence theorem for higher local fields

Kazuya Kato

0. Introduction

A field K is called an n-dimensional local field if there is a sequence of fields kn, . . . , k0
satisfying the following conditions: k0 is a finite field, ki is a complete discrete valu-
ation field with residue field ki−1 for i = 1, . . . , n, and kn = K .

In [9] we defined a canonical homomorphism from the n th Milnor group Kn(K)
(cf. [14]) of an n-dimensional local field K to the Galois group Gal(Kab/K) of the
maximal abelian extension of K and generalized the familiar results of the usual local
class field theory to the case of arbitrary dimension except the “existence theorem”.

An essential difficulty with the existence theorem lies in the fact that K (resp. the
multiplicative group K∗ ) has no appropriate topology in the case where n > 2 (resp.
n > 3 ) which would be compatible with the ring (resp. group) structure and which
would take the topologies of the residue fields into account. Thus we abandon the
familiar tool “topology” and define the openness of subgroups and the continuity of
maps from a new point of view.

In the following main theorems the words “open” and “continuous” are not used in
the topological sense. They are explained below.

Theorem 1. Let K be an n-dimensional local field. Then the correspondence

L→ NL/KKn(L)

is a bijection from the set of all finite abelian extensions of K to the set of all open
subgroups of Kn(K) of finite index.

This existence theorem is essentially contained in the following theorem which
expresses certain Galois cohomology groups of K (for example the Brauer group of
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166 K. Kato

K ) by using the Milnor K -group of K . For a field k we define the group Hr(k)
( r > 0 ) as follows (cf. [9, §3.1]). In the case where char (k) = 0 let

Hr(k) = lim−→Hr(k, µ⊗(r−1)
m )

(the Galois cohomology). In the case where char (k) = p > 0 let

Hr(k) = lim−→Hr(k, µ⊗(r−1)
m ) + lim−→Hr

pi(k).

Here in each case m runs over all integers invertible in k, µm denotes the group of all
m th roots of 1 in the separable closure ksep of k, and µ⊗(r−1)

m denotes its (r − 1) th
tensor power as a Z/m-module on which Gal(ksep/k) acts in the natural way. In the
case where char (k) = p > 0 we denote by Hr

pi(k) the cokernel of

F − 1:Cr−1
i (k)→ Cr−1

i (k)/{Cr−2
i (k), T}

where C ·i is the group defined in [3, Ch.II,§7] (see also Milne [13, §3]). For example,
H1(k) is isomorphic to the group of all continuous characters of the compact abelian
group Gal(kab/k) and H2(k) is isomorphic to the Brauer group of k.

Theorem 2. Let K be as in Theorem 1. Then Hr(K) vanishes for r > n + 1 and is
isomorphic to the group of all continuous characters of finite order of Kn+1−r(K) in
the case where 0 6 r 6 n + 1.

We shall explain the contents of each section.
For a category C the category of pro-objects pro(C) and the category of ind-objects

ind(C) are defined as in Deligne [5]. Let F0 be the category of finite sets, and let F1,
F2, . . . be the categories defined by Fn+1 = ind(pro(Fn)). Let F∞ = ∪nFn. In
section 1 we shall show that n-dimensional local fields can be viewed as ring objects
of Fn . More precisely we shall define a ring object K of Fn corresponding to an
n-dimensional local field K such that K is identified with the ring [e,K]F∞ of
morphisms from the one-point set e (an object of F0 ) to K , and a group object K∗

such that K∗ is identified with [e,K∗]F∞ . We call a subgroup N of Kq(K) open if
and only if the map

K∗ × · · · ×K∗ → Kq(K)/N, (x1, . . . , xq) 7→ {x1, . . . , xq} mod N

comes from a morphism K∗ × · · · ×K∗ → Kq(K)/N of F∞ where Kq(K)/N is
viewed as an object of ind(F0) ⊂ F1. We call a homomorphism ϕ:Kq(K)→ Q/Z a
continuous character if and only if the induced map

K∗ × · · · ×K∗ → Q/Z, (x1, . . . , xq) 7→ ϕ({x1, . . . , xq})

comes from a morphism of F∞ where Q/Z is viewed as an object of ind(F0). In each
case such a morphism of F∞ is unique if it exists (cf. Lemma 1 of section 1).

In section 2 we shall generalize the self-duality of the additive group of a one-
dimensional local field in the sense of Pontryagin to arbitrary dimension.
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Section 3 is a preliminary one for section 4. There we shall prove some ring-theoretic
properties of [X,K]F∞ for objects X of F∞ .

In section 4 we shall treat the norm groups of cohomological objects. For a field k
denote by E(k) the category of all finite extensions of k in a fixed algebraic closure of
k with the inclusion maps as morphisms. Let H be a functor from E(k) to the category
Ab of all abelian groups such that lim−→ k′∈E(k) H(k′) = 0. For w1, . . . , wg ∈ H(k)
define the Kq -norm group Nq(w1, . . . , wg) as the subgroup of Kq(k) generated by the
subgroups Nk′/kKq(k′) where k′ runs over all fields in E(k) such that {w1, . . . , wg} ∈
ker(H(k) → H(k′)) and where Nk′/k denotes the canonical norm homomorphism of
the Milnor K -groups (Bass and Tate [2, §5] and [9, §1.7]). For example, if H = H1

and χ1, . . . , χg ∈ H1(k) then Nq(χ1, . . . , χg) is nothing but Nk′/kKq(k′) where k′

is the finite abelian extension of k corresponding to ∩i ker(χi: Gal(kab/k)→ Q/Z). If
H = H2 and w ∈ H2(k) then N1(w) is the image of the reduced norm map A∗ → k∗

where A is a central simple algebra over k corresponding to w.
As it is well known for a one-dimensional local field k the group N1(χ1, . . . , χg)

is an open subgroup of k∗ of finite index for any χ1, . . . , χg ∈ H1(k) and the group
N1(w) = k∗ for any w ∈ H2(k). We generalize these facts as follows.

Theorem 3. Let K be an n-dimensional local field and let r > 1.
(1) Let w1, . . . , wg ∈ Hr(K). Then the norm group Nn+1−r(w1, . . . , wg) is an open

subgroup of Kn+1−r(K) of finite index.
(2) Let M be a discrete torsion abelian group endowed with a continuous action

of Gal(Ksep/K). Let H be the Galois cohomology functor Hr( ,M ). Then for
every w ∈ Hr(K,M ) the group Nn+1−r(w) is an open subgroup of Kn+1−r(K)
of finite index.

Let k be a field and let q, r > 0. We define a condition (Nr
q , k) as follows: for

every k′ ∈ E(k) and every discrete torsion abelian group M endowed with a continuous
action of Gal(k′sep

/k′)

Nq(w1, . . . , wg) = Kq(k
′)

for every i > r, w1, . . . , wg ∈ Hi(k′), w1, . . . , wg ∈ Hi(k′,M ), and in addition
|k : kp| 6 pq+r in the case where char (k) = p > 0.

For example, if k is a perfect field then the condition (Nr
0 , k) is equivalent to

cd(k) 6 r where cd denotes the cohomological dimension (Serre [16]).

Proposition 1. Let K be a complete discrete valuation field with residue field k. Let
q > 1 and r > 0. Then the two conditions (Nr

q ,K) and (Nr
q−1, k) are equivalent.

On the other hand by [11] the conditions (Nr
0 ,K) and (Nr−1

0 , k) are equivalent
for any r > 1. By induction on n we obtain

Corollary. Let K be an n-dimensional local field. Then the condition (Nr
q ,K) holds

if and only if q + r > n + 1.
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168 K. Kato

We conjecture that if q + r = q′ + r′ then the two conditions (Nr
q , k) and (Nr′

q′ , k)
are equivalent for any field k.

Finally in section 5 we shall prove Theorem 2. Then Theorem 1 will be a corollary
of Theorem 2 for r = 1 and of [9, §3, Theorem 1] which claims that the canonical
homomorphism

Kn(K)→ Gal(Kab/K)

induces an isomorphism Kn(K)/NL/KKn(L) →̃ Gal(L/K) for each finite abelian
extension L of K .

I would like to thank Shuji Saito for helpful discussions and for the stimulation given
by his research in this area (e.g. his duality theorem of Galois cohomology groups with
locally compact topologies for two-dimensional local fields).

Table of contents.
1. Definition of the continuity for higher local fields.
2. Additive duality.
3. Properties of the ring of K -valued morphisms.
4. Norm groups.
5. Proof of Theorem 2.

Notation.
We follow the notation in the beginning of this volume. References to sections in

this text mean references to sections of this work and not of the whole volume.
All fields and rings in this paper are assumed to be commutative.
Denote by Sets, Ab, Rings the categories of sets, of abelian groups and of rings

respectively.
If C is a category and X,Y are objects of C then [X,Y ]C (or simply [X,Y ] )

denotes the set of morphisms X → Y .

1. Definition of the continuity for higher local fields

1.1. Ring objects of a category corresponding to rings.

For a category C let C◦ be the dual category of C. If C has a final object we always
denote it by e. Then, if θ:X → Y is a morphism of C, [e, θ] denotes the induced
map [e,X]→ [e, Y ].

In this subsection we prove the following

Proposition 2. Let C be a category with a final object e in which the product of any
two objects exists. Let R be a ring object of C such that for a prime p the morphism
R → R, x 7→ px is the zero morphism, and via the morphism R → R, x 7→ xp the
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latter R is a free module of finite rank over the former R. Let R = [e,R], and let A
be a ring with a nilpotent ideal I such that R = A/I and such that Ii/Ii+1 is a free
R-module of finite rank for any i.

Then:
(1) There exists a ring object A of C equipped with a ring isomorphism j:A →̃ [e,A]

and with a homomorphism of ring objects θ:A → R having the following prop-
erties:
(a) [e, θ] ◦ j:A→ R coincides with the canonical projection.
(b) For any object X of C, [X,A] is a formally etale ring over A in the sense

of Grothendieck [7, Ch. 0 §19], and θ induces an isomorphism

[X,A]/I[X,A] ' [X,R].

(2) The above triple (A, j, θ) is unique in the following sense. If (A′, j′, θ′) is another
triple satisfying the same condition in (1), then there exists a unique isomorphism
of ring objects ψ:A →̃A′ such that [e, ψ] ◦ j = j′ and θ = θ′ ◦ ψ.

(3) The object A is isomorphic (if one forgets the ring-object structure) to the product
of finitely many copies of R.

(4) If C has finite inverse limits, the above assertions (1) and (2) are valid if conditions
“free module of finite rank” on R and Ii/Ii+1 are replaced by conditions “direct
summand of a free module of finite rank”.

Example. Let R be a non-discrete locally compact field and A a local ring of finite
length with residue field R. Then in the case where char (R) > 0 Proposition 2 shows
that there exists a canonical topology on A compatible with the ring structure such
that A is homeomorphic to the product of finitely many copies of R. On the other
hand, in the case where char (R) = 0 it is impossible in general to define canonically
such a topology on A. Of course, by taking a section s:R → A (as rings), A as a
vector space over s(R) has the vector space topology, but this topology depends on the
choice of s in general. This reflects the fact that in the case of char (R) = 0 the ring of
R-valued continuous functions on a topological space is not in general formally smooth
over R contrary to the case of char (R) > 0.

Proof of Proposition 2. Let X be an object of C; put RX = [X,R]. The assumptions
on R show that the homomorphism

R(p) ⊗R RX → RX , x⊗ y 7→ xyp

is bijective, where R(p) = R as a ring and the structure homomorphism R → R(p) is
x 7→ xp . Hence by [10, §1 Lemma 1] there exists a formally etale ring AX over A with
a ring isomorphism θX :AX/IAX ' RX . The property “formally etale” shows that
the correspondence X → AX is a functor C◦ → Rings, and that the system θX forms
a morphism of functors. More explicitly, let n and r be sufficiently large integers, let
Wn(R) be the ring of p-Witt vectors over R of length n, and let ϕ:Wn(R) → A be
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the homomorphism

(x0, x1, . . . ) 7→
r∑
i=0

pix̃i
pr−i

where x̃i is a representative of xi ∈ R in A. Then AX is defined as the tensor product

Wn(RX )⊗Wn(R) A

induced by ϕ. Since TorWn(R)
1 (Wn(RX ), R) = 0 we have

TorWn(R)
1 (Wn(RX ), A/Ii) = 0

for every i. This proves that the canonical homomorphism

Ii/Ii+1 ⊗R RX → IiAX/I
i+1AX

is bijective for every i. Hence each functor X → IiAX/I
i+1AX is representable

by a finite product of copies of R, and it follows immediately that the functor AX is
represented by the product of finitely many copies of R.

1.2. n-dimensional local fields as objects of Fn .

Let K be an n-dimensional local field. In this subsection we define a ring object
K and a group object K∗ by induction on n.

Let k0, . . . , kn = K be as in the introduction. For each i such that char (ki−1) = 0
(if such an i exists) choose a ring morphism si: ki−1 → Oki such that the composite
ki−1 → Oki → Oki/Mki is the indentity map. Assume n > 1 and let kn−1 be the
ring object of Fn−1 corresponding to kn−1 by induction on n.

If char (kn−1) = p > 0, the construction of K below will show by induction on n
that the assumptions of Proposition 2 are satisfied when one takes Fn−1, kn−1, kn−1

and OK/Mr
K ( r > 1 ) as C, R, R and A. Hence we obtain a ring object OK/Mr

K of
Fn−1. We identify OK/Mr

K with [e,OK/Mr
K] via the isomorphism j of Proposition

2.
If char (kn−1) = 0, let OK/Mr

K be the ring object of Fn−1 which represents the
functor

F◦n−1 → Rings, X 7→ OK/Mr
K ⊗kn−1 [X,kn−1],

where OK/Mr
K is viewed as a ring over kn−1 via sn−1.

In each case let OK be the object " lim←− "OK/Mr
K of pro(Fn−1). We define K as

the ring object of Fn which corresponds to the functor

pro(Fn−1)◦ → Rings, X 7→ K ⊗OK [X,OK ].

Thus, K is defined canonically in the case of char (kn−1) > 0, and it depends (and
doesn’t depend) on the choices of si in the case of char (kn−1) = 0 in the following
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sense. Assume that another choice of sections s′i yields ki′ and K ′ . Then there exists
an isomorphism of ring objects K →̃K ′ which induces ki →̃ ki

′ for each i. But in
general there is no isomorphism of ring objects ψ:K → K ′ such that [e, ψ]:K → K
is the indentity map.

Now let K∗ be the object of Fn which represents the functor

F◦n → Sets, X 7→ [X,K]∗.

This functor is representable because Fn has finite inverse limits as can be shown by
induction on n.

Definition 1. We define fine (resp. cofine) objects of Fn by induction on n. All
objects in F0 are called fine (resp. cofine) objects of F0. An object of Fn (n > 1 ) is
called a fine (resp. cofine) object of Fn if and only if it is expressed as X = " lim−→ "Xλ

for some objects Xλ of pro(Fn−1) and each Xλ is expressed as Xλ = " lim←− "Xλµ for
some objects Xλµ of Fn−1 satisfying the condition that all Xλµ are fine (resp. cofine)
objects of Fn−1 and the maps [e,Xλ]→ [e,Xλµ] are surjective for all λ, µ (resp. the
maps [e,Xλ]→ [e,X] are injective for all λ ).

Recall that if i 6 j then Fi is a full subcategory of Fj . Thus each Fi is a full
subcategory of F∞ = ∪iFi .

Lemma 1.

(1) Let K be an n-dimensional local field. Then an object of Fn of the form

K × . . . K ×K∗ × · · · ×K∗

is a fine and cofine object of Fn . Every set S viewed as an object of ind(F0) is a
fine and cofine object of F1 .

(2) Let X and Y be objects of F∞ , and assume that X is a fine object of Fn
for some n and Y is a cofine object of Fm for some m. Then two morphisms
θ, θ′:X → Y coincide if [e, θ] = [e, θ′].

As explained in 1.1 the definition of the object K depends on the sections si: ki−1 →
Oki chosen for each i such that char (ki−1) = 0. Still we have the following:

Lemma 2.

(1) Let N be a subgroup of Kq(K) of finite index. Then openness of N doesn’t
depend on the choice of sections si .

(2) Let ϕ:Kq(K)→ Q/Z be a homomorphism of finite order. Then the continuity of
χ doesn’t depend on the choice of sections si .

The exact meaning of Theorems 1,2,3 is now clear.
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2. Additive duality

2.1. Category of locally compact objects.

If C is the category of finite abelian groups, let C̃ be the category of topological
abelian groups G which possess a totally disconnected open compact subgroup H such
that G/H is a torsion group. If C is the category of finite dimensional vector spaces
over a fixed (discrete) field k, let C̃ be the category of locally linearly compact vector
spaces over k (cf. Lefschetz [12]). In both cases the canonical self-duality of C̃ is well
known. These two examples are special cases of the following general construction.

Definition 2. For a category C define a full subcategory C̃ of ind(pro(C)) as follows.
An object X of ind(pro(C)) belongs to C̃ if and only if it is expressed in the form
" lim−→ " j∈J " lim←− " i∈IX(i, j) for some directly ordered sets I and J viewed as small
categories in the usual way and for some functor X: I◦×J → C satisfying the following
conditions.

(i) If i, i′ ∈ I , i 6 i′ then the morphism X(i′, j) → X(i, j) is surjective for every
j ∈ J . If j, j′ ∈ J , j 6 j′ then the morphism X(i, j)→ X(i, j′) is injective for
every i ∈ I .

(ii) If i, i′ ∈ I , i 6 i′ and j, j′ ∈ J , j 6 j′ then the square

X(i′, j) −−−−→ X(i′, j′)y y
X(i, j) −−−−→ X(i, j′)

is cartesian and cocartesian.

It is not difficult to prove that C̃ is equivalent to the full subcategory of pro(ind(C))
(as well as ind(pro(C)) ) consisting of all objects which are expressed in the form
" lim←− " i∈I " lim−→ " j∈JX(i, j) for some triple (I, J,X) satisfying the same conditions as
above. In this equivalence the object
" lim−→ " j∈J " lim←− " i∈IX(i, j) corresponds to " lim←− " i∈I " lim−→ " j∈JX(i, j).

Definition 3. Let A0 be the category of finite abelian groups, and let A1,A2, . . . be
the categories defined as An+1 = Ãn .

It is easy to check by induction on n that An is a full subcategory of the category
Fab
n of all abelian group objects of Fn with additive morphisms.
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2.2. Pontryagin duality.

The category A0 is equivalent to its dual via the functor

D0:A◦0 →̃A0, X 7→ Hom(X,Q/Z).

By induction on n we get an equivalence

Dn:A◦n →̃An, A◦n = (Ãn−1)◦ = Ã◦n−1
Dn−1−−−→ Ãn−1 = An

where we use (C̃)◦ = C̃◦ . As in the case of Fn each An is a full subcategory of
A∞ = ∪nAn . The functors Dn induce an equivalence

D:A◦∞ →̃A∞

such that D ◦D coincides with the indentity functor.

Lemma 3. View Q/Z as an object of ind(A0) ⊂ A∞ ⊂ Fab
∞ . Then:

(1) For every object X of A∞

[X,Q/Z]A∞ ' [e,D(X)]F∞ .

(2) For all objects X,Y of A∞ [X,D(Y )]A∞ is canonically isomorphic to the group
of biadditive morphisms X × Y → Q/Z in F∞ .

Proof. The isomorphism of (1) is given by

[X,Q/Z]A∞ ' [D(Q/Z),D(X)]A∞ = [Ẑ,D(X)]A∞ →̃ [e,D(X)]F∞

( Ẑ is the totally disconnected compact abelian group lim←−n>0
Z/n and the last arrow is

the evaluation at 1 ∈ Ẑ ). The isomorphism of (2) is induced by the canonical biadditive
morphism D(Y )× Y → Q/Z which is defined naturally by induction on n.

Compare the following Proposition 3 with Weil [17, Ch. II §5 Theorem 3].

Proposition 3. Let K be an n-dimensional local field, and let V be a vector space
over K of finite dimension, V ′ = HomK(V,K). Then

:
(1) The abelian group object V of Fn which represents the functor X → V ⊗K

[X,K] belongs to An .
(2) [K,Q/Z]A∞ is one-dimensional with respect to the natural K -module structure

and its non-zero element induces due to Lemma 3 (2) an isomorphism V ′ ' D(V ).
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3. Properties of the ring of K -valued morphisms

3.1. Multiplicative groups of certain complete rings.

Proposition 4. Let A be a ring and let π be a non-zero element of A such that
A = lim←−A/π

nA. Let R = A/πA and B = A[π−1]. Assume that at least one of the
following two conditions is satisfied.
(i) R is reduced (i.e. having no nilpotent elements except zero) and there is a ring

homomorphism s:R → A such that the composite R
s−→ A −→ A/πA is the

identity.
(ii) For a prime p the ring R is annihilated by p and via the homomorphism R→ R,

x 7→ xp the latter R is a finitely generated projective module over the former R.
Then we have

B∗ ' A∗ × Γ(Spec(R),Z)

where Γ(Spec(R),Z) is the group of global sections of the constant sheaf Z on Spec(R)
with Zariski topology. The isomorphism is given by the homomorphism of sheaves
Z→ O∗Spec(R) , 1 7→ π, the map

Γ(Spec(R),Z) ' Γ(Spec(A),Z)→ Γ(Spec(B),Z)

and the inclusion map A∗ → B∗.

Proof. Let AffR be the category of affine schemes over R. In case (i) let C = AffR .
In case (ii) let C be the category of all affine schemes Spec(R′) over R such that the
map

R(p) ⊗R R′ → R′, x⊗ y 7→ xyp

(cf. the proof of Proposition 2) is bijective. Then in case (ii) every finite inverse limit
and finite sum exists in C and coincides with that taken in AffR . Furthermore, in this
case the inclusion functor C→ AffR has a right adjoint. Indeed, for any affine scheme
X over R the corresponding object in C is lim←−Xi where Xi is the Weil restriction

of X with respect to the homomorphism R→ R, x 7→ xp
i

.
Let R be the ring object of C which represents the functor X → Γ(X,OX ), and

let R∗ be the object which represents the functor X → [X,R]∗ , and 0 be the final
object e regarded as a closed subscheme of R via the zero morphism e→ R.

Lemma 4. Let X be an object of C and assume that X is reduced as a scheme
(this condition is always satisfied in case (ii)). Let θ:X → R be a morphism of C.
If θ−1(R∗) is a closed subscheme of X , then X is the direct sum of θ−1(R∗) and
θ−1(0) (where the inverse image notation are used for the fibre product).
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The group B∗ is generated by elements x of A such that πn ∈ Ax for some
n > 0. In case (i) let A/πn+1A be the ring object of C which represents the functor

X → A/πn+1A⊗R [X,R] where A/πn+1A is viewed as an R-ring via a fixed section
s. In case (ii) we get a ring object A/πn+1A of C by Proposition 2 (4).

In both cases there are morhisms θi:R → A/πn+1A ( 0 6 i 6 n ) in C such that
the morphism

R × · · · ×R→ A/πn+1A, (x0, . . . , xn) 7→
n∑
i=0

θi(xi)π
i

is an isomorphism.
Now assume xy = πn for some x, y ∈ A and take elements xi, yi ∈ R = [e,R]

( 0 6 i 6 n ) such that

x mod πn+1 =
n∑
i=0

θi(xi)π
i, y mod πn+1 =

n∑
i=0

θi(yi)π
i.

An easy computation shows that for every r = 0, . . . , n

(r−1⋂
i=0

x−1
i (0)

)⋂
x−1
r (R∗) =

(r−1⋂
i=0

x−1
i (0)

)⋂(n−r−1⋂
i=0

y−1
i (0)

)
.

By Lemma 4 and induction on r we deduce that e = Spec(R) is the direct sum of the
closed open subschemes

(
∩r−1
i=0 x

−1
i (0)

)
∩ x−1

r (R∗) on which the restriction of x has
the form aπr for an invertible element a ∈ A.

3.2. Properties of the ring [X,K] .

Results of this subsection will be used in section 4.

Definition 4. For an object X of F∞ and a set S let

lcf(X,S) = lim−→ I [X, I]

where I runs over all finite subsets of S (considering each I as an object of F0 ⊂ F∞ ).

Lemma 5. Let K be an n-dimensional local field and let X be an object of F∞ .
Then:
(1) The ring [X,K] is reduced.
(2) For every set S there is a canonical bijection

lcf(X,S) →̃Γ(Spec([X,K]), S)

where S on the right hand side is regarded as a constant sheaf on Spec([X,K]).
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Proof of (2). If I is a finite set and θ:X → I is a morphism of F∞ then X is
the direct sum of the objects θ−1(i) = X ×I {i} in F∞ ( i ∈ I ). Hence we get the
canonical map of (2). To prove its bijectivity we may assume S = {0, 1}. Note that
Γ(Spec(R), {0, 1}) is the set of idempotents in R for any ring R. We may assume that
X is an object of pro(Fn−1).

Let kn−1 be the residue field of kn = K . Then

Γ(Spec([X,K]), {0, 1}) ' Γ(Spec([X,kn−1]), {0, 1})

by (1) applied to the ring [X,kn−1].

Lemma 6. Let K be an n-dimensional local field of characteristic p > 0. Let
k0, . . . , kn be as in the introduction. For each i = 1, . . . , n let πi be a lifting to K of
a prime element of ki . Then for each object X of F∞ [X,K]∗ is generated by the
subgroups

[X,Kp(π(s))]∗

where s runs over all functions {1, . . . , n} → {0, 1, . . . , p − 1} and π(s) denotes
πs(1)

1 . . . πs(n)
n , Kp(π(s)) is the subring object of K corresponding to Kp(π(s)), i.e.

[X,Kp(π(s))] = Kp(π(s))⊗Kp [X,K].

Proof. Indeed, Proposition 4 and induction on n yield morphisms

θ(s):K∗ → Kp(π(s))∗

such that the product of all θ(s) in K∗ is the identity morphism K∗ → K∗.

The following similar result is also proved by induction on n.

Lemma 7. Let K,k0 and (πi)16i6n be as in Lemma 6. Then there exists a morphism
of A∞
(cf. section 2)

(θ1, θ2): Ωn
K → Ωn

K × k0

such that

x = (1− C)θ1(x) + θ2(x)dπ1/π1 ∧ · · · ∧ dπn/πn
for every object X of F∞ and for every x ∈ [X,Ωn

K ] where Ωn
K is the object which

represents the functor X → Ωn
K ⊗K [X,K] and C denotes the Cartier operator ([4],

or see 4.2 in Part I for the definition).

Generalize the Milnor K -groups as follows.
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Definition 5. For a ring R let Γ0(R) = Γ(Spec(R),Z). The morphism of sheaves

Z× O∗Spec(R) → O∗Spec(R), (n, x) 7→ xn

determines the Γ0(R)-module structure on R∗ . Put Γ1(R) = R∗ and for q > 2 put

Γq(R) = ⊗qΓ0(R)Γ1(R)/Jq

where ⊗qΓ0(R)Γ1(R) is the q th tensor power of Γ1(R) over Γ0(R) and Jq is the
subgroup of the tensor power generated by elements x1 ⊗ · · · ⊗ xq which satisfy
xi + xj = 1 or xi + xj = 0 for some i 6= j . An element x1 ⊗ · · · ⊗ xq mod Jq will
be denoted by {x1, . . . , xq}.

Note that Γq(k) = Kq(k) for each field k and Γq(R1 × R2) ' Γq(R1) × Γq(R2)
for rings R1, R2.

Lemma 8. In one of the following two cases
(i) A,R,B, π as in Proposition 4
(ii) an n-dimensional local field K , an object X of F∞ , A = [X,OK],

R = [X,kn−1], B = [X,K],

let UiΓq(B) be the subgroup of Γq(B) generated by elements {1 +πix, y1, . . . , yq−1}
such that x ∈ A, yj ∈ B∗ , q, i > 1.

Then:
(1) There is a homomorphism ρq0: Γq(R)→ Γq(B)/U1Γq(B) such that

ρq0({x1, . . . , xq}) = {x̃1, . . . , x̃q} mod U1Γq(B)

where x̃i ∈ A is a representative ofxi . In case (i) (resp. (ii)) the induced map

Γq(R) + Γq−1(R)→ Γq(B)/U1Γq(B), (x, y) 7→ ρq0(x) + {ρq−1
0 (y), π}

(resp.

Γq(R)/m + Γq−1(R)/m→ Γq(B)/(U1Γq(B) +mΓq(B)),

(x, y) 7→ ρq0(x) + {ρq−1
0 (y), π})

is bijective (resp. bijective for every non-zero integer m ).
(2) If m is an integer invertible in R then U1Γq(B) is m-divisible.
(3) In case (i) assume that R is additively generated by R∗ . In case (ii) assume that

char (kn−1) = p > 0. Then there exists a unique homomorphism

ρqi : Ωq−1
R → UiΓq(B)/Ui+1Γq(B)

such that

ρqi (xdy1/y1 ∧ · · · ∧ dyq−1/yq−1) = {1 + x̃πi, ỹ1, . . . , ỹq−1} mod Ui+1Γq(B)

for every x ∈ R, y1, . . . , yq−1 ∈ R∗. The induced map

Ωq−1
R ⊕Ωq−2

R → UiΓq(B)/Ui+1Γq(B), (x, y) 7→ ρqi (x) + {ρq−1
i (y), π}
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is surjective. If i is invertible in R then the homomorphism ρqi is surjective.

Proof. In case (i) these results follow from Proposition 4 by Bass–Tate’s method
[2, Proposition 4.3] for (1), Bloch’s method [3, §3] for (3) and by writing down the
kernel of R ⊗R∗ → Ω1

R , x⊗ y 7→ xdy/y as in [9, §1 Lemma 5].
If X is an object of pro(Fn−1) then case (ii) is a special case of (i) except n = 1 and

k0 = F2 where [X,k0] is not generated by [X,k0]∗ in general. But in this exceptional
case it is easy to check directly all the assertions.

For an arbitrary X we present here only the proof of (3) because the proof of (1) is
rather similar.

Put k = kn−1. For the existence of ρqi it suffices to consider the cases where

X = Ωq−1
k and X = k ×

∏q−1 k∗ (
∏r Y denotes the product of r copies of Y ).

Note that these objects are in pro(Fn−1) since [X,Ωq
k] = Ωq

[X,k] for any X and q.

The uniqueness follows from the fact that [X,Ωq−1
k ] is generated by elements of

the form xdc1/c1 ∧ · · · ∧ dcq−1/cq−1 such that x ∈ [X,k] and c1, . . . , cq−1 ∈ k∗.
To prove the surjectivity we may assume X = (1+πiOK)×

∏q−1
K∗ and it suffices

to prove in this case that the typical element in UiΓq(B)/Ui+1Γq(B) belongs to the
image of the homomorphism introduced in (3). Let UK be the object of Fn which
represents the functor X → [X,OK ]∗ . By Proposition 4 there exist

morphisms θ1:K∗ →
∐p−1
i=0 UKπ

i (the direct sum in Fn ) and θ2:K∗ → K∗

such that x = θ1(x)θ2(x)p for each X in F∞ and each x ∈ [X,K∗] (in the proof of
(1) p is replaced by m ). Since

∐p−1
i=0 UKπ

i belongs to pro(Fn−1) and
(1 + πi[X,OK])p ⊂ 1 + πi+1[X,OK ] we are reduced to the case where X is an object
of pro(Fn−1).

4. Norm groups

In this section we prove Theorem 3 and Proposition 1. In subsection 4.1 we reduce
these results to Proposition 6.

4.1. Reduction steps.

Definition 6. Let k be a field and let H:E(k)→ Ab be a functor such that
lim−→ k′∈E(k)H(k′) = 0. Let w ∈ H(k) (cf. Introduction). For a ring R over k and
q > 1 define the subgroup Nq(w,R) (resp. Lq(w,R) ) of Γq(R) as follows.

An element x belongs to Nq(w,R) (resp. Lq(w,R) ) if and only if there exist
a finite set J and element 0 ∈ J ,
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a map f :J → J such that for some n > 0 the n th iteration fn with respect to
the composite is a constant map with value 0,
and a family (Ej , xj)j∈J (Ej ∈ E(k) ), xj ∈ Γq(Ej ⊗k R) ) satisfying the follow-
ing conditions:
(i) E0 = k and x0 = x.
(ii) Ef (j) ⊂ Ej for every j ∈ J .
(iii) Let j ∈ f (J ). Then there exists a family (yt, zt)t∈f−1(j)

( yt ∈ (Et ⊗k R)∗ , zt ∈ Γq−1(Ej ⊗k R) ) such that xt = {yt, zt} for all
t ∈ f−1(j) and

xj =
∑

t∈f−1(j)

{NEt⊗kR/Ej⊗kR(yt), zt}

where NEt⊗kR/Ej⊗kR denotes the norm homomorphism

(Et ⊗k R)∗ → (Ej ⊗k R)∗.

(iv) If j ∈ J \ f (J ) then w belongs to the kernel of H(k)→ H(Ej )
(resp. then one of the following two assertions is valid:
(a) w belongs to the kernel of H(k)→ H(Ej ),
(b) xj belongs to the image of Γ(Spec(Ej ⊗k R),Kq(Ej ))→ Γq(Ej ⊗k R),
where Kq(Ej) denotes the constant sheaf on Spec(Ej ⊗k R) defined by the
set Kq(Ej) ).

Remark. If the groups Γq(Ej ⊗k R) have a suitable “norm” homomorphism then x

is the sum of the “norms” of xj such that f−1(j) = ∅. In particular, in the case where
R = k we get Nq(w, k) ⊂ Nq(w) and N1(w, k) = N1(w).

Definition 7. For a field k let [E(k),Ab] be the abelian category of all functors
E(k)→ Ab.
(1) For q > 0 let Nq,k denote the full subcategory of [E(k),Ab] consisting of functors

H such that lim−→ k′∈E(k)H(k′) = 0 and such that for every k′ ∈ E(k), w ∈ H(k′)

the norm group Nq(w) coincides with Kq(k′). Here Nq(w) is defined with
respect to the functor E(k′)→ Ab.

(2) If K is an n-dimensional local field and q > 1, let Nq,K (resp. Lq,K ) denote
the full subcategory of [E(K),Ab] consisting of functors H such that

lim−→K′∈E(K) H(K ′) = 0

and such that for every K ′ ∈ E(K), w ∈ H(K ′) and every object X of F∞ the
group Nq(w, [X,K ′]) (resp. Lq(w, [X,K ′]) ) coincides with Γq([X,K ′]).

Lemma 9. Let K be an n-dimensional local field and let H be an object of Lq,K .
Then for every w ∈ H(K) the group Nq(w) is an open subgroup of Kq(K) of finite
index.
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Proof. Consider the case where X =
∏q

K∗. We can take a system (Ej , xj)j∈J as in
Definition 6 such that E0 = K , x0 is the canonical element in Γq([X,K]) and such
that if j 6∈ f (J ) and w 6∈ ker(H(K) → H(Ej )) then xj is the image of an element
θj of lcf(X,Kq(Ej)). Let θ ∈ lcf(X,Kq(K)/Nq(w)) be the sum of NEj/K ◦ θj
mod Nq(w). Then the canonical map [e,X] =

∏q
K∗ → Kq(K)/Nq(w) comes from

θ.

Definition 8. Let k be a field. A collection {Ck′}k′∈E(k) of full subcategories Ck′ of
[E(k′),Ab] is called admissible if and only if it satisfies conditions (i) – (iii) below.
(i) Let E ∈ E(k). Then every subobject, quotient object, extension and filtered

inductive limit (in the category of [E(E),Ab] ) of objects of CE belongs to CE .
(ii) Let E,E′ ∈ E(k) and E ⊂ E′ . If H is in CE then the composite functor

E(E′) −→ E(E)
H−→ Ab is in CE′ .

(iii) Let E ∈ E(k) and H is in [E(E),Ab]. Then H is in CE if conditions (a) and
(b) below are satisfied for a prime p.
(a) For some E′ ∈ E(E) such that |E′ : E| is prime to p the composite functor

(E′) −→ (E)
H−→ Ab is in CE′ .

(b) Let q be a prime number distinct from p and let S be a direct subordered set
of E(E). If the degree of every finite extension of the field lim−→E′∈S E

′ is a

power of p then lim−→E′∈S H(E′) = 0.

Lemma 10.
(1) For each field k and q the collection {Nq,k′}k′∈E(k) is admissible. If K is an

n-dimensional local field then the collections {Nq,k′}k′∈E(k) and {Lq,k′}k′∈E(k)
are admissible.

(2) Let k be a field. Assume that a collection {Ck′}k′∈E(k) is admissible. Let r > 1
and for every prime p there exist E ∈ E(k) such that |E : k| is prime to p
and such that the functor Hr( ,Z/pr):E(E) → Ab is in CE . Then for each
k′ ∈ E(k), each discrete torsion abelian group M endowed with a continuous
action of Gal(k′sep

/k′) and each i > r the functor

Hi( ,M ):E(k′)→ Ab

is in Ck′ .

Definition 9. For a field k, r > 0 and a non-zero integer m define the group Hr
m(k)

as follows.
If char (k) = 0 let

Hr
m(k) = Hr(k, µ⊗(r−1)

m ).

If char (k) = p > 0 and m = m′pi where m′ is prime to p and i > 0 let

Hr
m(k) = Hr

m′(k, µ
⊗(r−1)
m′ )⊕ coker(F − 1:Cr−1

i (k)→ Cr−1
i (k)/{Cr−2

i (k), T})
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(where C ·i is the group defined in [3, Ch.II,§7], Cri = 0 for r < 0 ).

By the above results it suffices for the proof of Theorem 3 to prove the following
Proposition 5 in the case where m is a prime number.

Proposition 5. Let K be an n-dimensional local field. Let q, r > 1 and let m be a
non-zero integer. Then the functor Hr

m:E(K) → Ab is in Lq,K if q + r = n + 1 and
in Nq,K if q + r > n + 1.

Now we begin the proofs of Proposition 1 and Proposition 5.

Definition 10. Let K be a complete discrete valuation field, r > 0 and m be a
non-zero integer.
(1) Let Hr

m,ur and Hr
m/H

r
m,ur be the functors E(K)→ Ab:

Hr
m,ur(K

′) = ker(Hr
m(K ′)→ Hr

m(K ′ur)),

(Hr
m/H

r
m,ur)(K

′) = Hr
m(K ′)/Hr

m,ur(K
′)

where K ′ur is the maximal unramified extension of K ′ .
(2) Let Irm (resp. Jrm ) be the functor E(K) → Ab such that Irm(K ′) = Hr

m(k′)
(resp. Jrm(K ′) = Hr

m(k′) ) where k′ is the residue field of K ′ and such that the
homomorphism Irm(K ′) → Irm(K ′′) (resp. Jrm(K ′) → Jrm(K ′′) ) for K ′ ⊂ K ′′

is jk′′/k′ (resp. e(K ′′|K ′)jk′′/k′ ) where k′′ is the residue field of K ′′ , jk′′/k′ is
the canonical homomorphism induced by the inclusion k′ ⊂ k′′ and e(K ′′|K ′) is
the index of ramification of K ′′/K ′ .

Lemma 11. Let K and m be as in Definition 10.
(1) For r > 1 there exists an exact sequence of functors

0→ Irm → Hr
m,ur → Jr−1

m → 0.

(2) Jrm is in N1,K for every r > 0.
(3) Let q, r > 1. Then Irm is in Nq,K if and only if Hr

m:E(k) → Ab is in Nq−1,k
where k is the residue field of K .

Proof. The assertion (1) follows from [11]. The assertion (3) follows from the facts
that 1+MK ⊂ NL/K (L∗) for every unramified extension L of K and that there exists
a canonical split exact sequence

0→ Kq(k)→ Kq(K)/U1Kq(K)→ Kq−1(k)→ 0.

The following proposition will be proved in 4.4.

Proposition 6. Let K be a complete discrete valuation field with residue field k. Let
q, r > 1 and m be a non-zero integer. Assume that [k : kp| 6 pq+r−2 if char (k) =
p > 0. Then:
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(1) Hr
m/H

r
m,ur is in Nq,K .

(2) If K is an n-dimensional local field with n > 1 then Hr
m/H

r
m,ur is in Nq,K .

Proposition 1 follows from this proposition by Lemma 10 and Lemma 11 (note that
if char (k) = p > 0 and i > 0 then Hr

pi(k) is isomorphic to ker(pi:Hr(k)→ Hr(k))
as it follows from [11]).

Lemma 12. Let K be an n-dimensional local field and let X be an object of F∞ .
Consider the following cases.
(i) q > n + 1 and m is a non-zero integer.
(ii) q = n + 1, char (K) = p > 0 and m is a power of p.
(iii) q = n + 1 and m is a non-zero integer.

Let x ∈ Γq([X,K]. Then in cases (i) and (ii) (resp. in case (iii)) there exist a triple
(J, 0, f ) and a family (Ej , xj)j∈J which satisfy all the conditions in Definition 6 with
k = K except condition (iv), and which satisfy the following condition:
(iv)’ If j ∈ J \ f (J ) then xj ∈ mΓq([X,Ej ])

(resp. xj belongs to mΓq([X,Ej ])
or to the image of lcf(X,Kq(Ej))→ Γq([X,Ej ]) ).

Corollary. Let K be an n-dimensional local field. Then mKn+1(K) is an open
subgroup of finite index of Kn+1(K) for every non-zero integer m.

This corollary follows from case (iii) above by the argument in the proof of Lemma
9.

Proof of Lemma 12. We may assume that m is a prime number.
First we consider case (ii). By Lemma 6 we may assume that there are elements

b1, . . . , bn+1 ∈ [X,K]∗ and c1, . . . , cn+1 ∈ K∗ such that x = {b1, . . . , bn+1} and
bi ∈ [X,Kp(ci)]∗ for each i. We may assume that |Kp(c1, . . . , cr) : Kp| = pr

and cr+1 ∈ Kp(c1, . . . , cr) for some r 6 n. Let J = {0, 1, . . . , r}, and define

f :J → J by f (j) = j − 1 for j > 1 and f (0) = 0. Put Ej = K(c1/p
1 , . . . , c

1/p
j ) and

xj = {b1/p
1 , . . . , b

1/p
j , bj+1, . . . , bn+1}. Then

xr = p{b1/p
1 , . . . , b

1/p
r+1, br+2, . . . , bn+1} in Γn+1([X,Er]).

Next we consider cases (i) and (iii). If K is a finite field then the assertion for
(i) follows from Lemma 13 below and the assertion for (iii) is trivial. Assume n > 1
and let k be the residue field of K . By induction on n Lemma 8 (1) (2) and case
(ii) of Lemma 12 show that we may assume x ∈ U1Γq([X,K]), char (K) = 0 and
m = char (k) = p > 0. Furthermore we may assume that K contains a primitive p th
root ζ of 1. Let eK = vK (p) and let π be a prime element of K . Then

UiΓq([X,OK ]) ⊂ pU1Γq([X,OK ]), if i > peK/(p− 1) .

From this and Lemma 8 (3) (and a computation of the map x 7→ xp on U1Γq([X,OK ]) )
it follows that U1Γq([X,K]) is p-divisible if q > n + 1 and that there is a surjective
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homomorphism

[X,Ωn−1
k ]/(1− C)[X,Ωn−1

k ]→ U1Γn+1([X,K])/pU1Γn+1([X,K]),

xdy1/y1 ∧ · · · ∧ dyn−1/yn−1 7→ {1 + x̃(ζ − 1)p, ỹ1, . . . , ỹn1 , π}
where C is the Cartier operator. By Lemma 7

[X,Ωn−1
k ]/(1 − C)[X,Ωn−1

k ] = lcf(X,Ωn−1
k /(1− C)Ωn−1

k ).

Lemma 13. Let K be a finite field and let X be an object of F∞ . Then
(1) Γq[X,K] = 0 for q > 2.
(2) For every finite extension L of K the norm homomorphism [X,L]∗ → [X,K]∗

is surjective.

Proof. Follows from Lemma 5 (2).

Proof of Proposition 5 assuming Proposition 6. If K is a finite field, the assertion of
Proposition 5 follows from Lemma 13.

Let n > 1. Let k be the residue field of K . Let Irm and Jrm be as in Definition
10. Assume q + r = n + 1 (resp. q + r > n + 1 ). Using Lemma 8 (1) and the fact that

U1Γq([X,K]) ⊂ NL/KΓq([X,L])

for every unramified extension L/K we can deduce that Irm is in Lq,K (resp. Nq,K )
from the induction hypothesis Hr

m:E(k) → Ab is in Lq−1,k (resp. Nq−1,k ). We can
deduce Jr−1

m is in Lq,K (resp. Nq,K ) from the hypothesis Hr−1
m :E(k) → Ab is in

Lq,k (resp. Nq,k ). Thus Hr
m,ur is in Lq,K (resp. Nq,K ).

4.2. Proof of Proposition 6.

Let k be a field and let m be a non-zero integer. Then ⊕r>0H
r
m(k) (cf. Definition

9) has a natural right ⊕q>0Kq(k)-module structure (if m is invertible in k this structure
is defined by the cohomological symbol hqm,k:Kq(k)/m → Hq(k, µ⊗qm ) and the cup-
product, cf. [9, §3.1]). We denote the product in this structure by {w, a}
(a ∈ ⊕q>0Kq(k), w ∈ ⊕r>0H

r
m(k) ).

Definition 11. Let K be a complete discrete valuation field with residue field k such
that char (k) = p > 0. Let r > 1. We call an element w of Hr

p (K) standard if and
only if w is in one of the following forms (i) or (ii).
(i) w = {χ, a1, . . . , ar−1} where χ is an element of H1

p (K) corresponding to a
totally ramified cyclic extension of K of degree p, and a1, . . . , ar−1 are elements
of O∗K such that

|kp(a1, . . . , ar−1) : kp| = pr−1
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(ai denotes the residue of ai ).
(ii) w = {χ, a1, . . . , ar−2, π} where χ is an element of H1

p (K) corresponding to a
cyclic extension of K of degree p whose residue field is an inseparable extension
of k of degree p, π is a prime element of K and a1, . . . , ar−2 are elements of
O∗K such that |kp(a1, . . . , ar−2) : kp| = pr−2.

Lemma 14. Let K and k be as in Definition 11. Assume that |k : kp| = pr−1 . Then
for every element w ∈ Hr

p (K) \Hr
p,ur(K) there exists a finite extension L of K such

that |L : K| is prime to p and such that the image of w in Hr
p (L) is standard.

Proof. If char (K) = p the proof goes just as in the proof of [8, §4 Lemma 5] where
the case of r = 2 was treated.

If char (K) = 0 we may assume that K contains a primitive p th root of 1. Then
the cohomological symbol hrp,K:Kr(K)/p→ Hr

p (K) is surjective and

coker(hrp,K :U1Kr(K)→ Hr
p (K)) ' νr−1(k)

by [11] and |k : kp| = pr−1.
Here we are making the following:

Definition 12. Let K be a complete discrete valuation field. Then UiKq(K) for
i, q > 1 denotes UiΓq(K) of Lemma 8 case (i) (take A = OK and B = K ).

Definition 13. Let k be a field of characteristic p > 0. As in Milne [13] denote by
νr(k) the kernel of the homomorphism

Ωr
k → Ωr

k/d(Ωr−1
k ), xdy1/y1 ∧ · · · ∧ dyr/yr 7→ (xp − x)dy1/y1 ∧ · · · ∧ dyr/yr.

By [11, Lemma 2] for every element α of νr−1(k) there is a finite extension k′ of
k such that
|k′ : k| is prime to p and the image of α in νr−1(k′) is the sum of elements of type

dx1/x1 ∧ · · · ∧ dxr/xr.

Hence we can follow the method of the proof of [8, §4 Lemma 5 or §2 Proposition 2].

Proof of Proposition 6. If m is invertible in k then Hr
m = Hr

m,ur. Hence we may
assume that char (k) = p > 0 and m = pi , i > 1. Since ker(p:Hr

pi/H
r
pi,ur →

Hr
pi/H

r
pi,ur) is isomorphic to Hr

p/H
r
p,ur by [11], we may assume m = p.

The proof of part (1) is rather similar to the proof of part (2). So we present here
only the proof of part (2), but the method is directly applicable to the proof of (1).

The proof is divided in several steps. In the following K always denotes an
n-dimensional local field with n > 1 and with residue field k such that
char (k) = p > 0, except in Lemma 21. X denotes an object of F∞ .
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Step 1. In this step w denotes a standard element of Hr
p (K) and w is its image

in (Hr
p/H

r
p,ur)(K). We shall prove here that U1Γq([X,K]) ⊂ N (w, [X,K]). We

fix a presentation of w as in (i) or (ii) of Definition 11. Let L be a cyclic extension
of K corresponding to χ. In case (i) (resp. (ii)) let h be a prime element of L
(resp. an element of OL such that the residue class h is not contained in k ). Let
G be the subgroup of K∗ generated by a1, . . . , ar−1 (resp. by a1, . . . , ar−2, π ), by
1 +MK and NL/K (h). Let l be the subfield of k generated by the residue classes of
a1, . . . , ar−1 (resp. a1, . . . , ar−2,NL/K (h) ).

Let i > 1. Let Gi,q be the subgroup of UiΓq([X,K]) generated by
{UiΓq−1([X,K]), G} and Ui+1Γq([X,K]). Under these notation we have the follow-
ing Lemma 15, 16 ,17.

Lemma 15.
(1) Gi,q ⊂ Nq(w, [X,K ]) + Ui+1Γq([X,K]).
(2) The homomorphism ρqi of Lemma 8 (3) induces the surjections

[X,Ωq−1
k ]→ [X,Ωq−1

k/l ]
ρq
i−→ U1Γq([X,K])/Gi,q.

(3) If ρqi is defined using a prime element π which belongs to G then the above
homomorphism ρqi annihilates the image of the exterior derivation
d: [X,Ωq−2

k/l ]→ [X,Ωq−1
k/l ].

Lemma 16. Let a be an element of K∗ such that vK (a) = i and
a = as(1)

1 . . . as(r−1)
r−1 NL/K (h)s(r)

(resp. a = as(1)
1 . . . as(r−2)

r−2 πs(r−1)NL/K (h)s(r) )
where s is a map {0, . . . , r} → Z such that p - s(j) for some j 6= r.

Then 1− xpa ∈ N1(w, [X,K ]) for each x ∈ [X,OK ].

Proof. It follows from the fact that w ∈ {Hr−1
p (K), a} and 1 − xpa is the norm of

1 − xa1/p ∈ [X,K(a1/p)]∗ (K(a1/p) denotes the ring object which represents the
functor X → K(a1/p)⊗K [X,K] ).

Lemma 17. Let σ be a generator of Gal(L/K) and let a = h−1σ(h)−1, b = NL/K (a),
t = vK(b). Let f = 1 in case (i) and let f = p in case (ii). Let N : [X,L]∗ → [X,K]∗

be the norm homomorphism. Then:

(1) If f |i and 1 6 i < t then for every x ∈Mi/f
L [X,OL]

N (1 + x) ≡ 1 +N (x) mod Mi+1
K [X,OK ].

(2) For every x ∈ [X,OK]

N (1 + xa) ≡ 1 + (xp − x)b mod Mt+1
K [X,OK ].

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



186 K. Kato

In case (ii) for every integer r prime to p and every x ∈ [X,OK ]

N (1 + xhra) ≡ 1 + xpN (h)rb mod Mt+1
K [X,OK ].

(3)

1 +Mt+1
K [X,OK ] ⊂ N (1 +Mt/f+1

L [X,OL]).

Proof. Follows from the computation of the norm homomorphism L∗ → K∗ in Serre
[15, Ch. V §3] and [8, §1].

From these lemmas we have
(1) If 0 < i < t then

UiΓq([X,K]) ⊂ Nq(w, [X,K]) + Ui+1Γq([X,K]).

(2) Ut+1Γq([X,K]) ⊂ Nq(w, [X,K ]).
(3) In case (ii) let ar−1 = NL/K (h). then in both cases (i) and (ii) the homomorphism

[X,Ωq+r−2
k ]→ U1Γq([X,K])/Nq(w, [X,K ]),

xda1/a1 ∧ · · · ∧ dar−1/ar−1 ∧ dy1/y1 ∧ · · · ∧ dyq−1/yq−1

7→ {1 + x̃b, ỹ1, . . . , ỹq−1},

(x ∈ [X,k], yi ∈ [X,k∗] ) annihilates (1− C)[X,Ωq+r−2
k ].

Lemma 7 and (1), (2), (3) imply that U1Γq([X,K]) is contained in the sum of
Nq(w, [X,K ]) and the image of lcf(X,Ut+1Kq(K)).

Lemma 18. For each u ∈ OK there exists an element ψ of H1
p,ur(K) such that

(1 + ub)NL/K (h)−1 is contained in the norm group NL′/KL
′∗ where L′ is the cyclic

extension of K corresponding to χ + ψ (χ corresponds to L/K ).

Proof. Follows from [9, §3.3 Lemma 15] (can be proved using the formula

NLur/Kur (1 + xa) ≡ 1 + (xp − x)b mod bMKur

for x ∈ OKur .

Lemma 18 shows that 1 + ub is contained in the subgroup generated by NL/KL
∗

and NL′/KL
′∗ , χL = 0, χL′ ∈ H1

p,ur(L
′).

Step 2. Next we prove that

U1Γq([X,K]) ⊂ N (w, [X,K])

for every w ∈ Hr
p (K) where w is the image of w in (Hr

p/H
r
p,ur)(K).
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Lemma 19. Let q, r > 1 and let w ∈ Hr
p (K). Then there exists i > 1 such that

piΓq([X,K ′]) and Ue(K′|K)iΓq([X,K ′]) are contained in Nq(wK′ , [X,K ′]) for every
K ′ ∈ E(K) where wK′ denotes the image of w in Hr

p (K ′) and e(K ′|K) denotes the
ramification index of K ′/K .

Lemma 20. Let i > 1 and x ∈ U1Γq([X,K]); (resp. x = {u1, . . . , uq} with
ui ∈ [X,O∗K ]; resp. x ∈ Γq([X,K]) ).

Then there exists a triple (J, 0, f ) and a family (Ej , xj)j∈J which satisfy all the
conditions of Definition 6 except (iv) and satisfy condition (iv)’ below.
(iv)’ If j 6∈ f (J ) then xj satisfy one of the following three properties:

(a) xj ∈ piΓq([X,Ej ]).
(b) xj ∈ Ue(Ej |K)iΓq([X,Ej ]); (resp. (b) xj ∈ U1Γq([X,Ej ]).
(c) Let Ej be the residue field of Ej . There are elements c1, . . . , cq−1 of O∗Ej

such that
xj ∈ {U1Γ1([X,Ej ]), c1, . . . , cq−1} and |Ejp(c1, . . . , cq−1) : Ejp| = pq−1;
(resp. (c) There are elements b1, . . . , bq of [X,O∗Ej ] and c1, . . . , cq of O∗Ej
such that xj = {b1, . . . , bq} and such that for each m the residue class
bm ∈ [X,Ej] belongs to [X,Ej]p[cm] and |Ejp(c1, . . . , cq) : Ejp| = pq );
(resp. (c) There are elements b1, . . . , bq−1 of [X,O∗Ej ] and c1, . . . , cq−1 of

O∗Ej such that xj ∈ {[X,Ej ]∗, b1, . . . , bq−1} and such that for each m the

residue class bm ∈ [X,Ej] belongs to [X,Ej]p[cm] and

|Ejp(c1, . . . , cq−1) : Ejp| = pq−1 ).

Using Lemma 19 and 20 it suffices for the purpose of this step to consider the
following elements
{u, c1, . . . , cq−1} ∈ U1Γq([X,K]) such that u ∈ U1Γ1([X,K]), c1, . . . , cq−1 ∈ O∗K
and |kp(c1, . . . , cq−1 : kp| = pq−1.

For each i = 1, . . . , q − 1 and each s > 0 take a ps th root ci,s of −ci satisfying
cpi,s+1 = ci,s. Note that Nk(ci,s+1)/k(ci,s)(−ci,s+1) = −ci,s. For each m > 0 write m
in the form (q − 1)s + r ( s > 0, 0 6 r < q − 1 ). Let Em be the finite extension of
K of degree pm generated by ci,s+1 ( 1 6 i 6 r ) and ci,s ( r + 1 6 i 6 q− 1 ) and let

xm = {u,−c1,s+1, . . . ,−cr,s+1,−cr+1,s, . . . ,−cq−1,s} ∈ Γq([X,Em]).

Then E∞ = lim−→Em is a henselian discrete valuation field with residue field E∞

satisfying |E∞ : E∞p| 6 pr−1. Hence by Lemma 14 and Lemma 21 below there
exists m < ∞ such that for some finite extension E′m of Em of degree prime to p
the image of w in Hr

p (E′m) is standard. Let J = {0, 1, . . . ,m,m′}, f (j) = j − 1 for
1 6 j 6 m, f (0) = 0, f (m′) = m, Em′ = E′m and

xm′ = {u1/|E′m:Em|, c1, . . . , cq−1}.
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Then from Step 1 we deduce {u, c1, . . . , cq−1} ∈ Nq(w, [X,K]).

Lemma 21. Let K be a henselian discrete valuation field, and let K̂ be its completion.
Then Hr

m(K) ' Hr
m(K̂) for every r and m.

Proof. If m is invertible in K this follows from the isomorphism Gal(K̂sep/K̂) '
Gal(Ksep/K) (cf. [1, Lemma 2.2.1]). Assume char (K) = p > 0 and m = pi

( i > 1 ). For a field k of characteristic p > 0 the group Hr
pi(k) is isomorphic to

(H1
pi (k)⊗ k∗ ⊗ · · · ⊗ k∗)/J where J is the subgroup of the tensor product generated

by elements of the form (cf. [9, §2.2 Corollary 4 to Proposition 2])

(i) χ⊗ a1 ⊗ · · · ⊗ ar−1 such that ai = aj for some i 6= j ,
(ii) χ⊗a1⊗ · · ·⊗ar−1 such that ai ∈ Nkχ/kk∗χ for some i where kχ is the extension

of k corresponding to χ.

By the above isomorphism of the Galois groups H1
pi (K) ' H1

pi(K̂). Furthermore if

L is a cyclic extension of K then 1 +Mn
K ⊂ NL/KL∗ and 1 +Mn

K̂
⊂ N

LK̂/K̂
(LK̂)∗

for sufficiently large n. Since K∗/(1 +Mn
K) ' K̂∗/(1 +Mn

K̂
), the lemma follows.

Step 3. In this step we prove that the subgroup of Γq([X,K]) generated by
U1Γq([X,K]) and elements of the form {u1, . . . , uq} (ui ∈ [X,O∗K ] ) is contained
in Nq(w, [X,K]). By Lemma 20 it suffices to consider elements {b1, . . . , bq} such
that bi ∈ [X,O∗K] and such that there are elements cj ∈ O∗K satisfying

|kp(c1, . . . , cq) : kp| = pq

and bi ∈ [X,k]p[ci] for each i. Define fields Em as in Step 2 replacing q − 1 by
q. Then E∞ = lim−→Em is a henselian discrete valuation field with residue field E∞

satisfying |E∞ : E∞p| 6 pr−2. Hence Hr
p (Ê∞) = Hr

p,ur(Ê∞). By Lemma 21 there
exists m <∞ such that wEm ∈ Hr

p,ur(Em).

Step 4. Let w be a standard element. Then there exists a prime element π of K
such that π ∈ N1(w, [X,K ]) = Γq([X,K]).

Step 5. Let w be any element of Hr
p (K). To show that Γq([X,K]) = Nq(w, [X,K])

it suffices using Lemma 20 to consider elements of Γq([X,K]) of the form
{x, b1, . . . , bq−1} (x ∈ [X,K]∗ , bi ∈ [X,O∗K ] ) such that there are elements

c1, . . . , cq−1 ∈ O∗K satisfying |kp(c1, . . . , cq−1) : kp| = pq−1 and bi ∈ [X,k]p[ci]
for each i. The fields Em are defined again as in Step 2, and we are reduced to the
case where w is standard.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



Existence theorem for higher local fields 189

5. Proof of Theorem 2

Let K be an n-dimensional local field. By [9, §3 Proposition 1] Hr(K) = 0 for
r > n + 1 and there exists a canonical isomorphism Hn+1(K) ' Q/Z.
For 0 6 r 6 n + 1 the canonical pairing

{ , }:Hr(K)×Kn+1−r(K)→ Hn+1(K)

(see subsection 4.2) induces a homomorphism

Φr
K :Hr(K)→ Hom(Kn+1−r(K),Q/Z).

if w ∈ Hr(K) with r > 1 (resp. r = 0 ) then Φr
K (w) annihilates the norm group

Nn+1−r(w) (resp. Φr
K(w) annihilates mKn+1(K) where m is the order of w ). Since

Nn+1−r(w) (resp. mKn+1(K) ) is open in Kn+1−r(K) by Theorem 3 (resp. Corollary
to Lemma 12), Φr

K(w) is a continuous character of Kn+1−r(K) of finite order.

5.1. Continuous characters of prime order.

In this subsection we shall prove that for every prime p the map Φr
K ( 0 6 r 6 n+1 )

induces a bijection between Hr
p (K) (cf. Definition 10) and the group of all continuous

characters of order p of Kn+1−r(K). We may assume that n > 1 and 1 6 r 6 n.
Let k be the residue field of K . In the case where char (k) 6= p the above assertion
follows by induction on n from the isomorphisms

Hr
p (k)⊕Hr−1

p (k) ' Hr
p (K), Kq(k)/p⊕Kq(k)/p ' Kq(K)/p.

Now we consider the case of char (k) = p.

Definition 14. Let K be a complete discrete valuation field with residue field k of
characteristic p > 0. For r > 1 and i > 0 we define the subgroup TiH

r
p (K) of

Hr
p (K) as follows.

(1) If char (K) = p then let δrK : Ωr−1
K = Cr−1

1 (K) → Hr
p (K) be the canonical

projection. Then TiH
r
p (K) is the subgroup of Hr

p (K) generated by elements of
the form

δrK(xdy1/y1 ∧ · · · ∧ dyr−1/yr−1), x ∈ K, y1, . . . , yr−1 ∈ K∗, vK (x) > −i.

(2) If char (K) = 0 then let ζ be a primitive p th root of 1, and let L = K(ζ).
Let j = (peK/(p − 1) − i)e(L|K) where eK = vK (p) and e(L|K) is the ram-
ification index of L/K . If j > 1 let UjHr

p (L) be the image of UjKr(L) (cf.
Definition 12) under the cohomological symbol Kr(L)/p → Hr

p (L). If j 6 0,
let UjHr

p (L) = Hr
p (L). Then TiH

r
p (K) is the inverse image of UjHr

p (L) under
the canonical injection Hr

p (K)→ Hr
p (L).
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Remark. TiH
1
p (K) coincides with the subgroup consisting of elements which cor-

responds to cyclic extensions of K of degree p with ramification number 6 i (the
ramification number is defined as t of Lemma 17).

Let K be as in Definition 14, and assume that |k : kp| <∞. Fix q, r > 1 such that
|k : kp| = pq+r−2. Let Ti = TiHr

p (K), for i > 0; let Ui be the image of UiKq(K) in
Kq(K)/p for i > 1, and let U0 = Kq(K)/p. Let e = vK (p) ( =∞ if char (K) = p ).
Fix a prime element π of K . Via the homomorphism

(x, y) 7→ ρqi (x) + {ρq−1
i (y), π}

of Lemma 8 whose kernel is known by [11], we identify Ui/Ui+1 with the following
groups:
(1) Kq(k)/p⊕Kq−1(k)/p if i = 0.

(2) Ωq−1
k if 0 < i < pe/(p− 1) and i is prime to p.

(3) Ωq−1
k /Ωq−1

k,d=0 ⊕Ωq−2
k /Ωq−2

k,d=0 if 0 < i < pe/(p− 1) and p|i.
(4) Ωq−1

k /Dq−1
a,k ⊕ Ωq−2

k /Dq−2
a,k if char (K) = 0, pe/(p − 1) is an integer and i =

pe/(p− 1).
(5) 0 if i > pe/(p− 1).

Here in (3) Ωq
k,d=0 ( q > 0 ) denotes the kernel of the exterior derivation

d: Ωq
k → Ωq+1

k . In (4) a denotes the residue class of pπ−e where e = vK (p) and Da,k

denotes the subgroup of Ωq
k generated by d(Ωq−1

k ) and elements of the form

(xp + ax)dy1/y1 ∧ · · · ∧ dyq/yq.

Note that Hr+1
p (K) ' Hq+r−1

p (k) by [11]. Let δ = δq+r−1
k : Ωq+r−2

k → Hq+r−1
p (k)

(Definition 14).

Lemma 22. In the canonical pairing

Hr
p (K)×Kq(K)/p→ Hq+r

p (K) ' Hq+r−1
p (k)

Ti annihilates Ui+1 for each i > 0. Furthermore,
(1) T0 = Hr

p,ur(k) ' Hr
p (k)⊕Hr−1

p (k), and the induced pairing

T0 × U0/U1 → Hq+r−1
p (k)

is identified with the direct sum of the canonical pairings

Hr
p (k)×Kq−1(k)/p→ Hq+r−1

p (k), Hr−1
p (k)×Kq(k)/p→ Hq+r−1

p (k).

(2) If 0 < i < pe/(p− 1) and i is prime to p then there exists an isomorphism

Ti/Ti−1 ' Ωr−1
k

such that the induced pairing Ti/Ti−1 ×Ui/Ui+1 → Hq+r−1
p (k) is identified with

Ωr−1
k ×Ωq−1

k → Hq+r−1
p (k), (w, v) 7→ δ(w ∧ v).
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(3) If 0 < i < pe/(p− 1) and p|i then there exists an isomorphism

Ti/Ti−1 ' Ωr−1
k /Ωr−1

k,d=0 ⊕Ωr−2
k /Ωr−2

k,d=0

such that the induced pairing is identified with

(w1 ⊕ w2, v1 ⊕ v2) 7→ δ(dw1 ∧ v2 + dw2 ∧ v1).

(4) If char (K) = 0 and pe/(p−1) is not an integer, then Hr
p (K) = Ti for the maximal

integer i smaller than pe/(p− 1). Assume that char (K) = 0 and pe/(p− 1) is
an integer. Let a be the residue element of pπ−e and let for s > 0

νs(a, F ) = ker(Ωs
k,d=0 → Ωs

k, w 7→ C(w) + aw)

( C denotes the Cartier operator). Then there exists an isomorphism

Tpe/(p−1)/Tpe/(p−1)−1 ' νr(a, k)⊕ νr−1(a, k)

such that the induced pairing is identified with

(w1 ⊕ w2, v1 ⊕ v2) 7→ δ(w1 ∧ v2 + w2 ∧ v1).

Proof. If char (K) = p the lemma follows from a computation in the differential
modules Ωs

K ( s = r−1, q+r−1 ). In the case where char (K) = 0 let ζ be a primitive
p th root of 1 and let L = K(ζ). Then the cohomological symbol Kr(L)/p → Hr

p (L)
is surjective and the structure of Hr

p (L) is explicitly given in [11]. Since

Hr
p (K) ' {x ∈ Hr

p (L) : σ(x) = x for all σ ∈ Gal(L/K)},

the structure of Hr
p (K) is deduced from that of Hr

p (L) and the description of the
pairing

Hr
p (K)×Kq(K)/p→ Hq+r

p (K)

follows from a computation of the pairing

Kr(L)/p×Kq(L)/p→ Kq+r(L)/p.

Lemma 23. Let K be an n-dimensional local field such that char (K) = p > 0. Then
the canonical map δnK : Ωn

K → Hn+1
p (K) ' Z/p (cf. Definition 14) comes from a

morphism Ωn
K → Z/p of A∞ .

Proof. Indeed it comes from the composite morphism of F∞

Ωn
K

θ2−→ k0
Tr k0/Fp−−−−−→ Fp

defined by Lemma 7.
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Now let K be an n-dimensional local field (n > 1 ) with residue field k such that
char (k) = p > 0. Let 1 6 r 6 n, q = n + 1− r, and let Ti and Ui ( i > 0 ) be as in
Lemma 22.

The injectivity of the map induced by Φr
K

Hr
p (K)→ Hom(Kn+1−r(K)/p,Z/p)

follows by induction on n from the injectivity of Ti/Ti−1 → Hom(Ui/Ui+1,Z/p),
i > 1. Note that this injectivity for all prime p implies the injectivity of Φr

K .
Now let ϕ:Kn+1−r(K) → Z/p be a continuous character of order p. We prove

that there is an element w of Hr
p (K) such that ϕ = Φr

K(w).
The continuity of ϕ implies that there exists i > 1 such that

ϕ({x1, . . . , xn+1−r}) = 0 for all x1, . . . , xn+1−r ∈ 1 +Mi
K .

Using Graham’s method [6, Lemma 6] we deduce that ϕ(Ui) = 0 for some i > 1. We
prove the following assertion (Ai ) ( i > 0 ) by downward induction on i.
(Ai ) The restriction of ϕ to Ui coincides with the restriction of Φr

K(w) for some
w ∈ Hr

p (K).
Indeed, by induction on i there exists w ∈ Hr

p (K) such that the continuous
character ϕ′ = ϕ− Φr

K(w) annihilates Ui+1.
In the case where i > 1 the continuity of ϕ′ implies that the map

Ωn−r
k ⊕Ωn−r−1

k
Lemma 8−−−−−→ Ui/Ui+1

ϕ′−→ Z/p

comes from a morphism of F∞ . By additive duality of Proposition 3 and Lemma 23
applied to k the above map is expressed in the form

(v1, v2) 7→ δnk (w1 ∧ v2 + w2 ∧ v1)

for some w1 ∈ Ωn
k , w2 ∈ Ωr−1

k . By the following argument the restriction of ϕ′ to
Ui/Ui+1 is induced by an element of Ti/Ti−1. For example, assume char (K) = 0
and i = pe/(p − 1) (the other cases are treated similarly and more easily). Since ϕ′

annihilates d(Ωn−r−1
k )⊕ d(Ωn−r−2

k ) and δnk annihilates d(Ωn−2
k ) we get

δnk (dw1 ∧ v2) = ±δnk (w2 ∧ dv2) = 0 for all v2 .

Therefore dw1 = 0. For every x ∈ F , y1, . . . , yn−r−1 ∈ F ∗ we have

δnk
(
(C(w1)+aw1)∧xdy1

y1
∧ · · ·∧dyn−r−1

yn−r−1

)
= δnk

(
w1∧(xp+ax)

dy1

y1
∧ · · ·∧dyn−r−1

yn−r−1

)
= 0

(where a is as in Lemma 22 (4)). Hence w1 ∈ νr(a, k) and similarly w2 ∈ νr−1(a, k).
In the case where i = 0 Lemma 22 (1) and induction on n imply that there is an

element w ∈ T0 such that ϕ′ = Φr
K (w).
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5.2. Continuous characters of higher orders.

In treatment of continuous characters of higher order the following proposition will
play a key role.

Proposition 7. Let K be an n-dimensional local field. Let p be a prime number
distinct from the characteristic of K . Assume that K contains a primitive p th root ζ
of 1. Let r > 0 and w ∈ Hr(K). Then the following two conditions are equivalent.
(1) w = pw′ for some w′ ∈ Hr(K).
(2) {w, ζ} = 0 in Hr+1(K).

Proof. We may assume that 0 6 r 6 n. Let δr:Hr(K) → Hr+1(K,Z/p) be the
connecting homomorphism induced by the exact sequence of Gal(Ksep/K)-modules

0→ Z/p→ lim−→ i µ
⊗(r−1)
pi

p−→ lim−→ i µ
⊗(r−1)
pi

→ 0.

Condition (1) is clearly equivalent to δr(w) = 0.
First we prove the proposition in the case where r = n. Since the kernel of

δn:Hn(K)→ Hn+1(K,Z/p) ' Z/p

is contained in the kernel of the homomorphism { , ζ}:Hn(K)→ Hn+1(K) it suffices
to prove that the latter homomorphism is not a zero map. Let i be the maximal natural
number such that K contains a primitive pi th root of 1. Since the image χ of a
primitive pi th root of 1 under the composite map

K∗/K∗p ' H1(K,µp) ' H1(K,Z/p)→ H1(K)

is not zero, the injectivity of Φ1
K shows that there is an element a of Kn(K) such

that {χ, a} 6= 0. Let w be the image of a under the composite map induced by the
cohomological symbol

Kn(K)/pi → Hn(K,µ⊗n
pi

) ' Hn(K,µ⊗(n−1)
pi

)→ Hn(K).

Then {χ, a} = ±{w, ζ}.
Next we consider the general case of 0 6 r 6 n. Let w be an element of Hr(K)

such that {w, ζ} = 0. Since the proposition holds for r = n we get {δr(w), a} =
δn({w, a}) = 0 for all a ∈ Kn−r(K). The injectivity of Φr+1

K implies δr(w) = 0.

Remark. We conjecture that condition (1) is equivalent to condition (2) for every field
K .

This conjecture is true if ⊕r>1H
r(K) is generated by H1(K) as

a ⊕q>0Kq(K)-module.

Completion of the proof of Theorem 2. Let ϕ be a non-zero continuous character
of Kn+1−r(K) of finite order, and let p be a prime divisor of the order of ϕ. By
induction on the order there exists an element w of Hr(K) such that pϕ = Φr

K(w).
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If char (K) = p then Hr(K) is p-divisible. If char (K) 6= p, let L = K(ζ) where
ζ is a primitive p th root of 1 and let wL be the image of w in Hr(L). Then
Φr
L(wL):Kn+1−r(L)→ Q/Z coincides with the composite

Kn+1−r(L)
NL/K−−−−→ Kn+1−r(K)

pϕ−→ Q/Z

and hence {wL, ζ, a} = 0 in Hn+1(L) for all a ∈ Kn−r(L). The injectivity of Φr+1
L

and Proposition 7 imply that wL ∈ pHr(L). Since |L : K| is prime to p, w belongs
to pHr(K).

Thus there is an element w′ of Hr(K) such that w = pw′ . Then ϕ− Φr
K(w′) is

a continuous character annihilated by p.
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