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Path concordances as detectors of codimension-one
manifold factors

ROBERT J DAVERMAN

DENISE HALVERSON

We present a new property, the Disjoint Path Concordances Property, of an ENR
homology manifold X which precisely characterizes when X �R has the Disjoint
Disks Property. As a consequence, X �R is a manifold if and only if X is resolvable
and it possesses this Disjoint Path Concordances Property.

57N15, 57P05; 54B15, 57N70, 57N75

1 Introduction

Back in the 1950s R H Bing showed [1; 2] that his nonmanifold “dogbone space”
is a Cartesian factor of Euclidean 4–space. Since then, topologists have sought to
understand which spaces are factors of manifolds. It is now known (due to the work
of Edwards [8] and Quinn [11]) that the manifold factors coincide with those ENR
homology manifolds which admit a cell-like resolution by a manifold; equivalently,
they are the ENR homology manifolds of trivial Quinn index. In particular, if X has
trivial Quinn index then X �Rk is a manifold for k � 2. Whether X �R itself is
necessarily a manifold stands as a fundamental unsettled question.

Several properties of a manifold factor X of dimension n assure that its product with
R is a manifold. Among them are:

(1) The singular (or nonmanifold) subset S.X / of X – namely, the complement of
the maximal n–manifold contained in X – has dimension at most n�2, where
n� 4 (see the article by Cannon [3, Theorem 10.1]).

(2) There exists a cell-like map f W M ! X defined on an n–manifold such that
dimfx 2X W f �1.x/¤ pointg � n�3 (see the article by Daverman [5, Theorem
3.3]).

(3) There exists a topologically embedded .n�1/–complex or an ENR homology
.n�1/–manifold K with S.X / � K � X (see the book by Daverman [6,
Corollaries 26.12A–12B]).
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(4) X arises from a nested defining sequence, as defined by Cannon and Daverman
[4] [6, Chapter 34], for the decomposition into point inverses induced by a
cell-like map f W M !X .

(5) X has the Disjoint Arc-Disk Property of [6, page 193].

Condition (5) is implied by either (1) or (2) but not by (3) or (4).

More pertinent to issues addressed in this manuscript, Halverson [9, Theorem 3.4]
proved that if an ENR homology n–manifold X , n� 4, has a certain Disjoint Homo-
topies Property, defined in the next section and abbreviated as DHP, then X �R has
the more familiar Disjoint Disks Property, henceforth abbreviated as DDP. Because
the DDP characterizes resolvable ENR homology manifolds of dimension n � 5 as
manifolds [8] [6, Theorem 24.3], it follows that X �R is a genuine manifold if X is
resolvable and has this DHP. Still unknown are both whether all such ENR homology
manifolds have DHP and whether X having said DHP is a necessary condition for
X �R to be a manifold.

Since an ENR homology n–manifold X; n � 4; has DHP if it satisfies any of the
properties mentioned in the second paragraph except (3), the sort of homology manifolds
that might fail to have it are the ghastly examples of Daverman and Walsh [7]. Halverson
[10] has constructed some related ghastly examples that do have DHP.

In hopes of better understanding the special codimension one manifold factors, this
paper builds on Halverson’s earlier work to present a necessary and sufficient condition,
the Disjoint Path Concordances Property defined at the outset of Section 2, for X �R

to be a manifold (again provided dim X � 4).

2 Preliminaries

Throughout what follows both D and I stand for the unit interval, [0,1]. A metric space
X is said to have the Disjoint Homotopies Property if any pair of path homotopies
f1; f2W D�I!X can be approximated, arbitrarily closely, by homotopies g1;g2W D�

I !X such that

g1.D � t/\g2.D � t/D∅; for all t 2 I:

Definition A path concordance in a space X is a map F W D � I !X � I such that
F.D � e/�X � e; e 2 f0; 1g:

Let projX W X � I !X denote projection.
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Definition A metric space .X; �/ satisfies the Disjoint Path Concordances Property
(DCP) if, for any two path homotopies f1; f2W D � I !X and any � > 0, there exist
path concordances F1;F2W D � I !X � I such that

F1.D � I/\F2.D � I/D∅

and �.fi ; projX Fi/ < � .

A homology n–manifold X is a locally compact metric space such that

H�.X;X �fxgIZ/ŠH�.R
n;Rn

�forigingIZ/

for all x 2X . An ENR homology n–manifold X is an homology n–manifold which
is homeomorphic to a retract of an open subset of some Euclidean space (ENR is the
abbreviation for “Euclidean neighborhood retract”); equivalently, X is a homology
n–manifold which is both finite-dimensional and locally contractible.

A homology n–manifold X is resolvable provided there exists a surjective, cell-like
mapping f W M ! X defined on an n–manifold M . Quinn [11] has shown that
(connected) ENR homology n–manifolds X , for n� 4, are resolvable if and only if a
certain index i.X / 2 1C 8Z equals 1.

A metric space X has the Disjoint Arcs Property (DAP) if every pair f1; f2W D!X

of maps can be approximated, arbitrarily closely, by maps g1;g2W D!X for which
g1.D/\g2.D/D∅. All ENR homology n–manifolds, for n� 3, have the DAP.

The following Homotopy Extension Theorem is fairly standard. We state it here because
it will be applied several times in our arguments.

Theorem 2.1 (Controlled Homotopy Extension Theorem (CHET)) Suppose X is a
metric ANR, C is a compact subset of X , j W C !X is the inclusion map, and � > 0.
Then there exists ı > 0 such that for each map f W Y ! C defined on a normal space
Y , each closed subset Z of Y , and each map gZ W Z! X which is ı–close to jf jZ ,
gZ extends to a map gW Y !X which is �–homotopic to jf . In particular, for any
open set U for which Z � U � Y , there is a homotopy H W Y � I !X such that

(1) H0 D jf and H1 D g

(2) gjZ D gZ

(3) Ht jY�U D jf jY�U for all t 2 I

(4) diam.H.y � I// < � for all y 2 Y .
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3 Main results

In this section we will demonstrate that DCP characterizes codimension-one manifold
factors among ENR homology n–manifolds, for n� 4, of trivial Quinn index. Essen-
tially the DCP condition requires that any pair of level preserving path homotopies into
X � I can be “approximated” by disjoint path concordances, where the approximation
is measured in the X factor. The following crucial proposition demonstrates that
the DCP condition implies that any pair of level preserving path homotopies can be
approximated, as measured in X � I , by disjoint path concordances.

Proposition 3.1 Suppose that .X; �/ is a metric ANR with DAP. Then X has DCP if
and only if given any pair of level preserving maps f1; f2W D � I !X � I and � > 0

there are maps g1;g2W D � I !X � I such that

(1) fi and gi are �–close in X � I ,

(2) gi jD�@I is level preserving, and

(3) g1.D � I/\g2.D � I/D∅.

Moreover, if f1.D�@I/\f2.D�@I/D∅, then we also may require that gi jD�@I D

fi jD�@I .

Proof Assume X has DCP. Use e� to denote the obvious sum metric on X � I . Let
f1; f2W D � I !X � I be level-preserving maps, and let � > 0. Choose

0D t0 < t1 < � � �< tm D 1

such that tk � tk�1 < �=2 for k D 1; : : : ;m. Define

Jk D Œtk ; tk�1�; fi Œk�D fi jD�Jk
:

Since X has DAP then applying Theorem 2.1 (near projX .f1.D � I/[ f2.D � I///

we may assume that f1.D � tk/\f2.D � tk/D∅. Choose � > 0 so that

e�.f1.D � tk/; f2.D � tk// > �

for kD 1; : : : ; n. Let ı > 0 satisfy CHET for X �I , for a small compact neighborhood
C of f1.D�I/[f2.D�I/ and minf�=2; �=2g. Then by DCP, applied to the intervals
Jk , there are maps gi Œk�W D �Jk !X �Jk satisfying

(1) gi Œk�.D �Jk/� C ,

(2) �.projX fi Œk�; projX gi Œk�/ < ı ,

(3) gi Œk�jD�@Jk
is level preserving, and
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(4) g1Œk�.D �Jk/\g2Œk�.D �Jk/D∅.

By CHET and the choice of ı there are maps Gi Œk�W D �Jk !X �Jk satisfying

(1) �.projX fi Œk�; projX Gi Œk�/ < �=2,

(2) Gi Œk�jD�@Jk
D fi Œk�jD�@Jk

, and

(3) G1Œk�.D �Jk/\G2Œk�.D �Jk/D∅.

Set GiD
S

k Gi Œk�. Confirming that G1 and G2 are the desired maps is straightforward.

The reverse direction is trivial. It merely requires treating any pair of path homotopies
D � I !X as level-preserving maps D � I !X � I:

Definition A metric space (X; �) satisfies the Disjoint 1–Complex Concordances
Property (DCP*) if, for any two homotopies fi W Ki � I !X , for i D 1; 2, where Ki

is a finite 1–complex, and any � > 0 there exist concordances Fi W Ki � I ! X � I

such that
F1.K1 � I/\F2.K2 � I/D∅;

Fi.Ki � e/�X � e for e 2 @I , and �.fi ; projX Fi/ < � .

Proposition 3.2 Suppose X is a locally compact, metrizeable ANR with DAP. Then
X has DCP if and only if X has DCP*.

Proof This argument is similar to the one showing the equivalence of the DDP with
approximability of maps defined on finite 2-complexes by embedding [6, Theorem
24.1], and also to another one showing the equivalence of DHP (for paths) and a
Disjoint Homotopies Property for 1-complexes [9, Theorem 2.9]. We supply the short
proof for completeness.

To show the forward direction, endow X with a complete metric � . Let K1 and K2

be finite 1–simplicial complexes, and define

HD
˚
.f1; f2/2Map.K1�I;X�I/�Map.K2�I;X�I/ Wfi jD�@I level-preserving

	
with the uniform metric. Note that H is a complete metric space and, therefore, a Baire
space. For �i 2Ki , let

O.�1; �2/D
˚
.f1; f2/ 2H W f1.�1 � I/\f2.�2 � I/D∅

	
:

Clearly O.�1; �2/ is open in H . To see that O.�1; �2/ is dense in H , let � > 0.
Choose ı > 0 to satisfy CHET for X � I , for a small compact neighborhood ofS

i fi.�i�I/, and � . Then choose �> 0 to satisfy CHET for X; projX
�S

i fi.�i�I/
�
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and ı . By Proposition 3.1 there are �–approximations gi to fi j�i�I that are disjoint
path concordances. First apply CHET to extend gi over .�i � I/[ .Ki � @I/ so that
the new gi is level preserving on Ki � @I and ı–close to fi j.�i�I /[.Ki�@I / . Then
apply CHET again to extend gi over Ki � I so that gi is now �–close to fi . Thus,
O.�1; �2/ is dense in H . Since H is a Baire space,

OD
\

.�1;�2/2K1�K2

O.�1; �2/

is dense in H . Note that if .f1; f2/ 2O then f1.K1 � I/\ f2.K2 � I/D∅. Hence,
X has DCP*.

The other direction is trivial.

Definition A topography ‡ on D � I consists of the following elements:

(1) A set fJ1; : : : ;Jmg of consecutive intervals in R such that Jj D Œtj�1; tj � where
t0 < t1 < � � �< tm .

(2) A finite set fL0; : : : ;Lmg of complexes embedded in D � I of dimension at
most one. These complexes are called the transition levels.

(3) A finite set fK1; : : : ;Kmg of 1–complexes. These complexes are called the level
factors.

(4) A set
˚
�j W Kj � Jj ! D � I

	
jD1;:::;m

of maps which satisfy the following
conditions:
(a) L0 D �1.K1 � ft0g/

(b) Lm D �m.Km � ftmg/

(c) Lj D �j .Kj � ftj g/[�jC1.KjC1 � ftj g/ for j D 1; : : : ;m�1

(d) �j jKj�int Jj
is an embedding for each j D 1; : : : ;m

(e)
Sm

jD1 im .�j /DD � I

It is shown by Halverson [9] that a p.l. general position approximation of the projection
of a map f W D � I !X �R to the R factor induces a topographical structure on the
domain D � I of f .

Definition A map f W D�I!X �R is a topographical map if there is a topography,
‡ , on D�I which is level preserving in the sense that for each map �j W Kj�Jj!D�I

of the topography, f ı�j .Kj � t/�X � t for all t 2 Jj .

Note that a topographical structure on D�I is in no way related to the product structure
of D � I . The proof of the following lemma is provided in [9, Theorem 3.3].
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Lemma 3.3 Every map f W D � I !X �R can be approximated by a topographical
map gW D � I !X �R.

Theorem 3.4 (Disjoint Concordances Theorem) Suppose X is a locally compact,
metric ANR with DAP. Then X has DCP if and only if X �R has DDP.

Proof (() Given two path homotopies f1; f2W D � I ! X , treat them as level-
preserving maps f1; f2W D � I ! X � I . Applying DAP, and using CHET as before,
we may assume without loss of generality that f1.D � @I/\ f2.D � @I/D∅. Since
X � .0; 1/ has DDP, each fi can be approximated, fixing the actions on D�f0; 1g, by
an �–close map gi , such that the images of g1;g2 are disjoint. The DCP follows.

()) Given maps f1; f2W I
2 DD � I !X �R, by Lemma 3.3 we may assume that

each fi is a topographical map with topography ‡Œi �. An object O in the definition
of ‡Œi � will be denoted as O Œi �. Note that we also may assume the following:

(1) The set of intervals fJj Œi �g are the same for i D 1; 2. This follows from subdi-
viding the intervals appropriately as outlined in [9, Theorem 3.4].

(2) f1.
S

Lj Œ1�/\f2.
S

Lj Œ2�/D∅. This follows from DAP and CHET.

By DCP* there exist maps  j Œi �W Kj Œi ��Jj , approximating �jfi , such that

im j Œ1�\ im j Œ2�D∅:

Applying Theorem 2.1, we may assume that

 j Œi �jKj Œi��@Jj
D �jfi jKj Œi��@Jj

:

(Recall that �jfi.Kj Œi �� @Jj /� .Lj [Lj�1/.) Set gi D
S

j  j Œi �. Then g1 and g2

are the desired disjoint approximations of f1 and f2 .

Corollary 3.5 An ENR homology n–manifold X , for n� 4, has DCP if and only if
X �R has DDP.

When nD 3, Corollary 3.5 is formally but vacuously true: since no ENR homology
4–manifold has DDP, no such homology 3–manifold can have DCP.

Corollary 3.6 Let X be an ENR homology n–manifold, n � 4. Then X �R is a
manifold if and only if X has trivial Quinn index and satisfies DCP.

Theorem 3.4 demonstrates the equivalence in X �R of DCP and DDP. By the standard
combination of the work of Edwards [8] and of Quinn [11], X �R is a manifold if and
only if it has both this latter property and trivial Quinn index. Furthermore, by [11],
i.X �R/D i.X /, without regard to any of these general position properties.
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4 Questions

(1) Is every finite-dimensional Busemann space (see Thurston [12]) X necessarily a
manifold? Actually, there are two unsettled questions here: is i.X /, the Quinn index,
trivial? When dim X > 4, must X have DDP? It may be of interest to add that X is
known to be a manifold if dim X � 4 [12].

The same pair of concerns crops up in the following setting.

(2) Suppose, for any two points p; q of the compact, finite-dimensional metric space
X , there is a homeomorphism from the suspension of a space Y onto X that carries
the suspension points onto p; q . Is X a manifold?

(3) Given an ENR homology n–manifold X , for n � 4, can maps f;gW I2 ! X

be approximated by F;GW I2 ! X for which there exists a 0–dimensional F� set
T � I2 such that

F.I2
�T /\G.I2

�T /D∅?

If so, X �R will satisfy the DDP. Recall that X �R satisfies the DDP when S.X /, the
singular set of X , is at most .n�2/–dimensional. A key to the argument is that then
one can obtain F;GW I2! X and a compact, 0–dimensional T with F.I2 �T /\

G.I2�T /D∅. Similar reasoning applies with F� –subsets T in place of compact
subsets. It may be worth noting that, because X does satisfy the DAP, one can easily
obtain (maps F;G and) such a T which is a 0–dimensional Gı –subset of I2; but the
argument requires a 0–dimensional F� –subset, which is more “meager”.
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