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Homotopy idempotents on manifolds and Bass’ conjectures

A J BERRICK

I CHATTERJI

G MISLIN

The Bass trace conjectures are placed in the setting of homotopy idempotent self-
maps of manifolds. For the strong conjecture, this is achieved via a formulation of
Geoghegan. The weaker form of the conjecture is reformulated as a comparison of
ordinary and L2 –Lefschetz numbers.
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Preface

This note has its origins in talks discussing Bass’ trace conjecture. After one such
lecture (by IC), R Geoghegan kindly mentioned his geometric perspective on the matter.
Then, when another of us (AJB) spoke about the conjecture at the Kinosaki conference,
he thought that a topological audience might like to hear about that geometric aspect.
Thus, it seemed desirable to attempt to put the conjecture (and its weaker version) in a
setting that would be as motivating as possible to topologists. The result of that attempt
appears below.
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1 Introduction

In 1976, H Bass [2] conjectured that for any discrete group G , the Hattori–Stallings
trace of a finitely generated projective module over the integral group ring of G should
be supported on the identity component only. Despite numerous advances (see, for
example, Eckmann [6], Emmanouil [10], and our earlier paper [3]), this conjecture
remains open in general. In [11], R Geoghegan gave the first topological interpretation,
in terms of Nielsen numbers (stated as Theorem 4.4 below). In the setting of selfmaps
on manifolds, this translates to the following.
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42 A J Berrick, I Chatterji and G Mislin

Theorem 1 The following are equivalent.

(a) The Bass conjecture is a theorem.

(b) Every homotopy idempotent selfmap of a closed, smooth and oriented manifold
of dimension greater than 2 is homotopic to one that has precisely one fixed
point.

Throughout this paper we use the word “closed” to refer to a connected, compact
manifold without boundary. Background material on homotopy idempotents and
related invariants will be discussed in Sections 3 and 4. A weaker version of Bass’
conjecture amounts to saying that for any group G , the coefficients of the non-identity
components of the Hattori–Stallings trace of a finitely generated projective module over
the integral group ring of G should sum to zero (and not necessarily be individually
zero).

Theorem 2 The following are equivalent.

(a) The weak Bass conjecture is a theorem.

(b) Every pointed homotopy idempotent selfmap of a closed, smooth and oriented
manifold inducing the identity on the fundamental group, has its Lefschetz
number equal to the L2 –Lefschetz number of the induced map on its universal
cover.

Background material regarding L2 –Lefschetz numbers is explained in Section 7. The
implication .a/) .b/ had already been observed by Eckmann in [7] in a slightly
different form. The proofs of these two theorems proceed as follows. Theorem 1 is
derived from the analogous statement for finite CW–complexes (involving Nielsen
numbers) from Geoghegan’s work, which is explained in Section 4. The transition
from CW–complexes to manifolds is done in Section 5. The proof of Theorem 1 as
well as some applications is discussed in Section 6. For Theorem 2 the strategy is
somewhat similar: namely, we first prove the statements for finitely presented groups
instead of arbitrary groups and for finite complexes instead of manifolds (see Section
8). To deduce Bass’ conjectures (weak and classical) for arbitrary groups we use a
remark due to Bass (Lemma 6.3).

2 Review of Bass’ conjectures

We briefly recall Bass’ conjectures. Let ZG denote the integral group ring of a group
G . The augmentation trace is the Z–linear map

�W ZG! Z; g 7! 1
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induced by the trivial group homomorphism on G . Writing ŒZG;ZG� for the addi-
tive subgroup of ZG generated by the elements gh � hg (g; h 2 G ), we identify
ZG=ŒZG;ZG� (the Hochschild homology group HH0.ZG/) with

L
Œs�2ŒG� Z � Œs�,

where ŒG� is the set of conjugacy classes Œs� of elements s of G . The Hattori–Stallings
trace of M D

P
g2G mgg 2 ZG is then defined by

HS.M /DM C ŒZG;ZG�

D

X
Œs�2ŒG�

�s.M /Œs� 2
M
Œs�2ŒG�

Z � Œs�;

where for Œs� 2 ŒG�, �s.M /D
P

g2Œs�mg is a partial augmentation. In particular, the
component �e of the identity element e 2 G in the Hattori–Stallings trace is known as
the Kaplansky trace

�W ZG! Z;
X

mgg 7!me:

Now, an element of K0.ZG/ is represented by a difference of finitely generated
projective ZG –modules, each of which is determined by an idempotent matrix having
entries in ZG . Combining the usual trace map to ZG of such a matrix with any of the
above traces on ZG turns out to induce a well-defined trace map on K0.ZG/ that is
given the same name and notation as before. Moreover, HS and � are natural with
respect to all group homomorphisms (and � with respect to group monomorphisms).
In the case of a free module ZGn , � takes the value n and so is just the rank of the
module.

In [2], Bass conjectured the following.

Conjecture 1 (Classical Bass conjecture) For any group G , the induced map

HSW K0.ZG/!
M
Œs�2ŒG�

Z � Œs�

has image in Z � Œe�.

Conjecture 2 (Weak Bass conjecture) For any group G , the induced maps

�; �W K0.ZG/! Z

coincide.

To clarify the discussion below, it is helpful to consider also reduced K–groups. The
inclusion hei ,!G induces a natural homomorphism

ZDK0.Z/DK0.Z hei/ �!K0.ZG/
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whose cokernel is the reduced K–group zK0.ZG/, equipped with natural epimorphism
�W K0.ZG/� zK0.ZG/.

3 Homotopy idempotent selfmaps

Let X be a connected CW–complex. A selfmap f W X ! X is called homotopy
idempotent if f 2 D f ı f is freely homotopic to f . Since X is path-connected
we can always assume that f fixes a basepoint x0 2 X , so that f induces a (not
necessarily idempotent) map f]W �1.X /! �1.X /. Given a homotopy idempotent
selfmap f W X !X on a finite dimensional CW–complex X , according to Hastings
and Heller [14] there is a CW–complex Y and maps uW X ! Y and vW Y ! X such
that the following diagram is (freely) homotopy commutative:

(3.1) X
f //

u   @
@@

@@
@@

f

&&
X

f //

u   A
AA

AA
AA

X

Y
id //

v

>>~~~~~~~
Y:

v

>>}}}}}}}

In fact, in this diagram we can arrange that the outside triangles strictly commute. By
replacing the maps by homotopic ones, we can (and do) choose the maps to preserve
basepoints. We then get the following commutative diagram of groups:

�1.X /
f] //

u] $$I
IIIIIIII

�1.X /
f] //

u] $$J
JJJJJJJJ

�1.X /

�1.Y / //
v]

::uuuuuuuuu
�1.Y /:

v]

::ttttttttt

Here the bottom arrow consists of conjugation by the class of a loop at the basepoint
of Y . Looking at the middle triangle, we see that v] is an injective homomorphism
while u] is surjective; hence we can make the identification

�1.Y /Š v].�1.Y //D Im.f]/� �1.X /:

If the homotopy idempotent f is a pointed homotopy idempotent (meaning that f 2 is
pointed homotopic to f ), then uıvW Y ! Y will induce the identity on �1.Y /. If we
require that f] D id, we then get that �1.Y / is isomorphic to �1.X / via v] D u�1

]
.

We now explain how, starting from a homotopy idempotent f W X ! X of a finite
connected complex X with fundamental group G D �1.X /, we obtain an element
w.f / 2 K0.ZG/. In the situation above, Y is called finitely dominated; then the

Geometry & Topology Monographs, Volume 10 (2007)
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singular chain complex of the universal cover zY of Y is chain homotopy equivalent to
a complex of type FP over Z�1.Y /

0! Pn! � � � ! P1! P0! Z

with each Pi a finitely generated projective Z�1.Y /–module. We then look at the Wall
element

w.Y /D

nX
iD0

.�1/i ŒPi � 2K0.Z�1.Y //

(where we follow the notation of Mislin [25]). Its image

zw.Y /D �.w.Y // 2 zK0.Z�1.Y //

is known as Wall’s finiteness obstruction, and zw.Y /D 0 exactly when Y is homotopy
equivalent to a finite complex. Finally, we define

w.f /D v].w.Y // 2K0.ZG/;

whose reduction zw.f / 2 zK0.ZG/ was first considered by Geoghegan [11]. As he
notes, the element zw.f / “can be interpreted as the obstruction to splitting f through
a finite complex”. Before proceeding, we check that w.f / is well-defined. First, we
observe a form of naturality of Wall elements.

Lemma 3.1 Let X be a finite n–dimensional complex, and suppose that there are
maps (of spaces having the homotopy type of a connected CW–complex)

X
u
�!W

a
�! V

v
�!X

such that aW W !V and uıvW V !W are homotopy inverse. Then the Wall elements
w.W / 2K0.Z�1.W // and w.V / 2K0.Z�1.V // are related by

w.V /D a]w.W /:

Proof We use the fact that, because conjugation in G induces the identity map on
K0.ZG/, homotopic maps induce the same homomorphism of K–groups. Recall
from Wall [29] that w.W / is defined (uniquely) by means of any n–connected map
 W L!W where L is a finite n–dimensional complex:

w.W /D .�1/nŒ�nC1.M ;L/�

where M denotes the mapping cylinder of  , and the relative homotopy group
is considered as a �1.W /–module (finitely generated and projective because of the
assumption that W is dominated by X ). Therefore, to define w.V /, we may take

w.V /D .�1/nŒ�nC1.Ma ;L/�.
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The result then follows from the natural isomorphism of the exact homotopy sequences
(of �1 –modules) of the pairs .M ;L/ and .Ma ;L/ induced by a.

We now can see that the obstruction to splitting a homotopy idempotent through a finite
complex is well defined.

Lemma 3.2 Let X be a finite complex with fundamental group G , and for i D 1; 2 let
X

ui
�! Yi

vi
�!X be a (homotopy) splitting of a homotopy idempotent map f W X !X .

Then in K0.ZG/

v1].w.Y1//D v2].w.Y2//.

Proof From the homotopy commutative diagram

Y1
id //

v1   A
AA

AA
AA

Y1

v1   A
AA

AA
AA

id // Y1

X
f

//

u2   A
AA

AA
AA

u1

>>}}}}}}}
X

f

//

u2   A
AA

AA
AA

u1

>>}}}}}}}
X

u2   A
AA

AA
AA

u1

>>}}}}}}}

Y2 id
//

v2

>>}}}}}}}
Y2 id

//
v2

>>}}}}}}}
Y2

we deduce from a simple diagram chase that a WD u2 ı v1W Y1! Y2 and b WD u1 ı

v2W Y2! Y1 are mutually inverse homotopy equivalences. Therefore

v2 ı a ıu1W X ! Y1! Y2!X

is such that a is homotopy inverse to u1 ı v2W Y2 ! Y1 ; and thus, by Lemma 3.1,
a].w.Y1//D w.Y2/. It then follows that

v1].w.Y1//D v1] ı a�1
] .w.Y2//D v1] ıu1] ı v2].w.Y2//D f] ı v2].w.Y2//:

Similarly
v2].w.Y2//D f] ı v1].w.Y1//:

Then substituting in the previous formula, and using idempotency of f] , gives the
result.

The key fact for giving a topological meaning to the Bass conjecture is the following,
which can be extracted from a result of Wall [29, Theorem F] in the light of the above.
It is also shown explicitly by Mislin [24].
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Theorem 3.3 Let G be a finitely presented group, let z̨ 2 zK0.ZG/, and let n � 2.
Then there is a finite n–dimensional complex X n with fundamental group G and a
pointed homotopy idempotent selfmap f of X n inducing the identity on �1 , such that
zw.f / is equal to z̨ .

Remark 3.4 For n � 3, the unreduced version of this result also holds. For, given
˛ 2 K0.ZG/, then choose a map f as in the theorem with respect to z̨ D �.˛/. It
follows that for some nonnegative r; s we have w.f /D ˛C ŒZG�r � ŒZG�s . Replacing
f by f _ idW where W D

�W
r S3

�
_
�W

s S2
�

then gives the desired selfmap. When
n D 2, the method fails, as without the possibility of adjoining a simply-connected
space of non-positive Euler characteristic we can only increase the rank of the Wall
element. (Recall from Mislin [25, Lemma 5.1] that for any finitely dominated space
Y , the rank of w.Y / equals �.Y /.)

4 Invariants for selfmaps of complexes

We recall from, for example, the articles [11; 12] by Geoghegan, the definition of
the Nielsen number N.f / of a selfmap f W X ! X of a finite connected complex
(assumed, as discussed above, to fix a basepoint of X ). Let f] be the endomorphism
of G D �1.X;x/ induced by f . Define elements ˛ and ˇ of G to be f]–conjugate
if for some z 2G

˛ D z �ˇ � .f]z/
�1 ,

and let Gf]
denote the set of f]–conjugacy classes, making ZGf]

a quotient of ZG .
Now N.f / is defined to be the number of nonzero coefficients in the formula for the
Reidemeister trace of f at x 2X :

R.f;x/D
X

C2Gf]

nC �C 2 ZGf]
.

The coefficient nC can be described geometrically as the fixed-point index of a fixed-
point class of f , and homologically in terms of traces of the homomorphisms induced
by f on the chain complex of the universal cover of X . In the literature, R.f;x/ is
also known as the generalized Lefschetz number.

When, as prompted by Theorem 3.3 above, we take f to induce the identity on �1 ,
then R.f;x/ 2

L
Œs�2ŒG� Z � Œs� and the following holds (cf Geoghegan [12, p505]).

Lemma 4.1 (Geoghegan) In the setting of diagram (3.1) of Section 3 where X is a
finite connected complex, and f is a pointed homotopy idempotent selfmap inducing
the identity map on the fundamental group,

HS.w.f //DR.f;x/:
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For the computation of Nielsen numbers, the following result also proved in Jiang [17,
p20], attributed to Fadell, is useful.

Lemma 4.2 Suppose that the diagram of finite connected complexes and based maps

ST
xg //

r

��

ST
r

&&MMMMMMMMMMMMM

T
g // T

s

OO

id // T

is commutative up to (free) homotopy. Then N.g/DN.xg/.

Proof We use the definition and notation for N.g/ and N.xg/ given above; we also
put SGD�1.ST ; s.t0// where t0 is the basepoint of T . Evidently, because sıg' xgıs ,
there is a well-defined function

s]W Gg]
�! SGxg]

which, because also r ı xg ' g ı r , while r ı s ' idT , has left inverse r]W SGxg]
!Gg]

.
In particular, s] is injective. With reference to the sentence before [11, (2.2)], note that
this is not true in general without some condition on s , such as its having a left inverse.

The formula for the Reidemeister trace of g at t0 2 T is:

R.g; t0/D
X

C2Gg]

nC �C 2 ZGg]
.

According to [11, (2.2)], we also have

R.xg; s.t0//D
X

C2Gg]

nC � s].C / 2 ZSGxg]
.

Because s] is injective, the two sums have the same number of nonzero coefficients;
that is, the Nielsen numbers agree.

The next lemma permits us in our discussion of Nielsen numbers to restrict to the case
of those homotopy idempotents that are pointed homotopy idempotents and induce the
identity on the fundamental group.

Lemma 4.3 Suppose that f W X !X is a homotopy idempotent on a finite connected
complex X , fixing x0 2 X , with G D �1.X;x0/ and H WD f].G/. Then there
is a finite connected complex K with fundamental group isomorphic to H and a
pointed homotopy idempotent gW K!K , inducing the identity map on H , such that
N.f /DN.g/. Furthermore, if G satisfies the Bass conjecture, then so does H .
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Proof Let X
u
�! Y

v
�! X be a splitting for f . Then, by [25, Corollary 5.5],

Y �S3 is homotopy equivalent to a finite connected complex K , because Y is finitely
dominated and the Euler characteristic of S3 is zero. Let hW Y �S3!K be a pointed
homotopy equivalence, with pointed homotopy inverse k ; define gW K!K to be the
map hı.idY �f�g/ık , where idY �f�gW Y �S3!Y �S3 denotes the idempotent on
Y �S3 given by the projection onto Y . Clearly g is a pointed homotopy idempotent,
inducing the identity on the fundamental group of K , and �1.K/Š �1.Y /ŠH .

Writing u0D u� idS3 and v0D v� idS3 , we now apply Lemma 4.2 with ST DX �S3

and T DK , and maps xg D f � f�g, r D h ıu0 , s D v0 ı k and g as defined already.
This yields the following homotopy commutative diagram

X �S3
f�f�g //

u0

��r

��

X �S3

u0

%%KKKKKKKKK
r

��

Y �S3

h
��

Y �S3

v0

OO

Y �S3

h

##G
GG

GG
GG

GG

K
g // K

id //

k

OO

s

DD

K:

We conclude that N.g/DN.f � f�g/.

On the other hand, N.f �f�g/DN.f /, as can be seen by again applying Lemma 4.2,
with the top part of the diagram as before, but T DX , r D prX and s the inclusion
x 7! .x;�/

X �S3
f�f�g //

��

X �S3

((PPPPPPPPPPPPP

X
f // X

id //

OO

X:

Therefore N.f /D N.g/. That H Š �1.Y / satisfies the Bass conjecture if G does
follows by observing that v]W �1.Y /! �1.X / is a split injection, and therefore the
induced map HH0.Z�1.Y //!HH0.Z�1.X // is a split injection too.

We are now able to obtain a restatement of the theorem of Geoghegan referred to in
the Introduction ([11, Theorem 4.1’] (i)’ , (iii)’), in a form suitable to the present
treatment.

Theorem 4.4 (Geoghegan) Let G be a finitely presented group. The following are
equivalent.

(a) G satisfies Bass’ Conjecture 1.
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(b) Every homotopy idempotent selfmap f on a finite connected complex with
fundamental group G has Nielsen number either zero or one.

Proof We start with the implication .a/) .b/. Let f be as in (b). Then by Lemma
4.3 we can assume that f W X !X is actually a pointed homotopy idempotent on a
finite connected complex X that induces the identity map on �1.X;x0/ŠG . Because
G satisfies the Bass conjecture, we have HS.w.f // 2 Z � Œe�. Then, by Lemma 4.1,
R.f;x0/ has at most one nonzero coefficient, and N.f /� 1.

In the other direction, we of course use Theorem 3.3 and Remark 3.4. Then, given
˛ 2K0.ZG/, there is a finite n–dimensional complex X (n � 3) with fundamental
group G and a pointed homotopy idempotent selfmap f of X inducing the identity
on �1.X /D G , such that w.f / is equal to ˛ . So, from Lemma 4.1 we deduce that
HS.˛/D R.f;x/. This last term vanishes when N.f /D 0; if N.f /D 1, R.f;x/

is a nonzero multiple of some class Œs�, and we are done in case Œs� D Œe�. So, the
remaining case is where R.f;x/ is a nonzero multiple (necessarily �.Y /) of some
class Œs�¤ Œe�. In that event we may turn instead to f 0D f _ idS2 with corresponding
Y 0 D Y _S2 having w.f 0/ D w.f /C ŒZG�. However, this implies the contradiction
that N.f 0/D 2, and can therefore be eliminated.

Remark 4.5 The actual wording of [11, Theorem 4.1’] is in terms of the Bass conjec-
ture for a particular element ˛ of K0.ZG/, rather than for G itself.

5 Selfmaps of manifolds

From Wecken’s work [31], one knows that N.f / serves as a lower bound for the
number of fixed points of any map homotopic to f . Thus, the implication (ii) ) (i)
in the next result is immediate.

Lemma 5.1 Suppose that f W M ! M is a selfmap of a closed manifold M of
dimension at least 3. Then the following are equivalent:

(i) the Nielsen number of f is 0 or 1;

(ii) f is homotopic to a map having one arbitrarily chosen unique fixed point.

Proof We need only prove that (i) implies (ii).

First, various results in the literature (see in particular Wecken [31], Brown [4], and
Shi [27] for the PL case; Jiang [16] for the smooth case) show that every selfmap of
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M with Nielsen number N is homotopic to a map with exactly N fixed points. By a
result of Schirmer [26, Lemma 2], these fixed points may be chosen arbitrarily.

Second, recall from [26] that every fixed-point-free selfmap of a connected compact PL
manifold of dimension at least 3 is homotopic to a selfmap having an arbitrary unique
fixed point. The argument there can be adapted as follows.

Choose a 2M , and consider the closure xB of an open ball B around a lying in a
chart domain for M . Since f is fixed-point-free, we choose the ball xB to be small
enough so that it is disjoint from its image under f . For convenience, we consider
points of xB with coordinates so that a D 0 and xB consists of those points x with
kxk � 1. Now let 
 be any path from a to f .a/ that continues a unit-speed ray from
a to the boundary of xB1=2 (the closed ball of points of B of norm at most 1=2) and
never re-enters xB1=2 . Also, let �W M ! Œ0; 1� be a function having ��1.1/DM �B

and ��1.0/D xB1=2 . Then the desired map gW M !M homotopic to f is given as
follows.

g.x/D

8<:

 .tx/ 0� 2 kxk< 1

f ..1��.x//aC�.x/x/ 1� 2 kxk � 2

f .x/ x 2M � xB ,

where tx D 1� exp.�2 kxk =.1� 2 kxk//. Here, recall the standard inequality

ln.1�u/ > �u=.1�u/

for 0<u<1. It implies that, whenever tx¤0 and 
 .tx/2 xB1=2 , so that k
 .tx/kD tx ,

k
 .tx/k> 2 kxk .

Hence a is the unique fixed point of g .

Note that it is possible to make g smooth. For, since every map is homotopic to
a smooth map and homotopy does not change Nielsen numbers, there is no loss of
generality in assuming f to be smooth. Then, by our taking both 
 and � to be smooth
functions in the above argument, a smooth map g results.

Remark 5.2 Note that this result cannot be extended to dimension 2 in general.
Indeed, for every connected, closed surface of negative Euler characteristic and every
natural number n, Jiang [18, Theorem 2] exhibits a selfmap fn of the surface having
N.fn/D 1, but with every map homotopic to fn having more than n fixed points. For
some particular results on selfmaps on surfaces, see also Kelly [19].

We next observe that selfmaps of complexes may be studied by means of selfmaps of
manifolds without changing the Nielsen number.
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Lemma 5.3 Let X be a finite connected complex. Then the following hold.

(a) There is a closed, oriented and smooth manifold M of dimension at least 3 with
maps r W M ! X and sW X !M having r ı s pointed homotopic to idX and
inducing isomorphisms of fundamental groups.

(b) For any selfmap f W X !X , the selfmap xf D s ı f ı r W M !M has Nielsen
number

N. xf /DN.f /.

(c) If f is either homotopy idempotent or pointed homotopy idempotent, then so is
xf .

Proof (a) Working up to pointed homotopy type, we may assume that X is a finite
simplicial complex of dimension n � 2. By a result of Wall [30, Theorem 1.4] we
can do surgery on the constant map S2n! X to obtain a smooth, oriented (indeed,
stably parallelizable) closed 2n–manifold M and an n–connected map (called an
n–equivalence by Spanier [28]) r W M ! X . Because n � 2, the map r is a �1 –
isomorphism. Moreover, since the obstruction groups H i.Y I�i.r// all vanish (or
by [28, (7.6.13)]), the identity map X !X factors up to pointed homotopy through
M !X , and the result follows.

(b) This result is immediate from Lemma 4.2 above, on putting ST DM; T DX; gDf

and xg D xf .

(c) Obviously,

xf ı xf ' s ıf ı r ı s ıf ı r

' s ıf ıf ı r ' s ıf ı r ' xf ,

and xf is a pointed idempotent if f is.

Example 5.4 For any connected non-contractible space X , the monoid of homotopy
classes of selfmaps of X always contains at least two idempotents, the class of nullho-
motopic maps and the class of maps homotopic to the identity. Each constant map in
the former class contains exactly one fixed point (which by connectivity is arbitrary),
and obviously has Nielsen number 1.

On the other hand, for X a finite complex the identity map has Nielsen number equal
to minf1, j�.X /jg. When X is also a smooth manifold, it admits a smooth vector
field whose only singularity is an arbitrarily chosen point x0 2X . Its associated flow
provides a homotopy from the identity map to a smooth map with sole fixed point x0 .

Geometry & Topology Monographs, Volume 10 (2007)



Homotopy idempotents on manifolds and Bass’ conjectures 53

6 Proof of Theorem 1 and applications

The discussion above now allows a reformulation of statement (b) of Theorem 4.4.
Lemma 5.3 combines with Lemma 5.1 to yield a manifold version of statement (b), as
follows.

Proposition 6.1 Let G be a finitely presented group. The following are equivalent.

(a) G satisfies Bass’ Conjecture 1.

(b) Given any closed, smooth and oriented manifold M of dimension at least 3 with
GD �1.M /, every homotopy idempotent selfmap f on M is homotopic to one
that has a single fixed point.

Remark 6.2 The following facts combine to show that the dimension 3 in (b) above
is best possible. For F a closed surface of negative Euler characteristic and n � 2,
Kelly [20] constructs a homotopy idempotent selfmap fnW F ! F such that every
map homotopic to fn has at least n fixed points. On the other hand, the fundamental
groups of surfaces are well-known to satisfy Bass’ Conjecture 1 (see Eckmann [9], for
example).

The following argument of Bass, reported by R Geoghegan, shows that it suffices to
consider finitely presented groups in considering Bass’ conjectures.

Lemma 6.3 (Bass) Conjectures 1 and 2 hold for all groups if they hold for all finitely
presented groups.

Proof Fix a group G . We show that any idempotent ZG–matrix A lifts to an
idempotent matrix A1 over the group ring of a finitely presented group G1 . There is a
finitely generated subgroup G0 of G such that the entries of A lie in ZG0 . Write G0

as F=R where F is a finitely generated free group; and let B be a lift of A to ZF .
Then there is a finite subset W of R such that the matrix B2�B has all its entries in
the ideal of ZF generated by f1� r j r 2W g. Now let R1 �R be the normal closure
of W in F . Then we have G1 WD F=R1 finitely presented, and the image A1 of B ,
with entries in ZG1 , is an idempotent matrix. The map G1 � G0 ,! G takes A1

to A. Therefore ŒA1� 7! ŒA� under the induced map K0.ZG1/!K0.ZG/. Then the
result follows from naturality of HS .

After Proposition 6.1, it is now straightforward to deduce Theorem 1.
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Remark 6.4 Our arguments lead to variations on Theorem 1. First, one can sharpen
the implication (b)) (a) by referring in (b) to a smaller class of manifolds. Because, by
Theorem 3.3 above, for a finitely presented group G any z̨ 2 zK0.ZG/ can be realized
by a homotopy idempotent selfmap f of a 2–dimensional complex with fundamental
group G (so zw.f / D z̨ ), the Bass conjecture is equivalent to the following: Every
homotopy idempotent selfmap of a closed, stably parallelizable smooth 4–manifold is
homotopic to one with a single fixed point.

In the other direction, one can strengthen (a) ) (b) by enlarging the class of spaces to
which (b) applies. There is no need to restrict attention to oriented, smooth manifolds;
one can also apply to PL manifolds and other, possibly bounded, Wecken spaces (see
Jiang [15]).

As an application of Proposition 6.1 we obtain the following.

Corollary 6.5 Any homotopy idempotent selfmap on a closed, smooth and oriented
3–dimensional manifold M is homotopic to one with a single fixed point.

Proof It is enough to show that the fundamental group G of a closed smooth oriented
3–dimensional manifold M satisfies Bass’ conjecture; the Corollary then follows from
Proposition 6.1. By Kneser’s result (see Milnor [23]), M is a connected sum of prime
manifolds Mi , where each Mi belongs to one of the following classes:

(1) Mi with finite fundamental group;

(2) Mi with fundamental group Z;

(3) Mi a K.�; 1/ manifold (so � is a Poincaré duality group).

Note that the fundamental group of M is the free product of the fundamental groups
of the various Mi . By Gersten’s result [13], given two groups � and H , the reduced
projective class group of the free product � �H reads

zK0.Z.� �H //Š zK0.Z�/˚ zK0.ZH / :

Thus, every element in zK0.Z.� �H // is an integral linear combination of projectives
induced up from � and H respectively. It follows that if Bass’ conjecture holds for
both � and H , then it holds for � �H as well.

In the list above, clearly finite groups and Z satisfy Bass’ conjecture. That 3–dimen-
sional Poincaré duality groups satisfy Bass’ conjecture follows from Eckmann’s work
(see Eckmann [9, p247]) on groups of rational cohomological dimension 2.
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Since the Bass conjecture is known for instance for the fundamental groups of manifolds
in the class below [9], we have another consequence.

Corollary 6.6 Any homotopy idempotent selfmap of a non-positively curved, oriented
closed manifold of dimension at least 3 is homotopic to a map with a single fixed point.

It would be interesting to see geometric proofs of these facts.

7 Lefschetz numbers

Let X be a CW–complex and f W X !X a continuous selfmap. Then f induces for
each n 2 N a map

fnW Hn.X I Q/!Hn.X I Q/

of Q–vector spaces. If the sum of the dimensions of the vector spaces Hn.X I Q/ is
finite, the Lefschetz number of f is defined as

L.f /D
X
n�0

.�1/nTr.fn/:

In cases where the CW–complex X is finite or finitely dominated, the Lefschetz number
of a selfmap is obviously always defined, and for f D idX , L.f /D �.X / the Euler
characteristic of X . One extends this definition to the case of G–CW–complexes as
follows.

Let NG denote the von Neumann algebra of the discrete group G (i.e. the double
commutant of CG considered as a subalgebra of the algebra of bounded operators on
the Hilbert space `2G – see for example Lück [21]). With e as the neutral element of
G , write e 2G � `2G for the delta-function

eW G! C; g 7!

�
1 if g D e

0 otherwise.

The standard trace
trG W NG! C; x 7! hxe; ei`2G 2 C

extends to a trace trG.�/2C for �W M!M a map of finitely presented NG –modules
as follows. Recall that a finitely presented NG –module M is of the form S ˚T with
S projective and T of von Neumann dimension 0; the trace of � is then defined as
the usual von Neumann trace of the composite S !M !M ! S (for the trace
of selfmaps of finitely generated projective NG–modules see Lück [21]). It follows
that trG.idM / D dimG.M /, the von Neumann dimension of the finitely presented
NG –module M (a non-negative real number cf [21]). The Kaplansky trace (as defined
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in Section 2) induces a trace on G–maps  W P ! P of finitely generated projective
ZG –modules, and

�. /D trG.idNG ˝ /

where idNG ˝ W NG˝ZG P !NG˝ZG P .

Now let Z be a free G–CW–complex that is dominated by a cocompact G–CW–
complex (for example, the universal cover of a finitely dominated CW–complex with
fundamental group G ). A G–map zf W Z ! Z induces a map of singular chain
complexes C�.Z/! C�.Z/ and of L2 –chain complexes

C
.2/
� .Z/ WDNG˝ZG C�.Z/! C

.2/
� .Z/,

and therefore of L2 –homology groups

H .2/
n .Z/ WDHn.ZI NG/!H .2/

n .Z/:

The groups H
.2/
n .Z/ are finitely presented NG –modules, because the complex C

.2/
� .Z/

is chain homotopy equivalent to a complex of type FP over NG and because the category
of finitely presented NG –modules is known to be abelian [21]. Thus the induced map

zfnW H
.2/
n .Z/!H .2/

n .Z/

is a selfmap of a finitely presented NG –module and has, therefore, a well defined trace
trG. zfn/ as explained in the beginning of this section; we also write ˇ.2/n .ZIG/ for the
von Neumann dimension of H

.2/
n .Z/.

Let Y be a finitely dominated CW–complex with fundamental group G and universal
cover Z . Then the n th L2 –Betti number ˇ.2/n .Y / of Y is defined to be ˇ.2/n .ZIG/.
(If Y happens to be a finite complex, this reduces to the usual L2 –Betti number of Y

as defined for instance in Atiyah [1] and Eckmann [8].) By definition, the alternating
sum

P
.�1/iˇ

.2/
i .Y /D �.2/.Y / is the L2 –Euler characteristic of Y . Recall that for

Y a finite complex, �.Y /D�.2/.Y / by Atiyah’s formula [1]; see also Chatterji–Mislin
[5] and Lemma 8.1 below for more general results. We now define L2 –Lefschetz
numbers as follows.

Definition 7.1 Let Z be be a free G –CW–complex that is dominated by a cocompact
G –CW–complex and let zf W Z!Z be a G –map. Denote by zfnW H

.2/
n .Z/!H

.2/
n .Z/

the induced map in L2 –homology. Then the L2 –Lefschetz number of zf is given by

L.2/. zf / WD
X
n�0

.�1/ntrG. zfn/ 2 R:
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In case Z is cocompact our L2 –Lefschetz number agrees with the one defined by
Lück and Rosenberg [22, Remark 1.7]. If Y is a finitely dominated connected CW–
complex with fundamental group G , and with universal cover the free G–space zY ,
then the L2 –Lefschetz number of the identity map of zY is �.2/. zY I G/D �.2/.Y /, the
L2 –Euler characteristic of Y .

8 Proof of Theorem 2

Let Y be a finitely dominated connected CW–complex. Thus �.Y / and �.2/.Y / are
defined as above, and are related as follows.

Lemma 8.1 Let G be a finitely presented group. Then the following holds.

(a) Let Y be a finitely dominated connected CW–complex with fundamental group
G . If the finiteness obstruction zw.Y / 2 zK0.ZG/ is a torsion element, then
�.2/.Y /D �.Y /.

(b) The following are equivalent.
(i) The weak Bass conjecture holds for G .

(ii) For any finitely dominated connected CW–complex Y with �1.Y /DG , we
have

�.2/.Y /D �.Y /:

Proof As in Section 3, for Y finitely dominated, the chain complex C�. zY / is chain
homotopy equivalent to a chain complex P� of type FP over ZG , G D �1.Y /, and
we have the Wall element

w.Y /D

nX
iD0

.�1/i ŒPi � 2K0.ZG/:

As NG˝ZG P� ' C .2/. zY / and trG.NG˝ZG Pi/D �.Pi/, we see that

�.2/.Y /D
X

.�1/i trG.NG˝ZG Pi/D
X

.�1/i�.Pi/D �.w.Y //:

On the other hand, Z˝ZG P� ' C�.Y / and �.Pi/D dimQ.Q˝ZG Pi/ so that

�.Y /D
X

.�1/idimQ.Q˝ZG Pi/D
X

.�1/i�.Pi/D �.w.Y //:

(a) Again we observe that for n> 1,

�.Y _ ._kSn//D �.Y /C .�1/nk
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and
�.2/.Y _ ._kSn//D �.2/.Y /C .�1/nk:

On the other hand, w.Y _._kSn//Dw.Y /C.�1/nk , so that without loss of generality
we may assume that actually w.Y / is a torsion element. But then, since the range
of the Hattori–Stallings trace is torsion-free, Bass’ conjectures are valid for torsion
elements of K0.ZG/ and we have

�.w.Y //D �.w.Y //.

Thus,
�.2/.Y /D �.Y /;

proving the claim.

(b) (i) ) (ii): Assuming the weak Bass conjecture, we have

�.2/.Y /D �.w.Y //D �.w.Y //D �.Y /:

Assuming the Bass conjecture, this implication has also been proved by Eckmann [7].

(ii)) (i): Recall from Theorem 3.3 that for a finitely generated projective ZG –module
P there is always a finitely dominated CW–complex Y whose Wall element w.Y /
equals ŒP � 2K0.ZG/. We then have that

�.P /D �.w.Y //D �.2/.Y /D �.Y /D �.w.Y //D �.P /:

Next, we need an intermediate result.

Lemma 8.2 Let X be a finite connected complex, and f W X ! X be a homotopy
idempotent. Let Y be a finitely dominated CW–complex determined by f as in Section
3.

(a) Then L.f /D �.Y /.
(b) If moreover, f is a pointed homotopy idempotent inducing the identity on

G D �1.X / and zf denotes the induced G–map on the universal cover of X ,
then L.2/. zf /D �.2/.Y /.

Proof (a) Applying Hi.� I Q/ to the diagram (3.1) of Section 3 yields the following
commutative diagram of groups:

Hi.X /
fi //

ui $$I
IIIIIIII

fi

**
Hi.X /

fi //

ui $$JJJJJJJJJ
Hi.X /

Hi.Y /
idi //

vi

::uuuuuuuuu
Hi.Y /:

vi

::ttttttttt
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We can now compute that

Tr.fi/D Tr.viui/D Tr.uivi/D Tr.idi/D dim.Hi.Y I Q//,

so that (a) follows by taking alternating sums.

(b) Here we need to know that f induces the identity map on �1.X /, in order to
obtain equivariance of the induced maps on the universal covers zX and zY . We apply
H
.2/
i to diagram (3.1):

H
.2/
i . zX /

zfi //

zui %%JJJJJJJJJ

zfi

++

H
.2/
i . zX /

zfi //

zui %%JJJJJJJJJ
H
.2/
i . zX /

H
.2/
i . zY /

idi //
zvi

99ttttttttt

H
.2/
i . zY /;

zvi

99ttttttttt

and compute

trG. zfi/D trG.zvizui/D trG.zuizvi/D trG.idi/D dimG.H
.2/
i . zY //,

and take alternating sums. The desired equality uses the fact that, given two finitely
presented NG–modules A and B , with two maps �W A! B and  W B! A, then
trG.� /D trG. �/.

Proposition 8.3 Let G be a finitely presented group. The following are equivalent.

(a) G satisfies the weak Bass conjecture.

(b) Every pointed homotopy idempotent selfmap of a closed, smooth and oriented
manifold M with �1.M / D G and inducing the identity on G has its Lef-
schetz number equal to the L2 –Lefschetz number of the induced G –map on the
universal cover of M .

Proof That (a) implies (b) follows from the implication (a) ) (b) in Lemma 8.1,
combined with Lemma 8.2. To prove that (b) implies (a), namely that the Lefschetz
number information on manifolds is enough to imply the weak Bass conjecture, it
suffices to see that for a finite connected complex X of dimension n � 2 there
are a closed smooth oriented manifold M and maps X !M , M ! X inducing
isomorphisms of the fundamental groups, and such that X ! M ! X is pointed
homotopic to idX . However, this was already discussed in Lemma 5.3. We then
conclude by combining the implication (b) ) (a) in Lemma 8.1 with Lemma 8.2.
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Finally, we turn to the proof of Theorem 2. That (a) implies (b) follows from the
previous proposition, which also shows that (b) implies (a) for all finitely presented
groups, and therefore for all groups via Lemma 6.3.

Remark 8.4 For each group G , it is evident that the algebraic statement of Conjecture
1 for G implies the statement of Conjecture 2. For our geometric formulations of the
conjectures, the implication is less clear. One can approach this problem via work of
Lück and Rosenberg on computing L2 –Lefschetz numbers and local degrees [22].
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