Volume 4 (2002)

Download this article
For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
All Volumes
 
About this Series
Ethics Statement
Purchase Printed Copies
Author Index
ISSN 1464-8997 (online)
ISSN 1464-8989 (print)
 
MSP Books and Monographs
Other MSP Publications

Generalisations of Rozansky–Witten invariants

Justin Roberts and Justin Sawon

Geometry & Topology Monographs 4 (2002) 263–279

DOI: 10.2140/gtm.2002.4.263

Bibliography
1 P S Aspinwall, A Lawrence, Derived categories and zero-brane stability, J. High Energy Phys. (2001) 27 MR1867069
2 M F Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181–207 MR0086359
3 A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) MR730926
4 H U Boden, C M Herald, The SU(3) Casson invariant for integral homology 3–spheres, J. Differential Geom. 50 (1998) 147–206 MR1678493
5 M Britze, M A Nieper, Hirzebruch–Riemann–Roch formulae on irreducible symplectic Kähler manifolds arXiv:math.AG/0101062
6 Caldararu, Derived categories of twisted sheaves on Calabi–Yau manifolds, PhD thesis, Cornell University (2000)
7 D S Freed, M Hopkins, C Teleman, in preparation
8 R Goto, Rozansky–Witten invariants of log symplectic manifolds, from: "Integrable systems, topology, and physics (Tokyo, 2000)", Contemp. Math. 309, Amer. Math. Soc. (2002) 69–84 MR1953353
9 D Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian II, Invent. Math. 121 (1995) 135–145 MR1345287
10 N Habegger, G Thompson, The universal perturbative quantum 3–manifold invariant, Rozansky–Witten invariants, and the generalized Casson invariant, preprint (1999)
11 N Hitchin, J Sawon, Curvature and characteristic numbers of hyper–Kähler manifolds, Duke Math. J. 106 (2001) 599–615 MR1813238
12 D Huybrechts, Finiteness results for compact hyperkähler manifolds, J. Reine Angew. Math. 558 (2003) 15–22 MR1979180
13 M Kapranov, Rozansky–Witten invariants via Atiyah classes, Compositio Math. 115 (1999) 71–113 MR1671737
14 M Kapranov, E Vasserot, Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000) 565–576 MR1752785
15 M Kontsevich, Rozansky–Witten invariants via formal geometry, Compositio Math. 115 (1999) 115–127 MR1671725
16 M Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003) 157–216 MR2062626
17 P B Kronheimer, The construction of ALE spaces as hyper–Kähler quotients, J. Differential Geom. 29 (1989) 665–683 MR992334
18 P B Kronheimer, H Nakajima, Yang–Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990) 263–307 MR1075769
19 T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of 3–manifolds, Topology 37 (1998) 539–574 MR1604883
20 C Lescop, Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996) MR1372947
21 N Reshetikhin, V G Turaev, Invariants of 3–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547–597 MR1091619
22 J D Roberts, S Willerton, On the Rozansky–Witten weight systems, in preparation
23 J D Roberts, J Sawon, S Willerton, On the Rozansky–Witten TQFT, in preparation
24 L Rozansky, E Witten, Hyper–Kähler geometry and invariants of three-manifolds, Selecta Math. (N.S.) 3 (1997) 401–458 MR1481135
25 S M Salamon, Quaternion–Kähler geometry, from: "Surveys in differential geometry: essays on Einstein manifolds", Surv. Differ. Geom., VI, Int. Press, Boston (1999) 83–121 MR1798608
26 J Sawon, The Rozansky–Witten invariants of hyper–Kähler manifolds, from: "Differential geometry and applications (Brno, 1998)", Masaryk Univ. (1999) 429–436 MR1708931
27 J Sawon, A new weight system on chord diagrams via hyperkähler geometry, from: "Quaternionic structures in mathematics and physics (Rome, 1999)", Univ. Studi Roma “La Sapienza” (1999) 349–363 MR1848675
28 G Segal, A Selby, The cohomology of the space of magnetic monopoles, Comm. Math. Phys. 177 (1996) 775–787 MR1385085
29 S Sethi, M Stern, E Zaslow, Monopole and dyon bound states in N=2 supersymmetric Yang–Mills theories, Nuclear Phys. B 457 (1995) 484–510 MR1367232
30 G Thompson, On the generalized Casson invariant, Adv. Theor. Math. Phys. 3 (1999) 249–280 MR1736793
31 D P Thurston, Wheeling: a diagrammatic analogue of the Duflo isomorphism, PhD thesis, University of California, Berkeley (2000) arXiv:math.QA/0006083
32 P Vogel, Algebraic structurs on modules of diagrams, preprint (1995)
33 E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351–399 MR990772