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The Bryant–Ferry–Mio–Weinberger construction of
generalized manifolds

FRIEDRICH HEGENBARTH

DUŠAN REPOVŠ

Following Bryant, Ferry, Mio and Weinberger we construct generalized manifolds as
limits of controlled sequences

˚
Xi

pi
�!Xi�1 W i D 1; 2; : : :

	
of controlled Poincaré

spaces. The basic ingredient is the "�ı–surgery sequence recently proved by Peder-
sen, Quinn and Ranicki. Since one has to apply it not only in cases when the target is
a manifold, but a controlled Poincaré complex, we explain this issue very roughly.
Specifically, it is applied in the inductive step to construct the desired controlled
homotopy equivalence piC1W XiC1!Xi . Our main theorem requires a sufficiently
controlled Poincaré structure on Xi (over Xi�1 ). Our construction shows that this
can be achieved. In fact, the Poincaré structure of Xi depends upon a homotopy
equivalence used to glue two manifold pieces together (the rest is surgery theory
leaving unaltered the Poincaré structure). It follows from the "�ı–surgery sequence
(more precisely from the Wall realization part) that this homotopy equivalence is
sufficiently well controlled. In the final section we give additional explanation why
the limit space of the Xi ’s has no resolution.

57P10

1 Preliminaries

A generalized n–dimensional manifold X is characterized by the following two prop-
erties:

(i) X is a Euclidean neighborhood retract (ENR); and

(ii) X has the local homology (with integer coefficients) of the Euclidean n–space
Rn , ie

H�.X;X n fxg/ŠH�.R
n;Rn

n f0g/:

Since we deal here with locally compact separable metric spaces of finite (covering)
dimension, ENRs are the same as ANRs.

Generalized manifolds are Poincaré spaces, in particular they have the Spivak normal
fibrations �X . The total space of �X is the boundary of a regular neighborhood
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18 Friedrich Hegenbarth and Dušan Repovš

N.X /�RL of an embedding X �RL , for some large L. One can assume that N.X /

is a mapping cylinder neighborhood (see Lacher [5, Corollary 11.2]).

The global Poincaré duality of Poincaré spaces does not imply the local homology
condition (ii) above. The local homology condition can be understood as the “controlled”
global Poincaré duality (see Quinn [9, p270], and Bryant–Ferry–Mio–Weinberger
[1, Proposition 4.5]). More precisely, one has the following:

Theorem 1.1 Let X be a compact ANR Poincaré duality space of finite (covering)
dimension. Then X is a generalized manifold if and only if for every ı > 0, X is a
ı–Poincaré space (over X ).

The definition of the ı–Poincaré property is given below. The following basic fact
about homology manifolds was proved by Ferry and Pedersen [4, Theorem 16.6].

Theorem 1.2 Let X be an ANR homology manifold. Then �X has a canonical TOP
reduction.

This statement is equivalent to existence of degree-one normal maps f W M n! X ,
where M n is a (closed) topological n–manifold, hence the structure set STOP.X / can
be identified with ŒX;G=TOP�.

Let us denote the 4–periodic simply connected surgery spectrum by L and let bL be
the connected covering of L. There is a (canonical) map of spectra bL! L given by
the action of bL on L. Note that bL0 is G=TOP.

If M n is a topological manifold there exists a fundamental class ŒM �L 2Hn.M I L
�/,

where L� is the symmetric surgery spectrum (see Ranicki [11, Chapters 13 and 16]).

Theorem 1.3 If M n is a closed oriented topological n–manifold, then the cap product
with ŒM �L defines a Poincaré duality of L–(co)homology

H p.M I L/
Š
�!Hn�p.M I L/

and bL –(co)homology

H p.M IbL/ Š�!Hn�p.M IbL/:
Since H 0.M I L/D ŒM;Z�G=TOP� and H 0.M IbL/D ŒM;G=TOP�, we have

Hn.M I L/D Z�Hn.M IbL/
and the map bL! L has the property that the image of

Hn.M IbL/!Hn.M I L/D Z�Hn.M IbL/
Geometry & Topology Monographs, Volume 9 (2006)



The Bryant–Ferry–Mio–Weinberger construction of generalized manifolds 19

is f1g�Hn.M IbL/ (see Ranicki [11, Appendix C]). Moreover, the action of H 0.M IbL/
on H 0.M I L/D Z�H 0.M IbL/, induced by the action of bL on L, preserves the Z–
sectors.

If X is a generalized n–manifold we get similar results by using the fundamental class
f�.ŒM �L/D ŒX �L 2Hn.X I L

�/, where f W M !X is the canonical degree-one normal
map. So the composition map

‚W ŒX;G=TOP�!Hn.X IbL/!Hn.X I L/D Z�Hn.X IbL/
has the property that Im‚ belongs to a single Z–sector, denoted by I.X / 2 Z.

The following is the fundamental result of Quinn on resolutions of generalized manifolds
[10].

Theorem 1.4 Let X be a generalized n–manifold, n� 5. Then X has a resolution if
and only if I.X /D 1.

Remark The integer I.X / is called the Quinn index of the generalized manifold X .
Since the action of bL on L preserves the Z–sectors, arbitrary degree-one normal maps
gW N !X can be used to calculate I.X /. Alternatively, we can define I.X / using
the fibration bL! L! K.Z; 0/, where K.Z;: / is the Eilenberg–MacLane spectrum,
and define I.X / as the image of (see Ranicki [11, Chapter 25]):

ff W M !X g 2Hn.X I L/!Hn.X IK.Z; 0//DHn.X IZ/D Z:

We assume that X is oriented. Therefore I.X / is also defined for Poincaré complexes,
as long as we have a degree-one normal map f W M ! X , determining an element in
Hn.X I L/. In this case I.X / is not a local index. In fact, for generalized manifolds
one has local L–Poincaré duality using locally finite chains, hence we can define I.U/
for any open set U �X . It is also easy to see that I.U/D I.X /. On the algebraic side
I.X / is an invariant of the controlled Poincaré duality type (see Ranicki [11, p283]).

2 Constructing generalized manifolds from controlled sequ-
ences of Poincaré complexes

Beginning with a closed topological n–manifold M n , for n� 5, and � 2Hn.M I L/,
we shall construct a sequence of closed Poincaré duality spaces X0;X1;X2; : : :, and
maps pi W Xi!Xi�1 and p0W X0!M .

We assume that M is a PL manifold, or that M has a cell structure. The Xi are built
by gluing manifolds along boundaries with homotopy equivalences, and by doing some
surgeries outside the singular sets. Hence all the Xi have cell decompositions.

Geometry & Topology Monographs, Volume 9 (2006)



20 Friedrich Hegenbarth and Dušan Repovš

We can assume that the Xi lie in a (large enough) Euclidean space RL which induces
the metric on Xi . So the cell chain complex C#.Xi/ can be considered as a geometric
chain complex over Xi�1 with respect to pi W Xi!Xi�1 , ie the distance between two
cells of Xi over Xi�1 is the distance between the images of the centers of these two
cells in Xi�1 . Let us denote the distance function by d .

We now list five properties of the sequence f.Xi ;pi/gi , including some definitions and
comments. For each i � 0 we choose positive real numbers �i and �i .

(i) pi W Xi!Xi�1 and p0W X0!M are UV 1 –maps. This means that for every
" > 0 and for all diagrams

K Xi�1˛
//

K0

K

� _

��

K0 Xi
˛0 // Xi

Xi�1

pi

��

x̨

::t
t

t
t

t
t

with K a 2–complex, K0 �K a subcomplex and maps ˛0; ˛ , there is a map ˛
such that ˛

ˇ̌
K0
D˛0 and d.pi ı˛; ˛/< ". (This is also called UV 1."/ property.)

(ii) Xi is an �i –Poincaré complex over Xi�1 , ie
(a) all cells of Xi�1 have diameter < �i over Xi�1 ; and
(b) there is an n–cycle c 2 Cn.Xi/ which induces an �i –chain equivalence
\c W C

#.Xi/! Cn�#.Xi/.

Equivalently, the diagonal �#.c/D
P

c0˝c00 2C#.X /˝C#.X / has the property
that d.c0; c00/ < �i for all tensor products appearing in �#.c/.

(iii) pi W Xi!Xi�1 is an �i –homotopy equivalence over Xi�2 , for i � 2. In other
words, there exist an inverse p0i W Xi�1!Xi and homotopies hi W p

0
i ıpi ' IdXi

and h0i W pi ıp0i ' IdXi�1
such that the tracks˚

.pi�1 ıpi ı hi/.x; t/ W t 2 Œ0; 1�
	

and
˚
.pi�1 ı h0i/.x

0; t/ W t 2 Œ0; 1�
	

have diameter less than �i , for each x 2Xi (respectively, x0 2Xi�1 ). Note that
p0 need not be a homotopy equivalence.

(iv) There is a regular neighborhood W0 � RL of X0 such that Xi � W0 , for
i D 0; 1; : : :, and retractions ri W W0!Xi , satisfying d.ri ; ri�1/ < �i in RL .

(v) There are “thin” regular neighborhoods Wi � RL with �i W Wi ! Xi , where
Wi �

ı

W i�1 such that Wi�1 n
ı

W i is an �i –thin h–cobordism with respect to
ri W W0!Xi .
Let W DWi�1 n

ı

W i . Then there exist deformation retractions r0
t W W ! @0W

and r1
t W W ! @1W with tracks of size < �i over Xi�1 , ie the diameters of
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The Bryant–Ferry–Mio–Weinberger construction of generalized manifolds 21

˚
.ri ı r0

t /.w/ W t 2 Œ0; 1�
	

and
˚
.ri ı r1

t /.w/ W t 2 Œ0; 1�
	

are smaller than �i .
Moreover, we can choose �i and �i such that
(a)

P
�i <1; and

(b) Wi�1 n
ı

W i has a ıi –product structure with
P
ıi <1, ie there is a homeo-

morphism

W DWi�1 n
ı

W i
H
 @0W � I

satisfying
diam

˚
.ri ıH /.w; t/ W t 2 I

	
< ıi ;

for every w 2 @0W .

The property (v)(b) above follows from the “thin h–cobordism” theorem (see the article
[8] by Quinn). One can assume that

P
�i <1. Let X D

T
i Wi . We are going to

show that X is a generalized manifold:

(1) The map r D lim
�!

ri W W0! X is well–defined and is a retraction, hence X is
an ANR.

(2) To show that X is a generalized manifold we shall apply the next two theorems.
They also imply Theorem 1.1 above. The first one is due to Daverman and Husch
[2], but it is already indicated in [8] (see the remark after Theorem 3.3.2).

Theorem 2.1 Suppose that M n is a closed topological n–manifold, B is an ANR,
and pW M !B is proper and onto. Then B is a generalized manifold, provided that p

is an approximate fibration.

Approximate fibrations are characterized by the property that for every " > 0 and every
diagram

K � I B
h

//

K � f0g

K � I

� _

��

K � f0g M
H0 // M

B

p

��

H

::t
t

t
t

t
t

where K is a polyhedron, there exists a lifting H of h such that d.pıH; h/ < ". Here
d is a metric on B . In other words, pW M ! B has the "–homotopy lifting property
for all " > 0.

We apply Theorem 2.1 to the map �W @W0!X defined as follows: Let �W W0!X

be the map which associates to w 2W0 the endpoint �.x/ 2X following the tracks
defined by the “thin” product structures of the h–cobordism when decomposing

W0 D .W0 n
ı

W 1/[ .W1 n
ı

W 2/[ : : :

Geometry & Topology Monographs, Volume 9 (2006)



22 Friedrich Hegenbarth and Dušan Repovš

The restriction to @W0 will also be denoted by � . By (v)(b) above, the map � is
well–defined and continuous. We will show that it is an "–approximate fibration for all
" > 0.

The map �W W0!X is the limit of maps �i W W0!Xi , where �i is the composition

given by the tracks .W0n
o

W 1/[.W1n
o

W 2/[� � �[.Wi�1n
o

W i/ followed by �i W Wi!

Xi . The second theorem is due to Bryant, Ferry, Mio and Weinberger [1, Proposition
4.5].

Theorem 2.2 Given n and B , there exist "0 > 0 and T > 0 such that for every

0<"< "0 the following holds: If X
p
!B is an "–Poincaré complex with respect to the

UV 1 –map p and W � RL is a regular neighborhood of X � RL , ie � W W !X is a
neighborhood retraction, then �

ˇ̌
@W
W @W ! X has the T "–lifting property, provided

that the codimension of X in RL is � 3.

This is applied as follows: Let B � RL be a (small) regular neighborhood of X � RL .
Hence Xk �Wk �B for sufficiently large k . It follows by property (ii) that Xi is an

�i –Poincaré complex over Xi

pi
!Xi�1 �B , hence (for i sufficiently large) we get the

following:

Corollary 2.3 �i W @W0!Xi is a T �i –approximate fibration over B .

Proof By the theorem above, �i W @Wi!Xi is a T �i –approximate fibration over B ,
hence so is �i W @W0 Š @Wi!Xi .

It follows by construction that lim
 �pi

Xi D X � B; and so we have, in the limit, an
approximate fibration �W @W0!X over IdW X !X , ie X is a generalized manifold.
We will show in Section 4 that I.X / is determined by the Z–sector of � 2Hn.M I L/.

3 Construction of the sequence of controlled Poincaré com-
plexes

Before we begin with the construction we need more fundamental results about con-
trolled surgery and approximations.

Geometry & Topology Monographs, Volume 9 (2006)
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3.1 "�ı surgery theory

We recall the main theorem of the article [6] by Pedersen, Quinn and Ranicki. Let B

be a finite–dimensional compact ANR, and N n a compact n–manifold (possibly with
nonempty boundary @N ), where n� 4. Then there exists an "0 > 0 such that for every
0< " < "0 there exist ı > 0 with the following property:

If pW N !B is a UV 1.ı/ map, then there exists a controlled exact surgery sequence

(1) HnC1.BI L/! S";ı.N;p/! ŒN; @N IG=TOP;��
‚
�!Hn.BI L/:

The controlled structure set S";ı.N;p/ is defined as follows. Elements of S";ı.N;p/
are (equivalence) classes of .M;g/, where M is an n–manifold, gW M ! N is a
ı–homotopy equivalence over B and g

ˇ̌
@M
W @M ! @N is a homeomorphism. The

pair .M;g/ is related to .M 0;g0/ if there is a homeomorphism hW M !M 0 , such
that the diagram

@M

@N

g
��?

??
??

??
??

@M @M 0h // @M 0

@N

g0����
��

��
��

�

commutes, and g0 ı h is "–homotopic to g over B . Since " is fixed, this relation is
not transitive. It is part of the assertion that it is actually an equivalence relation. Then
S";ı.N;p/ is the set of equivalence classes of pairs .M;g/.

As in the classical surgery theory, the map

(2) HnC1.BI L/! S";ı.N;p/

is the controlled realization of surgery obstructions, and

(3) S";ı.N;p/! ŒN; @N IG=TOP;��
‚
!Hn.BI L/

is the actual (controlled) surgery part. The following discussion will show that (3) also
holds for controlled Poincaré spaces (see Theorem 3.1 below). Moreover, ı is also of
(arbitrary) small size, provided that such is also ".

To see this we will go through some of the main points of the proof of [6, Theo-
rem 1]. For �; �0 > 0 we denote by Ln.B;Z; �; �

0/ the set of highly �–connected
n–dimensional quadratic Poincaré complexes modulo highly �0–connected algebraic
cobordisms. Then there is a well–defined obstruction map

‚�W ŒN;G=TOP�!Ln.B;Z; �; �
0/

Geometry & Topology Monographs, Volume 9 (2006)



24 Friedrich Hegenbarth and Dušan Repovš

(for simplicity we shall assume that @N D∅). If .f; b/W M n!N n is a degree-one
normal map one can do controlled surgery to obtain a highly �–connected normal map
.f 0; b0/W M 0n!N n over B . If N n is a manifold this can be done for every � > 0. If
N n is a Poincaré complex, it has to be �–controlled over B . By Theorem 1.1 above,
this holds in particular for generalized manifolds.

Given � > 0 there is an �0 > 0 such that if .f 0; b0/ and .f 00; b00/ are normally bordant,
highly �–connected, degree-one, normal maps, there is then a highly �0–connected
normal bordism between them. (Again this is true if N is an �–Poincaré complex over
B .) This defines ‚� .

To eventually complete surgeries in the middle dimension we assume that the map
pW N!B is UV 1 . Then one has the following (see [6, p243]). Given ı>0 there exists
�>0 such that if ‚�

�
Œf 0; b0�

�
D0, then .f 0; b0/ is normally cobordant to a ı–homotopy

equivalence. Moreover, if .f 00; b00/ and .f 0; b0/ are highly �–connected degree-one
normal maps being normally cobordant, then there is a highly connected �0–bordism
between them (ie for given � there is such an �0 ). Then controlled surgery produces a
controlled h–cobordism which gives an "–homotopy by the thin h–cobordism theorem.
This defines an element of S";ı.N;p/, and shows the semi–exactness of the sequence

(4) S";ı.N;p/! ŒN;G=TOP�
‚�
!Ln.B;Z; �; �

0/;

ie that S";ı.N;p/ maps onto the kernel of ‚� . We note that semi–exactness also holds
for �–controlled Poincaré complexes over B .

One cannot expect the sequence (4) to be exact, ie that the composition map is zero,
since passing from topology to algebra one loses control. As it was noted by Pedersen,
Quinn and Ranicki [6, p243], " and ı are determined by the controlled Hurewicz
and Whitehead theorems. Exactness of (4) will follow by the Squeezing Lemma of
Pedersen and Yamasaki [7, Lemma 4].

The proof of (3) will be completed by showing that the assembly map

AW Hn.BI L/!Ln.B;Z; �; �
0/

is bijective for sufficiently small �. This follows by splitting the controlled quadratic
Poincaré complexes (ie the elements of Ln.B

0;Z; �; �0/) into small pieces over small
simplices of B (we assume for simplicity that B is triangulated). If ı is given, and if
we want a splitting where each piece is ı–controlled, we must start the subdivision
with a sufficiently small �–controlled quadratic Poincaré complex (see the following
Remark). This can be done by [6, Lemma 6] (see also Yamasaki [12, Lemma 2.5]).
Since A ı‚D‚� , we get (3) from (4). The stability constant "0 is determined by the
largest � for which A is bijective.
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Remark Yamasaki has estimated the size of � in the Splitting Lemma. If one
performs a splitting so that the two summands are ı–controlled, then one needs an
�–controlled algebraic quadratic Poincaré complex with � of size ı=.ankCb/, where
a; b; k depend on X (k is conjectured to be 1), and n is the length of the complex.
Of course, squeezing also follows from the bijectivity of A for small �, but the result
[7, Lemma 3] of Pedersen and Yamasaki is somehow a clean statement to apply (see
Theorem 3.1 below). We also note that the bijectivity of A is of course, independent
of whether N is a manifold or a Poincaré complex.

Theorem 3.1 Suppose that N
p
�!B is a UV 1 map. Let ı > 0 be given (sufficiently

small, ie ı < ı0 for some ı0 ). Then there is � > 0 (small with respect to ı ), such that
if N is an �–Poincaré complex over B , and .f; b/W M !N is a degree-one normal
map, then ‚.f; b/ D 0 2 Hn.BI L/ if (and only if) .f; b/ is normally bordant to a
ı–equivalence.

The “only if” part is more delicate and follows by [7, Lemma 3]. So let f W M n!N n

be a ı–equivalence defining a quadratic �1 –Poincaré complex C in Ln.B;Z; �1; �
0
1
/

which is �1 –cobordant to zero via ŒN;G=TOP�!Ln.B;Z; �1; �
0
1
/.

Then C is ��1 –cobordant to an arbitrary small quadratic Poincaré complex (ie to a
quadratic �–complex) which is ��0

1
–cobordant to zero, with �1 sufficiently small (ie

� sufficiently small). In this case we can also assume that A is bijective. This proves
the “only if” part.

Theorem 3.1 can also be stated as follows:

Theorem 3.1 0 Let N be a sufficiently fine �–Poincaré complex over a UV 1 –map
pW N ! B . Then there exist " > 0 and ı > 0, both sufficiently small, such that the
sequence

S";ı.N;p/! ŒN;G=TOP�!Hn.BI L/

is exact. In particular, it holds for generalized manifolds.

3.2 UV 1 approximation

Here we recall the results [1, Proposition 4.3, Theorem 4.4] of Bryant, Ferry, Mio and
Weinberger.

Theorem 3.2 Suppose that f W .M n; @M /!B is a continuous map from a compact
n–manifold with boundary such that the homotopy fiber of f is simply connected. If
n � 5 then f is homotopic to a UV 1 –map. In case that f

ˇ̌
@M

is already UV 1 , the
homotopy is relative @M .
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We state the second theorem in the form which we will need.

Theorem 3.3 (Ferry [3, Theorem 10.1]) Let pW N n!B be a map from a compact
n–manifold into a polyhedron, where n� 5. Then:

(i) Given " > 0, there is a ı > 0, such that if p is a UV 1.ı/–map then p is
"–homotopic to a UV 1 –map.

(ii) Suppose that pW N ! B is a UV 1 map. Then for each " > 0 there is a ı > 0

(depending on p and ") such that if f W M ! N is a .ı�1/–connected map
(over B ) from a compact manifold M of dimension at least 5, then f is "–close
over B to a UV 1 –map gW M !N .

3.3 Controlled gluing

Theorem 3.4 (Bryant–Ferry–Mio–Weinberger [1, Proposition 4.6]) Let .M1; @M1/

and .M2; @M2/ be (orientable) manifolds and pi W Mi!B be UV 1 –maps. Then there
exist "0 > 0 and T > 0 such that, for 0< "� "0 and hW @M1! @M2 an (orientation
preserving) "–equivalence, M1[h M2 is a T "–Poincaré complex over B .

3.4 Approximation of retractions

Theorem 3.5 (Bryant–Ferry–Mio–Weinberger [1, Proposition 4.10]) Let X and Y

be finite polyhedra. Suppose that V is a regular neighborhood of X with dim V �

2 dim Y C 1 and r W V ! X is a retraction. If f W Y ! X is an "–equivalence with
respect to pW X ! B , then there exists an embedding i W Y ! V and a retraction
sW V ! i.Y / with d.p ı r;p ı s/ < 2".

We now begin with the construction. Let M n be a closed oriented (topological)
manifold of dimension n� 6. Let � 2Hn.M I L/ be fixed. Moreover, we assume that
M is equipped with a simplicial structure. Then let M DB[D C be such that B is a
regular neighborhood of the 2–skeleton, D D @B is its boundary and C is the closure
of the complement of B . So D D @C D B \C is of dimension � 5.

By Theorem 3.2 above we can replace .B;D/�M and .C;D/�M , by UV 1 –maps
j W .B;D/ ! M and j W .C;D/ ! M , and realize � according to Hn.M I L/ !

S";ı.D; j / by a degree-one normal map F� W V !D � I with @0V DD , @1V DD0 ,
F�
ˇ̌
@0V
D Id and f�DF�

ˇ̌
@1V
W D0!D a ı–equivalence over M .

We then define X0 D B [f� �V [Id C , where �V is the cobordism V turned upside
down. We use the map �F� [ IdW �V [Id C !D� I [C Š C to extend j to a map
p0W X0!M .
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The Wall realization V !D�I is such that V is a cobordism built from D by adding
high–dimensional handles (similarly beginning with D0 ). Therefore p0 is a UV 1 map:
If .K;L/ is a simplicial pair with K a 2–complex, and if there is given a diagram

K M
˛

//

L

K

� _

��

L X0
˛0 // X0

M

p0

��

then we first move (by an arbitrary small approximation) ˛ and ˛0 into B by general
position arguments. Then one uses the UV 1 –property of j W B!M . By Theorem
3.4, X0 is a T ı–Poincaré complex over M . Note that we can choose ı as small as
we want, hence we get an �0 –Poincaré complex for a prescribed �0 . This completes
the first step.

To continue we define a manifold M n
0

and a degree-one normal map g0W M
n
0
! X0

by
M0 D B [Id V [Id�V [Id C ! B [Id D � I [f� �V [Id C ŠX0;

using F� [ IdW V [Id�V !D�I[f� �V . By construction it has a controlled surgery
obstruction � 2Hn.M I L/.

Moreover, there is � 2Hn.X0I L/ with p0�.�/D� . This can be seen from the diagram

H 0.M0I L/ H 0.X0I L/oo
g�

0

Hn.M0I L/

H 0.M0I L/

OO

Š

Hn.M0I L/ Hn.X0I L/
g0� // Hn.X0I L/

H 0.X0I L/ H 0.M I L/oo
p�

0

Hn.M I L/
p0� // Hn.M I L/

H 0.M I L/

OO

Š

The vertical isomorphisms are Poincaré dualities. Since p0 is a UV 1 map, � belongs
to the same Z–sector as � . We will again denote � by � .

We construct p1W X1 ! X0 as above: Let M0 D B1 [D1
C1 , let B1 be a regular

neighborhood of the 2–skeleton (as fine as we want), let C1 be the closure of the
complement and let D1 D C1 \ B1 D @C1 D @B1 , and g0W D1 ! X0 be a UV 1

map. Then we realize � 2 Hn.X0I L/ ! S"1;ı1
.D1;g0/ by F1;� W V1 ! D1 � I

with @0V1 D D1 , @1V1 D D0
1

, F1;�

ˇ̌
@0V1
D Id and f1;� D F1;�

ˇ̌
@1V1
W D0

1
! D1 a

ı1 –equivalence over X0 .

We define p0
1
W X 0

1
!X0 by

X 01 D B1 [
f1;�

�V1[
Id

C1

f 0
1
!M0 Š B1[

Id
D1 � I [

Id
C1;
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using �F1;� W �V1!D1 � I , and then p0
1
D g0 ıf

0
1
W X 0

1
!M0!X0 .

We now observe that

(i) by Theorem 3.4, X 0
1

is a T1ı1 –Poincaré complex over X0 ; and

(ii) p0
1

is a degree-one normal map with controlled surgery obstruction

�p0�.�/C � D 0 2Hn.M I L/:

Let �1>0 be given. We now apply Theorem 3.1 to produce a �1 –homotopy equivalence
by surgeries outside the singular set (note that the surgeries which have to be done are
in the manifold part of X 0

1
). For this we need a sufficiently small �0 –Poincaré structure

on X0 . However, this can be achieved as noted above. This finishes the second step.

We now proceed by induction. What we need for the third step in order to produce
p2W X2!X1 is

(i) a degree-one normal map g1W M1! X1 with controlled surgery obstruction
� 2Hn.X0I L/; and

(ii) � 2Hn.X1I L/ with p1�.�/D � , in the same Z–sector as � 2Hn.X0I L/.

One can get g1W M1!X1 as follows: Consider g0
1
W M 0

1
!X 0

1
, where

M 0
1 D B1[Id V1[Id�V1[Id C1! B1[Id D1 � I [f1;�

�V1[Id C1 ŠX 01

is induced by F1;� W V1 ! D1 � I and the identity. The map g0
1

is a degree-one
normal map. Then one performs the same surgeries on g0

1
as one has performed on

p0
1
W X 0

1
!X0 to obtain X1 . This produces the desired g1 . For (ii) we note that p1�

is a bijective map preserving the Z–sectors (since p1 is UV 1 ).

So we have obtained the sequence of controlled Poincaré spaces pi W Xi!Xi�1 and
p0W X0 ! M with degree-one normal maps gi W Mi ! Xi and controlled surgery
obstructions � 2Hn.Xi�1I L/. The properties (iv) and (v) of Section 2 now follow by
the thin h–cobordism theorem and approximation of retraction.

4 Nonresolvability, the DDP property and existence of gener-
alized manifolds

4.1 Nonresolvability

At the beginning of the construction we have � 2 Hn.M I L/, where M is a closed
(oriented) n–manifold with n � 6. For each m we constructed degree-one normal
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maps gmW Mm! Xm over pmW Xm! Xm�1 , with controlled surgery obstructions
�m 2Hn.Xm�1I L/, p0�.�1/D � , pm�.�mC1/D �m , and all �m belong to the same
Z–sector as � . So we will call all of them � .

We consider the normal map gmW Mm ! Xm as a controlled normal map over the
identity map IdW Xm ! Xm , and over qmW Xm � Wm

�
�!X (see Section 2). Since

�
ˇ̌
@Wm

is an approximate fibration and d.ri ; ri�1/ < �i and
P1

iDmC1 �i < ", for large
m, we can assume that qm is UV 1.ı/ for large m, so .qm/�W Hn.XmI L/!Hn.X I L/

maps � to .qm/�.�/ D �
0 , being in the same Z–sector as � . The map .qm/� is a

bijective, and we denote � 0 by � . In other words, we have a surgery problem

X

MmMm Xm
gm // Xm

X

qm

��

over X , with controlled surgery obstruction � 2Hn.X I L/. Our goal is to consider
the surgery problem

X

MmMm Xm
qmıgm // Xm

X

Id
��

over IdW X !X , and prove that � 2Hn.X I L/ is its controlled surgery obstruction.

Observe that qm is a ı–homotopy equivalence over IdW X ! X if m is sufficiently
large (for a given ı ).

Let N .X /Š ŒX;G=TOP� be the normal cobordism classes of degree-one normal maps
of X , and let HEı.X / be the set of ı–homotopy equivalences of X over IdW X !X .
Our claim will follow from the following lemma.

Lemma 4.1 Let HEı0.X /�N .X /
�
!N .X / be the action map, ie �.h; f /D h ıf .

Then for sufficiently small ı0 > 0, the diagram

N .X / Hn.X I L/
‚

//

HEı0.X /�N .X /

N .X /

pr

��

HEı0.X /�N .X / N .X /
� // N .X /

Hn.X I L/

‚

��

commutes.

Geometry & Topology Monographs, Volume 9 (2006)



30 Friedrich Hegenbarth and Dušan Repovš

Proof This follows from Theorem 3.1 0 since HEı0.X /�S"00;ı00.X; Id/!S";ı.X; Id/
for sufficiently small ı0 and ı00 .

We apply this lemma to the map HEı.Xm;X /�N .Xm/!N .X /, which sends .h;g/
to h ıg , where HEı.Xm;X / are the ı–homotopy equivalences Xm!X over IdX .
Let  mW X !Xm be a controlled inverse of qm . Then  m induces

 m�W HE".Xm;X /!HEı.X /;

where ı is some multiple of ". One can then write the following commutative diagram
(for sufficiently small ı ).

HE".Xm;X /�N .Xm/

HE".Xm;X /�Hn.XmI L/

Id�‚

OO

HEı.X /�N .X /

. m/��.qm/�

��

N .X /// Hn.X I L/
‚

//
++WWWWWWWWWWWWWWWWWWWWWWWW

�

55llllllllllllllll
N .X /pr

//
‚

::tttttttttt

with HE".Xm;X /�N .Xm/!Hn.X I L/ given by .h; �/! h�.�/.

It follows from this that for large enough m, qmıgmW Mm!X has controlled surgery
obstruction � 2Hn.X I L/. Hence we get non–resolvable generalized manifolds if the
Z–sector of � is ¤ 1.

4.2 The DDP Property

The construction allows one to get the DDP property for X (see [1, Section 8]). Roughly
speaking, this can be seen as follows. The first step in the construction is to glue a
highly connected cobordism V into a manifold M of dimension n � 6, in between
the regular neighborhood of the 2–skeleton.

The result is a space which has the DDP. The other constructions are surgery on middle–
dimensional spheres, which also preserves the DDP. But since we have to take the limit
of the Xm ’s, one must do it more carefully (see [1, Definition 8.1]):

Definition 4.2 Given " > 0 and ı > 0, we say that a space Y has the ."; ı/–DDP
if for each pair of maps f;gW D2 ! Y there exist maps f ;gW D2 ! Y such that
d.f .D2/;g.D2// > ı , d.f; f / < " and d.g;g/ < ".

Lemma 4.3 fXmg have the ."; ı/–DDP for some " > ı > 0.
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Proof The manifolds M n
m , for n � 6, have the ."; ı/–DDP for all " and ı . In fact,

one can choose a sufficiently fine triangulation, such that any f W D2 !M can be
placed by arbitrary small moves into the 2–skeleton or into the dual .n�3/–skeleton.
Then ı is the distance between these skeleta. The remarks above show that the Xm

have the ."; ı/–DDP for some " and ı .

It can then be shown that X D lim
 �

Xi has the .2"; ı=2/–DDP (see [1, Proposition 8.4]).

4.3 Special cases
(i) Let M n and � 2Hn.M I L/ be given as above. The first case which can occur is

that � goes to zero under the assembly map AW Hn.M I L/!Ln.�1M /. Then
we can do surgery on the normal maps F� W V !D � I , F1;� W V1!D1 � I

and so on, to replace them by products. In this case the generalized manifold X

is homotopy equivalent to M .

(ii) Suppose that A is injective (or is an isomorphism). Then X cannot be homotopy
equivalent to any manifold, if the Z–sector of � is ¤ 1. Suppose that N n!X

were a homotopy equivalence. It determines an element in ŒX;G=TOP� which
must map to .1; 0/ 2Hn.X I L/, because its surgery obstruction in Ln.�1X / is
zero and A is injective. This contradicts our assumption that the index of X is
not equal to 1. Examples of this type are given by the n–torus M n D T n .
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