Volume 10 (2007)

Download this article
For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
All Volumes
 
About this Series
Ethics Statement
Purchase Printed Copies
Author Index
ISSN 1464-8997 (online)
ISSN 1464-8989 (print)
 
MSP Books and Monographs
Other MSP Publications

Homotopy groups of homotopy fixed point spectra associated to En

Ethan S Devinatz

Geometry & Topology Monographs 10 (2007) 131–145

DOI: 10.2140/gtm.2007.10.131

Bibliography
1 E S Devinatz, Morava's change of rings theorem, from: "The \vCech centennial (Boston, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 83–118 MR1320989
2 E S Devinatz, Morava modules and Brown–Comenetz duality, Amer. J. Math. 119 (1997) 741–770 MR1465068
3 E S Devinatz, The generating hypothesis revisited, from: "Stable and unstable homotopy (Toronto, ON, 1996)", Fields Inst. Commun. 19, Amer. Math. Soc. (1998) 73–92 MR1622339
4 E S Devinatz, A Lyndon–Hochschild–Serre spectral sequence for certain homotopy fixed point spectra, Trans. Amer. Math. Soc. 357 (2005) 129–150 MR2098089
5 E S Devinatz, Recognizing Hopf algebroids defined by a group action, J. Pure Appl. Algebra 200 (2005) 281–292 MR2147271
6 E S Devinatz, M J Hopkins, The action of the Morava stabilizer group on the Lubin–Tate moduli space of lifts, Amer. J. Math. 117 (1995) 669–710 MR1333942
7 E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1–47 MR2030586
8 J D Dixon, M P F du Sautoy, A Mann, D Segal, Analytic pro–p groups, Cambridge Studies in Advanced Mathematics 61, Cambridge University Press (1999) MR1720368
9 P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra", London Math. Soc. Lecture Notes 315, Cambridge Univ. Press (2004) 151–200 MR2125040
10 M J Hopkins, B H Gross, The rigid analytic period mapping, Lubin–Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. (N.S.) 30 (1994) 76–86 MR1217353
11 M Hovey, Bousfield localization functors and Hopkins' chromatic splitting conjecture, from: "The \vCech centennial (Boston, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 225–250 MR1320994
12 M Hovey, N P Strickland, Morava K–theories and localisation, Mem. Amer. Math. Soc. 139 (1999) MR1601906
13 D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Amer. Math. Soc. (2004)
14 C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997)", Contemp. Math. 220, Amer. Math. Soc. (1998) 313–366 MR1642902
15 K Shimomura, On the Adams–Novikov spectral sequence and products of β–elements, Hiroshima Math. J. 16 (1986) 209–224 MR837322
16 K Shimomura, The homotopy groups of the L2–localized mod 3 Moore spectrum, J. Math. Soc. Japan 52 (2000) 65–90 MR1727130
17 K Shimomura, X Wang, The homotopy groups π*(L2S0) at the prime 3, Topology 41 (2002) 1183–1198 MR1923218
18 K Shimomura, A Yabe, The homotopy groups π*(L2S0), Topology 34 (1995) 261–289 MR1318877
19 N P Strickland, Gross–Hopkins duality, Topology 39 (2000) 1021–1033 MR1763961
20 P Symonds, T Weigel, Cohomology of p–adic analytic groups, from: "New horizons in pro–p groups", Progr. Math. 184, Birkhäuser (2000) 349–410 MR1765127
21 T Torii, On degeneration of one-dimensional formal group laws and applications to stable homotopy theory, Amer. J. Math. 125 (2003) 1037–1077 MR2004428