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Some root invariants at the prime 2

MARK BEHRENS

The first part of this paper consists of lecture notes which summarize the machinery
of filtered root invariants. A conceptual notion of “homotopy Greek letter element” is
also introduced, and evidence is presented that it may be related to the root invariant.
In the second part we compute some low dimensional root invariants of v1 –periodic
elements at the prime 2 .

55Q45; 55Q51, 55T15

1 Introduction

This paper consists of two parts. The first part consists of the lecture notes of a series of
talks on the root invariant given by the author at a workshop held at the Nagoya Institute
of Technology. The second part is a detailed computation, using the methods of Part I,
of some low dimensional root invariants at the prime 2. More detailed descriptions of
the contents of these parts are given at the beginning of each part.

Part I Lectures on root invariants
2 The chromatic filtration
3 Greek letter elements
4 The root invariant
5 Filtered root invariants
6 Some theorems

Part II 2–primary calculations
7 The indeterminacy spectral sequence
8 BP filtered root invariants of 2k

9 The first two BP–filtered root invariants of ˛i=j

10 Higher BP and H F2–filtered root invariants of some v1–periodic elements
11 Homotopy root invariants of some v1–periodic elements

The author would like to express his appreciation of the contributions of Goro Nishida to
the field of homotopy theory. The author would also like to thank the organizers of the
conference for the unique opportunity to meet Japanese mathematicians. Jack Morava
encouraged the author to submit these lecture notes as a means of communicating the
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2 Mark Behrens

ideas of [2] without all of the technical details. Haynes Miller provided some comments
on the homotopy Greek letter construction, and Mike Hopkins clued the author into the
existence of Mahowald’s useful paper [17]. W-H Lin explained to the author how to
show that a certain element of the Adams spectral sequence for P�23 was a permanent
cycle. The author is grateful to the referee for discovering a mistake in a previous
version of Corollary 6.2, and to R R Bruner for pointing out some typographical errors.
The computations of Part II began as part of the author’s thesis, which was completed
under the guidance of Peter May at the University of Chicago. The author is, here and
elsewhere, heavily influenced by the work of (and discussions with) Mark Mahowald.
Finally, the author would like to extend his heartfelt gratitude to Norihiko Minami,
both for organizing a very engaging workshop at the Nagoya Institute of Technology,
and for his role as a mentor, introducing the author to the field of homotopy theory as
an undergraduate at the University of Alabama. The author is supported by the NSF.

Part I Lectures on root invariants

Throughout this paper we are always working in the p–local stable homotopy category
for p a fixed prime number. In this first section we will summarize the chromatic
filtration and the machinery of filtered root invariants. A very detailed treatment of this
theory appeared in [2]. Our intention here is to ignore many of the subtleties, sometimes
to the point of omitting or simplifying hypotheses and ignoring indeterminacy, to
communicate to the reader the underlying ideas. Our hope is that the reader will be
able to use this overview as a motivation to drudge through the more precise treatment
of [2].

In Section 2 we review the chromatic filtration of the stable stems. In Section 3 we review
the Greek letter construction of Miller, Ravenel, and Wilson. The Greek letter elements
are distinguished chromatic families of elements in the E2 –term ExtBP�BP .BP�;BP�/

of the Adams–Novikov spectral sequence (ANSS). These elements need not be non-
trivial permanent cycles in the ANSS. We introduce the notion of a homotopy Greek
letter element to remedy this. In Section 4 we define the root invariant and recall some
computational examples that occur throughout the literature. The interesting thing is
that, at least for the limited number of root invariants we know, it seems to be the
case that the root invariant has a tendency to take vn –periodic homotopy Greek letter
elements to vnC1 –periodic homotopy Greek letter elements. In Section 5 we define
filtered root invariants. In Section 6 we summarize the main theorems that make the
filtered root invariants compute root invariants.

Conventions We shall be using the following abbreviations.
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Some root invariants at the prime 2 3

ASS: The classical Adams spectral sequence based on H Fp .

ANSS: The Adams–Novikov spectral sequence based on BP .

E–ASS: The generalized Adams spectral sequence based on E .

AHSS: The Atiyah–Hirzebruch spectral sequence.

Ext.E�X /: For nice spectra E , the comodule Ext group ExtE�E.E�;E�X /.

AAHSS: The algebraic Atiyah–Hirzebruch spectral sequence that computes the
group Ext.E�X / using the cellular filtration on X .

Modified AAHSS: The AAHSS for Ext.BP�P
1/ arising from the filtration of

P1 by Moore spectra.

Often we shall place a bar over the name of a permanent cycle in an Adams spectral
sequence to denote an element of homotopy that it detects. We shall place dots over
binary relations to indicate that they only hold up to multiplication by a unit in Z.p/ .
For instance, we shall write x

:
D y if x D ˛ � y for some ˛ 2 Z�

.p/
. We shall use \D

to indicate that two quantities are equal modulo some indeterminacy group. We shall
always use the Hazewinkel generators of BP� .

2 The chromatic filtration

We shall first describe the chromatic filtration on the stable homotopy groups of spheres.
What we are describing is referred to as the “geometric chromatic filtration” by Ravenel
in [28]. We first need to discuss type–n complexes and vn –self maps.

Let K.n/ be nth Morava K–theory, with coefficient ring

K.n/� D Fp Œvn; v
�1
n �:

Here vn has degree 2.pn�1/. By K.0/ we shall mean the rational Eilenberg–MacLane
spectrum H Q, and by v0 we shall mean p .

If X is a finite complex, it is said to be type–n if K.n�1/�X D 0 and K.n/�X ¤ 0. It
is a consequence of the Landweber filtration theorem (see Landweber [14] and Ravenel
[28]) that the condition K.n� 1/�X D 0 implies that K.m/�X D 0 for m� n� 1.

A self map vW †N X !X is said to be a vn –self map if it induces an isomorphism on
K.n/–homology

v�W K.n/�†
N X !K.n/�X:

If v� induces, up to an element in F�p , multiplication by vk
n for some k , we shall say

that X has vk
n multiplication. By [28, Lemma 6.1.1], if v is a vn –self map, there is
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4 Mark Behrens

some power of v which induces vk
n multiplication. If v induces vk

n –multiplication,
we shall often denote the map vk

n . This practice is slightly objectionable because a
complex can have many different v so that v� is vk

n , but there is some consolation in
that the Devinatz–Hopkins–Smith Nilpotence Theorem may be used to show that any
two such maps are equal after a finite number of iterates.

The following important theorem was conjectured by Ravenel [26] and proved by
Hopkins and Smith [8] using the nilpotence theorem [12].

Theorem 2.1 (Hopkins–Smith Periodicity Theorem) If X is type–n, then X pos-
sesses a vn –self map.

We will now define the chromatic filtration of an element ˛ 2 �n.S/. We shall refer to
the following diagram.

Sn

pk0

// Sn

��

˛ // S0

†N1M.pk0/
v

k1
1

// M.pk0/

˛1

99

��

†N2M.pk0 ; v
k1

1
/
v

k2
2

// M.pk0 ; v
k1

1
/

˛2

CC

��
:::

v0 –periodic: If ˛ ıpk is non-zero for every k , then ˛ is said to be v0 –periodic.

v1 –periodic: Otherwise, ˛ is v0 –torsion, and there is some k0 such that ˛ıpk0D

0. Let M.pk0/ denote the cofiber of pk0 . Then there exists a lift ˛1 of ˛ to
M.pk0/. The complex M.pk0/ is type–1, and thus has vm

1
multiplication for

some m. If ˛1 ı v
mk
1

is non-zero for every k , then ˛ is said to be v1 –periodic.

v2 –periodic: Otherwise, ˛ is v1 –torsion, and there is some k1 with ˛1ıv
k1

1
D0.

Let M.pk0 ; v
k1

1
/ denote the cofiber of vk1

1
. Then there exists a lift ˛2 of

˛1 to M.pk0 ; v
k1

1
/. The complex M.pk0 ; v

k1

1
/ is type–1, and thus has vm

2

multiplication for some m. If ˛2 ı v
mk
2

is non-zero for every k , then ˛ is said
to be v2 –periodic.

v3 –periodic: Otherwise, ˛ is said to be v1 –torsion, and there is some k2 so that
˛2 ı v

k2

2
D 0. The process continues.

Geometry & Topology Monographs, Volume 10 (2007)



Some root invariants at the prime 2 5

In this way, we have defined a decreasing filtration

��.S/� fv0� torsiong � fv1� torsiong � fv2� torsiong � � � �

which is the chromatic filtration.

It is not clear that the chromatic filtration is independent of the sequence of lifts. The
(geometric) chromatic filtration may be more succinctly described by means of finite
localization (see Mahowald–Sadofsky [23]), and from this perspective it is clear that
the chromatic filtration is well defined. The finite localization functor

L
f

E.n/
W Spectra! Spectra

is initial amongst endofunctors that kill finite E.n/–acyclic spectra. The finitely
localized sphere L

f

E.n/
S may be explicitly described as a colimit of finite spectra, and

in this manner one finds that the vn –torsion elements of ��.S/ are precisely those that
make up the kernel of the map

��.S/! ��.L
f

E.n/
S/:

There are fiber sequences

M f
n S D v�1

n M.p1; : : : ; v1n�1/!Lfn S !L
f
n�1

S:

Remark 2.2 In [28], Ravenel discusses a different filtration which he calls the “alge-
braic chromatic filtration,” which is what is more commonly meant by the chromatic
filtration these days. The nth filtration is the kernel of the localization map

��.S/! ��.LE.n/S/

where E.n/ is the Johnson–Wilson spectrum with coefficient ring

E.n/� D Z.p/Œv1; v2; : : : ; vn; v
�1
n �:

If the telescope conjecture is true, than the “geometric” and “algebraic” chromatic
filtrations agree. However, it has been the case in the past decade that the more people
have thought about the telescope conjecture, the more they have believed it to be false
(see Mahowald–Ravenel–Shick [22]).

3 Greek letter elements

We shall now outline a standard method of constructing vn –periodic elements of
the stable stems called the Greek letter construction. Suppose that the generalized
Moore spectrum M.I/ exists, where I is the ideal .pi0 ; v

i1

1
; : : : ; v

in�1

n�1
/� BP� , and
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6 Mark Behrens

assume that M.I/ has vk
n –multiplication. The spectrum M.I/ is a finite complex of

dimension

d D nC i1jv1jC � � �C in�1jvn�1j:

Then we can form the composite

˛
.n/

lk=in�1;:::;i0
W S lkjvnj�d �

�!†lkjvnj�dM.I/
vlk

n
�!†�dM.I/

�
�! S0

where � is the inclusion of the bottom cell, � is the projection onto the top cell, and
˛.n/ is the nth letter in the Greek alphabet ˛; ˇ; ; ı; : : :. Miller, Ravenel, and Wilson
in [25] described Greek letter elements in Ext.BP�/, and the Greek letter elements of
��.S/ that we have described are detected by their elements in the Adams–Novikov
spectral sequence (ANSS). We shall refer to the Greek letter elements in Ext.BP�/ as
“algebraic Greek letter elements.”

We give a different interpretation of the Greek letter construction with an eye towards
generalization. The existence of vk

n multiplication on M.I/ gives homotopy elements

vlk
n 2 �lkjvnj.M.I//

detected by vlk
n in BP –homology. Fix a (minimal) cellular decomposition of M.I/.

Consider the Atiyah–Hirzebruch spectral sequence (AHSS)

E
n;i
1
D

M
n–cells in M.I /

�i.S
n/) �i.M.I//:

Suppose that the element ˛.n/lk=in�1;:::;i0
is non-trivial. Then in the AHSS, vlk

n 2

��.M.I// is detected on the top cell by ˛.n/lk=in�1;:::;i0
.

But how does one define ˛.n/
k=in�1;:::;i0

if the appropriate M.I/ does not exist? Or
if M.I/ does not have vk

n multiplication? What do we do if the homotopy element
˛
.n/

k=in�1;:::;i0
turns out to be trivial? We give a “definition” of homotopy Greek letter

elements to be the homotopy replacement of the Greek letter element when any of the
above calamities befalls us. The author does not believe this is the right way to define
these elements, but has no better ideas.

Definition 3.1 (Homotopy Greek letter elements) Suppose X is a type–n p–local fi-
nite complex for which BP�X is free module over BP�=I , for ID .pi0; v

i1

1
; : : : ; v

in�1

n�1
/.

Suppose that X has vk
n –multiplication. Then we define the homotopy Greek letter

element .˛.n//h
k=in�1;:::;i0

to be the element of ��.S/ which detects vk
n 2 ��.X / in

the E1 –term of the AHSS.
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Some root invariants at the prime 2 7

Remark 3.2 This definition is full of flaws. Different choices of X , or even different
choices of detecting element in the AHSS, could yield some ambiguity in the definition
of .˛.n//h

k=in�1;:::;i0
. There is no reason to believe that these homotopy Greek letter

elements are of chromatic filtration n. In fact, the stem in which the element appears is
even ambiguous. We do point out that there is already some ambiguity in the standard
definition of the Greek letter elements — there can exist many complexes with the same
BP –homology as M.I/, and the choice of vn –self map is not unique. The vn –self
map is, however, unique after a finite number of iterations (see Hopkins–Smith [12]).

Remark 3.3 Mahowald and Ravenel [21] propose a different definition for “homotopy
Greek letter elements” using iterated root invariants. Their definition suggests that we
should be defining .˛.n//hi as

.˛.n//hi DRn.pi/

This notion suffers the same sorts of indeterminacy issues that our notion of homotopy
Greek letter element suffers.

We give some examples to illustrate the sorts of phenomena that the reader should
expect at bad primes.

Let p D 2, and consider chromatic level n D 1. The complex M.2/ only has v4
1

multiplication (see Adams [1]), giving us the Greek letter elements ˛4k 2 �8k�1.S/

(these are elements of order 2 in the image of J ). However the complex X D

M.2/^C.�/, where C.�/ is the cofiber of �, has v1 –multiplication (see Mahowald
[19]). Using this complex, we get the following homotopy Greek letter elements. These
are precisely the elements on the edge of the ASS vanishing line, and, we believe, quite
worthy of the designation “Greek letter element.”

n .mod 4/ ˛h
n (ANSS name)

0 ˛n

1 ˛n

2 ˛n�1˛1

3 ˛n�2˛
2
1

Likewise, we list some low dimensional homotopy Greek letters for pD3 and chromatic
level nD 2. The complex M.3; v1/D V .1/ exists, but only has v9

2
multiplication (see

Behrens–Pemmaraju [3]). Thus we are only able to define ˇ9t using the conventional
methods. However the complex

X D V .1/^ .S0
[˛1

e4
[˛1

e8/
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8 Mark Behrens

can be shown to have v2 –multiplication, and using this complex we find the following
homotopy Greek letter elements.

Greek name Adams–Novikov name
ˇh

1
ˇ1

ˇh
2

ˇ2
1
˛1

ˇh
3

ˇ3

ˇh
4

ˇ5
1

ˇh
5

ˇ5 (*)
ˇh

6
ˇ6 (*)

(*) Tentative calculation

The reader will note that although the algebraic Greek letter element ˇ2 exists in
Ext.BP�/ and is a non-trivial permanent cycle in the ANSS, it does not agree with the
homotopy Greek letter element ˇh

2
.

We shall present evidence that these homotopy Greek letter elements may behave nicely
with respect to root invariants.

4 The root invariant

Mahowald defined an invariant called the root invariant that takes an element ˛ in the
stable stems and outputs another element R.˛/ in the stable stems.

RW ��.S/ ��.S/

Our reason for using the wavy arrow “ ” is that R is not a well defined map, but has
indeterminacy, much in the way that Toda brackets do. R.˛/ is actually a coset, but
in this first part, we shall often ignore this indeterminacy to clarify the exposition. In
the literature this invariant is sometimes called the “Mahowald invariant,” with good
reason.

In this section we shall define the root invariant. We shall then summarize some of the
computations of root invariants that appear in the literature.

We first need to define stunted projective spectra. We first assume that we are working
at the prime p D 2. Let � be the canonical line bundle over RPn . Then the Thom
space may be identified (see Bruner–May–McClure–Steinberger [6, V.2.14]) as

.RPn/s� Š RPnCs=RP s�1:
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Some root invariants at the prime 2 9

We may allow s to be negative in the above definition if we use Thom spectra instead
of Thom spaces. This motivates the definition of the spectrum

PnCs
s D .RPn/s�

for any integer s and any non-negative integer n. This spectrum has one cell in each
degree in the interval Œs; nC s�.

At an odd prime we can replace RPn DB†2 with the classifying space B†p . This
complex only has cells in degrees congruent to 0;�1 .mod 2.p� 1//. We shall also
refer to the resulting spectra as PnCs

s .

We can take the colimit over n to obtain the spectrum P1s . Taking the homotopy
inverse limit of these spectra over s yields a spectrum P1�1 . The inclusion of the
�1–cell extends to a map

S�1 l
�! P1�1:

For p D 2, Lin [15] proved the following remarkable theorem. The theorem was
conjectured by Mahowald, and is equivalent to the Segal conjecture for the group Z=2.
The odd primary version was proved by Gunawardena [9].

Theorem 4.1 The map l W S�1! P1�1 is equivalent to the p–completion of S�1 .

This theorem makes the following definition possible.

Definition 4.2 (Root invariant) Let ˛ be an element of �t .S
0/. The root invariant

of ˛ is the coset of all dotted arrows making the following diagram commute.

S t�1 //

˛

��

S�N

��

S�1

l
��

P1�1
// P�N

This coset is denoted R.˛/. Here N is chosen to be minimal such that the composite
S t�1! P�N is non-trivial.

One way to think of the root invariant is that it is the coset R.˛/ of elements in the
E1 –term of the AHSS

E
k;n
1
D �k.S

n/) �k.P
1
�1/D �k.S

�1
2 /
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10 Mark Behrens

that detects ˛ .

The root invariant is interesting for two reasons:

(1) Elements which are root invariants behave quite differently in the EHP sequence
as opposed to elements which are not root invariants (see Mahowald–Ravenel
[21]).

(2) The root invariant appears to generically take things in chromatic filtration n to
things in chromatic filtration nC 1.

Our purpose in this paper is to concentrate on the latter. For instance, we give the
following sampler of results:

� For p � 3 we have R.pi/D ˛i [21].
� For p � 5 we have R.˛i/D ˇi and R. p̨=2/D p̌=2 (see [21] and Sadofsky

[29]).
� For p D 2 we have R.2i/D ˛h

i (see [21], Johnson [13]).

� For p D 3 we have R.˛i/ D ˇ
h
i for i � 6, and we have R.˛i/ D ˇi for for

i � 0; 1; 5 .mod 9/ (see Behrens [2]).

A conjecture that the root invariant increases chromatic filtration appears in Mahowald–
Ravenel [20]. However, we warn the reader that the conjecture takes some time to
begin working. For instance, at p D 2, R.�/D � , and R.�/D � , and �, � , and �
are all v1 –periodic elements.

5 Filtered root invariants

Let E be a ring-spectrum for which the E–Adams spectral sequence converges. In
[2], the author investigated a series of approximations to the root invariant which live
in the E1 –term of the E–Adams spectral sequence called filtered root invariants.

R
Œk�
E
W ��.S/ E

k;�
1

We shall give a brief outline of their definition, but refer the reader to [2] for a completely
detailed treatment.

Let xE be the fiber of the unit S!E . The E–Adams resolution of the sphere is given
by

S W0

��

W1

��

oo W2

��

oo W3

��

oo � � �oo

Y0 Y1 Y2 Y3
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Some root invariants at the prime 2 11

where Wk D
xE.k/ and Yk DE ^ xE.k/ . The skeletal filtration of P1�1 is given by

� � � // PN
�1

��

// PNC1
�1

��

// PNC2
�1

��

// � � �

SN SNC1 SNC2

We wish to mix the two filtrations. We may regard P1�1 as being a bifiltered object,
with .k;N /–bifiltration given by

Wk.P
N /D .Wk ^PN /�1

where we take the homotopy limit after smashing with Wk . We may pictorially
represent this bifiltration by a region of the Cartesian plane where we let the x–axis
represent the Adams filtration and the y –axis represent the skeletal filtration.

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

Adams filtration

Sk
el

et
al

fil
tr

at
io

n

N

k

Wk

�
P n
�

The spectra Wk may be replaced by weakly equivalent approximations so that for
every k the maps WkC1!Wk are inclusions of subcomplexes. We then have that for
k1 � k2 and N1 �N2 , the bifiltration Wk1

.PN1/ is a subcomplex of Wk2
.PN2/. We

shall consider spectra which are unions of these bifiltrations, which appeared in [2] as
“filtered Tate spectra.” Given sequences

I D fk1 < k2 < � � �< klg

J D fN1 <N2 < � � �<Nlg

with ki � 0, we define the filtered Tate spectrum as the union

WI .P
J /D

[
i

Wki
.PNi /:

A picture of the bifiltrations that compose this spectrum is given below.
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�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Sk
el

et
al

fil
tr

at
io

n

Adams filtration

N1

N2

N3

k1 k2 k3

WI

�
PJ

�

For 1� i � l , there are natural projection maps

pi W WI .P
J /! Yki

^SNi :

We shall now define the filtered root invariants.

Definition 5.1 Let ˛ be an element of �t .S/, with image l.˛/2�t�1.P
1
�1/. Choose

a multi-index .I;J / where I D .k1; k2; : : :/ and J D .N1;N2; : : :/ so that the filtered
Tate spectrum WI .P

J / is initial amongst the Tate spectra WK .P
L/ so that l.˛/ is in

the image of the map

�t�1.WK .P
L//! �t�1.P

1
�1/:

(This initial multi-index is not unique with this property, but in [2] we give a conven-
tion for choosing a unique preferred initial multi-index.) Let z̨ be a lift of l.˛/ to
�t�1.WI .P

J //. Then the k th
i E–filtered root invariant is given by

R
Œki �
E
.˛/D pi.z̨/ 2 �t�1.Yki

^SNi /:

We shall refer to .I;J / as the E–bifiltration of ˛ .

The k th
i filtered root invariant thus lives in the E1 –term of the E–ASS for the sphere.

It should be regarded as an approximation to the root invariant in E–Adams filtration
ki . There is indeterminacy in this invariant given by the various choices of lifts z̨ .
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Some root invariants at the prime 2 13

6 Some theorems

We shall now outline the manner in which filtered root invariants may be used to
compute homotopy root invariants. The statements of these theorems appeared in
[2, Section 5], with proofs appearing in Section 6. The theorems as stated in [2] are
rather difficult to conceptualize due to the complicated hypotheses and the nature of
the indeterminacy. The statements we give below are imprecise, but easier to read and
understand. Throughout this section, let ˛ be an element of �t .S/ of E–bifiltration
.I;J /, where I D .ki/ and J D .�Ni/. Our first theorem tells us how to determine if
a filtered root invariant detects the homotopy root invariant in the E–ASS.

Theorem 6.1 [2, Theorem 5.1] Suppose that R
Œki �
E
.˛/ contains a permanent cycle

ˇ . Then there exists an element x̌ 2 ��.S/ which ˇ detects in the E–ASS such that
the following diagram commutes up to elements of E–Adams filtration greater than or
equal to ki C 1.

S t�1

˛

��

x̌

// S�Ni

��

S�1

l
��

P1�1
// P�Ni

We present a practical reinterpretation of this theorem. This essentially appears in [2]
as Procedure 9.1.

Corollary 6.2 Let ˇ be as in Theorem 6.1. Then in order for ˇ to detect the homotopy
root invariant in the E–ASS, it is sufficient to check the following two things.

(1) No element  2 �t�1.P�Ni
/ of E–Adams filtration greater that ki can detect

the root invariant of ˛ in P�NiC1 .

(2) The image of the element x̌ under the inclusion of the bottom cell

�t�1.S
�Ni /! �t�1.P�Ni

/

is non-trivial.

For our next set of theorems we shall need to introduce a variant of the Toda bracket
construction. Let K be a finite CW complex with a single cell in top dimension n and
bottom dimension 0. There is an inclusion map

�W S0
!K
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14 Mark Behrens

and the n–cell is attached to the n� 1 skeleton KŒn�1� by an attaching map

aW Sn�1
!KŒn�1�:

The following definition was the subject of [2, Section 4].

Definition 6.3 Let ˇ be an element of �j .S/. Then the K–Toda bracket hKi.ˇ/ is
a lift

SjCn�1
ˇ //

hK i.ˇ/
**

Sn�1
a // KŒn�1�

S0

�

OO

The K–Toda bracket may not exist, or may not be well defined.

Given a k th
i filtered root invariant, the k th

iC1
filtered root invariant may be revealed by

the presence of an Adams differential.

Theorem 6.4 [2, Theorem 5.3] There is a (possibly trivial) E–Adams differential

dr .R
Œki �
E
.˛//D

˝
P
�NiC1

�Ni

˛�
R
ŒkiC1�

E
.˛/
�
:

Theorem 6.4 is saying the following differential happens in the E–ASS chart.

�

R
ŒkiC1�

E
.˛/

˝
P
�NiC1
�Ni

˛ nnnnnnnnnnnnn

R
Œki �
E
.˛/

YY22222222222222222

If this differential is zero, there may still be a hidden extension that reveals the k th
iC1

filtered root invariant. In the next theorem, we use the notation x̌ for an element that
ˇ 2E

�;�
1

detects in the E–ASS.

Theorem 6.5 [2, Theorem 5.4] There is an equality of (possibly trivial) elements of
��.S/ ˝

P
�Ni

�M

˛�
R
Œki �
E
.˛/
�
D
˝
P
�NiC1

�M

˛�
R
ŒkiC1�

E
.˛/
�
:

Here M is the largest integer for which
˝
P
�Ni

�M

˛�
R
Œki �
E
.˛/
�

exists and is non-trivial, and
the second Toda bracket is taken in the E–ASS.
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Theorem 6.5 says that the following hidden extension happens on the E–ASS chart.

�

R
ŒkiC1�

E
.˛/

˝
P
�NiC1
�M

˛ gggggggggggggggggggggggggg

R
Œki �
E
.˛/

˝
P
�Ni
�M

˛
�

�
�

�
�

�
�

�
�

�

We have given tools to move from one filtered root invariant to the next, but we need
a place to start this process. For E D BP in [2] we used BP –root invariants and
BP ^BP –root invariants. For E DH Fp the first filtered root invariant is given by
the algebraic root invariant Ralg (see, for example Mahowald–Ravenel [21]). The nice
thing about Ralg is that it is very computable, especially with the help of a computer
(see Bruner [5]).

Theorem 6.6 [2, Theorem 5.10] Let ˛ be of Adams filtration s , detected in the ASS
by z̨ in Ext. Then the first H Fp –filtered root invariant is given by

R
Œs�
H Fp

.˛/DRalg.˛/:

Part II 2–primary calculations

In this part we are always implicitly working 2–locally. Our goal is to explain how the
theory of Part I play out in low dimensions in the ANSS and the ASS at the prime 2.
Unlike in Part I, we intend to be completely precise about these calculations. This part
is really an extension of [2] to the prime 2.

Our main result is to compute the homotopy root invariants of all of the v1 –periodic
elements through the 12–stem (Theorem 11.1). These root invariants turn out fit into
the primary v2 –family investigated by Mahowald [18] (but beware! v8

2
does not exist,

v32
2

does exist ; see Hopkins–Mahowald [10]).

Our plan of attack is the following. In [2], we computed the BP ^eBP –root invariants
of the elements ˛i=j . These give the first filtered root invariant modulo an indeterminacy
group as described in Proposition 7.4. Once we know the indeterminacy group, we can
identify R

Œ1�
BP
.˛i=j /, and then get R

Œ2�
BP
.˛i=j /. The higher filtered root invariants are

deduced from differentials and hidden extensions in the ANSS. We then check to see
that these top filtered root invariants must detect the homotopy root invariants.
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16 Mark Behrens

In Section 7, we compute this indeterminacy group completely. This essentially involves
understanding how the v1 –periodic elements act in the algebraic Atiyah–Hirzebruch
spectral sequence for Ext.BP�P

1/. Unfortunately, there is no J –homomorphism
in Ext to produce these differentials, so we must resort to explicit computation of
the differentials using the BP�BP –coaction on BP�P

1 . We find generators for this
BP –homology group that make a complete determination of the AAHSS differentials
possible. This method may be interesting in its own right, in the sense that it gives a
particularly clean and pleasant description of the coaction.

In Section 8 we describe how the theory of BP –filtered root invariants reproduces the
expected root invariants of the elements 2i . The differentials and hidden extensions
amongst the elements ˛i=j˛

k
1

get a rather natural interpretation: the ANSS must deal
with the fact that the homotopy Greek letter elements ˛h

i are different from the algebraic
Greek letter elements ˛i .

In Section 9, we use our computation of the indeterminacy group to compute the the
filtered root invariants R

Œk�
BP
.˛i=j / for k D 1; 2. We find that the indeterminacy is

essential to allow for the root invariants R.�/ D � and R.�/ D � . For the higher
dimensional v1 –periodic elements, we find that for all other i and j ,

R
Œ2�
BP
.˛i=j /

:
D ˇi=j C something

where the “something” is rather innocuous. One could take this calculation as further
evidence that the root invariants wants to take vn –periodic families of Greek letter
elements to vnC1 –periodic families of Greek letter elements.

In Section 10 we compute all of the higher BP –filtered root invariants of the elements
˛i=j which lie within the 12–stem. These higher filtered root invariants are deduced
from differentials and hidden extensions in the ANSS, and, amusingly enough, actually
account for most of the differentials and hidden extensions in this range. We saw this
sort of behavior at the prime 3 in [2]. The reason the range is so limited is the author’s
limited knowledge of the ANSS at the prime 2.

In Section 11 we show that the filtered root invariants of Section 10 actually detect
homotopy root invariants. This is done by brute force. We show that there are no
elements of ��.P1�N

/ that could survive to the difference of the filtered root invariant
and the homotopy root invariant. We use the BP –filtered root invariants for the
elements in BP –Adams filtration 1, and the H F2 –filtered root invariants for the rest.
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Some root invariants at the prime 2 17

7 The indeterminacy spectral sequence

Recall that

BP�.P
2k
2l�1/D BP�fe2m�1 W l �m� kg=

�X
i�0

cie2.m�i/�1

�
where the universal 2–typical 2–series is given by

Œ2�F .x/D
X
i�0

cix
iC1
2 BP�JxK:

In particular, the first couple of values of ci are

c0 D 2; c1 D�v1:

We will first define a v1 –self map of BP�BP –comodules. Define a map

zv1W BP�P
2k
2lC1! BP�P

2.k�1/

2l�1

by
zv1.e2m�1/D

X
i�1

�cie2.m�i/�1

This is a map of comodules since in BP�P
2k
2l�1

, we have

zv1.e2m�1/D 2e2m�1:

Thus zv1 is just a certain factorization of multiplication by 2.

The short exact sequences

0! BP�P
2.k�1/

! BP�P
2k
!†2k�1BP�=.2/! 0

gives rise to long exact sequences of Ext groups, which piece together to give a modified
AAHSS

E
k;m;s
1

D Exts;sCk.†2m�1BP�=.2//) Exts;sCk.BP�P
1/:

We shall refer to elements of E
k;m;s
1

of the modified AAHSS by xŒ2m� 1�, where x

is an element of Exts;kCs.†2m�1BP�=.2//. The existence of the map zv1 gives the
following propagation result in the modified AAHSS.

Proposition 7.1 Suppose xŒ2m� 1� is an element of the modified AAHSS, and that
there is a differential

dr .xŒ2m� 1�/D yŒ2.m� r/� 1�:
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Then we have

dr .v1xŒ2.m� 1/� 1�/D v1yŒ2.m� 1� r/� 1�:

Proof The map zv1 induces a map of modified AAHSS’s:L
lC1�m�k Exts;sCk.†2m�1BP�=.2// +3

v1

��

Exts;sCk
�
BP�P

2k
2lC1

�
.zv1/�

��L
lC1�m�k Exts;sCk.†2m�3BP�=.2// +3 Exts;sCk

�
BP�P

2.k�1/

2l�1

�
This proves the proposition.

Proposition 7.2 The differentials on the elements 1Œ2m� 1� in the modified AAHSS
are given as follows:

d1.1Œ2m� 1�/D ˛1Œ2.m� 1/� 1� m odd

d2.1Œ2m� 1�/D ž1Œ2.m� 2/� 1� �2.m/D 1

dr .1Œ2m� 1�/D vk�2
1 .x7C

ž
2=2/Œ2.m� k � 2/� 1� �2.m/D k; k D 2; 3

dr .1Œ2m� 1�/D vk�2
1 x7Œ2.m� k � 2/� 1� �2.m/D k; k � 4

Proof The formulas for d1 and d2 follow immediately from the well known attaching
map structure of P1 . We shall prove the formulas for the higher differentials by
working with the negative cells of P1

�N
, and then by using James periodicity. It suffices

to consider mD�2k . There is the following equivalence to the Spanier–Whitehead
dual (see Bruner–May–McClure–Steinberger [6]).

†P�2�2k

�2.2kCl/�1
'DP

2.2kCl/

2�2k�1

It follows that we have an isomorphism of BP�BP –comodules

BP�.†P�2�2k

�2.2kCl/�1
/Š BP��P

2.2kCl/

2�2k�1
:

Here, for finite X , the cohomology group BP��X is viewed as a BP�BP –comodule
by the coaction given by the composite

BP��X D ��.F.X;BP //
.�R/�
����!��.F.X;BP ^BP //

Š ��.BP ^BP ^DX /

Š BP�BP ˝BP� BP��X:
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We recall from [2] that there are short exact sequences

0! BP�CPb
a

�Œ2�F .x/=x
�������! BP�CPb

a ! BP�P2b
2a�1! 0:

Here we have
BP��CP1 Š BP�JxK

where x has (homological degree) �2, and BP��CPb
a is given by the ideal

BP��CPb
a Š .x

a/� BP�Œx�=.x
bC1/Š BP��CPb:

We recall from [2] that the coaction of BP�BP on h.x/ 2 BP��CPb
a is given by

 .h.x//D .f�h/.f .x//

where f is the universal isomorphism of 2–typical formal groups, whose inverse is
given by

f �1.x/D

FX
i�0

tix
2i

:

The polynomial f�h.x/ is the polynomial obtained by applying the right unit to all
of the coefficients of h.x/. The surjection of BP�CPb

a onto BP�P2b
2a�1

completely
determines the latter as a BP�BP –comodule. In what follows we shall refer to elements
of BP�P2b

2a�1
by the names of elements in BP�CPb

a which project onto them.

We shall need the following formulas. (We are using Hazewinkel generators.)

f .x/D x� t1x2
C .2t2

1 C v1t1/x
3
C � � �

Œ2�F .x/D 2x� v1x2
C 2v2

1x3
C � � �

�R.v1/D v1C 2t1

�R.v2/D v2C 2t2� 4t3
1 � 5v1t2

1 � 3v2
1 t1

We shall now use our very specific knowledge of the BP�BP coaction to determine
the differential d.1Œ�2 � 2k � 1�/ in the modified AAHSS for

Ext
�
BP�†P�2�2k

�2.2k�l/�1

�
D Ext

�
BP��P

2.2kCl/

2�2k�1

�
:

We do this for l D kC 2, so in what follows we work modulo x2kCkC3 . The desired
differential is governed by the coaction on x2k

2 BP��P
2.2kCl/

2�2k�1
. Actually, the case

k D 2 must be handled separately, because in the computations that follow we are
implicitly using the fact that 2k > kC 2. However, the method, and conclusion, for
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k D 2 are completely identical.

 
�
x2k �

D
�
f .x/

�2k

D
�
x� t1x2

C
�
2t2

1 C v1t1
�
x3
C � � �

�2k

D x2k

�
�
2k

1

�
t1x2kC1

C
�
2k

1

��
2t2

1 C v1t1
�
x2kC2

C�
2k

2

�
t2
1 x2kC2

C
�
2k

4

�
t4
1 x2kC4

C � � �

D x2k

� 2k t1x2kC1
C 2kC1t2

1 x2kC2
C 2kv1t1x2kC2

C�
2k
� 1

�
2k�1t2

1 x2kC2
C 2k�2

�
1
3

�
2k
� 1

��
2k�1

� 1
��

2k
� 3

�
t4
1 x2kC4

C � � �

D x2k

� vk
1 t1x2kCkC1

� vk�1
1 t2

1 x2kCkC1
C vk�2

1 t4
1 x2kCkC2

C

vkC1
1

t1x2kCkC2
C � � �

We conclude that in the cobar complex for Ext
�
BP�P

2.2kCkC2/

2�2k�1

�
, we have:

d
�
x2k �
Dvk

1 t1x2kCkC1
Cvk�1

1 t2
1 x2kCkC1

Cvk�2
1 t4

1 x2kCkC2
CvkC1

1
t1x2kCkC2

C � � �

We compute the differential in the modified AAHSS by adding a coboundary supported
on an element of lower cellular filtration. Namely, we compute the coaction on
vk�2

1
v2x2kCkC1 as:

 
�
vk�2

1 v2x2kCkC1
�
D �R

�
vk�2

1 v2

��
f .x/

�2kCkC1

D.v1C 2t1/
k�2

�
v2C 2t2� 4t3

1 � 5v1t2
1 � 3v2

1 t1
��

x� t1x2
C � � �

�2kCkC1

Dvk�2
1

�
v2C 2t2� 4t3

1 � 5v1t2
1 � 3v2

1 t1
�
x2kCkC1

C

2.k � 2/vk�3
1 t1

�
v2C 2t2� 4t3

1 � 5v1t2
1 � 3v2

1 t1
�
x2kCkC1

�

.2k
C kC 1/vk�2

1 t1
�
v2C 2t2� 4t3

1 � 5v1t2
1 � 3v2

1 t1
�
x2kCkC2

C � � �

D
�
vk�2

1 v2C v
k�1
1 t2

1 C v
k
1 t1
�
x2kCkC1

C vk�1
1

�
t2C v1t2

1

�
x2kCkC2

C�
2k
C 2k � 1

�
vk�2

1 t1
�
v2C 2t2� 4t3

1 � 5v1t2
1 � 3v2

1 t1
�
x2kCkC2

C � � �

D
�
vk�2

1 v2C v
k�1
1 t2

1 C v
k
1 t1
�
x2kCkC1

C�
vk�1

1 t2C v
k�2
1 v2t1C v

k�1
1 t3

1

�
x2kCkC2

C � � �

We conclude that in the cobar complex for Ext
�
BP�P

2.2kCkC2/

2�2k�1

�
we have:

d
�
vk�2

1 v2x2kCkC1
�
D�

vk�1
1 t2

1 C v
k
1 t1
�
x2kCkC1

C
�
vk�1

1 t2C v
k�2
1 v2t1C v

k�1
1 t3

1

�
x2kCkC2

C � � �
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We therefore have:

d
�
x2k

� vk�2
1 v2x2kCkC1

�
D�

vk�2
1 t4

1 C v
kC1
1

t1C v
k�1
1 t2C v

k�2
1 v2t1C v

k�1
1 t3

1

�
x2kCkC2

We recall from Ravenel [27] that the generators of Ext1;8.BP�=.2// are x7 and ž2=2 ,
and they are represented in the cobar complex by the elements

x7 D v1t2C v2t1C v1t3
1

ž
2=2 D t4

1 C v
3
1 t1

We conclude that for k D 2; 3 we have the modified AAHSS differentials

dkC2

�
1Œ�2 � 2k

� 1�
�
D vk�2

1

�
x7C

ž
2=2

��
�2
�
2k
C kC 2

�
� 1

�
:

If k � 4, then we may add an additional coboundary to obtain the cobar formula

d
�
x2k

C vk�2
1 v2x2kCkC1

C vk�4
1 v2

2x2kCkC2
�
D x7x2kCkC2

from which it follows that for k � 4, we have the modified AAHSS differential

dkC2

�
1
�
�2 � 2k

� 1
��
D vk�2

1 x7

�
�2
�
2k
C kC 2

�
� 1

�
:

Combining Proposition 7.2 with Proposition 7.1, we get the following differentials.

Proposition 7.3 The differentials on the elements vi
1
Œ2m�1� for i � 1 in the modified

AAHSS are given as follows.

d1

�
vi

1Œ2m� 1�
�
D vi

1˛1Œ2.m� 1/� 1� mC i odd

d3

�
vi

1Œ2m� 1�
�
D vi�1

1 x7Œ2.m� 3/� 1� �2.mC i/D 1

d4

�
vi

1Œ2m� 1�
�
D vi

1.x7Cˇ2=2/Œ2.m� 4/� 1� �2.mC i/D 2

dr

�
vi

1Œ2m� 1�
�
D vkCi�2

1
x7Œ2.m� k � 2/� 1� �2.mC i/D k; k � 3

Proof The differentials follow from applying v1 –propagation as described in Proposi-
tion 7.1 to the differentials of Proposition 7.2. However, the element v1

ž
1 is null in

Ext.BP�=.2//. An explicit computation similar to that in the proof of Proposition 7.2
yields the modified AAHSS differential

d3.v1Œ2m� 1�/D x7Œ2.m� 3/� 1�

for mC 1� 2 .mod 4/. The rest of the d3 ’s then follow by v1 –propagation.
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Recall that we have the following computation, which is given by combining Corol-
lary 5:9 and Proposition 10:2 of [2].

Proposition 7.4 There is an indeterminacy group Ai=j � BP�eBP such that

R
Œ1�
BP
.˛i=j /� ži=j C 2BP�eBP CAi=j :

In [2] (spectral sequence (10.8) and the discussion which follows it), a method of
computing this indeterminacy group was described in terms of the differentials of an
indeterminacy spectral sequence. This spectral sequence is a truncated version of the
AAHSS. The differentials given in Proposition 7.2 and Proposition 7.3 give differentials
in the indeterminacy spectral sequence, which translate to the following result.

Proposition 7.5 The indeterminacy group Ai=j for R
Œ1�
BP
.˛i=j / is contained in the

Z.2/ module spanned by 2BP�BP and the generator given in the table below, where
aD 3i � j .

a Generator Condition
2 � �2.i/� 2

ž
1 �2.i/D 1

v1˛1 �2.i/D 0

3 � �2.i/� 1

v2
1
˛1 �2.i/D 0

4 � �2.i/� 3

x7C
ž

2=2 �2.i/D 2

x7 �2.i/D 1

v3
1
˛1 �2.i/D 0

5 � �2.i/� 4

v1.x7C
ž

2=2/ 2� �2.i/� 3

v1x7 �2.i/D 1

v4
1
˛1 �2.i/D 0

a� 6 � �2.i/� a� 1

va�4
1

x7 1� �2.i/� a� 2

va�1
1

˛1 �2.i/D 0

Remark 7.6 Not all of the entries of the table in Proposition 7.5 actually occur with
the allowable values of i and j for ˛i=j .
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8 BP filtered root invariants of 2k

The root invariants of the elements 2k were determined by Mahowald and Ravenel
[21] and by Johnson [13]. In this section we will explain how the root invariants of the
elements 2k are formed from the perspective of the ANSS. This analysis provides an
explanation for the pattern of differentials and hidden extensions in the v1 –periodic
part of the ANSS. We only compute filtered root invariants — our treatment is not an
independent verification of the know values of the homotopy root invariants R.2k/

because we do not eliminate the higher Adams–Novikov filtration obstructions required
by Theorem 6.1. The proper thing to do would be to combine the use of the ASS and
the ANSS, in a manner employed in the infinite family computations of [2].

Throughout this section and the rest of the paper, the reader should find it helpful to
refer to Figure 1, which depicts the ANSS chart for the sphere at the prime 2 through
the 29–stem.

[2, Proposition 10.1] states that

˛k 2R
Œ1�
BP
.2k/:

Our description of R.2k/ depends on the value of k modulo 4.

k � 1 .mod 4/: The element ˛k is a permanent cycle which detects the homotopy
root invariant R.2k/.

k � 2 .mod 4/: While ˛k is a permanent cycle, it does not detect an element
of R.2k/. This is an instance where Theorem 6.5 comes into play. The �2k –
cell attaches to the .�2k�1/–cell of P�2k

�2k�1
by the degree 2 map, and the

.�2kC1/–cell attaches to the .�2k�1/–cell in P�2kC1
�2k�1

by the map ˛1 . There
is a hidden extension x̨1 � x̨k�1 x̨1D 2 � x̨k , so we may use Theorem 6.5 to deduce
that

˛k�1˛1 2R
Œ2�
BP

�
2k
�
:

The element ˛k�1˛1 detects the homotopy root invariant R
�
2k
�
.

k � 3 .mod 4/: The first filtered root invariant ˛k is not a permanent cycle, so
we turn to Theorem 6.4. There is an Adams–Novikov differential

d3.˛k/D ˛1 �˛k�2˛
2
1 :

The .�2kC2/–cell attaches to the �2k –cell in P�2kC2
�2k

with attaching map
˛1 . We conclude that

˛k�2˛
2
1 2R

Œ3�
BP

�
2k
�
:
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Figure 1: The Adams–Novikov spectral sequence at p D 2
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The element ˛k�2˛
2
1

detects an element of the homotopy root invariant R.2k/.

k � 4 .mod 4/: The element ˛k is a permanent cycle in the ANSS, and detects
the element of order 2 in the image of J in the .2k�1/–stem. This is the root
invariant R

�
2k
�
.

9 The first two BP –filtered root invariants of ˛i=j

In this section we will compute R
Œk�
BP
.˛i=j / for k D 1; 2 using the indeterminacy

calculations of Section 7. We will then analyze the higher BP –filtered root invariants
using the theorems of Section 6.

The following proposition gives the first few filtered root invariants of the ˛i=j . Since
we actually use the homotopy root invariant to determine these filtered root invariants,
this proposition gives no new information. However, we do see the indeterminacy
group Ai=j adding essential terms to the BP ^eBP –root invariant.

Proposition 9.1 The low dimensional filtered root invariants of the elements ˛i=j are
given (up to a multiple in Z�

.2/
) by the following table.

x R
Œ1�
BP
.x/ R

Œ2�
BP
.x/

˛1 ˛2=2 �

˛2=2 ˛4=4 �

˛2 v1˛4=4 ˛4=4˛1

Proof Proposition 7.5, combined with Proposition 7.4, gives the following values for
R
Œ1�
BP

.

R
Œ1�
BP
.˛1/

:
D ž1C c1 � v1˛1

R
Œ1�
BP
.˛2=2/

:
D ž2=2C c2 �x7

R
Œ1�
BP
.˛2/

:
D ž2C c3 � v1x7:

Theorem 6.4 implies that

(1) d1

�
R
Œ1�
BP
.˛i=j /

�
D 2 �R

Œ2�
BP
.˛i=j /

for the values of i and j we are considering. The known root invariants (see Mahowald–
Ravenel [21]) of these elements are

R.˛1/DR.�/
:
D � R.˛2=2/DR.�/

:
D � R.˛2/DR.2�/

:
D ��:
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In the ANSS we have the following representatives of elements of the E2 –term.

˛2=2 D
ž

1

˛4=4 �
ž

2=2Cx7 .mod 2/

We also have the following d1 –differentials in the ANSS.

d1.x7/� d1. ž2=2/� 2ˇ2=2 .mod 4/

d1. ž2/� 2ˇ2 .mod 4/

d1. ž2C v1x7/� 2˛1˛4=4 .mod 4/

The only way these differentials can be compatible with Equation (1) and Theorem 6.1
is for the coefficients ci to have the following values.

c1 � 0 .mod 2/; c2 � 1 .mod 2/; c3 � 1 .mod 2/:

The second filtered root invariants of the rest of the ˛i=j ’s are given by the following
proposition.

Proposition 9.2 The filtered root invariant R
Œ2�
BP
.˛i=j / for 3i � j � 6 contains (up to

a multiple in Z�
.2/

) the element

ˇi=j C

(
c �˛1 z̨3i�j�1 j odd

0 j even

with c 2 Z.2/ . Here z̨k represents the ANSS element ˛k= l with l maximal.

Proof Proposition 7.5, together with Proposition 7.4 gives

ž
i=j C c �x

˘
2R

Œ1�
BP
.˛i=j /

where c is an element of Z.2/ and x 2 BP�eBP has the property that the Adams–
Novikov differential d1.x/ is given by

(2) d1.x/
:
D

(
2˛1 z̨3i�j�1; �2.i/� 3i � j � 2; j odd

0 otherwise.

We claim that the condition �2.i/� 3i �j �2 is always satisfied for 3i �j � 6 where
i and j are such that ˛i=j exists in the Adams–Novikov E2 –term. Indeed, for ˛i=j to
exist we must have j � �2.i/C 2, from which it follows that

3i � �2.i/� 4� 3i � j � 2:
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Therefore it suffices to show that �2.i/� 3i��2.i/�4, or equivalently 2�2.i/� 3i�4.
The latter is true for i � 2, and the condition 3i�j � 6 in particular implies that i � 2.
Thus the condition in the first case of Equation (2) may be simplified to simply read
“j odd.”

There are Adams–Novikov differentials

d1. ži=j /� 2ˇi=j .mod 4/:

Theorem 6.4 applies to give

d1

�
R
Œ1�
BP
.˛i=j /

�
D 2 �R

Œ2�
BP
.˛i=j /

and the result follows.

10 Higher BP and H F2–filtered root invariants of some v1–
periodic elements

We denote the Eilenberg–MacLane spectrum H F2 by H . We describe what happens
first in the ASS, and then the ANSS. All of the algebraic root invariants used were
taken from Bruner [5]. These algebraic root invariants coincide with the first non-trivial
filtered root invariants by Theorem 6.6. The computations are summarized below.
We will show in Section 11 that in each of these cases the top filtered root invariant
successfully detects the homotopy root invariant through the use of Theorem 6.1.

R.x̨1/ ASS: The element x̨1 D � is detected by h1 . We have h2 2 Ralg.h1/.
The element h2 detects � .
ANSS: We have ˛2=2 2R

Œ1�
BP
.x̨1/. The element ˛2=2 also detects � .

R.x̨2
1
/ ASS: The algebraic root invariant is given by h2

2
2 Ralg.h

2
1
/, and h2

2

detects �2 .
R.x̨3

1
/ ASS: We have h3

2
2Ralg.h

3
1
/, which detects �3 .

R.x̨2=2/ ASS: The element x̨2=2 is detected by h2 . The algebraic root invariant is
given by h3 2Ralg.h2/. The element h3 detects � .
ANSS: The first filtered root invariant is given by ˛4=4 2R

Œ1�
BP
.˛2=2/, and

˛4=4 detects � .
R.x̨2/ ASS: The element x̨2 is detected by h0h2 , and h1h32Ralg.h0h2/ detects

�� .
ANSS: The second filtered root invariant is given by ˛4=4˛1 2R

Œ2�
BP
.x̨2/,

which detects �� .
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R.x̨4=4/ ASS: The element x̨4=4 is detected by h3 in the ASS. The algebraic root
invariant is given by h4 2Ralg.h3/, which coincides with the first filtered
root invariant R

Œ1�
H
.h3/ by Theorem 6.6. The Hopf invariant 1 differential

d2.h4/ D h0h2
3

allows one apply Theorem 6.4 and get h2
3
2 R

Œ2�
H
.h3/.

The element h2
3

detects �2 .
ANSS: We have the second filtered root invariant ˇ4=4 2R

Œ2�
BP
.x̨4=4/, and

ˇ4=4 detects �2 .
R.x̨4=3/ ASS: The element x̨4=3 is detected by h0h3 in the ASS. The algebraic

root invariant is h1h4 2Ralg.h0h3/, which detects �4 .
ANSS: The second filtered root invariant is ˇ4=3Cc˛8=5˛1 2R

Œ2�
BP
.x̨4=3/,

for c 2Z=2. The element ˇ4=3 detects �4 . The value of c is irrelevant —
the AHSS differentials of Mahowald [19] imply that if �4 is in the root
invariant R.2�/ (which it is), then ˛1˛8=5 is in the indeterminacy of this
root invariant. In the AHSS for ��.P1�10

/ the element x̨1 x̨8=5Œ�10� is
the target of a differential supported by x̨5Œ�2�.

R.x̨4=2/ ASS: The element x̨4=2 is detected by h2
0
h3 . The algebraic root invariant

is h2
1
h4 2Ralg.h

2
0
h3/, and this detects ��4 .

ANSS: The second filtered root invariant is given by ˇ4=2 2R
Œ2�
BP
.x̨4=2/,

where c 2 Z=2. The element ˇ4=2 is a permanent cycle but does not
survive to the homotopy root invariant. We appeal to Theorem 6.5 to
find a higher filtered root invariant. In P�12

�13
the �12–cell attaches to the

�13–cell with degree 2 attaching map, and the �11–cell attaches to the
�13–cell in P�11

�13
by �. There is a hidden extension in the ANSS given

by x̨1 � x̨1 x̌4=3 D 2 � x̌4=2 , which indicates that we have a higher filtered
root invariant ˛1ˇ4=3 2R

Œ3�
BP
.x̨4=2/. The element ˛1ˇ4=3 detects ��4 .

R.x̨4/ ASS: The element x̨4 is detected by h3
0
h3 , with algebraic root invariant

h3
1
h4 2Ralg.h

3
0
h3/ which detects �2�4 .

ANSS: The second filtered root invariant is given by .ˇ4 C c˛1˛10 2

R
Œ2�
BP
.x̨4/. It turns out that ˛1˛10 is in the indeterminacy of R

Œ2�
BP
.x̨4/,

since in the AHSS for P1
�14

, we have d2.˛10Œ�12�/D˛10˛1Œ�14�. There-
fore we may as well set cD0. The element ˇ4 corresponds to the element
g in the ASS. The element ˇ4 is a permanent cycle, so we use Theorem
6.5 to look for a higher root invariant.
In P�12

�15
the �14–cell attaches to the �15–cell by the degree 2 map, and

there is a Toda bracket
˝
P�12
�15

˛
.�/

\
D h2; ˛1;�i.

There is a hidden extension in the ANSS given by 2 x̌4 D . x̌4=4 x̌2=2/=2,
and in the ANSS there is a Toda bracket .ˇ4=4ˇ2=2/=2 2 h2; ˛1; ˇ4=3˛

2
1
i.

Geometry & Topology Monographs, Volume 10 (2007)



Some root invariants at the prime 2 29

We conclude using Theorem 6.5 that we have the higher filtered root
invariant ˇ4=3˛

2
1
2R

Œ4�
BP
.x̨4/. The element ˇ4=3˛

2
1

detects �2�4 .
R.x̨4=4 x̨1/ ASS: The element x̨4=4 x̨1 is detected by h3h1 with algebraic root invari-

ant h4h2 2Ralg.h3h1/ which detects �� .
ANSS: The root invariant of x̨4=4 will turn out to be given by x̌4=4 , so
one might initially suspect that x̨2=2 x̌4=4 would detect the homotopy
root invariant R.x̨4=4 x̨1/. However, the �6–cell attaches to the �10–
cell with attaching map � . Thus in the AAHSS for P�10 , there is a
differential d4.ˇ4=4Œ�6�/ D ˛2=2 � ˇ4=4Œ�10�. Looking at the attaching
map structure of P�6

�11
, this differential actually pushes the root invariant

to ˇ4=2;2 2 h˛2=2; 2; ˇ4=4i, and this element detects �� .
R.x̨4=4 x̨

2
1
/ ASS: The element x̨4=4 x̨2

1
is detected by h3h2

1
, with algebraic root in-

variant h4h2
2
2Ralg.h3h2

1
/. which detects ��� .

R.x̨5/ ASS: The element x̨5 is detected by Ph1 , with algebraic root invariant
h2g 2Ralg.Ph1/ which detects �x� .
ANSS: The second filtered root invariant is given by ˇ5 C c˛13˛1 2

R
Œ2�
BP
.x̨5/, where c2Z=2. Theorem 6.4 applies to the differential d3.ˇ5C

c˛13˛1/ D ˛2
1
�3=2 to give the higher filtered root invariant ˛1�3=2 2

R
Œ4�
BP
.x̨5/. The element ˛1�3=2 corresponds to the element h4c0h1 in

the ASS. Using the May spectral sequence, we see that there is a Massey
product h2

2
g 2 hh0; h1; h4c0h1i. The element h2

2
g is a permanent cycle

which corresponds to the element …ˇ2=2 in the ANSS. We conclude that
in the ANSS there is a hidden Toda bracket x̨2=2 � x̌4 x̨3

1
=8 D…ˇ2=2 2

h2; x̨1; x̨1x�3=2i. In P�15
�19

, the �16–cell attaches to the �19–cell with
the Toda bracket h2; x̨1;�i and the �15–cell attaches to the �19–cell
with attaching map x̨2=2 . We conclude, using Theorem 6.5, that we have
another higher filtered root invariant ˇ4˛

3
1
=8 2R

Œ5�
BP
.x̨5/. The element

ˇ4˛
3
1
=8 detects �x� .

R.x̨5 x̨1/ ASS: The element x̨5 x̨1 is detected by Ph2
1

, with algebraic root invariant
r 2Ralg.Ph2

1
/. Theorem 6.6 implies that we have the filtered root invariant

r 2R
Œ6�
H
.x̨5 x̨1/. The element r supports the Adams differential d3.r/D

h1d2
0

. Thus, we may use Theorem 6.4 to deduce that there is a higher

filtered root invariant d2
0
2R

Œ8�
H
.x̨5 x̨1/ which detects �2 D �x� .

R.x̨5 x̨
2
1
/ ASS: The element x̨5 x̨2

1
is detected by Ph3

1
, with algebraic root invariant

h1q 2Ralg.Ph3
1
/.
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R.x̨6=2/ ASS: This element presents a very interesting story: it is an instance where
the ASS seems to give us nothing yet the ANSS tells us the homotopy
root invariant. The element x̨6=2 corresponds to the element Ph2 in the
ASS, with algebraic root invariant h3

0
h2

4
2Ralg.Ph2/. The element h3

0
h2

4

is killed by a differential in the ASS, and it is not clear what a candidate
for the root invariant should be.
ANSS: The second filtered root invariant is given by ˇ6=2 2R

Œ2�
BP
.x̨6=2/.

There is an Adams–Novikov differential d5.ˇ6=2/ D ˛2=2 � …ˇ2=2 .
Theorem 6.4 indicates that we have the higher filtered root invariant
…ˇ2=2 2R

Œ6�
BP
.˛6=2/ which detects �2x� .

R.x̨6/ ASS: The element x̨6 is detected by Ph2h0 , with algebraic root invariant
q 2Ralg.Ph2h0/.

11 Homotopy root invariants of some v1–periodic elements

In this section we will use the filtered root invariant computations of Section 10 to
compute some homotopy root invariants. These computations are summarized in the
following theorem. The first few are well-known (see Mahowald–Ravenel [21]).

Theorem 11.1 We have the following table of homotopy root invariants (up to some
multiple in Z�

.2/
).

x R.x/

x̨1 D � �

x̨2
1
D �2 �2

x̨3
1
D �3 �3

x̨2=2 D � �

x̨2 D 2� ��

x̨4=4 D � �2

x̨4=3 D 2� �4

x̨4=2 D 4� ��4

x R.x/

x̨4 D 8� �2�4

x̨4=4 x̨1 D �� ��

x̨4=4 x̨
2
1
D ��2 ���

x̨5 �x�

x̨5 x̨1 �2 D �x�

x̨5 x̨
2
1

�xq

x̨6=2 �2x�

x̨6 xq

Some of these root invariants may have indeterminacy.

We pause to remark on the elements that show up as root invariants in this table. With
the exception of � , � , ��, and �3 D ��2 , all of these elements are v2 –periodic. This
was shown by Mahowald in [18], and Hopkins and Mahowald in [11]. We remind the
reader that due to an error in Davis–Mahowald [7], one must replace 8k with 32k in
[18]. Recently, Hopkins and Mahowald have produced some v32

2
–self maps [10]. In
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particular, in [19, Problem 4] (see also [7]), a list of v2 –periodic elements in ��.S/
are given which are the first few homotopy Greek letter elements ˇh

i :

�; �2; �3; �2�4; �x�; �x�; �xq; : : :

Our computations show that these elements appear as the iterated root invariants
R.R.2i// for i � 7.

The rest of this section is devoted to proving Theorem 11.1. We use Corollary 6.2 to
deduce the homotopy root invariants from our filtered root invariants. In our range, the
first part of Corollary 6.2 is easier to check using the ANSS rather than the ASS, since
there are fewer elements to check. However, we have only determined the BP –filtered
root invariants for the elements in Adams–Novikov filtration 1. For the v1 –periodic
elements in higher Adams–Novikov filtration, we must use our H F2 –filtered root
invariants and the ASS. Since the author’s knowledge of the 2–primary ANSS does
not include ˇ6 , we also use the ASS to compute R.˛6/. The second part of Corollary
6.2 is verified afterwards.

Our computations for the first part of Corollary 6.2 using BP –filtered root invariants
and the ANSS are summarized in the following table.

x R
Œk�
BP
.x/ �N fi Œni �g diff

x̨1 ˛2=2 �3

x̨2=2 ˛4=4 �5 ˇ2=2Œ�4�  ˛1Œ2�

x̨2 ˛4=4˛1 �6

x̨4=4 ˇ4=4 �8

x̨4=3 ˇ4=3 �10 ˇ4=4˛1Œ�9�  ˇ4=4Œ�7�

x̨4=2 ˇ4=3˛1 �11

x̨4 ˇ4=3˛
2
1
�12

x̨5 ˛3
1
ˇ4=8 �15

x̨6=2 …ˇ2=2 �16

We explain the columns of the table:

x The element we wish to compute the root invariant of.
R
Œk�
BP
.x/ The top BP–filtered root invariant of x, which we want to show

detects R.x/ using Corollary 6.2.
�N The cell of P1�1 which carries the filtered root invariant.
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fi Œni �g The collection of elements in the E1–term of the AAHSS
converging to Ext.BP�P�N / which could detect the difference
between the top filtered root invariant and the homotopy root invariant.
We exclude elements of infinite ˛1–towers, since these are always the
source or target of a d2–differential in the AAHSS.

diff Each element i Œni � turns out to be ineligible to detect the difference,
since it is the target the indicated AAHSS differential.

We now deal with the leftover elements using the H F2 –filtered root invariants and the
ASS. We have the following H F2 –filtered root invariants which are permanent cycles
in the ASS.

x R
Œk�
H
.x/ �N

x̨4=4 x̨1 h4h2 �11

x̨4=4 x̨
2
1

h4h2
2
�13

x̨5 x̨1 d2
0

�19

x̨5 x̨
2
1

h1q �23

x̨6 q �22

Using Corollary 6.2, we see that to verify that these filtered root invariants detect
homotopy root invariants, we must first check that there are no elements of �t�1.P�N /

of Adams filtration greater than k which can detect the root invariant on a higher cell.
We handle this on a case-by-case basis, with the aid of the computations of Mahowald
in [16], and the computer Ext computations of Bruner [4]. In the following analysis,
we omit the elements detected in the AHSS by v1 –periodic elements. These elements
cannot be root invariants in the stems we are considering by the following lemma.

Lemma 11.2 Suppose that  Œn� 2 �j .S
n/ is an element of the E1 –term of the AHSS

for �j .P
1
�1/ where  is a v1 –periodic element. Then  Œn� is either the source or

target of a non-trivial AHSS differential unless we are in one of the following cases (in
which case we do not know whether  Œn� is the source or target of a differential).

�  D � and j � 0 .mod 4/

�  D Bi with j � 6 .mod 8/ and i � �2.j C 2/� 2

�  D � , ��, or ��2 with j � 6 .mod 8/ (The behavior of these elements is
slightly anomalous, due to the presence of �2 , � , and �� .)
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Here Bi is i th generator of the image of the J –homomorphism. Therefore, if iD4aCb

with 0� b � 3, we have

Bi D

8̂̂̂̂
<̂
ˆ̂̂:
z̨4a x̨

2
1
; b D 0

z̨4aC2; b D 1

z̨4.aC1/; b D 2

z̨4.aC1/ x̨1; b D 3

where z̨k is the element x̨k= l with l maximal.

Proof Mahowald [17, Theorem 4.6] states that you can lift the differentials from the
J –homology modified AHSS to the (double suspension) EHP spectral sequence. The
proofs of the announcements in [17] are the subject of [19]. Since the EHP spectral
sequence maps to the AHSS for ��.P1/, the differentials in the AHSS follow. We
then get the result for the AHSS for P1�1 by transporting our differentials with James
periodicity.

The first part of Corollary 6.2 on the remaining elements is verified as follows.

x̨4=4 x̨1 : According to the tables of Mahowald [16], the only elements of �7.P�11/ of
Adams filtration greater than 2 are v1 –periodic.

x̨4=4 x̨
2
1

: According to the tables of [16], there are no elements of �8.P�13/ of Adams
filtration greater than 3.

x̨5 x̨1 : Examining the tables of [16], the only elements of �9.P�19/ of Adams filtration
greater than 8 have trivial image in �9.P�18/. Therefore, none of them can detect a
root invariant carried by a cell above the �19 cell.

x̨5 x̨
2
1

: Examining the tables of Bruner [4], we find the following pattern of generators
in Ext.H�P�23/.

s

7

10
t�s

P 2d0h2
1
Œ�23�

P2e0Œ�23�

h1qŒ�23�

Ext.P�23/
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Some of the elements are labeled with their AAHSS names. These names were deduced
from the AAHSS differentials computed in [16]. The Adams differentials originating
from the elements in Adams filtration 6 and 7 may be deduced by extrapolating
differentials computed in [16] using h0 , h1 , and h2 multiplication. The inclusion of
the bottom cell

S�23
! P�23

induces the differential d2.P
2e0Œ�23�/D P2d0h2

1
Œ�23�. The rest of the differentials

are then forced by h0 multiplication. We deduce that the only elements of �10.P�23/

of Adams filtration greater than 7 are the v1 –periodic elements.

x̨6 : From the tables of Bruner [4], we find the following portion of Ext.H�P�22/.

s

6

10
t�s

P 2h3
2
Œ�16�

kŒ�19�

qŒ�22�

pŒ�22�

h2
4
h1Œ�20�

d1Œ�21�

h0lŒ�15�

Ext.P�22/

All of the d2 differentials shown are extrapolated from differentials in the charts of
Mahowald [16] using h0 , h1 , and h2 –multiplication. The remaining two elements
that could detect elements of higher Adams filtration, h0l Œ�15� and kŒ�19�, must be
handled with care. We make the following claims, which combine to show there are no
classes in �10.P�22/ of Adams filtration greater than 6 which could detect the root
invariant of x̨6 .

(1) There is an Adams differential d3.h0l Œ�22�/D P2h3
2
Œ�16� (as indicated by a

dashed line in the chart).

(2) The element kŒ�19� is a non-trivial permanent cycle which detects an element
 2 �10.P�22/.

(3) The image of  in �10.P�21/ cannot agree with the image of x̨6 under the
composite S�1! P1�1! P�21 .
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Proof of (1) In the ASS for ��.S0/, there is a differential

d2.h0l/D Pe0h2
2:

In the AAHSS for Ext.H�P�22/, there is a differential

d6.Pe0h1Œ�16�/D hPe0h1; h2; h1iŒ�22�D Pe0h2
2Œ�22�:

However, in the ASS for ��.S0/, there is a differential

d2.Pe0h1/D P2h3
2:

We conclude that in the E3 –term of the ASS for ��.P�22/, the elements Pe0h2
2
Œ�22�

and P2h3
2
Œ�16� have been equated. Thus, the element h0l Œ�22� must kill the element

P2h3
2
Œ�16�.

Proof of (2) The generator of Ext.H�P�22/ in .t � s; s/ D .11; 5/ cannot support
a d2 killing kŒ�19� because it does not support non-trivial h0 multiplication. The
elements p , d1 , and h2

4
h1 of Ext.F2/ detect homotopy elements xp , xd1 , and ��4 in

��.S/. These elements are easily seen to extend to elements xpŒ�22�, xd1Œ�21�, and
��4Œ�20� of �11

�
P�20
�22

�
. The elements pŒ�22�, d1Œ�21�, and h2

4
h1Œ�20� detect the

images of xpŒ�22�, xd1Œ�21�, and ��4Œ�20� under the inclusion

P�20
�22 ! P�22:

Therefore, the elements pŒ�22�, d1Œ�21� and h2
4
h1Œ�20� must be permanent cycles.

There are no other elements of Ext.H�P�22/ which can kill kŒ�19�.

Proof of (3) Let  2 �10.P�22/ be detected by the permanent cycle kŒ�19�. Let �N

denote the composite

��.S
�1/! ��.P�1/! ��.PN /:

Let  0 be the image of  in �10.P�21/. Since the element kŒ�19� is non-trivial in
Ext.H�P�21/, the element  0 has Adams filtration 7. We must show that  0 cannot
equal ��21.x̨6/. Let xq 2 �32.S

0/ be the element detected by q . Examining the ASS
for S0 (see Mahowald–Tangora [24], and Ravenel [27]), we see that the element xq
extends to an element ı D xqŒ�22� in �10.P�25/. Since the algebraic root invariant
of Ph2h0 is q , the element ��25.x̨6/ is detected in Ext.H�P�22/ by qŒ�22�. Since
qŒ�22� also detects ı , the sum � D ��25.x̨6/C ı has Adams filtration greater than 6.
Consulting the charts in [4], we find that there is one generator in Exts;t .H�P�25/ for
.t � s; s/D .10; 7/, which is detected in the AAHSS by the element h1qŒ�23�. The
image of � in �10.P�21/ is ��21.x̨6/. Since the image of h1qŒ�23� in Ext.H�P�21/
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is zero, we deduce that ��21.x̨6/ is of Adams filtration greater than 7. Thus ��21.x̨6/

cannot equal  0 , since  0 has Adams filtration 6.

We have verified the first part of Corollary 6.2. We now must fulfill the second part of
Corollary 6.2. Suppose that we are given an element x 2 ��.S/ and we want to see
that y is an element of R.x/ for some y 2 ��.S/, where the root invariant is carried
by the �N –cell. Suppose that y was detected by a filtered root invariant and that we
have already verified the first part of Corollary 6.2. Then the root invariant of x is y if
we can show that the image of the element y under the inclusion of the bottom cell

��.S
�N /! ��.P�N /

is nontrivial.

Lemma 11.3 Let E be either H F2 or BP and suppose that zy 2 Ext.E�/ detects y

in the E–ASS. It suffices to show the following two things:

(1) The element zyŒ�N � is not the target of a differential in the AAHSS.

(2) This element of Ext.E�P�N / which zyŒ�N � detects is not the target of an
E–ASS differential.

We have the following convenient proposition.

Proposition 11.4 If z is a v1 –torsion element of Ext2;j .BP�/ with j � 0 .mod 2/,
then in the AAHSS for Ext.BP�P2m/ the element zŒ2m� cannot be the target of a
differential.

Proof The only elements which can support AAHSS differentials that hit zŒ2m� are
those of the form

1Œ2k � 1� or ˛i=j Œ2k�:

We only need to consider elements in t � s � 1 .mod 2/, since zŒ2m� is in t � 2� 0

.mod 2/. The differentials given in Propositions 7.2 and 7.3 tell us that these elements
either kill or are killed by other v1 –periodic elements.

Corollary 11.5 The second filtered root invariant ˇi=j 2R
Œ2�
BP
.˛i=j / always satisfies

the second part of Corollary 6.2.

We now finish the proof of Theorem 11.1 by verifying the second part of Corollary 6.2
each of our elements.

For the root invariants of the elements

x̨4=4; x̨4=3; x̨6
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we simply invoke Corollary 11.5. We mention that xq is detected in the ANSS by the
element ˇ6 .

For the root invariants of the elements

x̨1; x̨
2
1 ; x̨

3
1 ; x̨2=2; x̨2; x̨4=4 x̨1; x̨4=4 x̨

2
1 ; x̨4=2; x̨4; x̨5; x̨6=2

we look at the tables in [16] to see that the required elements are non-zero in the
homotopy of the stunted projective spaces.

The root invariant of x̨5 x̨1 requires special treatment. We recall that we have the
algebraic root invariant d2

0
2Ralg.x̨5 x̨1/ carried by the �19–cell. We must verify that

the image of �x� D �2 under the map

��.S
�19/! ��.P�19/

is non-zero. The problem is that when we look at Mahowald’s computations [16] we see
that d2

0
Œ�19� is killed in the AAHSS. Indeed, we have the algebraic Atiyah–Hirzebruch

differential
dAAHSS

6 .i Œ�13�/D d2
0 Œ�19�:

However, we have the Adams differential

dASS
2 .i/D Pd0h0:

Therefore, in the E3 –term of the ASS for P�19 , the elements Pd0h0Œ�13� and
Pd0h1Œ�14� have been equated, so we may conclude that the combination of the
AAHSS and ASS differentials implies that the image of �x� under the inclusion of
the bottom cell is detected by Pd0h1Œ�14�. Mahowald’s tables [16] indicate that this
element is non-zero in ��.P�19/.

For the purposes of determining the root invariant of

x̨5 x̨
2
1

we must determine whether the image of �xq under the map

��.S
�23/! ��.P�23/

is non-zero. Examining the tables of Bruner [4], we see that the element h1qŒ�23� is
non-trivial in Ext.P�23/. We therefore just need to check that it cannot be the target of
a differential. There are three possible sources of a differential that would kill h1qŒ�23�.
These are represented by the elements

nŒ�20�; d1Œ�21�; and h5h2Œ�23�:

But these elements are permanent cycles, as argued in the following lemmas.
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Lemma 11.6 The element nŒ�20� 2 Ext5;16.H�P�23/ is a permanent cycle.

Proof We just need to show that the element xn 2 �11

�
S�20

�
extends over P�20

�23
.

Since 2xnD 0 and �xnD 0, it suffices to show that the Toda bracket

h2; �; xni

contains 0. The element xn is given by the Toda bracket

xn 2 h�; �; x�i

(see Mahowald–Tangora [24]). We have

h2; �; xni D h2; �; h�; �; x�ii � h2; �; �; �ix�:

However, the Toda bracket h2; �; �; �i lies in �13.S
0/, hence it must be zero.

Lemma 11.7 The element d1Œ�21� 2 Ext4;15.H�P�23/ is a permanent cycle.

Proof The element xd1 2 �32.S
0/ extends over P�21

�23
to give an element which is

detected by d1Œ�21�, so we may conclude that d1Œ�21� is a permanent cycle.

The author thanks W H Lin for supplying the proof of the following lemma.

Lemma 11.8 The element h5h2Œ�23� 2 Ext2;13.H�P�23/ is a permanent cycle.

Proof The element h5h2 supports a differential of the form d3.h5h2/ D h0p in
the ASS for S0 . However, in the AAHSS for Ext

�
H�P

�22
�23

�
, the element h0pŒ�23�

is killed by pŒ�22�. The element xp 2 �33.S
0/ therefore extends to an element

xpŒ�22� 2 �11.P�23/ which is detected by h5h2Œ�23� in the ASS. We conclude that
h5h2Œ�23� is also a permanent cycle.
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