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Abstract This is a survey of our work on Quantum Hyperbolic Invariants
(QHI) of 3-manifolds. We explain how the theory of scissors congruence
classes is a powerful geometric framework for QHI and for a ‘Volume Con-
jecture’ to make sense.
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1 Introduction

This text is based on the talk that the second author gave at the workshop In-
variants of Knots and 3-Manifolds (RIMS, Kyoto 2001, September 17 – Septem-
ber 21), completed by some “private” talks he gave at the same occasion. It
reports on our joint works in progress. We refer to [2, 3] for more details; in
fact, in [3] we develop the ideas of sections 7–9 of [2], with some important
differences in the way they are concretized. Here we content ourselves with
providing precise definitions and statements. This is summarized as follows.

Let (W,L, ρ) be a triple formed by a smooth compact closed oriented 3-manifold
W , a non-empty link L in W and a flat principal B -bundle ρ on W . We denote
by B the Borel subgroup of upper triangular matrices of SL(2,C).

One associates to (W,L, ρ) a D-scissors congruence class cD(W,L, ρ) which
belongs to a (pre)-Bloch-like group P(D) built on suitably decorated tetrahedra.
The class cD(W,L, ρ) may be represented geometrically by any D-triangulation
of (W,L, ρ) and it depends on the topology and the geometry of the triple
(W,L, ρ). For any odd integer N > 1 and for any D-triangulation T , one
defines a reduction mod(N) TN of T . It is obtained via a “quantization”
procedure using the cyclic representation theory of a quantum Borel subalgebra
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14 Stéphane Baseilhac and Riccardo Benedetti

WN of Uq(sl(2,C)) specialized at the root of unit ωN = exp(2πi/N). One of the
main contributions of this work is to have pointed out the relationship between
this representation theory and B -flat bundles, which are encoded in T by so
called simplicial “full” 1-cocycles - see Section 2. Basically, this relationship
relies on the theory of quantum coadjoint action of [6], which should ultimately
lead to generalizations of the QHI, replacing B by other algebraic Lie groups.

One also defines a family of complex valued Quantum Hyperbolic Invariants
(QHI) KN (W,L, ρ), which have state sum expressions K(TN ) based on any
TN . The elementary building blocks of K(TN ) are the cyclic 6j -symbols of
WN . Roughly speaking KN (W,L, ρ) may be considered as a function of the
class cD(W,L, ρ), which we shall write KN (cD(W,L, ρ)) (strictly speaking this
is not completely correct - see the end of §5). It turns out that when ρ is the
trivial flat B -bundle one recovers the topological invariant conjectured in [7].

The asymptotic behaviour of KN (W,L, ρ) when N → ∞ should depend on
the D-scissors congruence class cD(W,L, ρ). In fact, to any triple (W,L, ρ)
one can associate also an I -scissors congruence class cI(W,L, ρ) that belongs
to P(I), which is an enriched version of the classical (pre)-Bloch group built
on hyperbolic ideal tetrahedra. The class cI(W,L, ρ) may be represented by
an I -triangulation TI of (W,L, ρ), which is obtained by means of an explicit
idealization of any D-triangulation of the triple. Moreover, the explicit state
sum expression K(TN ) of KN (W,L, ρ) tells us that

lim
N→∞

(2π/N2) log (|KN (W,L, ρ)|) = G(TI) , (1)

where | | denotes the modulus of a complex number, and G basically depends on
the geometry of the ideal tetrahedra of TI , and on the portion of the 1-skeleton
of the triangulation of W which triangulates the link L. As TI is arbitrary,
roughly speaking again, G may be considered as a function G(cI(W,L, ρ)) of
the I -scissors congruence class.

Following [11, 12], there exists a refined version P̂(I) of the classical (pre)-Bloch
group such that, by using hyperbolic ideal triangulations of a non-compact
complete and finite volume hyperbolic 3-manifold M one can define a scissors
congruence class β̂(M) ∈ P̂(I). Moreover, one has

R(β̂(M)) = i(V ol(M) + iCS(M)) mod
(
(π2/2) Z

)
, (2)

where CS is the Chern-Simons invariant and R : P̂(I) → C/
(
(π2/2) Z

)
is a

natural lift of the classical Rogers dilogarithm on P̂(I).
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QHI, 3-manifolds scissors congruence classes and the volume conjecture 15

Starting from any TI as above, one can also define a refined I -class ĉI(W,L, ρ)
and a dilogarithmic invariant

R(W,L, ρ) := R(̂cI(W,L, ρ)) mod
(
(π2/2) Z

)
.

There are strong structural relations between the classes cI(W,L, ρ), ĉI(W,L, ρ)
and β̂(M). These relations and the actual asymptotic expansion of the cyclic
6j -symbols support a formulation for triples (W,L, ρ) of a so-called Volume
Conjecture, which predicts, in particular, that

G(cI(W,L, ρ)) = Im R(̂cI(W,L, ρ)) .

In section 8 we discuss an extension of this conjecture, involving the whole KN

(not only |KN |) and R. We stress that the transition from T to TI is explicit
and geometric and does not involve any “optimistic” computation. On the
other hand the actual identification of G(cI(W,L, ρ)) with Im R(̂cI(W,L, ρ))
still sets serious analytic problems.

Acknowledgements We thank the referee for having forced us to correct an
early wrong formulation of the Complex Volume Conjecture 8.2.

2 D-tetrahedra

We fix a base tetrahedron ∆ embedded in R3 , with the natural cell-decomposi-
tion. We orient R3 by stipulating that the standard basis is positive, and ∆
is oriented in accordance with it. We consider ∆ up to orientation-preserving
cellular self-homeomorphisms which induce the identity on the set of vertices.

A D-decoration on ∆ is a triple ((b, ∗), z, c) where:

(1) b is a branching on ∆, that is a system of edge-orientations such that no
2-face inherits a coherent orientation on its boundary. It turns out that exactly
one vertex is a source and one vertex is a sink. Every simplex of the natural
triangulation of the boundary of ∆ inherits a “name” from the branching b:
if one denotes by V(∆) the set of vertices, these are named by the natural
ordering map

{0, 1, 2, 3} → V(∆) i→ vi

such that [vi, vj ] is an oriented edge of (∆, b) if and only if j > i. Any other
j -simplex is named by means of the names of its vertices. The 2-faces can
be equivalently named in terms of the opposite vertices. One can select the
ordered triple of oriented edges

(e0 = [v0, v1], e1 = [v1, v2], e2 = −[v2, v0] = [v0, v2])
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16 Stéphane Baseilhac and Riccardo Benedetti

which are the edges of the face opposite to the vertex v3 . For every edge e of
∆, one denotes by e′ the opposite edge. A branching induces an orientation on
∆ defined by the basis (e′0, e

′
1, e

′
2), considered as an ordered triple of vectors

at v3 . If this branching-orientation agrees with the fixed orientation of ∆ the
branching is said positive, and negative otherwise - see Figure 1. We will write
∗(∆, b), ∗ ∈ {+,−}, to encode the sign of the b-orientation of ∆. We stipulate
that ∗̄ = −∗ with the usual “sign rule”. In a similar way, every simplex in ∂∆
inherits an orientation from b.

3 0 3 1

0212

Figure 1: +(∆, b) and −(∆, b)

(2) z is a full B -valued 1-cocycle on (∆, b), where B is the Borel subgroup
of upper triangular matrices of SL(2,C). To specify z one uses the edge-
orientation given by the branching b. For each oriented edge e, z(e) is an upper
triangular matrix having (t(e), 1/t(e)) on the diagonal and upper diagonal entry
equal to x(e). So one can identify z(e) with (t(e), x(e)). “Full” means that
x(e) 6= 0 for every e.

(3) c is an integral charge on ∆. Let E(∆) denote the set of edges of ∆; then
c : E(∆)→ Z is such that

• for every e ∈ E(∆), c(e) = c(e′);

• If ei , i = 0, 1, 2, are the edges of any 2-face of ∆ and ci = c(ei), then

c0 + c1 + c2 = 1 .

It is useful (and pertinent - see §3) to look at c(e)π as a dihedral angle; in
this way the ciπ ’s formally behave like the dihedral angles of hyperbolic ideal
tetrahedra.

Let us call D the set of all D-tetrahedra ∗(∆, b, z, c). Denote by S4 the group
of permutations on 4 elements. Changing the branching (i.e. permuting the

Geometry & Topology Monographs, Volume 4 (2002)



QHI, 3-manifolds scissors congruence classes and the volume conjecture 17

order of the vertices) induces a natural action pD of S4 on D with

pD(s, ∗(∆, b, z, c)) = ε(s) ∗ (∆, s(b), s(z), s(c)) , (3)

where ε(s) is the signature of the permutation s, s(b) is the new branching
obtained by permutation of the vertex ordering, and for every e ∈ E(∆) we have
s(z)(e) = z(e) iff the edge e keeps the same orientation and s(z)(e) = z(e)−1

otherwise, and s(c)(e) = c(e).

3 The (pre)-Bloch-like group P(D)

Let Z[D] be the free Z-module generated by the D-tetrahedra ∗(∆, b, z, c);
recall that we set ∗̄(∆, b, z, c) = (−1) ∗ (∆, b, z, c).

In this section we shall describe a notion of 2↔ 3 D-transit between decorated
triangulations such that every instance of 2↔ 3 D-transit produces a natural
five term relation in Z[D]. By definition P(D) = Z[D]/T (D) is the (pre)-
Bloch-like D-group, where T (D) is the module generated by all these five term
relations and by the relations (3).

The support of any 2↔ 3 D-transit is the usual 2↔ 3 move on 3-dimensional
triangulations. Let us specify how the decorations transit. In Figure 2, for-
getting the charge for a while, one can see an instance of branching transit.
The branching transits are also carefully analyzed in [5], in terms of the dual
viewpoint of “branched spines”.

A charge transit is branching independent. Consider a 2 ↔ 3 move T0 ↔ T1

relating two triangulations of some 3-manifold, and suppose that the tetrahedra
involved in the move are endowed with integral charges. There are 9 edges
E1, . . . , E9 which are present in both T0 and T1 and a further edge E0 which
is present only in T1 . Also, for i = 1, . . . , 9 , Ei is an edge of exactly one
tedrahedron of Tk iff it is an edge of exactly two tetrahedra of Tk+1 (where
k ∈ Z/2Z), and E0 is an edge of exactly 3 tetrahedra of T1 . Denote by γk(Ei),
i = 1, . . . , 9 , the sum of the integral charges at Ei of the tetrahedra of Tk
which have Ei among their edges (by convention put γ0(E0) = 0). The integral
charges on T0 and T1 define a 2 ↔ 3 charge transit iff they coincide for the
tetrahedra not involved in the move, and the following relations are satisfied:

γ0(Ei) = γ1(Ei) , i = 1, . . . , 9 .

These linear relations imply γ1(E0) = 2, which together with the second con-
dition in §2 (3) for the integral charges on T1 read:

θ(1) + θ(2) + θ(3) = 2 ; θ(j) + α(j) + β(j) = 1 , j = 1, 2, 3 .

Geometry & Topology Monographs, Volume 4 (2002)
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α(2)+α(3)

α(1)+β(2)

β(1)+α(2)

α(1)+α(3)

β(2)+β(3)

β(3)
α(3)

θ(1) θ(2)

α(2)

α(1)

β(1)

β(1)+β(3)
θ(3)

β(2)

T_0 T_1

Figure 2: An instance of branching and charge transit

These two relations show that a charge transit is coherent with the above “di-
hedral angle” interpretation of the integral charges.

The last decoration component of a D-decoration is the cocycle z . Let T0 ,
T1 be as above and z0 ∈ Z1(T0;B). Then there is only one 1-cocycle z1 in
Z1(T1;B) such that z0(Ei) = z1(Ei) for i = 1, . . . , 9 . It defines the cocycle
transit, providing that both cocycles z0 and z1 are full. In Figure 3 one can
see an instance of cocycle transit where, for the sake of simplicity, we have
used cocycles in Z1(Tk;C) ∼= Z1(Tk;Par(B)), where Par(B) is the parabolic
subgroup of B of matrices with unitary diagonal.

Any instance of 2→ 3 D-transit induces a five term relation in Z[D]; note that
we have to take into account the orientations (i.e. the signs) of the 5 involved
tetrahedra in these relations.

4 The D-scissors congruence class

Let (W,L, ρ) be a triple formed by a smooth compact closed oriented 3-manifold
W , a non-empty link L in W and a flat principal B -bundle ρ on W . The triple
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Figure 3: An instance of cocycle transit

is regarded up to orientation-preserving diffeomorphisms of (W,L) which are
flat bundle isomorphisms.

A distinguished triangulation (T,H) of (W,L) is a (singular) triangulation T
of W such that L is realized by a Hamiltonian sub-complex H of T that
contains all the vertices. Such a triangulation can be interpreted as a certain
finite family {∆1, . . . ,∆k} of copies of our base tetrahedron endowed with a
set of 2-faces identification (pairing) rules. A D-decoration (b, z, c) on (T,H)
consists of a family of D-tetrahedra {∗i(∆i, bi, zi, ci)}, i = 1, . . . , k , which is
compatible with the face pairings; this means that

(1) the pairings respect the edge-orientations due to the branchings; thus they
give us a global branching b on T (see [5]);

(2) identified edges have the same cocycle value, so that the zi ’s define a global
B -valued full 1-cocycle z on T ;

(3) denote by E =
∐
i E(∆i) the set of all edges of all ∆i ’s; the system of

integral charges ci can be considered as a global integral charge c : E → Z.

Moreover, one imposes the following global constraints:

(4) a branching bi is positive if and only if the corresponding bi -orientation
on ∆i agrees with the one of the manifold W ;

(5) the global cocycle z on T represents the flat bundle ρ on W : ρ = [z];

Geometry & Topology Monographs, Volume 4 (2002)



20 Stéphane Baseilhac and Riccardo Benedetti

(6) denote by E(T ) the set of edges of T . There is a natural projection map
p : E → E(T ). Then one requires that for every s ∈ E(T ) \ E(H)∑

e∈p−1(s)

c(e) = 2 ,

and for every s ∈ E(H) ∑
e∈p−1(s)

c(e) = 0 .

(7) to every c which satisfies condition (6) one can associate an element [c] ∈
H1(W ;Z/2Z); one finally imposes that [c] = 0.

Note that, by property (6), any integral charge on (T,H) actually encodes H .
We say that that a triangulation T of W is fullable if it carries a full 1-cocycle
representing the trivial flat B -bundle. This is equivalent to the fact that every
edge of T has two distinct vertices. If T is fullable then for any flat B -bundle
ρ it carries a full 1-cocycle representing ρ. Finally T = (T,H, (b, z, c)) is called
a D-triangulation of (W,L, ρ) if T is fullable and z is full.

Theorem 4.1 For every triple (W,L, ρ) there exist D-triangulations.

To any D-triangulation T one can associate the formal sum cD(T ) ∈ Z[D] of
its decorated tetrahedra (all the coefficients being equal to 1).

Theorem 4.2 The equivalence class of cD(T ) in P(D) does not depend on
the choice of T . Thus it defines an element cD(W,L, ρ) ∈ P(D), which is called
the D-scissors congruence class (or D-class) of the triple (W,L, ρ).

The proof of this theorem is similar to the proof of the invariance of the QHI
state sums (see the next section). However, the proof requires more triangula-
tion moves (such as the so called bubble move) than the only 2 ↔ 3 move. A
remarkable fact is that these further moves do not introduce new independent
algebraic relations in Z[D].

5 Quantum hyperbolic state sum invariants

Let (W,L, ρ) be as in §4 and fix any D-triangulation T = (T,H, (b, z, c)) of
(W,L, ρ). Let N > 1 be an odd integer. Fix a determination of the N th-root
which holds for all the matrix entries t(e) and x(e) of z(e), for all the edges e
of T . The reduction mod(N) TN of T consists in changing the decoration of
each edge e of T as follows:

Geometry & Topology Monographs, Volume 4 (2002)
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• (a(e) = t(e)1/N , y(e) = x(e)1/N ) instead of z(e) = (t(e), x(e));

• cN (e) = c(e)/2 mod(N) instead of c(e) (it makes sense because N is
odd).

Let us interpret this new decoration. All the details and justifications of the
explicit formulas given below can be found in [1], see also the appendix of
[2]. Consider a quantum Borel subalgebra WN of Uq(sl(2,C)), specialized at
the root of unit ωN = exp(2πi/N). Each (a(e), y(e)) describes an irreducible
N -dimensional cyclic representation rN (e) of this algebra.

Call F(T ) the set of 2-faces of T . A N -state of T is a function α : F(T ) →
{0, 1, . . . , N−1} (in fact one often identifies {0, 1, . . . , N−1} and Z/NZ). The
state α can be considered as a family of functions αi : F(∆i)→ {0, 1, . . . , N −
1} which are compatible with the face pairings.

Consider on each branched tetrahedron (∆i, bi) of T the ordered triple of ori-
ented edges (e0 = [v0, v1], e1 = [v1, v2], e2 = −[v2, v0]) which are the opposite
edges to the vertex v3 . The cocycle property of z and the fullness assumption
(this is crucial at this point, due to the algebraic structure of the cyclic rep-
resentations of WN ) imply that rN (e0) ⊗ rN (e1) coincides up to isomorphism
with the direct sum of N copies of rN (e2). This set of data allows one to
associate to every ∗(∆i, bi, rN,i, αi) a 6j-symbol R(∗(∆i, bi, rN,i, αi)) ∈ C, that
is a matrix element of a suitable “intertwiner” operator. The reduced charge
cN is used to slightly modify this operator in order to get its (partial) invari-
ance up to branching changes. In this way one gets the (partially) symmetrized
c-6j-symbols T (∗(∆i, bi, rN,i, ci, αi)) ∈ C. We are now ready to define the state
sums H(TN ), which are weighted traces. Denote by V the number of vertices
of T . Set

Ψ(TN) =
∑
α

∏
i

T (∗(∆i, bi, rN,i, ci, αi))

H(TN ) = Ψ(TN ) N−V
∏

e∈E(T )\E(H)

x(e)(N−1)/N . (4)

Theorem 5.1 Up to multiplication with N th-roots of unity, the scalar H(TN )
does not depend on the choice of T . Hence K(TN ) := H(TN )N defines an
invariant KN (W,L, ρ) of the triple (W,L, ρ).

Proposition 5.2 Let ρ = [z] = [(t, x)].

• For every λ 6= 0 set λρ = [(t, λx)]. Then KN (W,L, ρ) = KN (W,L, λρ) .
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• Denote by z∗ the complex conjugate cocycle of z and by ρ∗ = [z∗] the
corresponding flat B -bundle. Let −W be W endowed with the opposite
orientation. Then KN (−W,L, ρ∗) = KN (W,L, ρ)∗ .

Kashaev proposed in [7] a conjectural purely topological invariant KN (W,L),
which should have been expressed by a state sum as in (4). In fact, one eventu-
ally recognizes such a KN (W,L) as the special case of our KN (W,L, ρ) when ρ
is the trivial flat B -bundle on W (although in [7] there are neither flat bundles,
nor geometric interpretations nor existence results of all the datas).

The algebraic properties of the c-6j -symbols (the “pentagon relation” and so
on) ensure the invariance of K(TN ) up to D-transits supported by certain
“bare” triangulation moves (2↔ 3 moves as defined in §3, “bubble moves”,. . . ).
Rephrased in our setup, this was the main achievement of [7]. However, one can-
not deduce the complete invariance of K(TN ) solely from this D-transit invari-
ance because it is difficult to connect by D-transits two given D-triangulations
of a triple (W,L, ρ). For example, “negative” 3 → 2 moves are in general not
“brancheable”, and full cocycles do not transit, in general, to full cocycles. Also
the charge invariance relies deeply on the fact that the set of integral charges
of any fixed distinguished triangulation is an integral lattice.

The nature of the ambiguity of H(TN ), up to N th-roots of unity, is not yet
clear to the authors. The problem is due to the symmetrization procedure,
which turns 6j -symbols into c-6j -symbols. Indeed, the 6j -symbols have a very
subtle behaviour w.r.t. branchings: only the pentagon relations corresponding
to a non-trivial proper subset of branched 2↔ 3 moves are valid.

As the value of K(TN ) does not depend on the choice of T one would like
to consider KN (W,L, ρ) as a function of the D-class cD(W,L, ρ). This is not
completely correct because the face pairings between the D-tetrahedra of T are
not encoded in the representatives cD(T ) of cD(W,L, ρ). Moreover, the states
as well as the non-Ψ(TN) factors in the right-hand side of (4) depend on the
face pairings. This is a technical point which can be overcome as follows, by
looking at K(TN) as a function of a formal sum of “augmented” D-tetrahedra.

A D̃ -tetrahedron is of the form ∗(∆, b, z, c, v0, v1, v2) where v0, v1, v2 are N-
valued functions defined on V(∆), E(∆), F(∆) respectively. Let Γ ∈ Z[D̃] be
a formal sum of terms with coefficients all equal to 1. For every σ : N→ Z/NZ
set αi(σ) = σ ◦ v2

i . Say that σ and σ′ are “identified modulo Γ” if αi = α′i .
Put

Φ =
∏

w∈V(∆i)

N−1/v0
i (w) , Ω =

∏
e∈E(∆i)

x(e)(N−1)/v1
i (e)N
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T̃ (∗(∆i, bi, rN,i, ci, αi(σ), v0
i , v

1
i )) = T (∗(∆i, bi, rN,i, ci, αi(σ)) Φ Ω .

Finally set

H(Γ) =
∑

σ∈(Z/NZ)N/Γ

∏
i

T̃ (∗(∆i, bi, rN,i, ci, αi(σ), v0
i , v

1
i )) .

Let T be a D-triangulation. For every vertex w of ∆i set v0
i (w) = |p−1

0 p0(w)| ∈
N, where p0 is the identification map in T of the vertices of the ∆i ’s. For every
edge e of ∆i set v1

i (e) = |p−1p(e)| ∈ N, where p : E → E(T ) is as in §4 (6).
Finally order F(T ) via an arbitrary N-valued map which is compatible (for
the face pairings) with v2 . In this way we get a D̃-triangulation T̃ with the
associated cD̃(T̃ ) ∈ Z[D̃]. It is clear that

KN (W,L, ρ) = H(cD̃(T̃ ))N .

Following the lines of the above construction, it is not hard to define the notions
of D̃ -transit, (pre)-Bloch-like group P(D̃) and D̃ -class cD̃(W,L, ρ) ∈ P(D̃), so
that one can eventually define a map KN : P(D̃)→ C such that

KN (W,L, ρ) = KN (cD̃(W,L, ρ)) .

Moreover, there is a “forgetting map” P(D̃) → P(D) sending cD̃(W,L, ρ) to
cD(W,L, ρ). With this technical precision in mind, we shall say anyway that,
roughly speaking, KN (W,L, ρ) depends on cD(W,L, ρ).

6 The (pre)-Bloch like group P(I)

Let us go back to our base tetrahedron ∆. An I -decoration on ∆ is a triple
((b, ∗), w, c) where (b, ∗) and c are as in the D-decorations and w : E(∆) →
C \ {0, 1} is such that :

• for every e ∈ E(∆), if e′ is opposite to e, then w(e) = w(e′);

• if e0, e1, e2 are the edges of the face opposite to v3 and wi = w(ei), then
w0w1w2 = −1 and w0w1 − w1 = −1.

Clearly, w′ = w1 = (1 − w0)−1 , w′′ = w2 = (1 − w1)−1 and w = w0 =
(1 − w2)−1 , so that (w,w′, w′′) is the modular triple of an oriented hyperbolic
ideal tetrahedron ∆̄ in oriented H3 . If Im(w) > 0 then ∆̄ is oriented positively,
and negatively otherwise. However, we do not require that the b-orientation of
∗(∆, b, w, c) coincides with the sign of Im(w).

Geometry & Topology Monographs, Volume 4 (2002)



24 Stéphane Baseilhac and Riccardo Benedetti

Figure 4 shows an instance of 2 ↔ 3 I -transit. Only the first members of the
modular triples are indicated. Note that we are assuming that both on T0 and
T1 we actually have modular triples; this means that the I -transit is possible
only if x 6= y . This fact is strictly related to the fullness requirement for D-
transits (see §7). Each instance of I -transit operates on the branching and on
the integral charges like a D-transit. Recall that a modular triple determines
and is determined by the dihedral angles at the edges of the corresponding
ideal tetrahedra. Then, in terms of dihedral angles, modular triple transits are
formally defined like integral charge transits. In another (equivalent) way, in
a 2↔ 3 I -transit that splits ∗(∆, b, w) into ∗1(∆1, b1, w1) and ∗2(∆2, b2, w2),
we have w(e)∗ = w1(e)∗1w2(e)∗2 (recall that each of ∗, ∗1 and ∗2 equals ±1).

y

x

(1−x)/(1−y)

y/x

y(x−1)/x(y−1)

Figure 4: An instance of ideal transit

Denote by I the set of all I -tetrahedra ∗(∆, b, w, c). Any instance of 2 ↔ 3
I -transit produces a five term relation in the free Z-module Z[I]. Also, there is
a natural action pI of S4 on I which acts as pD in (3) on b, ∗ and c; moreover
s(w)(e) = w(e)ε(s) . One defines the (pre)-Bloch-like group P(I) as the quotient
of Z[I] by the module generated by all the 2↔ 3 I -transit five terms relations
and by the relations induced by pI .
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7 Idealization of D-tetrahedra

Let ∗(∆, b, z, c) ∈ D , and (e0 = [v0, v1], e1 = [v1, v2], e2 = −[v2, v0]) be as in
§2. The cocycle property of z = (t, x) implies that

x(e0)x(e′0) + x(e1)x(e′1) + (−x(e2)x(e′2)) := p0 + p1 + p2 = 0 . (5)

Define (indices mod(Z3)):

F (∗(∆, b, z, c)) = ∗(∆, b, w(z), c), wi = −pi+1/pi+2 .

It is readily seen that F (∗(∆, b, z, c)) belongs to I ; we call F the idealization
map. In fact, consider an oriented hyperbolic ideal tetrahedron ∆̄ with vertices
vj ∈ S2

∞ = ∂H̄3 and modular triple (w0, w1, w2). One can assume that every
vj ∈ C ⊂ C ∪ {∞} = ∂H3 . If one looks at the vj ’s as defining a 0-cochain u
on ∆̄, then the usual cross-ratio expressions

w0 = [v0 : v1 : v2 : v3] =
(v2 − v1)(v3 − v0)
(v2 − v0)(v3 − v1)

,

etc., are compatible with the definition of F by using the 1-cocycle given by
δ(u). Note also that the idealization only depends on the “projective” class of
the full cocycle, similarly to the behaviour of QHI in Proposition 5.2. Clearly,
the map F is onto; it extends linearly to F : Z[D] → Z[I]. Remarkably one
has

Proposition 7.1 The map F induces a well-defined surjective homomorphism
F̂ : P(D)→ P(I).

8 Hyperbolic-like structures – A volume conjecture

A fundamental problem in QHI theory is to understand the asymptotic be-
haviour of the state sum invariants KN (W,L, ρ) when N → ∞. Accordingly
with the considerations of §5, this should depend on the D-class of (W,L, ρ).
Note that one has

lim
N→∞

(2π/N2) log(|KN (W,L, ρ)|) = lim
N→∞

(2π/N) log(|Ψ(TN )|) (6)

This limit is finite and does not vanish iff |KN (W,L, ρ)| grows exponentially
w.r.t. N2 . This is corroborated by the computation of the asymptotic be-
haviour of the c-6j -symbols; their exponential growth rate involves classical
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dilogarithm functions. Moreover, the explicit expression of the c-6j -symbols
shows that

T (∗(∆i, bi, rN,i, ci, αi)) = T (F (∗(∆i, bi, rN,i, ci, αi))) . (7)

If T is any D-triangulation, then F (T ) is an I -triangulation. Using it, one can
define a conjugacy class of holonomy representations ρ̂T : π1(W )→ PSL(2,C)
equipped with piecewise straight equivariant maps from the universal covering
of W to H̄3 . Moreover, set cI(F (T )) = F̂ (cD(T )) ∈ P(I). One has

Theorem 8.1 Both ρ̂T and cI(F (T )) do not depend on T . Hence they define
respectively an hyperbolic-like structure ρ̂ on W which only depends on (W,ρ),
and an I -scissors congruence class (shortly I -class) cI(W,L, ρ).

The proof of Theorem 8.1 essentially follows from Theorem 4.2 and 7.1. It also
uses the following remarkable geometric feature. Let {∗(∆i, bi, wi, ci)} be the
family of I -tetrahedra of F (T ). The union of wi ’s can be considered as a map
w defined on the set E of edges of all ∆i ’s. Let p : E → E(T ) be as in §4 (6).
Then, for every s ∈ E(T ), one has

∏
e∈p−1(s) w(e)∗ = 1.

If T is a D-triangulation, using (7) one can rewrite (6) as

lim
N→∞

(2π/N2) log(|KN (W,L, ρ)|) = G(F (T )) .

Here the right-hand side is a function of the hyperbolic ideal tetrahedra of F (T )
and of H , which is encoded by the charge in T . As G(F (T )) does not depend
on the choice of T , roughly speaking (see the discussion at the end of §5), G
is a function of the I -class of (W,L, ρ).

Starting from any idealized triangulation F (T ) of (W,L, ρ) one can also define
a refined I -class ĉI(W,L, ρ). This class can be represented by a certain deco-
rated triangulation F ′(T ) which differs from F (T ) by adding a “combinatorial
flattening” (see [12]) in the decoration. The trace of the latter on each tetrahe-
dron of T behaves as a signed charge, and it satisfies global constraints similar
to conditions (6) and (7) in Section 4, but depending also on the moduli.

Following the comments in the Introduction, one then defines a dilogarithmic
invariant as

R(W,L, ρ) := R(̂cI(W,L, ρ)) mod
(
(π2/2) Z

)
.

A first formulation of the Volume Conjecture is:

Conjecture 8.1 (Real Volume Conjecture) For any (W,L, ρ) we have

lim
N→∞

(2π/N2) log (|KN (W,L, ρ)|) = Im R(̂cI(W,L, ρ)) .
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Conjecture 8.1 is in formal agreement with the current Volume Conjecture
for hyperbolic knots in S3 based on the coloured Jones polynomial JN ([8,
9],[10, 13]), because it is commonly accepted that (JN )N is an instance of KN .
However, in our opinion, this has not yet been proved anywhere and the question
of the relationship between KN and JN needs further investigation (see [4]).

A rough idea to extend the above conjecture for KN (W,L, ρ) (not only for
its modulus) is to formally pass to an exponential version of Conjecture 8.1,
and replace Im R(̂cI(W,L, ρ)) with R(̂cI(W,L, ρ)). But R(̂cI(W,L, ρ)) is only
determined mod((π2/2) Z). One avoids this ambiguity as follows:

Conjecture 8.2 (Complex Volume Conjecture) There exist invariants
C(W,L, ρ) ∈ C mod((π2/2) Z) and D = D(W,L, ρ) ∈ C∗ such that for any
branches R and C of R(̂cI(W,L, ρ)) and C(W,L, ρ) respectively, we have

KN (W,L, ρ)8 =
[
exp

(
C +NR

2iπ

)]8N (
D +O(

1
N

)
)
.

Conjecture 8.2 says at first that KN (W,L, ρ)8 has an exponential growth rate.
Assuming it, the fact that exp(4C/iπ), exp(4R/iπ) and D are well-determined
invariants of (W,L, ρ) follows from the invariance of KN (W,L, ρ) and the
uniqueness of the coefficients of asymptotic expansions (of Poincaré type).
Moreover Conjecture 8.2 predicts that R is a branch of R(̂cI(W,L, ρ)).

At present, the nature of C(W,L, ρ) and D(W,L, ρ) is somewhat mysteri-
ous. There are no reasons to expect that, for instance, C(W,L, ρ) = 0 or
D(W,L, ρ) = 1; in fact, their value could be related to the hard problem of
finding an appropriate contour of integration in the stationary phase approach
to the evaluation of the asymptotic behaviour of KN (W,L, ρ).

A natural complement to the conjecture is the problem of understanding the
geometric meaning of the dilogarithmic invariant of a triple (W,L, ρ).
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28 Stéphane Baseilhac and Riccardo Benedetti

[4] S Baseilhac, R Benedetti, QHI Theory, III: R-matrices state sums for links
in S3 and the coloured Jones polynomials, in preparation

[5] R Benedetti, C Petronio, Branched Standard Spines of 3-Manifolds, Lect.
Notes in Math. No 1653, Springer (1997)

[6] C De Concini, C Procesi, Quantum Groups, in Lect. Notes in Math. No
1565, Springer (1993)

[7] R M Kashaev, Quantum dilogarithm as a 6j-symbol, Mod. Phys. Lett. A, 9
(1994) 3757–3768

[8] R M Kashaev, A link invariant from quantum dilogarithm, Mod. Phys. Lett.
A, 10 (1995) 1409–1418

[9] R M Kashaev, The hyperbolic volume of knots from the quantum dilogarithm,
Lett. Math. Phys. 39 (1997) 269–275

[10] H Murakami, J. Murakami, The colored Jones polynomials and the simplicial
volume of a knot, Acta Math. 186 (2001) 85–104

[11] W D Neumann, Hilbert’s 3rd problem and invariants of 3-manifolds, from
“The Epstein birthday schrift”, Geom. Topol. Monogr. 1 (1998) 383–411

[12] W D Neumann, Extended Bloch group and the Chern–Simons class, incom-
plete working version, http://www.math.columbia.edu/~neumann

[13] Y Yokota, On the volume conjecture for hyperbolic knots, e-print,
arXiv:math.QA/0009165

Dipartimento di Matematica, Università di Pisa
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