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Divisibility of characteristic numbers

SIMONE BORGHESI

We use homotopy theory to define certain rational coefficients characteristic numbers
with integral values, depending on a given prime number q and positive integer t .
We prove the first nontrivial degree formula and use it to show that existence of
morphisms between algebraic varieties for which these numbers are not divisible by
q give information on the degree of such morphisms or on zero cycles of the target
variety.
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1 Introduction

Given a complex vector bundle V on a smooth, compact complex manifold M of
dimension m, we can associate a collection of integers fnI gI which are bundle isomor-
phisms invariant. These numbers are obtained as follows: let I D .i1; i2; : : : ; ir / and
fI .cj /D c

i1

1
.V /c

i2

2
.V / : : : c

ir
r .V / be a monomial of degree m in the Chern classes of

V (we set cj to have degree 2j ). Then nI is defined to be hfI .cj /; ŒM �HZ
i, that is

the Kronecker pairing of fI .cj / with the integral coefficients fundamental homology
class of M . We will deal with numbers associated with two special bundles: one is
the tangent bundle TM , and the other is the normal bundle �i to a closed embedding
i W M ,! RN for N large enough. By the Thom–Pontryagin construction, if ŒM �

denotes the complex cobordism class of M , MU the complex cobordism spectrum and
h is its Hurewicz homomorphism ��.MU/!H�.MU;Z/, then the coefficients of the
polynomial generators of H�.MU;Z/ in the expression of hŒM � are certain numbers
hs.˛1;˛2;:::;˛r /.�i/; ŒM �HZ

i associated to �i . These numbers are sometimes referred
to as the characteristic numbers of M . Notice that, by definition, TM C �i D 0 in
K0.M /, the Grothendieck group of vector bundles on M . Thus such numbers depend
just on M (in fact on the complex cobordism class of M ). Since the image of h is
completely known (see Stong [9]), we get information on such numbers, for instance,
if s.˛1;˛2;:::;˛r /.M / is the coefficient of b

˛1

1
b
˛2

2
: : : b

˛r
r 2H�.MU;Z/ in hŒM �, then

we know that p always divides s.0;0;:::;1/.M /, where the 1 entry is in the .pt�1/th
place, for any prime number p and positive integer t . We will denote such an integer
as spt�1.M /. More in general, for each choice of polynomial generators of ��.MU/,
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64 Simone Borghesi

the coefficients of ŒM � are integers and can be expressed in function of characteristic
numbers of M itself, which can be written as a rational linear combination of Chern
numbers (eg expression (3) for algebraic surfaces). This way one gets divisibility
properties of Chern numbers, much like, by the Grothendieck–Riemann–Roch formula,
we deduce divisibility properties of the Todd numbers. In a sense, such divisibility
is maximal and the varieties which make it maximal enjoy surprising properties. In
the case of spt�1.M /, Voevodsky remarked that the algebraic varieties for which that
number is not divisible by p2 are very special. Given a smooth algebraic variety X

over a field k we can talk about characteristic numbers by considering the polynomials
in the Chern classes of the tangent bundle of X , s.˛1;˛2;:::;˛r /.�i/D s0

.˛1;˛2;:::;˛r /
.TX /.

They are represented by zero dimensional cycles, that is integral linear combinations
z D

P
u nuzu , where zuW Spec ku ! X are (closed) points of X (that is, ku are

finite field extensions of k ). An integer can be associated to z : the degree of z (see
Definition 2.2), denoted with deg.z/. The integer deg s0

.˛1;˛2;:::;˛r /
.TX / plays the role

of s.˛1;˛2;:::;˛r /.M /. This statement can be made more precise: if X admits a closed
embedding X ,!PN (such varieties are said projective) and k admits an embedding in
the complex numbers, then deg s0

.˛1;˛2;:::;˛r /
.TX / equals s.˛1;˛2;:::;˛r /.X.C//, where

X.C/ is the topological space defined by the same equations as X except that we see
them having coefficients in the complex numbers by means of one of the embeddings
of k in C. It can be proved that these integers do not depend on the field embedding.
Under these assumption on the base field k , Voevodsky noted that, if p2 does not
divide spt�1.Y / and f W Y ! X is any algebraic morphism to a smooth, projective
variety X of nonzero dimension less or equal than Y , one of the following must
hold: (i) f is surjective and dim.X /D dim.Y /D pt � 1 or (ii) there exists a closed
point Spec L! X with p not dividing ŒL W k�. This result follows from a sharper
statement, now known as degree formula: keeping the same assumptions, we have that
.1=p/spt�1.Y /� deg.f /.1=p/spt�1.X / mod p , or else X has a point not divisible
by p . This manuscript is based on a talk I gave at the 2003 International Conference of
Algebraic Topology held in Kinosaki, Japan in honor of Goro Nishida’s 60th birthday.
We will go through Voevodsky’s original idea which gave rise to such formula by using
homotopy theory to define characteristic numbers with rational coefficients and discuss
Rost’s use of this formula on quadrics proving results originally due to Hoffmann
and Izhboldin (see Merkurjev [6]). Degree formulae involving each a different set of
characteristic numbers, with various obstruction ideals associated to them, have also
been derived by Rost (top Segre numbers) [6] and Merkurjev [7] over any field, by the
author in [4] over perfect fields and by Levine and Morel [5] over fields of characteristic
zero. All of them can be used to yield proofs of the results of Hoffmann and Izhboldin
and as indicated by Rost.
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Divisibility of characteristic numbers 65

2 Characteristic numbers and the spectrum ˆ1

Voevodsky defined a cohomology theory [12] on algebraic varieties H�;�.�;A/ which
is expected to play the role of singular cohomology in topology, as prescribed by
the Beilinson conjectures. This cohomology theory is called motivic cohomology
with coefficients in an abelian group A, and, when evaluated on an algebraic variety,
it is equipped of a tautological structure of left module over the (bistable) motivic
cohomology operations A��m . In the case AD Z=p and perfect base field, Voevodsky
proved that A��m contains the bigraded Hopf Z=p algebra H�;�.Spec k;Z=p/˝Z=p

A�;�top WD A�� where A�;�top is the topological Steenrod algebra with an appropriate
bigrading [11]. In particular, for a fixed prime p , we have the left multiplication

Qt �W H
�;�.�;Z=p/!H�C2pt�1;�Cpt�1.�;Z=p/

by the Milnor operation Qt 2 A�;�top . In our approach we will use the triangulated
category SH.k/ that shares some good properties with the ordinary stable homotopy
category. Adopting Voevodsky’s definition of motivic cohomology, if k is a perfect
field, H�;�.�;A/ is a representable functor in SH.k/. The representing object is
denoted by HA and is called the motivic Eilenberg–MacLane spectrum with coefficients
in A. A fundamental fact of this cohomology theory is that, if k is a perfect field and X

is a smooth scheme, H 2�;�.X;A/ is isomorphic to the Chow group CH�.X /˝ZA. To
any algebraic variety X we can associate a graded ring CH�.X /. Each homogeneous
component CH n.X / is defined as the quotient of the free group over the codimension
n closed subvarieties in X modulo rational equivalence. The product of two classes
Z1 and Z2 is represented by the closed subscheme obtained as the intersection of two
representatives of Z1 and Z2 intersecting properly. If PV is the projectivization of a
rank nC 1 vector bundle V !X , then

(1) CH�.PV /Š
CH�.X /Œt �

.p.t//

as left CH�.X / algebra, where p.t/ is a monic degree n polynomial. If p.t/ D

tnCc1tn�1C� � �Ccn�1tCcn , we can let ci to be the i th Chern class of V , which will
be therefore represented by some integral coefficient linear combination of codimension
i closed subvarieties of X .

In algebraic geometry there is an analogue concept of what it is known as characteristic
numbers in homotopy theory. To a n–tuple of nonnegative integers ˛ D .˛1; : : : ; ˛n/

with 0 � ˛1 � ˛2 � � � � � ˛n we associate the symmetric polynomial g˛.t/ in the
variables t1; : : : ; tz for z �

P
˛i . This is the unique symmetric polynomial having

monomials with ˛1 variables raised to the power 1, ˛2 variables to the power 2 and so
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on. Let f˛.�1; �2; : : : ; �n/ be the polynomial in the elementary symmetric functions
�i.t/ such that f˛.t/D g˛.t/.

Definition 2.1 Let M be an algebraic variety of pure dimension m and V !M be
a vector bundle. For a n–tuple of nonnegative integers ˛ D .˛1; : : : ; ˛n/ such thatPn

jD1 j j̨ Dm,

(1) set s˛.c1; : : : ; cn/D f˛.�1; : : : ; �n/ by formally replacing the variables �i with
ci.V /, the i th Chern class of V .

(2) The zero cycle s˛.V / is defined as s˛.c1.V /; c2.V /; : : : cn.V //.

Definition 2.2 Given a zero dimensional cycle z in an algebraic variety X over a
field k , that is, an integral coefficients linear combination

nX
iD1

�i Spec Li

of closed points Spec Li!X , we define the degree of z to be the integer
Pn

iD1 �i ŒLi W

k�.

We recall that to each prime number q and positive integer t , there is a canonical
motivic cohomological operation Qt of degree .2qt�1; qt�1/. In the early version of
Voevodsky’s proof of the Milnor Conjecture [10], the operation Qt appeared implicitly
in an argument employing the homology theory .ˆ1/�;�.�/ represented by the object
defined by the exact triangle

ˆ1!HZ=q

Qt
!†2qt�1;qt�1HZ=q

The spectrum ˆ1 is related to the number .1=q/sqt�1 . To show this, we are going to
consider the spectrum MGl2SH.k/, formally defined in the same way as in homotopy
theory: MGln is the Thom space of the universal n–plane bundle over the infinite
grassmanian Grn . The definition of the structure morphisms is slightly more subtle than
in homotopy theory. The spectrum MGl shares the same nice ring object properties
as MU does in classical homotopy theory. In particular, for any smooth, projective
variety X of pure dimension n, there exists a canonical fundamental homology class
ŒX �MGl 2MGl2n;n.X / (see [1] or [4]). The graded group H�;�.MGl;Z=q/ has been
entirely computed in [3] on characteristic zero fields and in [2], more generally, on
perfect fields. Since H i;j .MGl;Z=q/ is zero for i > 2j , for each r , there exists a
map e1W MGl!ˆ1 , lifting the Thom class: MGl!HZ=q .
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Theorem 2.3 Let i W k ,! C be field and pW X ! Spec k be the structure morphism
of a projective, smooth variety X of pure dimension. For each prime number q and
positive integer t , let ˆ1 be the corresponding spectrum. Then there exists a choice of
e1 such that

.e1/�p�ŒX �MGl D

8̂<̂
:

deg.X / if dim.X /D 0

�
1
q

deg sqt�1.TX / if dim.X /D qt � 1

0 otherwise

Proof Instead of considering X , we can argue on the algebraic variety X i
C

given by
the limit of the diagram

X

p

��
Spec C

i� // Spec k

In fact, for any weighted degree n homogeneous polynomial a.xu/ (that is, we set the
degree of xu to be 2u) and any field embedding eW k ,!L, we have deg.a.cu.TX ///D

deg.a.cu.TXL
///, and, in particular, this integer does not depend on the field embedding

e . The advantage of considering X i
C

is that this algebraic variety has a canonical
complex manifold associated: X top WDX.C; i/, that has the points Spec C!X i

C
as

underlying set. We recall that under these assumptions there is a topological realization
functor (see Morel and Voevodsky [8]) which induces morphisms tCW MGl2�;�.X /!
MU2�.X

top/ and tCW CH�.X i
C
/˝ A D H 2�;�.X;A/ ! H 2�.X top;A/. This mor-

phisms are compatible with the Kronecker product in the sense that hz; ŒX i
C
�CH i D

htCz; ŒX top�H i for z 2 CH0.X
i
C
/. Since hs˛.TX i

C
/; ŒX i

C
�CH i D deg.s˛.TX i

C
//, this

shows that the usual topological characteristic numbers hs˛; ŒX top�H i are independent
on the field embedding i W k ,! C and equal to the algebraic characteristic numbers in
Definition 2.1. Let now fix a choice of e1W MGl!ˆ1 lifting the Thom class which
induces e

top
1
W MU! ˆ

top
1

. The morphism tCW .ˆ1/2�;�.Spec C/! .ˆ
top
1
/2�.pt/ is

an isomorphism for any �, thus we will consider p�ŒX
top�MU 2 MU2�.pt/. This

ring is isomorphic to the Lazard ring ZŒ1; a1; a2; : : :� with generators that can be
chosen to have the following properties: let h be the Hurewicz homomorphism,
if i ¤ pu � 1 for any prime p and positive integer u, then h.ai/ D bi C � � �

and if i D pu � 1, h.ai/ D p.bi C � � � /, where bi are the indecomposable ele-
ments of H2�.MU;Z/. Using the classical Thom Pontryagin construction and the
above discussion on characteristic numbers, we see that the coefficients of b˛ D

b˛
1

b
˛2

2
: : : b

˛m
m in h.p�ŒX

top�MU/ are precisely deg s˛.�TXC
/, where �TXC

is the
opposite virtual bundle of TXC

in K0.XC/. Since .ˆtop
1
/2�.pt/ D 0 unless � D 0
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and � D qt � 1, we may assume dim.X / D n D qt � 1, because the statement
of Theorem 2.3 in the case of zero dimensional X is essentially tautological. If
dim.X / D qt � 1, then p�ŒX

top�MU D maqt�1 C decomposables, for an integer m.
h.p�ŒX

top�MU/ D mqbqt�1 C � � � and .etop
1
/�aqt�1 D 1 2 .ˆ

top
1
/2.qt�1/.pt/ Š Z=q

so .etop
1
/�p�ŒX

top�MU D .1=q/sqt�1.�TX /C .e
top
1
/�.decomposables/ mod q . The

decomposable elements of MU2.qt�1/.pt/ are divided in two classes: those whose
Hurewicz image is not divisible by q and the others. If f .ai/ is a monomial of
the first kind, then .etop

1
/�f .ai/ can be any value of Z=q , if the lifting e1 is cho-

sen appropriately. In fact, by adding a suitable map MU
c
!†2.qt�1/Htop

Z=q
! ˆ

top
1

to our choice of e
top
1

, we can make .etop
1
/�f .ai/ to be an arbitrary value. Just set

cW MU!†2.qt�1/Htop
Z=q

to be a multiple of the dual of any b˛ , whose coefficient in
the expression of h.f .ai// is not divisible by q . In the case f .ai/ is decomposable and
h.f .ai// is divisible by q , then .e1/�f .ai/D 0 for any choice of e1 . Thus, we have a
choice of e

top
1

with the property that .etop
1
/�p�ŒX

top�MU D .1=q/sqt�1.�TX / mod q .
Since tCW .ˆ1/2�;�.Spec C/! .ˆ

top
1
/2�.pt/ is an isomorphism, to get the same result

in the algebraic setting it suffices to consider the lifting e1C c . Finally, the equality
sqt�1.�TX /D�sqt�1.TX / follows from the fact that si are dual to indecomposable
classes. This finishes the proof of the Theorem 2.3.

The existence of a topological realization functor in the case of the base field k

embedding in C enables us to use constructions we know to exist in topology, such
as the Thom–Pontryagin. If we wish to prove Theorem 2.3 over a finite or, more in
general, perfect field k , then the scheme of the proof is similar, but we cannot shift
the argument to topology and we are forced to exclusively use algebraic homotopy
categories. This involves the developement of such constructions of topological origin
in this algebraic setting. The details of them are written in [4].

In general, there is no canonical choice of the polynomial generators ai of MU2�.pt/,
but .e1/�p�ŒX �MGl does not depend on such choices, thus these numbers should be
expressible only in function of e1 . This dependence appears just in presence of ai with
the property that h.ai/ is not divisible by the prime number q we are considering. The
classes ai can be all chosen to be p�ŒM �MU for certain smooth projective complete
intersections M . It follows that the coefficients of h.ai/ are explicitely computable
and so do the numbers .e1/�p�ŒX �MGl for each choice of e1 . For instance, working
at the prime q D 3 and t D 1, we are looking at MU4.pt/ which is generated as
free abelian group by the classes a2 and a2

1
where a2 can be canonically chosen as

p�ŒM
2�MU for any smooth cubic surface M 2 in P3 and a1 as p�ŒM

1�MU for any
smooth quadric curve in P2 . Carring out the computations we get, if X is a smooth,
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projective algebraic variety over a perfect field,

(2) .e1/�p�ŒX �MGlD

8̂̂̂̂
<̂
ˆ̂̂:

deg.X / mod 3 if dim.X /D 0

�
�

1
3
�
�
2

�
deg s.0;1/.TX /

C
�
4

deg
�
s2
.1/
.TX /� s.2/.TX /

�
mod 3 if X is a surface

0 otherwise

where � can be any integer. This parameter reflects the dependence of these numbers
by the choice of the lifting e1 . In particular, setting �D 0, we recover the formula
of Theorem 2.3. This unusual way of getting characteristic numbers of smooth and
projective varieties, implicitly provides information on divisibility of characteristic
numbers. In fact, any number obtained with this construction is necessarily a reduction
modulo q of a linear combination with rational coefficients of characteristic numbers
with integral values. In the above example, we conclude that

(3) �.1=3/C�=2/ deg s.0;1/.TX /C .�=4/.deg.s2
.1/.TX /� s.2/.TX //

is always an integer for any integer �. For �D 0 we get that deg s.0;1/.TX / is always
divisible by 3 for any smooth projective surface over a characteristic zero field.

3 Divisibility of characteristic numbers and degree formulae

In a sense, the Q linear relations between such characteristic numbers are maximal
among those with integral value: for instance, let fix a characteristic zero field k ; if we
consider the rational numbers .1=qi/ deg sqt�1.TX / for each integer i ¤ 1 or �1 there
exists a smooth, projective algebraic variety over k such that .1=qi/ deg sqt�1.TX / is
a nonintegral rational number. The smooth, projective algebraic varieties Y , with the
property that .e1/�p�ŒY �MGl is not further divisible by the prime number q in question,
are of very special kind. The existence of any (rational) morphism f from such Y to
any smooth projective variety X gives information on algebraic cycles of X and the
degree of f . Indeed one of the following two statements must hold: (i) the number
.e1/�p�ŒX �MGl is nonzero and the degree of f is not divisible by q , or (ii) X has a
closed point x with Œk.x/ W k� not divisible by q . A rational morphism Y !X is a
map U !X where U �X is a dense open set. This is a consequence of the so called
degree formula: let tn.W / denote .e1/�p�ŒW �MGl for a smooth, projective algebraic
variety W of pure dimension n,

Theorem 3.1 Let f be a rational morphism Y �! X between smooth, projective
algebraic varieties of pure dimension n over a characteristic zero field k . Then the
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relation

(4) tn.Y /D .degf /tn.X /

holds in .Z=q/=I.X /, where I.X; q/D hŒk.x/ W k� mod qnx W closed point of X i if
dim.Y /D dim.X /D qt � 1, and I.X; q/D 0 otherwise.

Proof We first assume that the morphism f is regular. Applying the homology long
exact sequences originating from the exact triangle

(5) †2.qt�1/;qt�1HZ=q
// ˆ1

// HZ=q

to the commutative diagram

(6) Y
f //

pY

""F
FF

FF
FF

FF X

pX

��
Spec k

we obtain the commutative diagram of groups:

� � � ! CH��qtC1.Y /˝Z=q //

f�

��

.ˆ1/2�;�.Y / //

f�

��

CH�.Y /˝Z=q! � � �

f�

��
� � � ! CH��qtC1.X /˝Z=q //

pX�

��

.ˆ1/2�;�.X / //

pX�

��

CH�.X /˝Z=q! � � �

pX�

��
CH��qtC1.Spec k/˝Z=q // .ˆ1/2�;�.Spec k/ // CH�.Spec k/˝Z=q

(7)

The class f�.e1/�ŒY �MGl � .degf /.e1/�ŒX �MGl 2 .ˆ1/2n;n.X / lies in the image
of some class in CHn�qtC1.X / ˝ Z=q , because f�ŒY �CH D .degf /ŒX �CH and
.e1/�ŒW �MGl D ŒW �CH for any choice of e1 . On the other hand,

pX �.f�.e1/�ŒY �MGl� .degf /.e1/�ŒX �MGl/D tn.Y /� .degf /tn.X /

and pX �W CH0.X / ˝ Z=q ! CH0.Spec k/ ˝ Z=q has I.X; q/ as image. Since
CH��qtC1.Spec k/˝Z=q! .ˆ1/2�;�.Spec k/ is always injective, the statement of
Theorem 3.1 for regular morphisms follows. The case of rational morphism is treated
by decomposing the rational morphism f as the diagram

Y 0

g

��

f 0

  A
AA

AA
AA

A

Y
f // X
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where both g and f 0 are regular morphisms and g is a birational equivalence. Then
we apply the regular version of the theorem to g and f 0 and use that I.X / is birational
invariant for smooth projective varieties.

Theorem 2.3 along with the description of the numbers given in Theorem 3.1, yields
a formula refined enough to prove some results about quadrics derived by Rost (see
Merkurjev [6]).

Theorem 3.2 Let Q be a smooth projective quadric of dimension d � 2m � 1 and
let X be a smooth variety over k such that I.X; 2/D 0 and admitting a rational map
f W Q // X . Then,

(1) dim.X /� 2m� 1;

(2) if dim.X /D 2m� 1, there is a rational map X // Q .

Proof Choose a subquadric Q0 �Q of dimension 2m� 1 so that the restriction of f
to Q0 is a rational morphism. We will start with proving the theorem by assuming that
t2m�1.Q

0/¤ 0 mod 2 and then we will show this assertion. For the first part we can
use Rost’s proof, which we rewrite here. If dim.X / < 2m � 1, then we consider the
composition f 0

(8) Q0
f // X // X �P

2m�1�dim.X /
k

to which we can apply the degree formula of Theorem 3.1. Notice that I.X /DI.X�Pi/

for any i . Since deg.f 0/ D 0, to show the first statement, it suffices to prove that
t2m�1.Q

0/ ¤ 0. The same formula implies that deg.f / is odd. In the case the
dimension of X equals 2m � 1, this can be rephrased by saying that the quadric
Q00DQ0�k Spec k.X / has a point over k.X / of odd degree (namely its generic point
as variety over k.X /). In turn, this is equivalent for Q00 to become isotropic over
an odd degree field extension of k.X /. By Springer’s Theorem then Q00 is isotropic
over k.X /, that is, there exists a rational morphism gW X // Q00 . The rational
morphism of the second statement of the theorem is the composition

X
g // Q00

can // Q0
� � // Q

To prove that t2m�1.Q
0/¤ 0 for a smooth, projective quadric Q0 , we use Theorem

2.3 and the properties of the classes si : (a) si.ACB/D si.A/C si.B/ for two virtual
bundles A and B and (b) si.L/ D c1.L/

i for a line bundle L. By definition, the
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quadric Q0 is determined by a degree two homogeneous equation in 2m variables, thus
its tangent bundle fits in the short exact sequence

(9) 0! TQ0 ! j �TP2m ! j �O.2/! 0

where j W Q0 ,! P2m

is the closed embedding. Property (a) implies that

si.TQ0/D si.j
�TP2m /� si.j

�O.2//:

Property (b) yields

si.j
�O.2//D j �si.O.2//D j �ci

1.O.2//D j �2ici
1O.1/D 2iQ0\ ci

1O.1/:

To compute si.j
�TP2m / we use the short exact sequence of vector bundles over P2m

0! TP2m !˚2mC1O.1/!O! 0

We get

si.j
�TP2m /D si.j

�
˚2mC1O.1//� si.j

�O/

D .2m
C 1/j �ci

1O.1/D .2
m
C 1/Q0\ ci

1O.1/:

Let now i D 2m� 1 and compute the degree of the zero cycle that we get

deg.s2m�1.TQ0//D .2
m
C 1/ deg.Q0\ ci

1O.1//� 22m�1 deg.Q0\ ci
1O.1//

Since c1O.1/ is the class of an hyperplane in P2m

, we have that deg.Q0\ci
1
O.1//D 2.

Hence we conclude that

t2m�1.Q
0/D�.1=2/ deg.s2m�1.TQ0// mod 2

D�.2m
C 1� 22m�1/ mod 2

D 1 mod 2

which completes the proof.

Corollary 3.3 (Hoffmann) Let Q1;Q2 be two anisotropic quadrics. If dim.Q1/�

2m� 1 and Q2 is isotropic over k.Q2/, then dim.Q2/� 2m� 1.

Corollary 3.4 (Izhboldin) Let Q1;Q2 be two anisotropic quadrics. If dim.Q1/D

dim.Q2/D 2m� 1 and Q2 is isotropic over k.Q1/, then Q1 is isotropic over k.Q2/.

We may wonder now, if this process of obtaining degree formulae may be generalized
to other spectra. The answer to this question is positive: the spectra ˆr for r > 1

constructed on characteristic zero fields [3] and on perfect fields [2], can be used to define
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new rational characteristic numbers for each r and choice of lifting er W MGl!ˆr ,
each of them appearing in certain degree formulae [4].

Summing up, we first used homotopy theory to define certain numbers .e1/�p�ŒX �MGl ,
expressed them as rational characteristic numbers with integral values (Theorem 2.3)
and showed that they satisfy a degree formula (Theorem 3.1). Lastly, we computed
them for smooth quadrics and used this degree formula to prove a result of Rost, at
least under the assumption on the base field k of being of characteristic zero.
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