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Higher homotopy commutativity and cohomology of finite
H –spaces

YUTAKA HEMMI

YUSUKE KAWAMOTO

We study connected mod p finite Ap –spaces admitting ACn –space structures with
n< p for an odd prime p . Our result shows that if n> .p� 1/=2 , then the mod p

Steenrod algebra acts on the mod p cohomology of such a space in a systematic way.
Moreover, we consider Ap –spaces which are mod p homotopy equivalent to product
spaces of odd dimensional spheres. Then we determine the largest integer n for
which such a space admits an ACn –space structure compatible with the Ap –space
structure.

55P45, 57T25; 55P48, 55S05

1 Introduction

In this paper, we assume that p is a fixed odd prime and that all spaces are localized at
p in the sense of Bousfield–Kan [2].

In the paper [10], we introduced the concept of ACn –space which is an An –space
whose multiplication satisfies the higher homotopy commutativity of the n-th order.
Then we showed that a mod p finite ACn –space with n� p has the homotopy type
of a torus. Here by being mod p finite, we mean that the mod p cohomology of the
space is finite dimensional. To prove it, we first studied the action of the Steenrod
operations on the mod p cohomology of such a space. Then we showed that the
possible cohomology generators are concentrated in dimension 1.

In the above argument, the condition n� p is essential. In fact, any odd dimensional
sphere admits an ACp�1 –space structure by [10, Proposition 3.8]. This implies that
for any given exterior algebra, we can construct a mod p finite ACp�1 –space such
that the mod p cohomology of it is isomorphic to the algebra.

On the other hand, if the Ap�1 –space structure of the ACp�1 –space is extendable to
an Ap –space structure, then the situation is different. For example, it is known that an
odd dimensional sphere with an Ap –space structure does not admit an ACp�1 –space
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structure except for S1 . In fact, an odd dimensional sphere S2m�1 admits an Ap –
space structure if and only if mj.p� 1/, and then it admits an ACn –space structure
compatible with the Ap –space structure if and only if nm� p by [6, Theorem 2.4].
In particular, if p D 3, then mod 3 finite A3 –space with AC2 –space structure means
mod 3 finite homotopy associative and homotopy commutative H –space. Then by Lin
[21], such a space has the homotopy type of a product space of S1 s and Sp.2/s.

In this paper, we study mod p finite Ap –spaces with ACn –space structures for n< p .
First we consider the case of n> .p� 1/=2. In this case, we show the following fact
on the action of the Steenrod operations:

Theorem A Let p be an odd prime. If X is a connected mod p finite Ap –space
admitting an ACn –space structure with n> .p� 1/=2, then we have the following:

(1) If a� 0, b > 0 and 0< c < p , then

QH 2pa.pbCc/�1.X IZ=p/D PpatQH 2pa.p.b�t/CcCt/�1.X IZ=p/

for 1� t �minfb;p� cg and

PpatQH 2pa.pbCc/�1.X IZ=p/D 0

for c � t < p .

(2) If a� 0 and 0< c < p , then

Ppat
W QH 2pac�1.X IZ=p/ �!QH 2pa.tpCc�t/�1.X IZ=p/

is an isomorphism for 1� t < c .

In the above theorem, the assumption n > .p� 1/=2 is necessary. In fact, (2) is not
satisfied for the Lie group S3 although S3 admits an AC.p�1/=2 –space structure for
any odd prime p as is proved in [6, Theorem 2.4].

Theorem A (1) has been already proved for a special case or under additional hypotheses:
for pD 3 by Hemmi [7, Theorem 1.1] and for p� 5 by Lin [19, Theorem B] under the
hypotheses that the space admits an ACp�1 –space structure and the mod p cohomology
is Ap –primitively generated (see Hemmi [8] and Lin [19]).

In the above theorem, we assume that the prime p is odd. However, if we consider
the case p D 2, then the condition p > n> .p� 1/=2 is equivalent to nD 1, which
means that the space is just an H –space. Thus Theorem A can be considered as the
odd prime version of Thomas [26, Theorem 1.1] or Lin [18, Theorem 1]. (Note that in
their theorems they assumed that the mod 2 cohomology of the space is primitively
generated, while we do not need such an assumption.)

By using Theorem A, we show the following result:
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Theorem B Let p be an odd prime. If X is a connected mod p finite Ap –space
admitting an ACn –space structure with n> .p�1/=2 and the Steenrod operations Pj

act on QH�.X IZ=p/ trivially for j � 1, then X is mod p homotopy equivalent to a
torus.

Next we consider the case of n � .p � 1/=2. This includes the case n D 1, which
means that the space is just a mod p finite Ap –space. For the cohomology of mod p

finite Ap –spaces, we can show similar facts to Theorem A. For example, the results by
Thomas [26, Theorem 1.1] and Lin [18, Theorem 1] mentioned above is for p D 2,
and for odd prime p , many results are known (cf. [1], [5], [20]).

However, for odd primes in particular, those results have some ambiguities. In fact,
there are many Ap –spaces with ACn –space structures for some n� .p� 1/=2 such
that the Steenrod operations act on the cohomology trivially. In the next theorem, we
determine n for which a product space of odd dimensional spheres to be an Ap –space
with an ACn –space structure.

Theorem C Let X be a connected Ap –space mod p homotopy equivalent to a
product space of odd dimensional spheres S2m1�1�� � ��S2ml�1 with 1�m1� � � � �

ml , where p is an odd prime. Then X admits an ACn –space structure if and only if
nml � p .

By the results of Clark–Ewing [4] and Kumpel [17], there are many spaces satisfying
the assumption of Theorem C. Moreover, we note that the above result generalizes [6,
Theorem 2.4].

This paper is organized as follows: In Section 2, we first recall the modified projective
space M.X / of a finite Ap –space constructed by Hemmi [8]. Based on the mod p

cohomology of M.X /, we construct an algebra A�.X / over the mod p Steenrod
algebra which is a truncated polynomial algebra at height pC 1 (Theorem 2.1). Next
we introduce the concept of Dn –algebra and show that if X is an Ap –space with
an ACn –space structure, then A�.X / is a Dn –algebra (Theorem 2.6). Finally we
prove the theorems in Section 3 by studying the action of the Steenrod algebra on
Dn –algebras algebraically (Proposition 3.1 and Proposition 3.2).

This paper is dedicated to Professor Goro Nishida on his 60th birthday. The authors
appreciate the referee for many useful comments.

2 Modified projective spaces

Stasheff [25] introduced the concept of An –space which is an H –space with multipli-
cation satisfying higher homotopy associativity of the n-th order. Let X be a space and
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n � 2. An An –form on X is a family of maps fMi W Ki �X i ! X g2�i�n with the
conditions of [25, I, Theorem 5], where fKigi�2 are polytopes called the associahedra.
A space X having an An –form is called an An –space. From the definition, an A2 –
space and an A3 –space are the same as an H –space and a homotopy associative
H –space, respectively. Moreover, it is known that an A1–space has the homotopy
type of a loop space.

Let X be an An –space. Then by Stasheff [25, I, Theorem 5], there is a family of
spaces fPi.X /g1�i�n called the projective spaces associated to the An –form on X .
From the construction of Pi.X /, we have the inclusion �i�1W Pi�1.X /! Pi.X / for
2� i � n and the projection �i W Pi.X /!Pi.X /=Pi�1.X /' .†X /.i/ for 1� i � n,
where Z.i/ denotes the i -fold smash product of a space Z for i � 1.

For the rest of this section, we assume that X is a connected Ap –space whose mod p

cohomology H�.X IZ=p/ is an exterior algebra

(2–1) H�.X IZ=p/Šƒ.x1; : : : ;xl/ with deg xi D 2mi � 1

for 1� i � l , where 1�m1 � � � � �ml .

Iwase [12] studied the mod p cohomology of the projective space Pn.X / for 1�n�p .
If 1� n�p�1, then there is an ideal Sn�H�.Pn.X /IZ=p/ closed under the action
of the mod p Steenrod algebra A�p such that

(2–2) H�.Pn.X /IZ=p/Š Tn˚Sn with Tn D T ŒnC1�Œy1; : : : ;yl �,

where T ŒnC1�Œy1; : : : ;yl � denotes the truncated polynomial algebra at height nC 1

generated by yi 2 H 2mi .Pn.X /IZ=p/ with ��
1
: : : ��

n�1
.yi/ D �.xi/ for 1 � i �

l . He also proved a similar result for the mod p cohomology of Pp.X / under an
additional assumption that the generators fxig1�i�l are Ap –primitive (see Hemmi [8]
and Iwase [12]).

Hemmi [8] modified the construction of the projective space Pp.X / to get the algebra
T ŒpC1�Œy1; : : : ;yl � also for nD p without the assumption of the Ap –primitivity of
the generators. Then he proved the following result:

Theorem 2.1 (Hemmi [8, Theorem 1.1]) Let X be a simply connected Ap -space
whose mod p cohomology H�.X IZ=p/ is an exterior algebra in (2–1), where p is an
odd prime. Then we have a space M.X / and a map �W†X !M.X / with the following
properties:

(1) There is a subalgebra R�.X / of H�.M.X /IZ=p/ with

R�.X /Š T ŒpC1�Œy1; : : : ;yl �˚M;
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where yi 2 H 2mi .M.X /IZ=p/ are classes with ��.yi/ D �.xi/ for 1 � i � l and
M �H�.M.X /IZ=p/ is an ideal with ��.M /D 0 and M �H�.M.X /IZ=p/D 0.

(2) R�.X / and M are closed under the action of A�p , and so

(2–3) A�.X /DR�.X /=M Š T ŒpC1�Œy1; : : : ;yl �

is an unstable A�p -algebra.

(3) �� induces an A�p -module isomorphism:

QA�.X / ����! QH��1.X IZ=p/:

Next we recall the higher homotopy commutativity of H –spaces.

Kapranov [16] and Reiner–Ziegler [23] constructed special polytopes f�ngn�1 called
the permuto–associahedra. Let n� 1. A partition of the sequence nD .1; : : : ; n/ of
type .t1; : : : ; tm/ is an ordered sequence .˛1; : : : ; ˛m/ consisting of disjoint subse-
quences ˛i of n of length ti with ˛1 [ : : :[ ˛m D n (see Hemmi–Kawamoto [10]
and Ziegler [28] for the full details of the partitions). By Ziegler [28, Definition 9.13,
Example 9.14], the permuto–associahedron �n is an .n� 1/-dimensional polytope
whose facets (codimension one faces) are represented by the partitions of n into at
least two parts. Let �.˛1; : : : ; ˛m/ denote the facet of �n corresponding to a partition
.˛1; : : : ; ˛m/. Then the boundary of �n is given by

(2–4) @�n D

[
.˛1;:::;˛m/

�.˛1; : : : ; ˛m/

for all partitions .˛1; : : : ; ˛m/ of n with m� 2. If .˛1; : : : ; ˛m/ is of type .t1; : : : ; tm/,
then the facet �.˛1; : : : ; ˛m/ is homeomorphic to the product Km ��t1

� � � � ��tm

by the face operator �.˛1;:::;˛m/W Km � �t1
� � � � � �tm

! �.˛1; : : : ; ˛m/ with the
relations of [10, Proposition 2.1]. Moreover, there is a family of degeneracy operators
fıj W �i! �i�1g1�j�i with the conditions of [10, Proposition 2.3].

By using the permuto–associahedra, Hemmi and Kawamoto [10] introduced the concept
of ACn –form on An –spaces.

Let X be an An –space whose An –form is given by fMig2�i�n . An ACn –form on
X is a family of maps fQi W �i �X i!X g1�i�n with the following conditions:

(2–5) Q1.�;x/D x:

(2–6) Qi.�
.˛1;:::;˛m/.�; �1; : : : ; �m/;x1; : : : ;xi/

DMm.�;Qt1
.�1;x˛1.1/; : : : ;x˛1.t1//; : : : ;Qtm

.�m;x˛m.1/; : : : ;x˛m.tm///
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Figure 1: Permuto–associahedra �2 and �3

for a partition .˛1; : : : ; ˛m/ of i of type .t1; : : : ; tm/.

(2–7) Qi.�;x1; : : : ;xj�1;�;xjC1; : : : ;xi/DQi�1.ıj .�/;x1; : : : ;xj�1;xjC1; : : : ;xi/

for 1� j � i .

By [10, Example 3.2 (1)], an AC2 –form on an A2 –space is the same as a homotopy
commutative H –space structure since Q2W �2�X 2!X gives a commuting homotopy
between xy and yx for x;y 2 X (see Figure 2). Let us explain an AC3 –form on
an A3 –space. Assume that X is an A3 –space admitting an AC2 –form. Then by
using the associating homotopy M3W K3 �X 3! X and the commuting homotopy
Q2W �2 �X 2! X , we can define a map eQ3W @�3 �X 3! X which is illustrated
by the right dodecagon in Figure 2. For example, the uppermost edge represents the
commuting homotopy between xy and yx , and thus it is given by Q2.t;x;y/z . On
the other hand, the next right edge is the associating homotopy between .xy/z and
x.yz/ which is given by M3.t;x;y; z/. Then X admits an AC3 –form if and only ifeQ3 is extended to a map Q3W �3 �X 3! X . Moreover, if X is an H –space, then
by [10, Example 3.2 (3)], the multiplication of the loop space �X on X admits an
AC1–form.

Hemmi [6] considered another concept of higher homotopy commutativity of H –spaces.
Let X be an An –space with the projective spaces fPi.X /g1�i�n . Let Ji.†X / be the
i -th stage of the James reduced product space of †X and �i W Ji.†X /! .†X /.i/

be the obvious projection for 1� i � n. A quasi Cn –form on X is a family of maps
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Figure 2: Q2.t;x;y/ and Q3.�;x;y; z/

f i W Ji.†X /! Pi.X /g1�i�n with the following conditions:

 1 D 1†X W†X �!†X:(2–8)

 i jJi�1.†X / D �i�1 i�1 for 2� i � n.(2–9)

�i i '

�X
�2†i

�

�
�i for 1� i � n,(2–10)

where the symmetric group †i acts on .†X /.i/ by the permutation of the coordinates
and the summation on the right hand side is given by using the obvious co–H –structure
on .†X /.i/ for 1� i � n.

Hemmi and Kawamoto [10] proved the following result:

Theorem 2.2 (Hemmi–Kawamoto [10, Theorem A]) Let X be an An –space for
n� 2. Then we have the following:

(1) If X admits an ACn –form, then X admits a quasi Cn –form.

(2) If X is an AnC1 –space admitting a quasi Cn –form, then X admits an ACn –form.

Remark 2.3 In the proof of Theorem 2.2 (2), we do not need the condition (2–10).
In fact, the proof of Theorem 2.2 (2) shows that if X is an AnC1 -space and there is a
family of maps f ig1�i�n with the conditions (2–8)–(2–9), then there is a family of
maps fQig1�i�n with the conditions (2–5)–(2–7).

Now we give the definition of Dn –algebra:
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Definition 2.4 Assume that A� is an unstable A�p –algebra for a prime p . Let n� 1.
Then A� is called a Dn –algebra if for any ˛i 2A� and �i 2A�p for 1� i � q with

(2–11)
qX

iD1

�i.˛i/ 2DA�;

there are decomposable classes �i 2DA� for 1� i � q with

(2–12)
qX

iD1

�i.˛i � �i/ 2DnC1A�;

where DA� and DtA� denote the decomposable module and the t -fold decomposable
module of A� for t > 1, respectively.

Remark 2.5 It is clear from Definition 2.4 that any unstable A�p –algebra is a D1 –
algebra. On the other hand, for an Ap –space X which satisfies the assumption of
Theorem 2.1 with l � 1, the unstable A�p –algebra A�.X / given in (2–3) cannot be a
Dp –algebra since Pm.˛/D ˛p ¤ 0 for ˛ 2QA2m.X / from the unstable condition
of A�p and DpC1A�.X /D 0 in (2–12).

To prove Theorem A and Theorem B, we need the following theorem:

Theorem 2.6 Let p be an odd prime and 1� n� p� 1. Assume that X is a simply
connected Ap -space whose mod p cohomology H�.X IZ=p/ is an exterior algebra in
(2–1). If the multiplication of X admits a quasi Cn -form, then A�.X / is a Dn –algebra.

We need the following result which is a generalization of Hemmi [6]:

Lemma 2.7 Assume that X satisfies the same assumptions as Theorem 2.6. If
˛i 2H�.Pn.X /IZ=p/ and �i 2A�p for 1� i � q satisfy

qX
iD1

�i.˛i/D aC b with a 2DH�.Pn.X /IZ=p/ and b 2 Sn ,

then there are decomposable classes �i 2DH�.Pn.X /IZ=p/ for 1� i � q with

qX
iD1

�i.˛i � �i/D b:
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Proof We give an outline of the proof since the argument is similar to Hemmi [6,
Lemma 4.8]. It is clear for nD 1. If the result is proved for n� 1, then by the same
reason as [6, Lemma 4.8], we can assume a 2DnH�.Pn.X /IZ=p/.

Put Un D
eH �..†X /Œn�IZ=p/, Vn DQH�.X IZ=p/˝n and

Wn D

nM
iD1

eH �.X IZ=p/˝i�1
˝DH�.X IZ=p/˝ eH �.X IZ=p/˝n�i ;

where ZŒn� denotes the n-fold fat wedge of a space Z given by

ZŒn�
D f.z1; : : : ; zn/ 2Zn

j zj D � for some 1� j � ng:

Then we have a splitting as an A�p –module

(2–13) eH �..†X /nIZ=p/ŠUn˚Vn˚Wn:

Let KnW
eH �.X IZ=p/˝n!H�.Pn.X /IZ=p/ denote the following composite:

eH �.X IZ=p/˝n �˝n

���!H�.†X IZ=p/˝n
ŠH�..†X/.n/IZ=p/

��n
�!H�.Pn.X/IZ=p/:

Then by [6, Theorem 3.5], there are ea 2 Vn and eb 2 Wn with a D Kn.ea/ and
b D Kn.eb /.
Now we set ��n.˛i/D ci Cdi C ei with respect to the splitting (2–13) for 1� i � q ,
where �nW .†X /n! Pn.X / denotes the composite of  n with the obvious projection
!nW .†X /n! Jn.†X /. From the same reason as Hemmi [6, Lemma 4.8], we have

qX
iD1

�i.di/D
X
�2†n

�.ea/D ��n.a/;
and so

��n

� qX
iD1

�i.Kn.di//

�
D

X
�2†n

�

� qX
iD1

�i.di/

�
D n!

X
�2†n

�.ea/D n!.��n.a//;

which implies

(2–14) aD
1

n!

qX
iD1

�i.Kn.di//

by [6, Lemma 4.7]. If we put

�i D
1

n!
Kn.di/ 2DnH�.Pn.X /IZ=p/
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for 1� i � q , then by (2–14),

qX
iD1

�i.˛i � �i/D b;

which completes the proof.

Proof of Theorem 2.6 From the construction of the space M.X / in Hemmi [8,
Section 2], we have a space N.X / and the following homotopy commutative diagram:

(2–15)

Pp�2.X /
�

����! N.X /
�

����! M.X / �

??y ??y�
Pn.X / ����!

�n
� � � ����!

�p�3

Pp�2.X / ����!
�p�2

Pp�1.X / ����!
�p�1

Pp.X /:

By Theorem 2.1 (2) and [8, page 593], we have that M �R�.X / is closed under the ac-
tion of A�p with ��.M /D0, which implies that ��jR�.X /W R�.X /!H�.N.X /IZ=p/

induces an A�p –homomorphism FW A�.X /DR�.X /=M !H�.N.X /IZ=p/. Then
by applying the mod p cohomology to the diagram (2–15), we have the following
commutative diagram of unstable A�p –algebras and A�p –homomorphisms:

A�.X /
F

����! H�.N.X /IZ=p/
��

 ���� H�.Pp�1.X /IZ=p/

��
??y ??y��p�2

H�.Pp�2.X /IZ=p/ H�.Pp�2.X /IZ=p/??y��p�3

:::??y��n
H�.Pn.X /IZ=p/:

First we assume 1� n� p� 2. Put Gn.˛i/D ˇi for 1� i � q , where GnWA
�.X /!

H�.Pn.X /IZ=p/ is the composite given by Gn D �
�
n : : : �

�
p�3

��F. Then by applying
Gn to (2–11), we have

qX
iD1

�i.ˇi/ 2DH�.Pn.X /IZ=p/;
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and so by Lemma 2.7, there are decomposable classes e� i 2DH�.Pn.X /IZ=p/ for
1� i � q with

(2–16)
qX

iD1

�i.ęi �e� i/D 0:

If we choose decomposable classes �i 2DA�.X / to satisfy Gn.�i/De� i for 1� i � q ,
then by (2–16),

qX
iD1

�i.˛i � �i/ 2DnC1A�.X /;

which completes the proof in the case of 1� n� p� 2.

Next let us consider the case of n D p � 1. Put F.˛i/ D ęi 2 H�.N.X /IZ=p/ for
1� i � q . Then we have

qX
iD1

�i.ęi/ 2DH�.N.X /IZ=p/:

By [8, Proposition 5.2], we see that F.A�.X // is contained in ��.H�.Pp�1.X/IZ=p//,
and so we can choose ˇi 2H�.Pp�1.X /IZ=p/ and a 2DH�.Pp�1.X /IZ=p/ with
��.ˇi/D ęi and

��.a/D

qX
iD1

�i.ęi/

for 1� i � q . Then we can set

qX
iD1

�i.ˇi/D aC b

with ��.b/D 0, and by [8, Lemma 5.1], we have b 2 Sp�1 . By Lemma 2.7, there are
decomposable classes �i 2DH�.Pp�1.X /IZ=p/ for 1� i � q with

qX
iD1

�i.ˇi ��i/D b:

Let �i 2DA�.X / with F.�i/D �
�.�i/ for 1� i � q . Then we have

qX
iD1

�i.˛i � �i/ 2DpA�.X /;

which implies the required conclusion. This completes the proof of Theorem 2.6.
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3 Proofs of Theorem A and Theorem B

In this section, we assume that A� is an unstable A�p –algebra which is the truncated
polynomial algebra at height pC 1 given by

(3–1) A� D T ŒpC1�Œy1; : : : ;yl � with deg yi D 2mi

for 1� i � l , where 1�m1 � � � � �ml . Moreover, we choose the generators fyig to
satisfy

(3–2) P1.yi/ 2DA� or P1.yi/D yj for some 1� j � l .

The above is possible by the same argument as Hemmi [5, Section 4].

First we prove the following result:

Proposition 3.1 Suppose that A� is a Dn –algebra and 1� i � l . If P1.yi/ contains
the term yt

j for some 1� j � l and 1� t � n, then yj DP1.yk/ for some 1� k � l .

Proof If t D 1, then by (3–2), the result is clear. Let t be the smallest integer with
1< t � n such that the term yt

j is contained in P1.yi0/ for some 1� i 0 � l . Then by
(3–2), we have P1.yi0/ 2DA� . Since A� is a Dn –algebra, there is a decomposable
class � 2 DA� with P1.yi0 � �/ 2 DnC1A� . This implies that P1.�/ contains the
term yt

j , and so there is one of the generators yi00 of (3–1) for 1 � i 00 � l such that
P1.yi00/ contains the term ys

j for some 1� s < t . Then we have a contradiction, and
so t D 1. This completes the proof.

In the proof of Theorem A, we need the following result:

Proposition 3.2 Let p be an odd prime. If A� is a Dn –algebra with n> .p� 1/=2,
then the indecomposable module QA� of A� satisfies the following:

(1) If a� 0, b > 0 and 0< c < p , then

(3–3) QA2pa.pbCc/
D PpatQA2pa.p.b�t/CcCt/

for 1� t �min fb;p� cg and

(3–4) PpatQA2pa.pbCc/
D 0 in QA2pa.p.bCt/Cc�t/

for c � t < p .

(2) If a� 0 and 0< c < p , then

(3–5) Ppat
W QA2pac

�!QA2pa.tpCc�t/

is an isomorphism for 1� t < c .
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Proof First we consider the case of aD 0. Let us prove (1) by downward induction
on b . If b is large enough, then the result is clear since QA2.pbCc/ D 0. Assume that
yj is one of the generators of (3–1) for 1� j � l and deg yj D 2.pbC c/ with b > 0

and 0< c < p . By inductive hypothesis, we can assume that if f > b and 0< g < p ,
then

(3–6) QA2.pfCg/
D PtQA2.p.f�1/CgC1/

for 1� t �min ff;p�gg. If we put

ˇ D
1

pbC c
PpbCc�1.yj / 2A2.p.pbCc�1/C1/;

then by (3–6), we have
ˇ�Pp�1. / 2DA�

for some  2QA2p.p.b�1/C1/ . Since A� is a Dn –algebra,

(3–7) ˇ�
1

pbC c
PpbCc�1.�/�Pp�1. � �/ 2DnC1A�

for some decomposable classes �2DA2.pbCc/ and � 2DA2p.p.b�1/C1/ . If we apply
P1 to (3–7), then y

p
j D P1.�/ for some � 2 DnC1A� since PpbCc.�/ D �p D 0

in A� and P1Pp�1 D pPp D 0. Then for some generator yi , P1.yi/ must contain
some yt

j with 1� t � p and tCnD p . By the assumption of n> .p�1/=2, we have
1 � t � n, which implies that yj D P1.yk/ for some 1 � k � l by Proposition 3.1.
By iterating this argument, we have (3–3).

Now (3–4) follows from (3–3). In fact, if yj is a generator in (3–1) with deg yj D

2.pbCc/ for some b> 0 and 0< c <p , then we show that Pc.yj /D 0. If bCc <p ,
then by (3–3), we have yj D Pb.�/ for � 2QA2.bCc/ , which implies that

(3–8) Pc.yj /D PcPb.�/D

�
bC c

b

�
�p
D 0

in QA2p.bCc/ . On the other hand, if p� bCc , then by (3–3), we have yj DPp�c.�/

for � 2QA2p.bCc�pC1/ , and so

(3–9) Pc.yj /D PcPp�c.�/D

�
p

c

�
Pp.�/D 0:

Next we show (2) with aD 0. We only have to show that Pc�1 is a monomorphism on
QA2c . Let yj be a generator in (3–1) such that deg yj D 2c with 0< c < p . Suppose
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contrarily that Pc�1.yj /D 0 in QA2.c�1/pC1 . Since A� is a Dn –algebra, we have
that

Pc�1.yj ��/ 2DnC1A2.c�1/pC1

for some decomposable class � 2DA2c . Then by a similar argument to the proof of
(1), we have that yj DP1.yk/ for some 1� k � l with deg yk D 2.c�pC1/, which
is impossible for dimensional reasons. This completes the proof of Proposition 3.2 in
the case of aD 0.

Let I denote the ideal of A� generated by yi with mi 6�0 mod p . Then for dimensional
reasons and by (3–8) and (3–9), we see that I is closed under the action of A�p , which
implies that A�=I is an unstable A�p –algebra given by

A�=I D T ŒpC1�Œyi1
; : : : ;yiq

� with mid
� 0 mod p

for 1 � d � q . Set mid
D phd with hd � 1 for 1 � d � q . Let B� denote the

truncated polynomial algebra at height pC 1 given by

B� D T ŒpC1�Œz1; : : : ; zq � with deg zd D hd

for 1 � d � q . If we define a map eLW fyi1
; : : : ;yiq

g ! B� by eL.yid
/ D zd for

1 � d � q , then eL is extended to an isomorphism LW A�=I ! B� . Moreover, B�

admits an unstable A�p –algebra structure by the action Pr .zd / D L.Ppr .yid
// for

r � 1. Then we can show that B� is a Dn –algebra concerning this structure since so
is A� . From the above arguments, we have the required results for B� in the case of
a D 0, which implies that A� satisfies the required results for a D 1. By repeating
these arguments, we can show that A� satisfies the desired conclusions of Proposition
3.2 for any a� 0. This completes the proof.

Now we prove Theorem A as follows:

Proof of Theorem A By Browder [3, Theorem 8.6], H�.X IZ=p/, the mod p coho-
mology, is an exterior algebra in (2–1). Let eX be the universal cover of X . From the
proof of [10, Lemma 3.9], we have that eX is a simply connected Ap –space admitting
an ACn –form. It is enough to prove Theorem A for eX since X ' eX �T for a torus
T by Kane [14, page 24]. By Theorem 2.2 and Theorem 2.6, we have that A�. eX /

is a Dn –algebra. Then by Theorem 2.1 (3) and Proposition 3.2, we have the required
conclusion. This completes the proof of Theorem A.

By using Theorem A, we prove Theorem B as follows:
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Proof of Theorem B We proceed by using a similar way to the proof of [6, The-
orem 1.1]. Since X ' eX � T for a torus T as in the proof of Theorem A, the
Steenrod operations Pj act trivially on QH�. eX IZ=p/ for j � 1. By Theorem A, if
QH 2m�1. eX IZ=p/¤ 0, then mDpa for some a� 1, and so the mod p cohomology
of eX is an exterior algebra in (2–1), where mi D pai with ai � 1 for 1� i � l .

Let Pp�1. eX / be the .p � 1/-th projective space of eX . Then by (2–2), there is an
ideal Sp�1 �H�.Pp�1. eX /IZ=p/ closed under the action of A�p with

H�.Pp�1. eX /IZ=p/=Sp�1 Š T Œp�Œy1; : : : ;yl �;

where T Œp�Œy1; : : : ;yl � is the truncated polynomial algebra at height p generated
by yi 2 H 2pai .Pp�1. eX /IZ=p/ with ��

1
: : : ��

p�2
.yi/ D �.xi/ 2 H 2pai .† eX IZ=p/.

Moreover, we have that the composite

(3–10) H t .Pp.eX /IZ=p/ ��
p�1

����! H t .Pp�1.eX /IZ=p/ ����! T Œp�Œy1; : : : ;yl �

is an isomorphism for t < 2pa1C1 and an epimorphism for t < 2.pa1C1Cpa1 � 1/

by [6, page 106, (4.10)]. As in [6, page 106, (4.11)], we can show

(3–11) Im Ppa1
\H t .Pp. eX /IZ=p/D 0

for t � 2pa1C1 . In fact, by (3–10) and for dimensional reasons, we have

Im ˇ\H t .Pp.eX /IZ=p/D 0

Im P1
\H t .Pp.eX /IZ=p/D 0

for t�2pa1C1 , which implies (3–11) by Liulevicius [22] or Shimada–Yamanoshita [24].
Now we can choose w1 2H 2pa1 .Pp. eX /IZ=p/ with ��

p�1
.w1/D y1 by (3–10), and

we have wp
1
DPpa1 .w1/D 0 by (3–11). Then we have a contradiction by using the

same argument as the proof of [6, Theorem 1.1], and so eX is contractible, which
implies that X is a torus. This completes the proof of Theorem B.

To show Theorem C, we need the following definition:

Definition 3.3 Assume that X is an An –space and Y is a space.

(1) An ACn –form on a map �W Y !X is a family of maps fRi W �i�Y i!X g1�i�n

with the conditions R1.�;y/D �.y/ for y 2 Y and (2–6)–(2–7).

(2) A quasi Cn –form on a map �W †Y !†X is a family of maps f�i W Ji.†Y /!

Pi.X /g1�i�n with the conditions �1 D � and (2–9).

Geometry & Topology Monographs, Volume 10 (2007)



182 Yutaka Hemmi and Yusuke Kawamoto

By using the same argument as the proof of Theorem 2.2 (1), we can prove the following
result:

Theorem 3.4 Assume that X is an An –space, Y is a space and �W Y !X is a map.
Then any ACn –form on � induces a quasi Cn –form on †� .

Now we prove Theorem C as follows:

Proof of Theorem C First we show that if X admits an ACn –form, then nml � p .

We prove by induction on n. If nD1, then the result is proved by Hubbuck–Mimura [11]
and Iwase [13, Proposition 0.7]. Assume that the result is true for n� 1. Then by
inductive hypothesis, we have .n � 1/ml � p . Now we assume that X admits an
ACn –form with

(3–12) .n� 1/ml � p < nml :

Then we show a contradiction.

Let eX be the universal covering space of X . Then eX is a simply connected Ap –space
mod p homotopy equivalent to

(3–13) S2m1�1
� � � � �S2ml�1 with 1<m1 � � � � �ml

and the multiplication of eX admits an ACn –form by [10, Lemma 3.9]. Now we can
set that

A�. eX /D T ŒpC1�Œy1; : : : ;yl � with deg yi D 2mi

for 1 � i � l , where 1 < m1 � � � � � ml � p . By Theorem 2.2 and Theorem 2.6,
A�. eX / is a Dn –algebra.

First we consider the case of ml < p . Let J be the ideal of A�. eX / generated by yi

for 1� i � l � 1. Then we see that

(3–14) P1.yi/ 62 J for some 1� i � l .

In fact, if we assume that P1.yi/ 2 J for any 1 � i � l , then P1.yl/ 2 J and
P1.J /� J . This implies that

y
p

l
D Pml .yl/D

1

ml !
.P1/ml .yl/ 2 J;

which is a contradiction, and so we have (3–14). Then for dimensional reasons and by
(3–12),

2.n� 1/ml < deg P1.yi/ < 2.nC 1/ml ;
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which implies that P1.yi/ contains the term ayn
l

with a¤ 0 in Z=p by (3–14). By
Proposition 3.1, we have yl 2 P1QA2.ml�pC1/. eX /, which causes a contradiction
since ml < p .

Next let us consider the case of ml Dp . In this case, (3–12) is equivalent to nD 2, and
so eX is assumed to have an AC2 –form. Then from the same arguments as above, we
have that A�. eX / is a D2 –algebra. By Kanemoto [15, Lemma 3], there is a generator
yk 2QA2.p�1/. eX / for some 1� k < l . Let K be the ideal of A�. eX / generated by
yi with i ¤ k . From the same reason as (3–14), we see that P1.yi/ 62 K for some
1 � i � l . Then for dimensional reasons, we see that P1.yi/ contains the term by2

k

with b ¤ 0 in Z=p . By Proposition 3.1, we have a contradiction, and so eX does not
admit an AC2 –form.

Next we show that if nml � p , then X admits an ACn –form. Since it is clear for
n D 1 or ml D 1, we can assume that nml < p . Let Y denote the wedge sum of
spheres given by

Y D .S2m1�1
_ : : :_S2ml�1/.p/

with the inclusion �W Y ! X . First we construct an ACn –form fRi W �i � Y i !

X g1�i�n on �W Y !X .

Suppose inductively that fRig1�i<t are constructed for some t � n. Then the obstruc-
tions for the existence of Rt belong to the following cohomology groups for j � 1:

(3–15) H jC1.�t �Y t ; @�t �Y t
[�t �Y Œt �I�j .X //Š eH jC2

..†Y /.t/I�j .X //

since �t�Y t=.@�t�Y t[�t�Y Œt �/'†t�1Y .t/ . This implies that (3–15) is non-trivial
only if j is an even integer with j < 2p� 2 since

†Y ' .S2m1 _ : : :_S2ml /.p/

and tml � nml < p . On the other hand, according to Toda [27, Theorem 13.4],
�j .X /D 0 for any even integer j with j < 2p� 2 since X is given by (3–13). Thus
(3–15) is trivial for all j , and we have a map Rt . This completes the induction, and
we have an ACn –form fRig1�i�n on �W Y !X .

Since X is an H –space, there is a map ˇW �†X ! X with ˇ˛ ' 1X , where
˛W X !�†X denotes the adjoint of 1†X W †X !†X . Moreover, †Y is a retract of
†X , and so we have a map �W †X !†Y with �.†�/' 1†Y . Put �D ˇ� W X !X ,
where � W X !�†X denotes the adjoint of .†�/� . Then we see that � induces an
isomorphism on the mod p cohomology, and so � is a mod p homotopy equivalence.

By Theorem 3.4, there is a quasi Cn –form f�i W Ji.†Y /!Pi.X /g1�i�n on †�W †Y!

†X . Let �i W Ji.†X / ! Pi.X / be the map defined by �i D �iJi.�.†�
�1// for
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1� i � n, where ��1W X !X denotes the homotopy inverse of �. Then the family
f�ig1�i�n satisfies that �i jJi�1.†X /D �i�1�i�1 for 2� i�n and �1D .†�/�.†��1/D

�.†�/.†��1/, where �W †�†X ! †X is the evaluation map. Since �1.†ˇ/ '
�1�W †�†X ! P2.X / by Hemmi [9, Lemma 2.1], we have �2j†X D �1�1 ' �1 . Let
 i W Ji.†X /! Pi.X / be the map defined by  1 D 1†X and  i D �i for 2� i � n.
Then the family f ig1�i�n satisfies (2–8)–(2–9). By Theorem 2.2 (2) and Remark
2.3, we have an ACn –form fQi W �i �X i!X g1�i�n on X with (2–5)–(2–7). This
completes the proof of Theorem C.
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