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Controlled L–theory

ANDREW RANICKI

MASAYUKI YAMASAKI

We develop an epsilon-controlled algebraic L–theory, extending our earlier work
on epsilon-controlled algebraic K–theory. The controlled L–theory is very close
to being a generalized homology theory; we study analogues of the homology exact
sequence of a pair, excision properties, and the Mayer–Vietoris exact sequence. As an
application we give a controlled L–theory proof of the classic theorem of Novikov
on the topological invariance of the rational Pontrjagin classes.

57R67; 18F25

1 Introduction

The purpose of this article is to develop a controlled algebraic L–theory, of the type
first proposed by Quinn [8] in connection with the resolution of homology manifolds
by topological manifolds.

We define and study the epsilon-controlled L–groups L
ı;�
n .X IpX ;R/, extending to

L–theory the controlled K–theory of Ranicki and Yamasaki [14]. When the control
map pX is a fibration and X is a compact ANR, these groups are stable in the sense
that L

ı;�
n .X IpX ;R/ depends only on pX and R and not on ı or � as long as ı is

sufficiently small and �� ı (see Pedersen–Yamasaki [5]).

These are the candidates of the controlled surgery obstruction groups; in fact, such a
controlled surgery theory has been established when the control map pX is U V 1 (see
Pedersen–Quinn–Ranicki [4] and Ferry [2]).

Although epsilon controlled L–groups do not produce a homology theory in general,
they have the features of a generalized homology modulo controlled K–theory problems.
In this article we study the controlled L–theory analogues of the homology exact
sequence of a pair (Theorem 5.2), excision properties (Section 6), and the Mayer–
Vietoris sequence (Theorem 7.3).

In certain cases when there are no controlled K–theoretic difficulties, we can actually
show that controlled L–groups are generalized homology groups. This is discussed in
Section 8.
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106 Andrew Ranicki and Masayuki Yamasaki

In the last two sections, we study locally-finite analogues and as an application give a
controlled L–theory proof of the classic theorem of Novikov [3] on the topological
invariance of the rational Pontrjagin classes.

2 Epsilon-controlled quadratic structures

In this section we study several operations concerning quadratic Poincaré complexes
with geometric control. These will be used to define epsilon controlled L–groups in
the next section.

In [14] we discussed various aspects of geometric modules and morphisms and geo-
metric control on them, and studied K–theoretic properties of geometric (=free) and
projective module chain complexes with geometric control. There we considered only
Z–coefficient geometric modules, but the material in Sections 1–7 remains valid if we
use any ring R with unity as the coefficient. To incorporate the coefficient ring into
the notation, the group zK0.X;pX ; n; �/ defined using the coefficient ring R will be
denoted zKn;�

0
.X IpX ;R/ in this article.

To deal with L–theory, we need to use duals. Fix the control map pX W M ! X from
a space M to a metric space X and let R be a ring with involution (see Ranicki
[10]). The dual G� of a geometric R–module G is G itself. Recall that a geometric
morphism is a linear combination of paths in M with coefficient in R. The dual f �

of a geometric morphism f D
P
� a��� is defined by f �D

P
� xa�x�� , where xa� 2R

is the image of a by the involution of R and x�� is the path obtained from �� by
reversing the orientation. Note that if f has radius � then so does its dual f � and
that f �� g implies f � �� g� , by our convention. For a geometric R–module chain
complex C , its n-dual C n�� is defined using the formula in Ranicki [9].

For a subset S of a metric space X , S� will denote the closed � neighborhood of S

in X when � � 0. When � < 0, S� will denote the set X � .X �S/�� .

Let C be a free R–module chain complex on pX W M ! X . An n–dimensional �
quadratic structure  on C is a collection f sjs � 0g of geometric morphisms

 sW C
n�r�s

D .Cn�r�s/
�
! Cr (r 2 Z)

of radius � such that

(�) d sC.�/
r sd�C.�/n�s�1. sC1C.�/

sC1T sC1/�3� 0W C n�r�s�1
!Cr ;

for s � 0. An n–dimensional free � chain complex C on pX equipped with an n–
dimensional � quadratic structure is called an n–dimensional � quadratic R–module
complex on pX .
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Let f W C ! D be a chain map between free chain complexes on pX . An .nC1/–
dimensional � quadratic structure .ı ; / on f is a collection fı s;  sjs � 0g of
geometric morphisms ı sW D

nC1�r�s!Dr ,  sW C
n�r�s! Cr (r 2 Z) of radius �

such that the following holds in addition to (�):

d.ı s/C .�/
r .ı s/d

�
C .�/n�s

�
ı sC1C .�/

sC1T ı sC1

�
C .�/nf  sf

�

�3� 0W Dn�r�s
!Dr ;

for s�0. An � chain map f W C!D between an n–dimensional free � chain complex
C on pX and an .nC1/–dimensional free � chain complex D on pX equipped
with an .nC1/–dimensional � quadratic structure is called an .nC1/–dimensional �
quadratic R–module pair on pX . Obviously its boundary .C;  / is an n–dimensional
� quadratic R–module complex on pX . We will suppress references to the coefficient
ring R unless we need to emphasize the coefficient ring.

An � cobordism of n–dimensional � quadratic structures  on C and  0 on C 0

is an .nC1/–dimensional � quadratic structure .ı ; ˚� 0/ on some chain map
C ˚ C 0 ! D . An � cobordism of n–dimensional � quadratic complexes .C;  /,
.C 0;  0/ on pX is an .nC1/–dimensional � quadratic pair on pX��

f f 0
�
W C ˚C 0!D; .ı ; ˚� 0/

�
with boundary .C˚C 0;  ˚� 0/. The union of adjoining cobordisms is defined using
the formula in Ranicki [9]. The union of adjoining � cobordisms is a 2� cobordism.

†C and �C will denote the suspension and the desuspension of C respectively, and
C.f / will denote the algebraic mapping cone of a chain map f .

Definition 2.1 Let W be a subset of X . An n–dimensional � quadratic structure  
on C is � Poincaré (over W ) if the algebraic mapping cone of the duality 3� chain
map

D D .1CT / 0W C
n��
����!C

is 4� contractible (over W ). A quadratic complex .C;  / is � Poincaré (over W ) if
 is � Poincaré (over W ). Similarly, an .nC1/–dimensional � quadratic structure
.ı ; / on f W C !D is � Poincaré (over W ) if the algebraic mapping cone of the
duality 4� chain map

D.ı ; / D
�

.1CT /ı 0

.�/nC1�r .1CT / 0f
�

�
W DnC1�r

! C.f /r DDr ˚Cr�1
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108 Andrew Ranicki and Masayuki Yamasaki

is 4� contractible (over W ) (or equivalently the algebraic mapping cone of the 4�

chain map

xD.ı ; / D ..1CT /ı 0 f .1CT / 0/W C.f /nC1��
����!D

is 4� contractible (over W )) and  is � Poincaré (over W ). A quadratic pair
.f; .ı ; // is � Poincaré (over W ) if .ı ; / is � Poincaré (over W ). We will also
use the notation Dı D .1C T /ı 0 , although it does not define a chain map from
DnC1�� to D in general.

This definition is slightly different from the one given in Yamasaki [15] (especially
when W is a proper subset of X ). There a quadratic complex/pair was defined to be
� Poincaré over W if the duality map is an � chain equivalence over W . If C.D /
(resp. C.D.ı ; //) is 4� contractible (over W ), then D (resp. D.ı ; / ) is only a
“weak” 8� chain equivalence over W .

Definition 2.2 A chain map f W C !D is a weak � chain equivalence over W if

(1) f is an � chain map;

(2) there exists a family g D fgr W Dr ! Cr g of geometric morphisms of radius �
such that
� dgr and gr d have radius � , and
� dgr �� gr�1d over W

for all r ;

(3) there exist two families hD fhr W Cr ! CrC1g and k D fkr W Dr !DrC1g of
� morphisms such that
� dhr C hr�1d �2� 1�grfr over W , and
� dkr C kr�1d �2� 1�fr gr over W .

for all r .

In other words a weak chain equivalence satisfies all the properties of a chain equivalence
except that its inverse may not be a chain map outside of W .

Weak chain equivalences behave quite similarly to chain equivalences. For example,
2.3(3) and 2.4 of Ranicki [14] can be easily generalized as follows:

Proposition 2.3 If f W C !D is a weak ı chain equivalence over V and f 0W D!E

is a weak � chain equivalence over W , then f 0f is a weak ıC � chain equivalence
over V �ı�� \W �ı . If we further assume that f is a ı chain equivalence, then f 0f
is a weak ıC � chain equivalence over V �� \W �ı .
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Controlled L–theory 109

Proposition 2.4 Let f W C !D be an � chain map. If the algebraic mapping cone
C.f / is � contractible over W , then f is a weak 2� chain equivalence over W . If f
is a weak � chain equivalence over W , then C.f / is 3� contractible over W �2� .

We have employed the definition of Poincaré complexes/pairs using local contractibility
of the algebraic mapping cone of the duality map, because algebraic mapping cones
are easier to handle than chain equivalences. For example, consider a triad � :

C

g

��

f
//

h

��
�_

�_
�_

�_
�_

D

g0

��

dhC hd � f 0g�g0f

C 0
f 0

// D0

and assume

(1) f (resp. f 0 ) is a ı (resp. ı0 ) chain map,

(2) g (resp. g0 ) is an � (resp. �0 ) chain map,

(3) hW g0f ' f 0g is a 
 chain homotopy.

Then there are induced a maxfı; ı0; 2
 g chain map

F D

�
f 0 .�/r h

0 �f

�
W C.�g/r D C 0r ˚Cr�1! C.g0/r DD0r ˚Dr�1

and a maxf�; �0; 2
 g chain map

G D

�
g0 .�/r h

0 g

�
W C.f /r DDr ˚Cr�1! C.f 0/r DD0r ˚C 0r�1:

It is easily seen that C.F /D C.G/.

Proposition 2.5 If C.gW C ! C 0/ is � contractible over W , then C.�g/ is � con-
tractible over W .

Proof Suppose�
a b

c d

�
W C.g/r D Cr ˚C 0r�1 ��! C.g/rC1 D CrC1˚C 0r

is an � chain contraction over W of C.g/, then�
a �b

�c d

�
is an � chain contraction over W of C.�g/.
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110 Andrew Ranicki and Masayuki Yamasaki

Proposition 2.6 Let � be as above, and further assume that C.g/ is � contractible
over W and C.g0/ is �0 contractible over W , then C.G/ is 3 maxf�; �0; ı; ı0; 2
 g
contractible over W �2 maxf�;�0;ı;ı0;2
 g .

Proof By Proposition 2.5, C.�g/ is � contractible over W . Therefore F W C.�g/!

C.g0/ is a maxf�; �0; ı; ı0; 2
 g chain equivalence over W , and the proposition is proved
by applying Proposition 2.4 to F .

Corollary 2.7 Let C and D be free � chain complexes, and let .ı ; / be an �
quadratic structure on an � chain map f W C !D . If C.D.ı ; // is 4� contractible
over W , then C.D / is 100� contractible over W �100� .

Proof Consider the triad � :

�C.f /nC1��

D.ı ; /

��

˛D.1 0/
//

h

&&&f&f&f&f&f&f&f&f&f&f&f&f&f
�D.nC1��/

xD.ı ; /

��

hD

�
0 0

0 .�/rC1.1CT / 0

�
�D

ˇDt .1 0/

// �C.f /

and consider the chain map GW C.˛/! C.ˇ/ induced from � as above. Then C.G/ is
12� contractible over W �8� by the previous proposition. Therefore G is a weak 24�

chain equivalence over W �8� . .1CT / 0 is equal to the following composite of G

with two � chain equivalences:

C n��
t .0 0 1/
�����!
'�

C.˛/ G
��! C.ˇ/

.0 1 0/
����!
'�

C;

and the claim follows from Proposition 2.3.

Next we describe various constructions on quadratic complexes with some size estimates.
Firstly a direct calculation shows the following. (See the non-controlled case in Ranicki
[9].)

Proposition 2.8 If adjoining � cobordisms c and c0 are � Poincaré over W , then
c [ c0 is 100� Poincaré over W �100� .

The following proposition gives us a method to construct quadratic structures and
cobordisms.
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Proposition 2.9 Suppose gW C ! C 0 is a ı chain map of ı chain complexes and  
is an n–dimensional � quadratic structure on C .

(1) g% D f.g% /s D g sg�g is a 2ıC � quadratic structure on C 0 , and .0;  ˚
�g% / is a 2ıC � quadratic structure on the ı chain map .g 1/W C ˚C 0��!C 0 .

(2) If  is � Poincaré over W and g is a weak ı chain equivalence over W , then
g% and .0;  ˚�g% / are 2ıC 6� Poincaré over W �.6ıC24�/ .

(3) If  is � Poincaré, g is a ı chain equivalence, ‰0 D .ı ; 0 D g% / is an
�0 Poincaré ı0 quadratic structure on a ı0 chain map f 0W C 0 ! D , and D is a 

chain complex, then ‰D .ı ; / is an �0C3 maxf9ı; 6ı0; 4�; 3
 g Poincaré maxfı; �g
quadratic structure on the ı0C � chain map f D f 0 ıgW C !D .

Proof (1) This can be checked easily.

(2) This holds because the duality maps for .C 0;g% / and c split as follows:

.C 0/n��
g�

���! C n�� .1CT / 0
������! C

g
��! C 0

C..g 1//nC1�� .0 1 �g�/
�������!
'ı

C n�� .1CT / 0
������! C

g
��! C 0

(3) We study the duality map for ‰0 . Since g is a ı chain equivalence and C.1W D!
D/ is 
 contractible, the algebraic mapping cone of the maxf
; ıg chain map

zg D

�
1 0

0 g

�
W C.f /r DDr ˚Cr�1����!C.f 0/DDr ˚C 0r�1

is 3 maxf3ı; ı C ı0; 
 g contractible, and so is C.zg�W C.f 0/nC1�� ! C.f /nC1��/.
Therefore, the chain map C.D‰0/! C.D‰/ defined by�

1 0

0 zg�

�
W C.D‰0/DDr ˚ C.f 0/nC2�r

����!C.D‰/DDr ˚ C.f /nC2�r

is a 6 maxf9ı; 6ı0; 4�; 3
 g chain equivalence. The claim now follows from the next
lemma.

Lemma 2.10 If a chain complex A is � chain equivalent to a chain complex B which
is ı contractible over X �Y , then A is .2�C ı/ contractible over X �Y � .

Proof Let f W A! B be an � chain equivalence, g an � chain homotopy inverse,
hW gf '� 1 an � chain homotopy, and � a ı chain contraction of B over X � Y .
Then g�f C h gives a.2�C ı/ chain contraction of A over X �Y � .
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112 Andrew Ranicki and Masayuki Yamasaki

Remarks (1) An � chain equivalence f W C��!C 0 such that f% D  
0 will be

called an � homotopy equivalence from .C;  / to .C 0;  0/. By Proposition 2.9, a
homotopy equivalence between quadratic Poincaré complexes induces a Poincaré
cobordism between them.

(2) The estimates given in Proposition 2.9 and Lemma 2.10 are, of course, not acute
in general. For example, consider an � quadratic complex .C;  / which is � Poincaré
over W . Then a direct calculation shows that the cobordism between .C;  / and itself
induced by the identity map of C is an � quadratic pair and is � Poincaré over W .
This cobordism will be called the trivial cobordism from .C;  / to itself.

3 Epsilon-controlled L–groups

In this section we review the boundary construction of the first-named author and then
introduce epsilon-controlled L–groups

Lı;�n .X IpX ;R/ and Lı;�n .X;Y IpX ;R/

for pX W M !X , Y �X , n� 0, ı � � � 0, and a ring R with involution. These are
defined using geometric R–module chain complexes with quadratic Poincaré structures
discussed in the previous section.

Let .C;  / be an n–dimensional � quadratic R–module complex on pX , where
n� 1. Define a (possibly non-positive) 2� chain complex @C by �C.D /. Then an
.n�1/–dimensional 2� Poincaré 2� quadratic structure @ on @C is defined by:

@ 0 D

�
0 0

1 0

�
W @C n�r�1

D C n�r
˚CrC1��!@Cr D CrC1˚C n�r

@ s D

�
.�/n�r�s�1T s�1 0

0 0

�
W

@C n�r�s�1
D C n�r�s

˚CrCsC1��!@Cr D CrC1˚C n�r .s � 1/:

This is the boundary construction of Ranicki [9]. The structure ‰1 D .0; @ / is an
n–dimensional 2� Poincaré 2� quadratic structure on the � chain map

iC D projectionW @C��!C n��

of 2� chain complexes. This is called the algebraic Poincaré thickening (see Ranicki
[9]).
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Example 3.1 Consider an n–dimensional � chain complex F , and give †F the
trivial .nC1/–dimensional quadratic structure �s D 0 (s � 0). Its algebraic Poincaré
thickening

.i†F W @†F D F ˚Fn��
��!.†F /nC1��

D Fn��; .0; @�//

is an .nC1/–dimensional � Poincaré � null-cobordism of .@†F; @�/.

There is an inverse operation up to homotopy equivalence. Given an n–dimensional
� Poincaré � quadratic pair c D .f W C ! D; .ı ; //, take the union . zC ; z / of
c with the � quadratic pair .C ! 0; .0;� //. zC is equal to C.f /. . zC ; z / is an
n–dimensional 2� quadratic complex and is called the algebraic Thom complex of c .
The algebraic Poincaré thickening of . zC ; z / is “homotopy equivalent” to the original
pair c (as pairs). Since we will not use this full statement, we do not define homotopy
equivalences of pairs here and only mention that the chain map

g D
�
0 1 0 � 0

�
W @ zCr DDrC1˚Cr ˚Dn�r

˚C n�r�1
��!Cr

gives an 11� chain equivalence such that g%.@ z / D  . If we start with an n–
dimensional � quadratic complex .C;  / on pX , then the algebraic Thom complex of
the algebraic Poincaré thickening .iC W @C��!C n��; .0; @ // of .C;  / is 3� homo-
topy equivalent to .C;  /; 3� homotopy equivalences are given by

f D
�
�D 1 0

�
W C.iC /r D C n�r

˚Cr ˚C n�rC1
��!Cr ;

f%.‰1[@ �‰2/D  ;

f 0 D t
�
0 1 0

�
W Cr��!C.iC /r D C n�r

˚Cr ˚C n�rC1;

f 0% D‰1[@ �‰2;

where ‰2 D .0; @ / is the n–dimensional � quadratic structure on the trivial chain
map 0W @C��!0.

The boundary construction described above generalizes to quadratic pairs. For an
.nC1/–dimensional � quadratic pair .f W C !D; .ı ; // on pX , define a (possibly
non-positive) 2� chain complex @D by �C.D.ı ; // and define an n–dimensional
3� Poincaré 2� quadratic structure ‰3 D .@ı ; @ / on the 2� chain map of 2� chain
complexes

@f D

0@f 0

0 0

0 1

1A W @Cr D CrC1˚C n�r
����!@Dr DDrC1˚Dn�rC1

˚C n�r
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114 Andrew Ranicki and Masayuki Yamasaki

by

@ı 0 D

0@ 0 0 0

�1 0 0

0 0 0

1A W @Dn�r
DDn�rC1

˚DrC1˚Cr

����!@Dr DDrC1˚Dn�rC1
˚C n�r

@ı s D

0@.�/n�r�s�1T ı s�1 0 0

0 0 0

0 0 0

1A W @Dn�r�s
DDn�r�sC1

˚DrCsC1˚CrCs

����!@Dr DDrC1˚Dn�rC1
˚C n�r .s � 1/:

@ is the same as above. Then .0; ‰1[@ .�‰3// gives an .nC1/–dimensional 300�

Poincaré 4� quadratic structure on the � chain map�
i 0 iD

�
W .C n��

[@C @D/r D C n�r
˚ @Cr�1˚ @Dr

����!.C.f /nC1��/r D C.f /nC1�r

of 2� chain complexes, where i W C n�� ! C.f /nC1�� is the inclusion map and
iD W @D! C.f /nC1�� is the projection map.

If .C;  / (resp. .f W C !D; .ı ; //) is � Poincaré, then @C is (resp. @C and @D
are) 4� contractible, and hence chain homotopic to a positive chain complex (resp.
positive chain complexes). But in general @C (and @D ) may not be chain homotopic to
a positive chain complex. This leads us to the following definition. The non-controlled
version is described in Ranicki [9].

Definition 3.2 (1) A positive geometric chain complex C (Ci D 0 for i < 0) is �
connected if there exists a 4� morphism hW C0! C1 such that dh�8� 1C0

.

(2) A chain map f W C !D of positive chain complexes is � connected if C.f / is �
connected.

(3) A quadratic complex .C;  / is � connected if D is � connected.

(4) A quadratic pair .f W C !D; .ı ; // is � connected if D and D.ı ; / are �
connected.

Lemma 3.3 (1) The composition of a ı connected chain map and an � connected
chain map is ıC � connected.

(2) Quadratic complexes and pairs that are � Poincaré are � connected.

(3) If  is an � connected quadratic structure on C and gW C ! C 0 is a ı connected
chain map, then D.0; ˚�g% / is �C 2ı connected.
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Proof (1) is similar to Proposition 2.3. (2) is immediate from definition. (3) is similar
to Proposition 2.9 (2).

Remark In general the � connectivity of g does not imply the � connectivity of g�

(or ı connectivity for any ı ). Therefore we do not have any estimate on the connectivity
of g% in (3) above. It should be checked by an ad hoc method in each case. For
example, see Section 6.

If the desuspension �C of a positive complex C on pX is � chain equivalent to a
positive complex, then C is �=4 connected. On the other hand, we have:

Proposition 3.4 Let n� 1.

(1) Suppose an n–dimensional � quadratic complex .C;  / on pX is � connected.
Then @C is 12� chain equivalent to an .n�1/–dimensional (resp. a 1–dimensional) 4�

chain complex y@C if n> 1 (resp. if nD 1).

(2) Suppose an .nC1/–dimensional � quadratic pair .f W C ! D; .ı ; // is �
connected. Then @D is 24� chain equivalent to an n–dimensional 5� chain complex
y@D .

(3) When nD 1, the free 1–dimensional chain complex .y@C; 1/ given in (1) and (2),
viewed as a projective chain complex, is 32� chain equivalent to a 0–dimensional 32�

projective chain complex .z@C;p/ and there is a 32� isomorphism

.y@C1; 1/˚ .z@C0;p/����!.y@C0; 1/;

and hence the controlled reduced projective class
�
z@C;p

�
vanishes in �K0;32�

0
.X IpX ;R/.

Proof (1) There exists a 4� morphism hW @C�1! @C0 such that dh�8� 1. Define
a 4� morphism h0W @Cn�1! @Cn by the composite:

h0W @Cn�1 D Cn˚C 1

�
0 .�/n

.�/n 0

�
���������! C 1

˚Cn
h�

���! C 0
D @Cn;

then h0d �8� 1. Now one can use the folding argument from the bottom (see Yamasaki
[15]) using h and, if n > 1, from the top (see Ranicki–Yamasaki [14]) using h0 to
construct a desired chain equivalence.

(2) There exists a 4� morphism hW @D�1! @D0 such that dh �8� 1. Define a 5�

morphism h0W @Dn! @DnC1 by the composite of�
0 .�/nC1 0

.�/nC1 0 0
0 0 .1CT / 0

�
W @Dn DDnC1˚D1

˚C 0
! @D0

DD1
˚DnC1˚Cn
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and h�W @D0! @D�1 D @DnC1 , then h0d �8� 1. Use the folding argument again.

(3) The boundary map y@C1 D @C1 ˚ @C�1 !
y@C0 D @C0 is given by the matrix

.d@C h/. Therefore

s D

�
h0� h0hd@C

d@C

�
W @C0����!@C1˚ @C�1

defines a 12� morphism sW y@C0 !
y@C1 such that sdy@C

�16� 1. Define z@C0 to be
y@C0 and define a 16� morphism pW z@C0 !

z@C0 by 1� dy@C
, then p2 �32� p and

pW .z@C0; 1/! .z@C0;p/ defines the desired 32� chain equivalence. The isomorphism
can be obtained by combining the following isomorphisms:

.y@C1; 1/
d

//

.y@C0; 1�p/
s

oo

.y@C0; 1�p/˚ .y@C0;p/

.q p/
//

.y@C0; 1/
t .q p/

oo

This completes the proof.

Controlled connectivity is preserved under union operation in the following manner.

Proposition 3.5 If adjoining � cobordisms c and c0 are � connected, then c [ c0 is
100� connected.

Proof Similar to Proposition 2.8.

Now we define the epsilon-controlled L–groups. Let Y be a subset of X .

Definition 3.6 For an integer n� 0, pair of non-negative numbers ı � � � 0, and a
ring with involution R, L

ı;�
n .X;Y IpX ;R/ is defined to be the equivalence classes of

finitely generated n–dimensional � connected � quadratic complexes on pX that are
� Poincaré over X �Y . The equivalence relation is generated by finitely generated ı
connected ı cobordisms that are ı Poincaré over X �Y .

Remark We use the following abbreviations for simplicity:

� L
ı;�
n .X IpX ;R/DL

ı;�
n .X;∅IpX ;R/

� L�n.X;Y IpX ;R/DL
�;�
n .X;Y IpX ;R/

� L�n.X IpX ;R/DL
�;�
n .X IpX ;R/
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Proposition 3.7 Direct sum .C;  / ˚ .C 0;  0/ D .C ˚ C 0;  ˚  0/ induces an
abelian group structure on L

ı;�
n .X;Y IpX ;R/. Furthermore if ŒC;  � D ŒC 0;  0� 2

L
ı;�
n .X;Y IpX ;R/, then there is a finitely generated 100ı connected 2ı cobordism

between .C;  / and .C 0;  0/ that is 100ı Poincaré over X �Y 100ı .

Proof The inverse of an element ŒC;  � is given by ŒC;� �. In fact, as in Proposition
2.9 and Lemma 3.3 (with g D 1),

..1 1/W C ˚C��!C; .0;  ˚� //

gives an � connected � null-cobordism of .C;  /˚ .C;� / that is � Poincaré over
X �Y . The second claim follows from Proposition 2.8 and Proposition 3.5, because
we can glue a sequence of cobordisms at once.

If ı0 � ı and �0 � � , then there is a homomorphism

Lı;�n .X;Y IpX ;R/����!Lı
0;�0

n .X;Y IpX ;R/

which sends ŒC;  � to ŒC;  �. This is called the relax-control map.

In the study of controlled L–groups, we need an analogue of Proposition 2.9 for pairs:

Proposition 3.8 Suppose there is a triad of � chain complexes on pX

C

g

��

f
//

g

��
�_

�_
�_

�_
�_

D

h

��

dkC kd � f 0g� hf

C 0
f 0

// D0

where f , f 0 , g , h are � chain maps and k is an � chain homotopy, and suppose
.ı ; / is an .nC1/–dimensional � quadratic structure on f .

(1) There is induced a 4� quadratic structure on f 0 :

.g; hI k/%.ı ; /D .hı sh�C .�/nC1k sf
�h�C .�/n�rC1f 0g sk�

C.�/rC1kT sC1k�W .D0nC1�r�s; q0�/! .D0r ; q
0
r /;g sg�/s�0:

(2) Suppose g and h are � chain equivalences.

(a) If .ı ; / is � Poincaré over X � Y , then .g; hI k/%.ı ; / is 30� Poincaré
over X �Y 81� .

(b) If .f; .ı ; // is � connected, then .f 0; .g; hI k/%.ı ; // is 30� connected.
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Proof (1) is easy to check. (2) can be checked by showing that

..�/nC1�r k 0k� k.1CT / 0g�/W C.f 0/nC1�r
DD0nC1�r

˚C 0n�r

����!D0rC1

is a 3� chain homotopy between the duality map for .g; hI k/%.ı ; / and the follow-
ing chain map:

h..1CT /ı 0 f .1CT / 0/

�
h� 0

.�/nC1�r k� g�

�
W C.f 0/nC1�r

����!.D0r ; q
0
r /;

which is a weak 27� chain equivalence over X �Y 18� in case (2a), and 16� connected
in case (2b).

Corollary 3.9 Suppose f W C !D is an � chain map, .ı ; / is an .nC1/–dimen-
sional � quadratic structure on f , gW C!C 0 is a 
 chain equivalence, and hW D!D0

is a ı chain equivalence. Let �0 D 
 C ıC � and g�1 be a 
 chain homotopy inverse
of g .

(1) There is an .nC1/–dimensional 4�0 quadratic structure .ı 0;  0 D g% / on the
�0 chain map f 0 D hfg�1W .C 0;p0/! .D0; q0/.

(2) If .ı ; / is � Poincaré over X � Y , then .ı 0;  0/ is 30�0 Poincaré over
X �Y 81�0 .

(3) If .ı ; / is � connected, then .ı 0;  0/ is 30�0 connected.

Proof Let �W g�1g ' 1 be a 
 chain homotopy. Define an �0 chain homotopy
kW hf ' f 0g by k D�hf � , and apply Proposition 3.8

The last topic of this section is the functoriality. A map between control maps pX W M!

X and pY W N !Y means a pair of continuous maps .f W M !N; xf W X!Y / which
makes the following diagram commute:

M
f

//

pX

��

N

pY

��

X
xf

// Y:

For example, given a control map pY W N ! Y and a subset X � Y , let us denote the
control map pY jp

�1
Y
.X /W p�1

Y
.X /!X by pX W M !X . Then the inclusion maps

j W M !N , x| W X ! Y form a map form pX to pY .

Epsilon controlled L–groups are functorial with respect to maps and relaxation of
control in the following sense.
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Proposition 3.10 Let F D .f; xf / be a map from pX W M !X to pY W N ! Y , and
suppose that xf is Lipschitz continuous with Lipschitz constant �, ie there exists a
constant � > 0 such that

d. xf .x1/; xf .x2//� �d.x1;x2/ .x1;x2 2X /:

Then F induces a homomorphism

F�W L
ı;�
n .X;X 0IpX ;R/����!Lı

0;�0

n .Y;Y 0IpY ;R/

if ı0 � �ı , �0 � �� and xf .X 0/ � Y 0 . If two maps F D .f; xf / and G D .g; xg/ are
homotopic through maps Ht D .ht ; xht / such that each xht is Lipschitz continuous with
Lipschitz constant �, ı0 > �ı , �0 � �� , and xht .X

0/ � Y 0 , then F and G induce the
same homomorphism:

F� DG�W L
ı;�
n .X;X 0IpX ;R/����!Lı

0;�0

n .Y;Y 0IpY ;R/:

Proof The direct image construction for geometric modules and morphisms (see
Ranicki–Yamasaki [14, page 7]) can be used to define the direct images f#.C;  / of
quadratic complexes and the direct images of cobordisms. And this induces the desired
F� .

For the second part, split the homotopy into thin layers to construct small cobordisms.
The size of the cobordism may be slightly bigger than the size of the object itself.

Remark The above is stated for Lipschitz continuous maps to simplify the statement.
For specific ı� � and ı0� �0 , the following condition, instead of the Lipschitz condition
above, is sufficient for the existence of F� :

d. xf .x1/; xf .x2//� k�0 whenever d.x1;x2/� k�; and

d. xf .x1/; xf .x2//� kı0 whenever d.x1;x2/� kı;

for k D 1, 3, 4, 8. The second part of the proposition also holds under this condition.
When X is compact and ı0 � �0 are given, the uniform continuity of xf implies that
this condition is satisfied for sufficiently small pairs ı � � .

4 Epsilon-controlled projective L–groups

Fix a subset Y of X , and let F be a family of subsets of X such that Z � Y for
each Z 2 F . In this section we introduce intermediate epsilon-controlled L–groups
L
F ;ı;�
n .Y IpX ;R/, which will appear in the stable-exact sequence of a pair (Section

5) and also in the Mayer–Vietoris sequence (Section 7). Roughly speaking, these

Geometry & Topology Monographs, Volume 9 (2006)



120 Andrew Ranicki and Masayuki Yamasaki

are defined using “controlled projective quadratic chain complexes” ..C;p/;  / with
vanishing �–controlled reduced projective class ŒC;p�D 0 2 zK

n;�
0
.ZIpZ ;R/ for each

Z 2 F .

zK
n;�
0
.ZIpZ ;R/ is an abelian group defined as the set of equivalence classes ŒC;p�

of finitely generated � projective chain complexes on pZ . See Ranicki–Yamasaki [14]
for the details. The following is known [14, 3.1 and 3.5]:

Proposition 4.1 If ŒC;p� D 0 2 zK
n;�
0
.ZIpZ ;R/, then there is an n–dimensional

free � chain complex .E; 1/ such that .C;p/˚ .E; 1/ is 3� chain equivalent to an
n–dimensional free � chain complex on pZ . If we further assume that n � 1, then
.C;p/ itself is 60� chain equivalent to an n–dimensional free 30� chain complex on
pZ .

All the materials in the previous two sections (except for Proposition 3.4(3)) have
obvious analogues in the category of projective chain complexes with the identity
maps in the formulae replaced by appropriate projections. So we shall only describe
the basic definitions and omit stating the obvious analogues of Propositions 2.3–2.6,
Corollary 2.7, Propositions 2.8 and 2.9, Lemmas 2.10 and 3.3, Propositions 3.5 and 3.8,
and Corollary 3.9, and we refer them by Proposition 2.3 0 , Proposition 2.4 0 , . . . . An
analogue of Proposition 3.7 will be explicitly stated in Proposition 4.4 below.

For a projective module .A;p/ on pX , its dual .A;p/� is the projective module
.A�;p�/ on pX . If f W .A;p/! .B; q/ is an � morphism [14], then f �W .B; q/�!
.A;p/� is also an � morphism. For an � projective chain complex on pX

.C;p/W : : :��!.Cr ;pr /
dr
��! .Cr�1;pr�1/

dr�1
���! : : :

in the sense of [14], .C;p/n�� will denote the � projective chain complex on pX

defined by:

: : :��!.C n�r ;p�n�r /
.�/r d�r
�����! .C n�rC1;p�n�rC1/��! : : : :

Before we go on to define � projective quadratic complexes, we need to define basic
notions for projective chain complexes. For Y D X or for free chain complexes, these
are already defined in [14].

Suppose f W .A;p/! .B; q/ is a morphism between projective modules on pX , and
let Y be a subset of X . The restriction f jY of f to Y will mean the restriction of f
in the sense of [14, page 21] with f viewed as a geometric morphism from A to B ;
that is, f jY is the sum of the paths (with coefficients) that start from points in p�1

X
.Y /.
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f jY can be viewed as a geometric morphism from A to B and also as a geometric
morphism from A.Y / to B.Y /, where A.Y / denotes the restriction of A to Y in the
sense of [14], ie the geometric submodule of A generated by the basis elements of
A that are in p�1

X
.Y /. But, in general, it does not give a morphism from .A;p/ to

.B; q/. Also note that there is no obvious way to “restrict” a projection pW A!A to
a projection on A.Y /.

The following four paragraphs are almost verbatim copies of the definitions for free
chain complexes [14, page 22].

Let f , gW .A;p/! .B; q/ be morphisms; f is said to be equal to g over Y (f D g

over Y ) if f jY D gjY , and f is said to be � homotopic to g over Y (f �� g over
Y ) if f jY �� gjY .

Let f , gW .C;p/! .D; q/ be chain maps between projective chain complexes on pX .
A collection fhr W .Cr ;pr /! .DrC1; qrC1/g of � morphisms is said to be an � chain
homotopy over Y between f and g if dhC hd �2� g�f over Y .

An � chain map f W .C;p/! .D; q/ is said to be an � chain equivalence over Y

if there exist an � chain map gW .D; q/! .C;p/ and � chain homotopies over Y

between gf and p and between fg and q .

A chain complex .C;p/ is said to be � contractible over Y if there is an � chain
homotopy over Y between 0W .C;p/! .C;p/ and pW .C;p/! .C;p/; such a chain
homotopy over Y is called an � chain contraction of .C;p/ over Y .

The Definition 2.2 of weak � chain equivalences over Y (for chain maps between free
chain complexes) can be rewritten for maps between projective chain complexes in the
obvious manner.

The following is the most important technical proposition in the theory of controlled
projective chain complexes.

Proposition 4.2 (Ranicki–Yamasaki [14, 5.1 and 5.2]) If an n–dimensional free �
chain complex C on pX is � contractible over X �Y , then .C; 1/ is .6nC15/� chain
equivalent to an n–dimensional .3nC 12/� projective chain complex on pY .4nC14/� .
Conversely, if an n–dimensional free chain complex .C; 1/ on pX is � chain equivalent
to a projective chain complex .D; r/ on pY , then C is � contractible over X �Y � .

Now we introduce quadratic structures on projective chain complexes and pairs. An
n–dimensional � quadratic structure on a projective chain complex .C;p/ on pX is
an n–dimensional � quadratic structure  on C (in the sense of Section 2) such that
 sW .C

n�r�s;p�/! .Cr ;p/ is an � morphism for every s � 0 and r 2 Z. Similarly,
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an .nC1/–dimensional � quadratic structure on a chain map f W .C;p/ ! .D; q/

is an .nC1/–dimensional � quadratic structure .ı ; / on f W C ! D such that
ı sW .D

nC1�r�s; q�/! .Dr ; q/ and  sW .C
n�r�s;p�/! .Cr ;p/ are � morphisms

for every s�0 and r 2Z. An n–dimensional � projective chain complex .C;p/ on pX

equipped with an n–dimensional � quadratic structure is called an n–dimensional � pro-
jective quadratic complex on pX , and an � chain map f W .C;p/! .D; q/ between an
n–dimensional � projective chain complex .C;p/ on pX and an .nC1/–dimensional
� projective chain complex .D; q/ on pX equipped with an .nC1/–dimensional �
quadratic structure is called an .nC1/–dimensional � projective quadratic pair on pX .

An � cobordism of n–dimensional � projective quadratic complexes ..C;p/;  /,
..C 0;p0/;  0/ on pX is an .nC1/–dimensional � projective quadratic pair on pX

..f f 0/W .C;p/˚ .C 0;p0/��!.D; q/; .ı ; ˚� 0//

with boundary ..C;p/˚ .C 0;p0/;  ˚� 0/.

Boundary constructions, algebraic Poincaré thickenings, algebraic Thom complexes, �
connectedness are defined as in the previous section.

An n–dimensional � quadratic structure  on .C;p/ is � Poincaré (over Y ) if

@.C;p/D�C..1CT / 0W .C
n��;p�/��!.C;p//

is 4� contractible (over Y ). ..C;p/;  / is � Poincaré (over Y ) if  is � Poincaré (over
Y ). Similarly, an .nC1/–dimensional � quadratic structure .ı ; / on f W .C;p/!
.D; q/ is � Poincaré (over Y ) if @.C;p/ and

@.D; q/D�C...1CT /ı 0 f .1CT / 0/W C.f /nC1��
��!.D; q//

are both 4� contractible (over Y ). A pair .f; .ı ; // is � Poincaré (over Y ) if
.ı ; / is � Poincaré (over Y ).

Let Y and be a subset of X and F be a family of subsets of X such that Z � Y for
every Z 2 F .

Definition 4.3 Let n � 0 and ı � � � 0. L
F ;ı;�
n .Y IpX ;R/ is the equivalence

classes of finitely generated n–dimensional � Poincaré � projective quadratic com-
plexes ..C;p/;  / on pY such that ŒC;p�D 0 in zKn;�

0
.ZIpZ ;R/ for each Z 2 F .

The equivalence relation is generated by finitely generated ı Poincaré ı cobordisms
..f f 0/W .C;p/˚ .C 0;p0/! .D; q/; .ı ; ˚� 0// on pY such that ŒD; q�D 0 in
zK

nC1;ı
0

.ZIpZ ;R/ for each Z 2 F .

Remark We use the following abbreviation: L
F ;�
n .Y IpX ;R/DL

F ;�;�
n .Y IpX ;R/.
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Proposition 4.4 Direct sum induces an abelian group structure on L
F ;ı;�
n .Y IpX ;R/.

Furthermore if Œ.C;p/;  �D Œ.C 0;p0/;  0� 2L
F ;ı;�
n .Y IpX ;R/, then there is a finitely

generated 100ı Poincaré 2ı cobordism on pY

..f f 0/W .C;p/˚ .C 0;p0/! .D; q/; .ı ; ˚� 0//

such that ŒD; q�D 0 in zKnC1;9ı
0

.ZIpZ ;R/ for each Z 2 F .

Proof The first part is similar to the proof of Proposition 3.7. Observe that ŒD; q�D 0

in zKnC1;9ı
0

.ZIpZ ;R/, because

ŒC.gW .E; r/! .F; s//�D ŒF; s�� ŒE; r � 2 zK
nC1;9ı
0

.ZIpZ ;R/

for any ı chain map g between ı projective chain complexes .E; r/ (of dimension n)
and .F; s/ (of dimension nC 1) on pZ . See Ranicki–Yamasaki [14, page 18].

A functoriality with respect to maps and relaxation of control similar to Proposition
3.10 holds for epsilon-controlled projective L–groups.

Proposition 4.5 Let F D .f; xf / be a map from pX W M ! X to pY W N ! Y , and
suppose that xf is Lipschitz continuous with Lipschitz constant �, ie there exists a
constant � > 0 such that

d. xf .x1/; xf .x2//� �d.x1;x2/ .x1;x2 2X /:

If ı0 � �ı , �0 � �� , xf .A/ � B , and there exists a Z 2 F satisfying xf .Z/ �Z0 for
each Z0 2 F 0 , then F induces a homomorphism

F�W L
F ;ı;�
n .AIpX ;R/����!LF 0;ı0;�0

n .BIpY ;R/:

It is �–Lipschitz-homotopy invariant if ı0 > �ı in addition.

Remark As in the remark to Proposition 3.10, for a specific ı and � , we do not need
the full Lipschitz condition to guarantee the existence of F� .

There is an obvious homomorphism

�W Lı;�n .Y IpY ;R/����!LF ;ı;�
n .Y IpX ;R/I ŒC;  � 7! Œ.C; 1/;  �

from free L–groups to projective L–groups. On the other hand, the controlled K–
theoretic condition posed in the definition can be used to construct homomorphisms
from projective L–groups to free L–groups:
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Proposition 4.6 There exist a constant ˛ > 1 such that the following holds true: for
any control map pX W M ! X , any subset Y � X , any family of subsets F of X

containing Y , any element Z of F , any number n � 0, and any pair of positive
numbers ı� � and ı� � with ı0 � ˛ı , �0 � ˛� , there is a well-defined homomorphism

�Z W L
F ;ı;�
n .Y IpX ;R/����!Lı

0;�0

n .ZIpZ ;R/;

functorial with respect to relaxation of control, such that the composite maps

LF ;ı;�
n .Y IpX ;R/

�Z
�!Lı

0;�0

n .ZIpZ ;R/
�
�!Lp;ı0;�0

n .ZIpZ ;R/

Lı;�n .Y IpY ;R/
�
�!LF ;ı;�

n .Y IpX ;R/
�Z
�!Lı

0;�0

n .ZIpZ ;R/

are equal to the ones induced from inclusion maps.

Remark Actually ˛ D 20000 works. In the rest of the paper, we always assume that
˛ D 20000.

Proof Let Œ.C;p/;  � be an element of L
F ;ı;�
n .Y IpX ;R/, and fix Z 2F . Recall that

ŒC;p�D 02 zK
n;�
0
.ZIpZ ;R/. By Proposition 4.1, there exists an n–dimensional free �

chain complex .E; 1/ on pZ such that .C;p/˚ .E; 1/ is 3� chain equivalent to some
n–dimensional free � chain complex . xF ; 1/ on pZ . Add 1W .En��; 1/! .En��; 1/

to this chain equivalence to get a 3� chain equivalence

gW .C;p/˚ .@†E; 1/����!. xF ; 1/˚ .En��; 1/D .F; 1/

of projective chain complexes on pZ , where †E is defined using the trivial .nC1/–
dimensional quadratic structure � D 0 on †E . See Example 3.1. We set

�Z Œ.C;p/;  �D ŒF;g%. ˚ @�/�:

Let us show that this defines a well-defined map. Suppose Œ.C;p/;  �D Œ.C 0;p0/;  0�
in L

F ;ı;�
n .Y IpX ;R/, and let E and E0 be n–dimensional free � chain complexes on

pZ together with 3� chain equivalences

gW . xC ; xp/D .C;p/˚ .@†E; 1/! .F; 1/

g0W . xC 0; xp0/D .C 0;p0/˚ .@†E0; 1/! .F 0; 1/

to free � chain complexes F and F 0 on pZ . By Proposition 4.4 above and Proposition
4.1, there is a 100ı Poincaré 2ı null-cobordism

.f W .C;p/˚ .C 0;p0/��!.D; q/; .ı ; ˚� 0//
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such that .D; q/ is 540ı chain equivalent to an .nC1/–dimensional free 270ı chain
complex .G; 1/ (as a projective chain complex on pZ ). Take the direct sum with the
null-cobordisms

.i†E W .@†E; 1/��!.En��; 1/; .0; @�//;

.i†E0 W .@†E0; 1/��!.E0n��; 1/; .0;�@� 0//:

Now the claim follows from Corollary 3.9 0 .

. xC ; xp/˚ . xC 0; xp0/
100ı Poincaré

//

g˚g0 '3�

��

.D; q/˚ .En��; 1/˚ .E0n��; 1/

'540ı

��

.F; 1/˚ .F 0; 1/
20000ı Poincaré

// .G; 1/˚ .En��; 1/˚ .E0n��; 1/

This completes the proof.

5 Stably-exact sequence of a pair

Let Y be a subset of X . We discuss relations between the various controlled L–groups
of X , Y , and .X;Y / by fitting them into a stably-exact sequence. Two of the three
kinds of maps forming the sequence have already appeared. The first is the map

i� D �X W L
fX g;ı;�
n .Y IpX ;R/����!Lı

0;�0

n .X IpX ;R/

defined when ı0 � ˛ı and �0 � ˛� . The second is the homomorphism induced by the
inclusion map j W .X;∅/! .X;Y /:

j�W L
ı;�
n .X IpX ;R/!Lı

0;�0

n .X;Y IpX ;R/:

defined for positive numbers ı0 � ı and �0 � � . The third map @ is described in the
next proposition.

Proposition 5.1 For n � 1, there exists a constant �n > 1 such that the following
holds true: If Y 0 � Y �nı , ı0 � �nı , and �0 � �n� , @.ŒC;  �/D Œ.E; q/; ˇ%@ � defines
a well-defined homomorphism:

@W Lı;�n .X;Y IpX ;R/!L
fX g;ı0;�0

n�1
.Y 0IpX ;R/;

where
ˇW .@C; 1/����!.E; q/

is any .200nC 300/� chain equivalence from .@C; 1/ to some .n�1/–dimensional
.100nC 300/� projective chain complex on pY 0 .
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Remark Actually �n D 150000.nC 2/ works. In the rest of the paper, we always
assume that �n � 150000.nC 2/.

Proof We first show the existence of such ˇ . Take ŒC;  � 2 L
ı;�
n .X;Y IpX ;R/.

Suppose n> 1. By Proposition 3.4(1), there is a 12� chain equivalence between @C
and an .n�1/–dimensional 4� chain complex y@C on pX . Since @C is 4� contractible
over X�Y , y@C is 28� contractible over X�Y 12� by Lemma 2.10. Now by Proposition
4.2, .y@C; 1/ is .168nC252/� (D .6.n�1/C15/�28� ) chain equivalent to an .n�1/–
dimensional .84nC 252/� projective chain complex on pY .112nC292/� .

Next suppose nD 1. By Proposition 3.4(1) and (3), there is a 44� chain equivalence
between .@C; 1/ and a 0–dimensional 32� chain complex .z@C;p/. Since @C is 4�

contractible over X�Y , .z@C;p/ is 92� contractible over X�Y 44� , ie p�184� 0 over
X �Y 44� . Let E D z@C jY 76� and q D pjY 44� , then p�q D pj.X �Y 44�/�184� 0.
Therefore

q �184� p �32� p2
�216� pq �216� q2;

and .E; q/ is a 0–dimensional 216� projective chain complex on pY 292� . The 32�

morphism q defines a 216� isomorphism between .z@C;p/ and .E; q/ in each direction.
Therefore .@C; 1/ is 260� chain equivalent to .E; q/. This completes the proof of the
existence of ˇ .

Suppose ŒC;  �D ŒC 0 0� 2L
ı;�
n .X;Y IpX ;R/ and suppose ˇW .@C; 1/! .E; q/ and

ˇ0W .@C 0; 1/! .E0; q0/ are chain equivalences satisfying the condition, and suppose Y 0 ,
ı0 , and �0 satisfy the hypothesis. We show that ..E; q/; ˇ%@ / and ..E0; q0/; ˇ0%@ 

0/

represent the same element in L
fX g;ı0;�0

n�1
.Y 0IpX ;R/. Without loss of generality, we

may assume that there is an � connected � cobordism

..f f 0/W C ˚C 0��!D; .@ ; ˚� 0//

which is � Poincaré over X � Y . Apply the boundary construction (Section 3)to
this pair to get a 3� Poincaré 2� quadratic structure .@ı ; @ ˚�@ 0/ on the 2�

chain map .@C; 1/˚ .@C 0; 1/��!.@D; 1/ of 2� chain complexes. By Lemma 2.10 0 ,
Proposition 3.4 and Proposition 4.2, .@D; 1/ is .312nC 904/� chain equivalent to
an n–dimensional .156nC 624/� projective chain complex .F; r/ on pY .208nC752/� .
Now, by Corollary 3.9 0 , we can obtain a .15360nC 36210/� Poincaré cobordism

.E; q/˚ .E0; q0/ ����! .F; r/; .�; ˇ%@ ˚ .�ˇ
0
%@ 

0//:

Since such a structure involves 8.15360nC 36210/� homotopies, this cobordism can
be viewed to be on pY .123088nC290432/� . Also ŒF; r �D Œy@D; 1�D 0 in zKn;�0

0
.X IpX ;R/,
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and similarly ŒE; q�D ŒE0; q0�D0 in zKn�1;�0

0
.X IpX ;R/. Therefore Œ.E; q/; ˇ%@ �D

Œ.E0; q0/; ˇ0%@ 
0� in L

fX g;ı0;�0

n�1
.Y 0IpX ;R/.

Theorem 5.2 For any integer n � 0, there exists a constant �n > 1 which depends
only on n such that the following holds true for any control map pX and a subset Y of
X :

(1) Suppose ı0 � ˛ı , �0 � ˛� , ı00 � ı0 , and �00 � �0 so that the following two maps
are defined:

LfX g;ı;�n .Y IpX ;R/
i�
��!Lı

0;�0

n .X IpX ;R/
j�
��!Lı

00;�00

n .X;W IpX ;R/:

If W � Y ˛� , then j�i� is zero.

(2) Suppose ı00 � ı0 , �00 � �0 so that j�W L
ı0;�0

n .X IpX ;R/! L
ı00;�00

n .X;W IpX ;R/

is defined. If ı � �nı
00 and Y �W �nı

00

, then the relax-control image of the kernel of
j� in L˛ın .X IpX ;R/ is contained in the image of i� below:

L
ı0;�0

n .X IpX ;R/
j�

//

��

L
ı00;�00

n .X;W IpX ;R/

L
fX g;ı
n .Y IpX ;R/

i�
// L˛ın .X IpX ;R/

(3) Suppose n� 1, ı0 � ı , �0 � � , W � Y �nı
0

, ı00 � �nı
0 , and �00 � �n�

0 so that the
following two maps are defined:

Lı;�n .X IpX ;R/
j�
�!Lı

0;�0

n .X;Y IpX ;R/
@
�!L

fX g;ı00;�00

n�1
.W IpX ;R/:

Then @j� is zero.

(4) Suppose n� 1, W � Y �nı
0

, ı00 � �nı
0 , and �00 � �n�

0 so that the map

@W Lı
0;�0

n .X;Y IpX ;R/!L
fX g;ı00;�00

n�1
.W IpX ;R/

is defined. If ı � �nı
00 and Y 0 �W �nı

00

, then the relax-control image of the kernel of
@ in Lın.X;Y

0IpX ;R/ is contained in the image of j� below:

L
ı0;�0

n .X;Y IpX ;R/
@

//

��

L
fX g;ı00;�00

n�1
.W IpX ;R/

Lın.X IpX ;R/
j�

// Lın.X;Y
0IpX ;R/
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(5) Suppose n � 1, Y 0 � Y �nı , ı0 � �nı , �0 � �n� , ı00 � ˛ı0 , and �00 � ˛�0 so that
the following two maps are defined:

Lı;�n .X;Y IpX ;R/
@
�!L

fX g;ı0;�0

n�1
.Y 0IpX ;R/

i�
�!L

ı00;�00

n�1
.X IpX ;R/:

Then i�@ is zero.

(6) Suppose n � 1, ı00 � ˛ı0 , and �00 � ˛�0 so that i�W L
fX g;ı0;�0

n�1
.Y IpX ;R/ !

L
ı00;�00

n�1
.X IpX ;R/ is defined. If ı � �nı

00 and W � Y �nı
00

, then the relax-control

image of the kernel of i� in L
fX g;�nı
n�1

.W �nıIpX ;R/ is contained in the image of @
below:

L
fX g;ı0;�0

n�1
.Y IpX ;R/

i�
//

��

L
ı00;�00

n�1
.X IpX ;R/

Lın.X;W IpX ;R/
@

// L
fX g;�nı
n�1

.W �nıIpX ;R/

Proof (1) Let Œ.C;p/;  � 2 L
fX g;ı;�
n .Y IpX ;R/. There is a 3� chain equivalence

gW .C;p/˚ .@†E/! .F; 1/ for some n–dimensional free � chain complexes E and
F on pX , and j�i�Œ.C;p/;  � 2L

ı00;�00

n .X;W IpX ;R/ is represented by .F;g%. ˚

@�//, where � is the trivial quadratic structure on †E . Take the sum of

.0W .C;p/! 0; .0;  //; and .i†E W .@†E; 1/! .En��; 1/; .0; @�//:

.0;  ˚ @�/ is a 2� connected 2� quadratic structure, and it is 2� Poincaré over
X �Y . Use the chain equivalence g and Corollary 3.9 0 to get a 180� connected 24�

null-cobordism
.F����!En��; .�;g%. ˚ @�///

that is 180� Poincaré over X �Y 486� .

(2) Let ŒC;  � 2L
ı0;�0

n .X IpX ;R/ and assume j�ŒC;  �D 0 2L
ı00;�00

n .X;W IpX ;R/.
By Proposition 3.7, there is a 100ı00 connected 2ı00 null-cobordism

.f W C !D; .ı ; //

that is 100ı00 Poincaré over X �W 100ı00 . Apply the boundary construction to this null-
cobordism to get a 4ı00 chain map @f of 4ı00 chain complexes and an n–dimensional
6ı00 Poincaré 6ı00 quadratic structure on it:

@f W @C ! @D; ‰3 D .@ı ; @ /:

.@C; @ / also appears as the boundaries of

Geometry & Topology Monographs, Volume 9 (2006)



Controlled L–theory 129

� an n–dimensional 2�0 Poincaré 2�0 quadratic structure ‰1 D .0; @ / on the �0

chain map iC W @C ! C n�� , and
� an n–dimensional �0 quadratic structure ‰2 D .0; @ / on the 0 chain map

0W @C ! 0, which is �0 Poincaré because @C is 4�0 contractible.

The union ‰2[@C �‰3 is a 600ı00 Poincaré 7ı00 quadratic structure on 0[@C @D D

C.@f /. By Proposition 3.4(2), there is a 2400ı00 chain equivalence between @D and an
n–dimensional 500ı00 chain complex y@D . This chain equivalence, together with the
4�0 chain contraction of @C , induces a 43200ı00 chain equivalence gW 0[@C @D!y@D .
Define a 43200ı00 Poincaré 3 � 43200ı00 quadratic structure y on y@D by g%.‰2[@ 

�‰3/. By Proposition 2.9, there is a 43200ı00 Poincaré 3 �43200ı00 quadratic structure
on a 43200ı00 chain map

.0[@C @D/˚y@D����!y@D;

and, therefore, the right square in the picture below is filled with a cobordism.

p p p p p p p p p p p p p p

t

pppppp
pppppp
pp

pppppp
pppppp
pp

pppppp
pppppp
pp

C;  y@D; y 

C 0 ‰2
y@D

C n�� @C @D

‰1 @ ‰3

The left square can also be filled in with a cobordism. There is a 3�0 homotopy
equivalence:

.C n��
[@C 0D C.iC /; ‰1[@ �‰2/����!.C;  /;

and again by Proposition 2.9, this induces a 30�0 Poincaré 9�0 quadratic structure on a
3�0 chain map

.C n��
[@C 0/˚C����!C:

Glue these along the pair .@C ! 0; ‰2/, and we get a chain map

.C n��
[@C @D/˚C ˚y@D����!C ˚y@D

and a 43200000ı00 Poincaré 6 � 43200ı00 quadratic structure on it. Since @C is 4�0

contractible and @D is 2400ı00 chain equivalent to y@D , there is a 43200ı00 chain
equivalence

GW C n��
[@C @D����!E D C n��

˚y@D;
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and hence, by Corollary 3.9, there is a 30 � 43300000ı00 Poincaré 4 � 43300000ı00

null-cobordism of .E;G%.‰1[@ �‰3//˚ .C;� /˚ .y@D;�y /. Therefore

ŒC;  �C Œy@D; y �D ŒE;G%.‰1[@ �‰3/�

in L13�108ı00

n .X IpX ;R/.

On the other hand, there is a 600ı00 Poincaré null-cobordism of ‰1[@ �‰3 on the
chain map

C n��
[@C @D����!C.f /nC1��:

Using G and Corollary 3.9, we obtain a 30.600C43200C4/ı00 Poincaré null-cobordism

.E! C.f /nC1��; .�;G%.‰1[@ �‰3//;

and this implies

ŒE;G%.‰1[@ �‰3/�D 0 2L13�108ı00

n .X IpX ;R/

and hence
ŒC;  �D�Œy@D; y � 2L13�108ı00

n .X IpX ;R/:

Since @D is 400�00 contractible over X �W 100�00 and y@D is 2400ı00 chain equivalent
to @D , y@D is 5200ı00 contractible over X �W 2500ı , by Lemma 2.10. By Proposition
4.2, there is a .6nC15/�5200ı00 chain equivalence h from .y@D; 1/ to an n–dimensional
.3nC 12/ � 5200ı00 projective chain complex .F;p/ on pW .20800nC75300/ı00 . Suppose
�n � 105.4nC50/. If ı � �nı

00 and Y �W �nı
00

, then ..F;p/; h%. y // represents an
element of L

fX g;ı
n .Y IpY ;R/ by Proposition 2.9, and its image

i�.Œ.F;p/; h%. y /�/ 2L˛ın .X IpX ;R/

is represented by .y@D; .h�1/%.h%. y // D .h�1h/%. y //. Since h�1h is 2ı chain
homotopic to the identity map,

Œy@D; y �D Œy@D; .h�1h/%. y /� 2L˛ın .X IpX ;R/:

Since ˛ı � 13 � 108ı00 , we have

i�.�Œ.F;p/;g%. y /�/D ŒC;  � 2L˛ın .X IpX ;R/:

(3) Let ŒC;  � 2 L
ı;�
n .X IpX ;R/, then @C is 4� contractible. Thus .@C; 1/ is 4�

chain equivalent to .E D 0; q D 0/.

(4) Let ŒC;  �2L
ı0;�0

n .X;Y IpX ;R/ such that @ŒC;  �D 0 in L
fX g;ı00;�00

n�1
.W IpX ;R/.

Let ˇW .@C; 1/! .E; q/ be a .200nC 300/�0 chain equivalence to an .n�1/–dimen-
sional .100nC 300/�0 projective chain complex on pW posited in the definition of
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@. By assumption, Œ.E; q/; ˇ%@ �D 0 in L
fX g;ı00;�00

n�1
.W IpX ;R/. By Proposition 4.4,

there is an .n�1/–dimensional 100ı00 Poincaré 2ı00 null-cobordism on pW

.f 0W .E; q/����!.D;p/; .ı 0; ˇ%@ //

such that ŒD;p�D 0 in zKn;9ı00

0
.X IpX ;R/. By Lemma 2.10 0 , .ı 0; @ / is a 125ı00

Poincaré 2ı00 quadratic structure on the 3ı00 chain map

f D f 0 ıˇW .@C; 1/����!.D;p/:

On the other hand, .0; @ / is a 2�0 Poincaré 2�0 quadratic structure on the �0 chain
map

iC W .@C; 1/����!.C
n��; 1/:

Gluing these together, we obtain a 12500ı00 Poincaré 4ı00 quadratic structure

 0 D .0; @ /[@ �.ı 
0; @ /

on .C 0;p0/D .C n��; 1/[.@C;1/.D;p/. Since n�1, .D;p/ is 540ı00 chain equivalent
to an n–dimensional free 270ı00 chain complex .F; 1/ on pX by Proposition 4.1.

Assume n� 2. In this case @C is 12�0 chain equivalent to an .n�1/–dimensional 4�0

chain complex y@C , by Proposition 3.4. Using these chain equivalences and Proposition
2.6, we can construct a 6528ı00 chain equivalence


 W .C 0;p0/����!.C 00 D C n��
[y@C

F; 1/:

If ı � 9 � 105ı00 , then .C 00;  00 D 
% 
0/ determines an element of Lın.X IpX ;R/.

Suppose ı � 4 � 106ı00 and Y 0 �W 12�106ı00 . We shall show that its image by j� is
equal to the relax-control image of ŒC;  � in Lın.X;Y

0IpX ;R/.

Since .D;p/ lies over W , it is 0 contractible over X �W . Therefore, by Proposition
2.6, the chain map GW .C 0;p0/! .C n��[@C 0; 1/ defined by

G D

�
1 0 0

0 1 0

�
W .C n�r ; 1/˚ .@Cr�1; 1/˚ .Dr ;p/����!.C

n�r ; 1/˚ .@Cr�1; 1/

is a 18ı00 chain equivalence over X �W 6ı00 . Furthermore one can easily check that
G is 0 connected and that G%. 

0/D .0; @ /[@ �.0; @ /. Compose G with a 3�0

homotopy equivalence

..C n��
[@C 0; 1/; .0; @ /[@ �.0; @ //����!..C; 1/;  /

to get a 3�0 connected 19ı00 chain equivalence over X �W 7ı00 :

H W .C 0;p0/����!.C; 1/I H%. 
0/D  :
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By Proposition 2.9, there is a 3 � 12500ı00 connected 3 � 19ı00 quadratic structure
.0;  0˚� / on a chain map .C 0;p0/˚ .C; 1/! .C; 1/ that is 125000ı00 Poincaré
over X �W 375007ı00 . Now use the 6528ı00 chain equivalence 
 W .C 0;p0/! .C 00; 1/

and Corollary 3.9 0 to this cobordism to obtain an .nC1/–dimensional ı cobordism
between .C 00;  00/ and .C;  / that is ı connected and ı Poincaré over X �Y 0 .

In the nD 1 case, use the non-positive chain complex obtained from @C by applying
the folding argument from top instead of y@C . See the proof of Proposition 3.4(1).

(5) Let ŒC;  �2L
ı;�
n .X;Y IpX ;R/ and let ˇW .@C; 1/! .E; q/ be as in the definition

of @; @ŒC;  � is given by Œ.E; q/; ˇ%@ �. There exist .n�1/–dimensional free �0 chain
complexes E0 , F on pX and a 3�0 chain equivalence

gW .E; q/˚ .@†E0; 1/����!.F; 1/

with †E0 given the trivial quadratic structure � , and i�Œ.E; q/; ˇ%@ � is represented
by .F;g%..ˇ%@ /˚ @�//. We construct a ı00 Poincaré null-cobordism of this.

Take the direct sum of the algebraic Poincaré thickenings of .C;  / and .†E0; �/ to
get an �0 Poincaré pair

.@C ˚ @†E0����!C n��
˚E0n�1��; .0˚ 0; @ ˚ @�//:

Apply the 4�0 chain equivalence

@C ˚ @†E0 D .@C; 1/˚ .@†E0; 1/
ˇ˚1
���! .E; q/˚ .@†E0; 1/

g
��! .F; 1/D F;

to this pair, to obtain an �00 Poincaré null-cobordism of .F;g%..ˇ%@ /˚ @�///. (If
n� 2, then we may assume E0 D 0, and the proof can be much simplified.)

(6) Take an element Œ.C;p/;  �2L
fX g;ı0;�0

n�1
.Y IpX ;R/ and assume i�Œ.C;p/;  �D 0

in L
ı00;�00

n�1
.X IpX ;R/. By definition of i� , there exist .n�1/–dimensional free �0 chain

complexes E , F on pX and a 3�0 chain equivalence gW .C;p/˚ .@†E; 1/! .F; 1/

such that i�Œ.C;p/;  � D ŒF;g%. ˚ @�/�. Here � is the trivial quadratic structure
on †E . By Proposition 3.7, there is an n–dimensional 100ı00 Poincaré 2ı00 null-
cobordism on pX of .F;g%. ˚ @�//:

.f W F����!D; .ı ;g%. ˚ @�///:

By Lemma 2.10 0 , we obtain a 127ı00 Poincaré 3ı00 null-cobordism:

.f ıgW .C;p/˚ .@†E; 1/����!.D; 1/; .ı ; ˚ @�//:

Take the union of this with the 0 connected �0 projective quadratic pair

..C;p/����!0; .0;� //;
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which is 0 Poincaré over X �Y , and the 3�0 Poincaré 3�0 quadratic pair

.i†E W .@†E; 1/����!.En��; 1/; .0;�@�//

to get a 6ı00 projective quadratic complex .. yC ; yr/; y / which is 12700ı00 Poincaré over
X �Y 12700ı00 and is 12700ı00 connected.

The 3�0 chain equivalence g induces a 48ı00 chain equivalence zgW . yC ; yr/! . zC ; 1/

to an n–dimensional free chain complex . zC ; 1/ D .D; 1/[.F;1/ .En��; 1/, and the
18ı00 quadratic structure z D zg%. y / is 2 � 105ı00 Poincaré over X �Y 4�105ı00 and is
2 � 105ı00 connected. Suppose W � Y 106ı00 and ı � 106ı00 . Then . zC ; z / defines an
element in Lın.X;W IpX ;R/.

We shall show that @Œ zC ; z �D Œ.C;p/;  � in L
fX g;�nı
n�1

.W �nıIpX ;R/. By the definition
of @, there is a .200nC 300/ı chain equivalence ˇW .@ zC ; 1/! . zE; zq/ to an .n�1/–
dimensional .100nC 300/ı projective chain complex on pW .150nC300/ı , and @Œ zC ; z �
is represented by .. zE; zq/; ˇ%@ z /. We construct a cobordism between ..C;p/;  / and
.. zE; zq/; ˇ%@ z /.

By Proposition 2.9 0 , zg induces an .nC1/–dimensional 3 � 48ı00 cobordism:

.
�
zg 1

�
W . yC ; yr/˚ . zC ; 1/����!. zC ; 1/; z‰ D .0; y ˚�z //:

Let us apply the boundary construction to this to get a 6 � 48ı00 chain map

@
�
zg 1

�
W @. yC ; yr/˚ @. zC ; 1/����!.G; q/

and a 9 � 48ı00 Poincaré 6 � 48ı00 quadratic structure .�; @ y ˚�@ z / on it. We modify
this to get the desired cobordism.

Firstly, note that .. yC ; yr/; y / is the algebraic Thom complex of a 12700ı00 Poincaré 6ı00

quadratic pair with boundary equal to ..C;p/;  /. Therefore there is a 11 � 12700ı00

chain equivalence 
 W @. yC ; yr/! .C;p/ such that 
%.@ y /D  .

Secondly, there is a chain equivalence ˇW .@ zC ; 1/! . zE; zq/ as noted above.

Thirdly, recall that .G; q/ is equal �C.Dz‰/ and @. zC ; 1/ is equal to �C.D z /, and
note that there is a 96ı00 chain equivalence

C.
�
zg 1

�
/nC1�� .0 1 �zg�/

�������! . yC ; yr/
.zg�1/�

�����! . zC ; 1/

and that it induces a 6ı chain equivalence from .G; q/ to @. zC ; 1/. Compose this with
ˇ to get a .200nC 306/ı chain equivalence ˇ0W .G; q/! . zE; zq/.
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Now, by Corollary 3.9 0 , one can conclude that the chain equivalences 
 , ˇ , ˇ0 induce
an n–dimensional �nı Poincaré cobordism on pW �nı :

..C;p/˚ . zE; zq/����!. zE; zq/; .�;  ˚�ˇ%.@ z ///:

Since ŒC;p�D 0 in zKn;�0

0
.X IpX ;R/ and Œ zE; zq�D Œ@ zC ; 1�D 0 in zKn;�nı

0
.X IpX ;R/,

this implies that Œ.C;p/;  �D @Œ zC ; z � in L
fX g;�nı
n�1

.W �nıIpX ;R/.

6 Excision

In this section we study the excision property of epsilon-controlled L–theory. Suppose
that X is the union of two closed subsets A and B with intersection M D A\B .
There is an inclusion-induced homomorphism

i�W L
ı;�
n .A;M IpA;R/!Lı;�n .X;BIpX ;R/:

For n� 1, we construct its stable inverse

excW Lı;�n .X;BIpX ;R/!Lı;�n .A;A\M .nC5/4ı
IpA;R/:

First we define geometric subcomplexes and quotient complexes of free chain complexes.
Let C be a free chain complex on pX . When each Cr is the direct sum Cr DC 0r˚C 00r
of two geometric submodules and dC is of the form�

dC 0 �

0 dC 00

�
W C 0r ˚C 00r ����!C 0r�1˚C 00r�1;

C 0 is said to be a geometric subcomplex of C , and C 00 (together with dC 00 ) is said to
be the quotient of C by C 0 and is denoted C=C 0 . If C is a free � chain complex, then
any geometric subcomplex C 0 and the quotient C=C 0 are both free � chain complexes.
The obvious projection map pW C ! C=C 0 is 0 connected.

Next suppose we are given an n–dimensional � quadratic complex .C;  / on pX

and C 0 is a geometric subcomplex of C . The projection pW C ! C=C 0 induces
an n–dimensional � quadratic complex .C=C 0;p% / and there is an � cobordism
between .C;  / and .C=C 0;p% /. For a morphism gW G!H between geometric
modules and geometric submodules G0�G and H 0�H , we write g.G0/�H 0 when
every path with non-zero coefficient in g starting from a generator of G0 ends at a
generator of H 0 .

Proposition 6.1 Let .C;  /, C 0 , and p be as above, and suppose .C;  / is � con-
nected. If D .C 0n/� C 0

0
, then .C=C 0;p% / and the cobordism between .C;  / and

.C=C 0;p% / induced by p are both � connected.
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Proof Let us write C 00 D C=C 0 . By assumption, the morphism dC.D /W C.D /1!
C.D /0 can be expressed by a matrix of the form�

dC 0 � � �

0 dC 00 0 Dp% 

�
W C 01˚C 001 ˚C 0n˚C 00n! C 00˚C 000 :

Let hW C0 D C.D /0! C.D /1 be a 4� morphism such that dC.D /h�8� 1C0
, and

define 4� morphisms h1W C
00
0
! C 00

1
and h2W C

00
0
! C 00n by

hD

0BB@
� �

� h1

� �

� h2

1CCA W C 00˚C 000 ! C 01˚C 001 ˚C 0n˚C 00n:

Then we get a homotopy

dC 00h1CDp% h2 �8� 1C 00
0
:

Therefore �
h1

h2

�
W C 000��!C 001 ˚C 00n

gives a desired splitting of the boundary morphism C.Dp% /1! C.Dp% /0 . Therefore
.C 00;p% / is � connected. Now the � connectivity of cobordism induced by p follows
from Lemma 3.3.

Example 6.2 Let .C;  / be an n–dimensional � quadratic complex on pX and Y

be a subset of X . Fix ı.> 0/ and l.� 0/, and define a geometric submodule C 0r
of Cr to be the restriction Cr .Y

.nCl�r/ı/ of Cr to Y .nCl�r/ı . If ı � � , fC 0r g is a
geometric subcomplex of C , and we can form the quotient C=C 0 of C by C 0 and the
natural projection pW C ! C=C 0 . .C=C 0/r is equal to Cr .X �Y .nCl�r/ı/. Suppose
further that .C;  / is � connected, ı � 4� , and n� 1; then D .C 0n/�C 0

0
holds, and

.C=C 0;p% / and the cobordism between .C;  / and .C=C 0;p% / induced by p

are both � connected.

Next we consider pairs. Suppose .f W C !D; .ı ; // is an .nC1/–dimensional �
quadratic pair on pX and C 0 , D0 are geometric subcomplexes of C , D , respectively
such that f .C 0r /� .D

0
r / for every r . Define an � chain map xf W C=C 0!D=D0 by

f D

�
� �

0 xf

�
W C 0r ˚ .C=C 0/r��!D0r ˚ .D=D

0/r ;
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then the diagram

C

p

��

f
// D

q

��

C=C 0
xf

// D=D0

commutes strictly, where p and q are the natural projections, and

. xf W C=C 0!D=D0; .q%ı ;p% //

is an .nC1/–dimensional � quadratic pair.

Proposition 6.3 If .f; .ı ; // is � connected, D .C 0n/� C 0
0

, and Dı .D0nC1/�

D0
0

, then . xf ; .q%ı ;p% // is � connected.

Proof We check the � connectivity of the duality map D.q%ı ;p% / . Let us use the
notation C 00 D C=C 0 and D00 DD=D0 . The boundary morphism

dC.D.ı ; //W C.D.ı ; //1! C.D.ı ; //0

can be expressed by a matrix of the form�
� � � � � �

0 dD00 0 Dq%ı 0 xfDp% 

�
W

D01˚D001 ˚D0nC1
˚D00nC1

˚C 0n˚C 00n��! D00˚D000 :

The desired � connectivity follows from this as in Proposition 6.1.

Proposition 6.4 Let Y be a subset of X , and let Œ.C; d/;  � and Œ. yC ; yd/; y � be
elements of L

ı;�
n .X;Y IpX ;R/ .n� 1/. If

(1) Cr .X �Y /D yCr .X �Y /,

(2) dr jX �Y 4� D ydr jX �Y 4� , and

(3)  sjX �Y 4� D y sjX �Y 4�

for every r and s .� 0/, then Œ.C; d/;  �D Œ. yC ; yd/; y � in L
ı;�
n .X;Y .nC3/4�IpX ;R/.

Proof Define a geometric subcomplex C 0 of C by C 0r D Cr .Y
.nC1�r/4�/, and let

pW C ! C=C 0 be the projection. Then .C=C 0;p% / is an � connected � quadratic
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complex by Proposition 6.1. The boundary maps for C.D / have radius 4� and are of
the form0BB@

dC 0 � � �

0 dC 00 � .�/
r�1Dp% 

0 0 � �

0 0 � .�/r�1d�
C 00

1CCA W C 0r ˚C 00r ˚C 0nC1�r
˚C 00nC1�r

��!C 0r�1˚C 00r�1˚C 0nC2�r
˚C 00nC2�r :

Therefore C.Dp% / and C.D / are exactly the same over X�Y .nC2/4� , and C.Dp% /

is 4� contractible over X �Y .nC3/4� , ie p% is � Poincaré over X �Y .nC3/4� . In
fact, if � is a 4� chain contraction over X � Y of C.D /, then �jX � Y .nC2/4�

gives a 4� chain contraction over X � Y .nC3/4� of C.Dp% /. Thus .C=C 0;p% /

determines an element of L
ı;�
n .X;Y .nC3/4�IpX ;R/.

By Lemma 3.3, the cobordism between .C;  / and .C=C 0;p% / induced by p is an �
connected � quadratic pair. Since this cobordism is exactly the same over X�Y .nC2/4�

as the trivial cobordism from .C;  / to itself, it is � Poincaré over X � Y .nC3/4� .
Therefore,

ŒC;  � D ŒC=C 0;p% � 2 Lı;�n .X;Y .nC3/4�
IpX ;R/:

The same construction for . yC ; y / yields the same element as this, and we can conclude
that

ŒC;  � D Œ yC ; y � 2 Lı;�n .X;Y .nC3/4�
IpX ;R/:

Now suppose X is the union of two closed subsets A, B with intersection N DA\B .

Lemma 6.5 Let G , H be geometric modules on pX , and f W G!H be a morphism
of radius ı . Then, for any 
 � 0,

f .G.B [N 
 // � H.B [N maxf
Cı;2ıg/:

Proof This can be deduced from the following two claims:

(1) f .G.N 
 // � H.N 
Cı/,

(2) f .G.B// � H.B [N 2ı/.

The first claim is obvious. To prove the second claim, take a generator of G.B/ and
a path c starting from a with non-zero coefficient in f . By its continuity, the path
pX ı c in X either stays inside of B or passes through a point in N , and hence its
image is contained in B [N 2ı . This proves the second claim.
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Now let us define the excision map:

excW Lı;�n .X;BIpX ;R/!Lı;�n .A;A\N .nC5/4ı
IpA;R/;

Take an element ŒC;  � 2L
ı;�
n .X;BIpX ;R/. Define a geometric subcomplex C 0 of

C by
C 0r D Cr .B [N .nC2�r/4�/;

and let pW C ! C=C 0 denote the projection. Then, by Lemma 6.5 and Proposition
6.1, .C=C 0;p% / is an � connected � quadratic complex on pA and is � Poincaré
over A�N .nC4/4� . We define exc.ŒC;  �/ to be the element

ŒC=C 0;p% � 2 Lı;�n .A;A\N .nC5/4�
IpA;R/:

The excision map is well-defined. Suppose

ŒC;  � D Œ yC ; y � 2 Lı;�n .X;BIpX ;R/:

Without loss of generality we may assume that there is a ı connected ı cobordism

.f W C ˚ yC !D; .ı ; ˚�y //

between .C;  / and . yC ; y / that is ı Poincaré over X �B . Let us now construct
.C=C 0;p% / and . yC= yC 0; yp% y / as above, define a geometric subcomplex D0 of D

by
D0r D Dr .B [N .nC3�r/4ı/;

and let qW D!D=D0 denote the projection. By Lemma 6.5 and Proposition 6.3, we
obtain an ı connected ı cobordism

. xf W C=C 0˚ yC= yC 0!D=D0; .q%ı ;p% ˚�yp% y //

which is ı Poincaré over A�B [N .nC5/4ı . Therefore exc is well-defined.

By using Proposition 6.4, we can check that the homomorphisms i� and exc are stable
inverses; ie the following diagram commutes:

L
ı;�
n .A;N IpA;R/

��

i�
// L
ı;�
n .X;BIpX ;R/

L
ı;�
n .A;A\N .nC5/4ıIpA;R/ L

ı;�
n .X;BIpX ;R/

exc
oo

��

L
ı;�
n .A;A\N .nC5/4ıIpA;R/ i�

// L
ı;�
n .X;B [N .nC5/4ıIpX ;R/
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where the vertical maps are the homomorphisms induced by inclusion maps.

7 Mayer–Vietoris type sequence

We continue to assume that X is the union of two closed subsets A, B with intersection
N DA\B , and will present a Mayer–Vietoris type stably exact sequence.

Replace �n by �n C 4.nC 5/, and suppose ı � � > 0. Let W be a subset of X

containing N �nı and assume ı0 � �nı , �0 � �n� . Then a homomorphism

x@W Lı;�n .X IpX ;R/��!L
fA[W g;ı0;�0

n�1
.W IpA[W ;R/

is obtained by composing the following maps:

Lı;�n .X IpX ;R/ ��! Lı;�n .X;BIpX ;R/
exc
��! Lı;�n .A;A\N .nC5/4ı

IpA;R/

@
��! L

fAg;ı0;�0

n�1
.A\W IpA;R/ ��! L

fA[W g;ı0;�0

n�1
.W IpA[W ;R/

If ŒC;  � 2 L
ı;�
n .X IpX ;R/, then its image x@ŒC;  � is represented by ..E; q/;  0/

which is homotopy equivalent to the boundary y@.C=C 0;p% /, where C 0 � C and
pW C ! C=C 0 are as in the definition of exc. This is exactly the projective quadratic
Poincaré complex .Q; x / which appears in the Splitting Lemma:

Lemma 7.1 (Pedersen–Yamasaki [5]) For any integer n� 2, there exists a positive
number �n � 1 such that the following holds: Suppose pX W M ! X is a map to
a metric space X , X is the union of two closed subsets A and B with intersection
N D A\B , and R is a ring with involution. Let � be any positive number, and set
�0 D �n� , N 0 DN �0 , A0 DA[N 0 , and B0 D B [N 0 . Then for any n–dimensional
quadratic Poincaré R–module complex c D .C;  / on pX of radius � , there exist
a Poincaré cobordism of radius �0 from c to the union c0 [ c00 of an n–dimensional
quadratic Poincaré pair c0 D .f 0W Q! C 0; .ı x 0;�x // on pA0 of radius �0 and an n–
dimensional quadratic Poincaré pair c00 D .f 00W Q! C 00; .ı x 00; x // on pB0 of radius
�0 along an .n�1/–dimensional quadratic Poincaré projective R–module complex
.Q; x / on pN 0 , where Q is �0 chain equivalent to an .n�1/–dimensional free chain
complex on pA0 and also to an .n�1/–dimensional free chain complex on pB0 .

From this and its relative version, we obtain the following:

Proposition 7.2 If n� 2, the map x@ factors through a homomorphism

@W Lı;�n .X IpX ;R/��!L
F ;ı0;�0
n�1

.W IpX ;R/;
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where F D fA[W;A[W g. Moreover the image @ŒC;  � is given by ŒQ; x � which
appears in any splitting (up to cobordism) of .C;  / according to the closed subsets A,
B .

Now we present the Mayer–Vietoris type stably-exact sequence. It is made up of three
kinds of maps. The first is the map

i�W L
fA;Bg;ı;�
n .N IpX ;R/!Lı

0;�0

n .AIpA;R/˚Lı
0;�0

n .BIpB;R/

defined by i�.x/D .�A.x/;��B.x// when ı0 � ˛ı and �0 � ˛� . The second is the map

j�W L
ı;�
n .AIpA;R/˚Lı;�n .BIpB;R/!Lı

0;�0

n .X IpX ;R/

defined by j�.x;y/D jA�.x/C jB�.y/ when ı0 � ı and �0 � � . Here jAW A! X

and jBW B!X are inclusion maps. The third is the map @ given in Proposition 7.2:

@W Lı;�n .X IpX ;R/��!L
fA[W ;B[W g;ı0;�0

n�1
.W IpX ;R/;

where W �N �nı , ı0 � �nı , and �0 � �n� .

In the rest of this section, we omit the control map and the coefficient ring from notation.

Theorem 7.3 For any integer n � 2, there exists a constant �n > 1 which depends
only on n such that the following holds true for any control map pX and two closed
subsets A, B of X satisfying X DA[B :

(1) Suppose ı0 � ˛ı , �0 � ˛� , ı00 � ı0 , and �00 � �0 so that the following two maps
are defined:

LfA;Bg;ı;�n .N /
i�
��!Lı

0;�0

n .A/˚Lı
0;�0

n .B/
j�
��!Lı

00;�00

n .X /

Then j�i� is zero.

(2) Suppose ı00 � ı0 , �00 � �0 so that j�W L
ı0;�0

n .A/˚ L
ı0;�0

n .B/ ! L
ı00;�00

n .X / is
defined. If ı � �nı

00 and W �N �nı
00

, then the relax-control image of the kernel of j�
in L˛ın .A[W /˚L˛ın .B [W / is contained in the image of i� below:

L
ı0;�0

n .A/˚L
ı0;�0

n .B/
j�

//

��

L
ı00;�00

n .X /

L
fA[W ;B[W g;ı
n .W /

i�
// L˛ın .A[W /˚L˛ın .B [W /
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(3) Suppose ı0� ı , �0� � , W �N �nı
0

, ı00��nı
0 , and �00��n�

0 so that the following
two maps are defined:

Lı;�n .A/˚Lı;�n .B/
j�
�!Lı

0;�0

n .X /
@
�!L

fA[W ;B[W g;ı00;�00

n�1
.W /

Then @j� is zero.

(4) Suppose W �N �nı
0

, ı00 � �nı
0 , and �00 � �n�

0 so that the map @W Lı
0;�0

n .X /!

L
fA[W ;B[W g;ı00;�00

n�1
.W / is defined. If ı � �nı

00 , then the relax-control image of the
kernel of @ in Lın.X / is contained in the image of j� below:

L
ı0;�0

n .X /
@

//

��

L
fA[W ;B[W g;ı00;�00

n�1
.W /

Lın.A[W /˚Lın.B [W /
j�

// Lın.X /

(5) Suppose W � N �nı , ı0 � �nı , �0 � �n� , ı00 � ˛ı0 , and �00 � ˛�0 so that the
following two maps are defined:

Lı;�n .X /
@
�!L

fA[W ;B[W g;ı0;�0

n�1
.W /

i�
�!L

ı00;�00

n�1
.A[W /˚L

ı00;�00

n�1
.B [W /

Then i�@ is zero.

(6) Suppose ı00 � ˛ı0 , and �00 � ˛�0 so that i�W L
fA;Bg;ı0;�0

n�1
.N / ! L

ı00;�00

n�1
.A/˚

L
ı00;�00

n�1
.B/ is defined. If ı � �nı

00 , N 0 � N �nı
00

, and W D .N 0/�nı , then the relax-

control image of the kernel of i� in L
fA[W ;B[W g;ı
n�1

.W / is contained in the image of @
associated with the two closed subsets A[N 0 , B [N 0 :

L
fA;Bg;ı0;�0

n�1
.N /

i�
//

��

L
ı00;�00

n�1
.A/˚L

ı00;�00

n�1
.B/

Lın.X /
@

// L
fA[W ;B[W g;ı
n�1

.W /

Proof (1) Take an element x D ŒQ;  � 2L
fA;Bg;ı;�
n .N /. The image i�.x/ is a pair

.ŒcA�;�ŒcB �/ where cA and cB are free quadratic Poincaré complexes on pA and pB

that are both homotopy equivalent to .Q;  /, and hence ŒcA� D ŒcB � 2 L
ı00;�00

n .X /.
Therefore, j�i�.x/D ŒcA�� ŒcB �D 0.

(2) First, temporarily use the constant �n posited in the splitting lemma. Take an
element x D .ŒCA;  A�; ŒCB;  B �/ 2 L

ı0;�0

n .A/˚ L
ı0;�0

n .B/ and assume j�.x/ D 0.
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There exists a null-cobordism .f W CA˚CB!D; .ı ; A˚� B//. Its boundary is
already split according to A and B , so use the relative splitting to this null-cobordism
to get cobordisms of radius �nı

00 :

.fAW .CA; 1/˚Q! .DA; 1/; .ı A;  A˚�
x // on pA[W ;

.fBW .CB; 1/˚Q! .DB; 1/; .ı B;  B˚�
x // on pB[W :

By the Poincaré duality DnC1��
A

' C.fA/, we have

ŒDA�� ŒCA�� ŒQ�D ŒC.fA/�D ŒD
nC1��
A

�D 0 2 zK
nC1;4�nı

00

0
.A[W /;

and, hence, we have ŒQ� D 0 in zKn;36�nı
00

0
.A [W /. See Ranicki–Yamasaki [14,

Section 3]. Similarly ŒQ� D 0 in zKn;36�nı
00

0
.B [W /. Thus we obtain an element

ŒQ; x � of L
fA[W ;B[W g;36�nı

00

n .W /. Replace �n by something bigger (at least 36�n )
so that its image via i� in L˛ın .A[W /˚L˛ın .B[W / is equal to .ŒCA;  A�; ŒCB;  B �/

whenever ı � �nı
00 .

(3) If we start with an element x D .ŒCA;  A�; ŒCB;  B �/, then j�.x/ is represented
by .CA;  A/˚ .CB;  B/ which is already split according to A and B . Therefore
@j�.x/D 0.

(4) Temporarily set the constant �n to be the one posited in the splitting lemma. Take
an element ŒC;  � in L

ı0;�0

n .X / such that @ŒC;  �D 0. .C;  / splits into two adjacent
pairs:

aD .fAW Q! .CA; 1/; .ı A;�x // and b D .fBW Q! .CB; 1/; .ı B; x //

such that ŒQ; x � D 0 in L
fA[W ;B[W g;ı00;�00

n�1
.W /. Take a ı00 null-cobordism on pW

pD .gW Q!P; .ı x ; x // such that the reduced projective class of P is zero on pA[W

and also on pB[W . CA[Q P is chain equivalent to an n–dimensional free complex
FA on pA , and CB [Q P is chain equivalent to an n–dimensional free complex FB

on pB . Use these to fill in the bottom squares with cobordisms:

p p p p p p p p p p p p
t
dpppppp

pppppp
pppppp
pp

pppppp
pppppp
pppppp
pp

FA 0 FB

P

CA Q CB

C

Geometry & Topology Monographs, Volume 9 (2006)



Controlled L–theory 143

Replacing �n with something larger if necessary, we obtain free quadratic Poincaré
complexes on pA[W and pB[W whose sum is �nı

00 cobordant to .C;  /.

(5) If we start with an element x D ŒC;  � in L
ı;�
n .X /, then j�.x/ is represented by

the projective piece .Q; x / obtained by splitting, and the null-cobordisms required to
show i�@.x/D 0 are easily constructed from the split pieces.

(6) Take an element ŒQ;  � of L
fA;Bg;ı0;�0

n�1
.N /. Then .Q;  / is homotopy equivalent

to a free quadratic Poincaré complex ..CA; 1/;  A/ on pA and also to a free quadratic
Poincaré complex ..CB; 1/;  B/ on pB . If i�ŒQ;  � D 0, then these are both null-
cobordant; there are quadratic Poincaré pairs

.fAW CA!DA; .ı A;  A// on pA, and

.fBW CB!DB; .ı B;  B// on pB .

Use the homotopy equivalence .CA;  A/' .CB;  B/ to replace the boundary of the
latter by .CA;  B/, and glue them together to get an element ŒD; ı � of Lın.X / for
some ı > 0. Note that .D; ı / has a splitting into two pairs with the common boundary
piece equal to .Q;  /, so we have @ŒD; ı �D ŒQ;  � in L

fA[W ;B[W g;ı
n�1

.W /.

8 A special case

In this section we treat the case when there are no controlled K–theoretic difficulties.

First assume that X is a finite polyhedron. We fix its triangulation. Under this
assumption we can simplify the Mayer–Vietoris type sequence of the previous section at
least for sufficiently small � ’s and ı ’s. X is equipped with a deformation fft W X!X g

called ‘rectification’ [5] which deforms sufficiently small neighborhoods of the i –
skeleton X .i/ into X .i/ such that ft ’s are uniformly Lipschitz. This can be used to
rectify the enlargement of the relevant subsets at the expense of enlargement of � ’s
and ı ’s. We thank Frank Quinn for showing us his description of uniformly continuous
CW complexes which are designed for taking care of these situations in a more general
setting.

Next let us assume that X is a finite polyhedron and that the control map pX W M !X

is a fibration with path-connected fiber F such that

Wh.�1.F /�Zk/D 0

for every k � 0. The condition on the fundamental group is satisfied if �1.F /Š Zl

for some l � 0. If we study the proofs of [14, 8.1 and 8.2] carefully, we obtain the
following.

Geometry & Topology Monographs, Volume 9 (2006)



144 Andrew Ranicki and Masayuki Yamasaki

Proposition 8.1 Let pX be as above and n�0 be an integer. Then there exist numbers
�0 > 0 and 0< �� 1 which depend on X and n such that the relax-control maps

zK
n;�
0
.S IpS ;Z/����! zK

n;�0

0
.S IpS ;Z/

Whn;�.S IpS ;Z/����!Whn;�0.S IpS ;Z/

are zero maps for any subpolyhedron S , any �0 � �0 and any � � ��0 .

This means that there is a homomorphism functorial with respect to relaxation of control

LF ;ı;�
n .S IpX ;Z/����!LF[fSg;ı0;�0

n .S IpX ;Z/

for any family F of subpolyhedra of X containing S , if ı0� �0 , ı��ı0 , and ����0 .
Compose this with the homomorphism

�S W L
F[fSg;ı0;�0
n .S IpX ;Z/����!L˛ı

0;˛�0

n .S IpX ;Z/

to get a homomorphism

�W LF ;ı;�
n .S IpX ;Z/����!L˛ı

0;˛�0

n .S IpX ;Z/:

A stable inverse � functorial with respect to relaxation of control can be defined by
�.ŒC;  �/D Œ.C; 1/;  �, and we have a commutative diagram:

L
ı;�
n .S IpX ;Z/

��

�
// L

F ;ı;�
n .S IpX ;Z/

L
˛ı0;˛�0

n .S IpX ;Z/ L
F ;ı;�
n .S IpX ;Z/

�
oo

��

L
˛ı0;˛�0

n .S IpX ;Z/ �
// L

F ;˛ı0;˛�0
n .S IpX ;Z/

:

Thus the Mayer–Vietoris type sequence is stably exact when we replace the controlled
projective L–group terms with appropriate controlled L–groups.

Furthermore, since pX is a fibration, we have a stability for controlled L–groups:

Proposition 8.2 (Pedersen–Yamasaki [5, Theorem 1]) Let n � 0. Suppose Y is a
finite polyhedron and pY W M ! Y is a fibration. Then there exist constants ı0 > 0

and K > 1, which depends on the integer n and Y , such that the relax-control map
L
ı0;�0

n .Y IpY ;R/!L
ı;�
n .Y IpY ;R/ is an isomorphism if ı0 � ı�K� , ı0 � ı0 �K�0 ,

ı � ı0 , and � � �0 .
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Now let us denote these isomorphic groups L
ı;�
n .Y IpY ;R/ (ı0 � ı , ı � �� ) by

Ln.Y IpY ;R/. When the coefficient ring R is Z, we omit Z and use the notation
Ln.Y IpY /.

Theorem 8.3 Let pX W M ! X be a fibration over a finite polyhedron X . Then
Ln.X IpX ;R/ is 4–periodic: Ln.X IpX ;R/ŠLnC4.X IpX ;R/ (n� 0).

Proof The proof of the 4–periodicity of Ln.A/ of an additive category with involution
given in Ranicki [10] adapts well to the controlled setting.

We have a Mayer–Vietoris exact sequence for Ln with coefficient ring Z.

Theorem 8.4 Let X be a finite polyhedron and suppose that pX W M ! X is a
fibration with path-connected fiber F such that Wh.�1.F /�Zk/D 0 for every k � 0.
If X is the union of two subpolyhedra A and B , then there is a long exact sequence

: : :
@
�!Ln.A\BIpA\B/

i�
��!Ln.AIpA/˚Ln.BIpB/

j�
��!Ln.X IpX /

@
�!Ln�1.A\BIpA\B/

i�
��! : : :

j�
��!L0.X IpX /:

Proof The exactness at the term L2.AIpA/˚L2.BIpB/ and at the terms to the left
of it follows immediately from the stably-exact sequence. The exactness at other terms
follows from the 4–periodicity.

Recall that there is a functor L.�/ from spaces to �–spectra such that �n.L.M //D

Ln.ZŒ�1.M /�/ constructed geometrically by Quinn [6], and algebraically by Ranicki
[11]. Blockwise application of L to pX produces a generalized homology group
Hn.X I L.pX // (see Quinn [7]). There is a map AW Hn.X I L.pX // ! Ln.X IpX /

called the assembly map. See Yamasaki [15] for the L�1–analogue, involving the
lower L–groups of Ranicki [12].

Theorem 8.5 Let X be a finite polyhedron and suppose that pX W M ! X is a
fibration with path-connected fiber F such that Wh.�1.F /�Zk/D 0 for every k � 0.
Then the assembly map AW Hn.X I L.pX //!Ln.X IpX / is an isomorphism.

Proof We actually prove the isomorphism AW Hn.S I L.pS //! Ln.S IpS / for all
the subpolyhedra S of X by induction on the number of simplices.

When S consists of a single point v , then the both sides are Ln.ZŒ�1.p
�1
X
.v//�/ and

A is the identity map.
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Suppose S consists of k > 1 simplices and assume by induction that the assem-
bly map is an isomorphism for all subpolyhedra consisting of less number of sim-
plices. Pick a simplex � which is not a face of other simplices and let A D �

and B D S � interior.�/. Since A contracts to a point v , it can be easily shown
that Hn.AI L.pA// and Ln.AIpA/ are both Ln.ZŒ�1.p

�1
X
.v//�/, and the assembly

map AW Hn.AI L.pA//!Ln.AIpA/ is an isomorphism. By induction hypothesis the
assembly maps for B and A\B are both isomorphisms. We can conclude that the
assembly map for S is an isomorphism by an application of 5–lemma to the ladder
made up of the Mayer–Vietoris sequences for H�.�/ and L�.�/.

Remark If F is simply-connected, then Wh.�1.F /�Zk/DWh.Zk/D 0 for every
k � 0 by the celebrated result of Bass, Heller and Swan. In this case Hn.X I L.pX //

is isomorphic to the generalized homology group Hn.X I L/ where L is the 4–periodic
simply-connected surgery spectrum with �n.L/DLn.ZŒf1g�/ and we have an assembly
isomorphism

AW Hn.X I L/ŠLn.X IpX /:

This is the controlled surgery obstruction group which appears in the controlled surgery
exact sequence of Pedersen–Quinn–Ranicki [4] (as required for the surgery classification
of exotic homology manifolds in Bryant–Ferry–Mio–Weinberger [1]). There the control
map is not assumed to be a fibration. We believe that most of the arguments in this
paper work in a more general situation.

As an application of Theorem 8.4, we consider the Z–coefficient controlled L–group
of pX � 1W M �S1!X �S1 .

Corollary 8.6 Let n � 0, and let X and pX W M ! X be as in Theorem 8.4. Then
there is a split short exact sequence

0!Ln.X IpX /
i�
�!Ln.X �S1

IpX � 1/
B
�!Ln�1.X IpX /! 0:

Proof Split the circle S1 D @.Œ�1; 1�� Œ�1; 1�/� R2 into two pieces

S1
C D f.x;y/ 2 S1

jy � 0g and S1
� D f.x;y/ 2 S1

jy � 0g;

with intersection fpD .1; 0/; qD .�1; 0/g. Let @ be the connecting homomorphism in
the Mayer–Vietoris sequence Theorem 8.4 corresponding to this splitting, and consider
the composite

BW Ln.X �S1
IpX � 1/

@
�!Ln�1.X � fpgIpX � 1/˚Ln�1.X � fqgIpX � 1/

projection
������!Ln�1.X � fpgIpX � 1/ŠLn�1.X IpX /:

Geometry & Topology Monographs, Volume 9 (2006)



Controlled L–theory 147

Then @ can be identified with

.B;�B/W Ln.X �S1
IpX � 1/����!Ln�1.X IpX /˚Ln�1.X IpX /:

The map i� is the map induced by the inclusion map

Ln.X IpX /ŠLn.X � fpgIpX � 1/
i�
�!Ln.X �S1

IpX � 1/:

The exactness follows easily from the exactness of the Mayer–Vietoris sequence. A
splitting of B can be constructed by gluing two product cobordisms.

Corollary 8.7 Let T n be the n–dimensional torus S1 � � � � �S1 . Then

Lm.T
n
I 1T n/Š

nM
rD0

�
n

r

�
Lm�r .Z/

ŠLm.ZŒ�1.T
n/�/ (m� n):

Proof Use Corollary 8.6 repeatedly to obtain

Lm.T
n
I 1T n/Š

nM
rD0

�
n

r

�
Lm�r .Z/:

The isomorphism
nM

rD0

�
n

r

�
Lm�r .Z/ŠLm.ZŒ�1.T

n/�/

is the well-known computation obtained geometrically by Shaneson and Wall, and
algebraically by Novikov and Ranicki.

9 Locally finite analogues

Up to this point, we considered only finitely generated modules and chain complexes.
In this section we deal with infinitely generated objects; such objects arise naturally
when we take the pullback of a finitely generated object via an infinite-sheeted covering
map. We restrict ourselves to a very special case necessary for our application.

Definition 9.1 (Ranicki and Yamasaki [14, page 14]) Consider the product M �N

of two spaces. A geometric module on M �N is said to be M –finite if, for any
y 2N , there is a neighbourhood U of y in N such that M �U contains only finitely
many basis elements; a projective module .A;p/ on M �N is said to be q–finite
if A is M –finite; a projective chain complex .C;p/ on M �N is M –finite if each
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.Cr ;pr / is M –finite. (In [14], we used the terminology “M –locally finite”, but this
does not sound right and we decided to use “M –finite” instead.) When M is compact,
M –finiteness is equivalent to the ordinary locally-finiteness.

Consider a control map pX W M ! X to a metric space X , and let N be another
metric space. Give the maximum metric to the product X �N , and let us use the map

pX � 1N W M �N��!X �N;

as the control map for M �N .

Definition 9.2 For ı � � > 0, Y � X , and a family F of subsets of X containing
Y , define M –finite .ı; �/–controlled L–groups L

M;ı;�
n .X �N;Y �N IpX � 1;R/,

and M –finite .ı; �/–controlled projective L–groups L
M;F ;ı;�
n .Y �N IpX � 1;R/ by

requiring that every chain complexes concerned are M –finite.

All the materials up to Section 7 are valid for M –finite analogues. In the previous
section, there are several places where we assumed X to be a finite polyhedron, and
they may not automatically generalize to the M –finite case.

The most striking phenomenon about M –finite objects is the following vanishing result
on the half line.

Proposition 9.3 Let pX W M ! X be a control map, N a metric space, and give
N � Œ0;1/ the maximum metric. For any � > 0 and ı � � ,

LM;ı;�
n .X �N � Œ0;1/IpX � 1;R/D 0;

zK
M;n;�
0

.X �N � Œ0;1/IpX � 1;R/D 0:

Proof This is done using repeated shifts towards infinity and the ‘Eilenberg Swindle’.
Let us consider the case of L

M;ı;�
n .X �N � Œ0;1/IpX � 1;R/. Let J D Œ0;1/ and

define T W M �N �J !M �N �J by T .x;x0; t/D .x;x0; tC �/. Take an element
Œc�2L

M;ı;�
n .X�N �J;pX �1;R/. It is zero, because there exist M –finite � Poincaré

cobordisms:

c � c˚ .T#.�c/˚T 2
# .c//˚ .T

3
# .�c/˚T 4

# .c//˚ � � �

D .c˚T#.�c//˚ .T 2
# .c/˚T 3

# .�c//˚ � � � � 0:

The proof for controlled zK is similar. See the appendix to [14].
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Thus, the analogue of Mayer–Vietoris type sequence 7.3 for the control map pX �

1W M �N �R! X �N �R with respect to the splitting X �N �R D X �N �

.�1; 0�[X �N � Œ0;1/ reduces to

0 ��! LM;ı;�
n .X �N �RIpX � 1;R/

@
��!L

M;p;ı0;�0

n�1
.X �N � I IpX � 1;R/ ��! 0;

where ı0 D �nı , �0 D �n� , I D Œ��nı; �nı�, and the right hand side is the M –finite
projective L–group L

M;f g;ı0;�0

n�1
.X �N � I IpX � 1;R/ corresponding to the empty

family F D f g.

A diagram chase shows that there exists a well-defined homomorphism

ˇW L
M;p;ı0;�0

n�1
.X �N � I IpX � 1;R/ ��! LM;ı00;�00

n .X �N �RIpX � 1;R/;

where 
 00D �n�n�n�1˛

0 and �00D �n�n�n�1˛�

0 . The homomorphisms @ and ˇ are
stable inverses of each other; the compositions are both relax-control maps.

Note that, for any ı � � > 0, the retraction induces an isomorphism

L
M;p;ı;�
n�1

.X �N � I IpX � 1;R/ Š L
M;p;ı;�
n�1

.X �N � f0gIpX ;R/:

Thus, we have obtained:

Theorem 9.4 Splitting along X �N � f0g induces a stable isomorphism:

@W LM;ı;�
n .X �N �RIpX � 1;R/ ����! L

M;p;ı0;�0

n�1
.X �N IpX � 1;R/:

Now , as in the previous section, let us assume that X is a finite polyhedron and
pX W M!X is a fibration with a path-connected fiber F such that Wh.�1.F /�Zk/D0

for every k � 0.

The following is an M –finite analogue of Proposition 8.1.

Proposition 9.5 Let pX be as above and n� 0, k � 0 be integers. Then there exist
numbers �0>0 and 0<��1 which depend on X , n, and k such that the relax-control
maps

zK
M;n;�
0

.X �Rk
IpX � 1;Z/����! zK

M;n;�0

0
.X �Rk

IpX � 1;Z/

WhM;n;�.X �Rk
IpX � 1;Z/����!WhM;n;�0.X �Rk

IpX � 1;Z/

is the zero map for any �0 � �0 and any � � ��0 .
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Proof First note that, since X �Rk is not a finite polyhedron unless k D 0, the proof
for Proposition 8.1 does not directly apply to the current situation.

Let us consider the Whitehead group case first. Since the k D 0 case was already
treated in Proposition 8.1, let us suppose k > 0. Let T k denote the k –torus .S1/k ,
and define p

.k/
X
W M �T k !X to be the following composite map:

M �T k
projection
�������!M

pX
��!X:

By the Mayer–Vietoris type sequence for controlled K–theory, the group

WhM;n;�.X �Rk
IpX � 1;Z/

is stably isomorphic to

zK
M;n�1;�
0

.X �Rk�1
IpX � 1;Z/;

which is also stably isomorphic to

WhM�S1;n;�.X �Rk�1
Ip0X � 1;Z/:

The last statement is a locally-finite analogue of [14, 7.1]. The proof given there works
equally well here. Therefore WhM;n;�.X �Rk IpX � 1;Z/ is stably isomorphic to

WhM�T k ;n;�.X Ip
.k/
X
;Z/;

for which the stable vanishing is already known. This completes the Whitehead group
case.

The zK0 case follows from the stable vanishing of

WhM;nC1;�.X �RkC1
IpX � 1;Z/:

From this we get:

Proposition 9.6 Assume that X is a finite polyhedron and pX W M !X is a fibration
with a path-connected fiber F such that Wh.�1.F /�Zk/D0 for every k�0. Splitting
along X �Rm�1 � f0g induces a stable isomorphism

@W LM;ı;�
n .X �Rm

IpX � 1;Z/ ����! L
M;ı0;�0

n�1
.X �Rm�1

IpX � 1;Z/:

Corollary 9.7 Let X and pX be as above, then stability holds for L
M;ı;�
n .X �

RmIpX � 1;Z/; that is, it is isomorphic to the limit

LM
n .X �Rm

IpX � 1;Z/D lim
0<��ı!0

LM;ı;�
n .X �Rm

IpX � 1;Z/

when 0< �� ı and ı is sufficiently small.
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Proof By the 4–periodicity, we may assume that n>m. Then the proposition above
gives a stable isomorphism with L

ı;�
n�m.X IpX ;Z/, and the result follows.

Corollary 9.8 Let X and pX be as above, then splitting along X � Rm�1 � f0g

induces an isomorphism

@W LM
n .X �Rm

IpX � 1;Z/����!LM
n .X �Rm�1

� f0gIpX � 1;Z/:

Proof Immediate from Proposition 9.6 and Corollary 9.7.

10 Controlled surgery obstructions

We discuss the controlled surgery obstructions and an application. We only consider
the identity control maps on polyhedra or on the products of polyhedra and Rm . X –
finiteness on X �Rm is the same as the usual local finiteness, so we use the following
notation throughout this section:

L
lf;ı;�
n .X �Rm/DLX ;ı;�

n .X �Rm
I 1X � 1;Z/

L
lf
n.X �Rm/DLX

n .X �Rm
I 1X � 1;Z/

We omit the decoration ‘lf ’ when mD 0.

Let .f; b/W M ! N be a degree 1 normal map between connected oriented closed
PL manifolds of dimension n. Quadratic construction on this produces an element
�N .f; b/ 2L

ı;�
n .N / for arbitrarily small ı� � > 0 (see Ranicki–Yamasaki [13]). By

Proposition 8.2, this defines an element �N .f; b/ 2 L
lf
n.N /. This is the controlled

surgery obstruction of .f; b/, and its image via the forget-control map

Ln.N /!Ln.fpt.gIN ! fpt.g;Z/DLn.ZŒ�1.N /�/

is the ordinary surgery obstruction �.f; b/ of .f; b/. The controlled surgery obstruction
�N .f; b/ vanishes, if .f; b/ is normally bordant to a sufficiently small homotopy
equivalence measured on N .

Similarly, if .f; b/W V !W is a degree 1 normal map between connected open oriented
PL manifolds of dimension n, we obtain its controlled surgery obstruction �W .f; b/

in L
lf
n.W /.

Theorem 10.1 Let X be a connected oriented closed PL manifold of dimension
4k , and f W V n!W n D X �Rn�4k be a homeomorphism of open PL manifolds.
Homotope f to produce a map gW V !W which is transverse regular to X �f0g �

X � Rn�4k . Then the PL submanifold g�1.X � f0g/ of V and X have the same
signature: �.g�1.X � f0g//D �.X /.
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Proof The homeomorphism f determines a degree 1 normal map F between V and
W , and hence determines an element �W .F /2L

lf
n.X �Rn�4k/. Repeated application

of splitting Corollary 9.8 induces an isomorphism

@n�4k
W L

lf
n.X �Rn�4k/!L4k.X /:

The image of �W .F / by this map is the controlled surgery obstruction �X .gj; b/ of
the degree 1 normal PL map .gj; b/W Y D g�1.X �f0g/!X �f0g DX . Since f is
a homeomorphism, F is normally bordant to arbitrarily small homotopy equivalences.
Therefore, �W .F / is zero and hence �X .gj; b/ is zero. This means that the ordinary
surgery obstruction �.gj; b/ is also zero. The equality �.Y / D �.X / follows from
this.

Now we apply the above to prove the topological invariance of the rational Pontrjagin
classes (see Novikov [3]).

Theorem 10.2 (S P Novikov) If hW M n! N n is a homeomorphism between ori-
ented closed PL manifolds, then h�pi.N / D pi.M /, where pi are the rational
Pontrjagin classes.

Proof Recall that the rational Pontrjagin classes p�.N / 2 H 4�.N IQ/ determine
and are determined by the L–genus L�.N / 2 H 4�.N IQ/, and that the degree 4k

component Lk.N / 2 H 4k.N IQ/ of the L–genus is characterized by the property
hLk.N /;xi D �.X / for x 2 im.ŒN;Sn�4k �!H4k.N IQ//, where X 4k �N is the
inverse image f �1.p/ of some regular value p 2 Sn�4k of a map f W N ! Sn�4k

which represents the Poincaré dual of x and is PL transverse regular to p . Set
x0 D .h�1/�.x/ 2H4k.M IQ/ and let us show that hLk.M /;x0i D hLk.N /;xi.

Since X is framed in N , it has an open PL neighborhood W D X �Rn�4k in N .
Let V D h�1.W /�M , then h restricts to a homeomorphism f W V !W . Homotope
f to get a map g which is PL transverse regular to X DX �f0g, and set Y to be the
preimage g�1.X /, then hLk.M /;x0iD�.Y / and this is equal to �.X /DhLk.N /;xi

by Theorem 10.1.
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