Volume 4 (2002)

Download this article
For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
All Volumes
 
About this Series
Ethics Statement
Purchase Printed Copies
Author Index
ISSN 1464-8997 (online)
ISSN 1464-8989 (print)
 
MSP Books and Monographs
Other MSP Publications

QHI, 3–manifolds scissors congruence classes and the volume conjecture

Stephane Baseilhac and Riccardo Benedetti

Geometry & Topology Monographs 4 (2002) 13–28

DOI: 10.2140/gtm.2002.4.13

Abstract

This is a survey of our work on Quantum Hyperbolic Invariants (QHI) of 3–manifolds. We explain how the theory of scissors congruence classes is a powerful geometric framework for QHI and for a ‘Volume Conjecture’ to make sense.

Keywords

volume conjecture, hyperbolic 3–manifolds, scissors congruence classes, state sum invariants, 6j–symbols, quantum dilogarithm

Mathematical Subject Classification

Primary: 57M27, 57Q15

Secondary: 20G42, 57R20

References
Publication

Received: 27 November 2001
Revised: 17 April 2002
Accepted: 22 July 2002
Published: 19 September 2002

Authors
Stephane Baseilhac
Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti, 2
I-56127 Pisa
Italy
Riccardo Benedetti
Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti, 2
I-56127 Pisa
Italy