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Classifying spaces of compact Lie groups that are
p–compact for all prime numbers

KENSHI ISHIGURO

We consider a problem on the conditions of a compact Lie group G that the loop
space of the p–completed classifying space be a p–compact group for a set of
primes. In particular, we discuss the classifying spaces BG that are p–compact for
all primes when the groups are certain subgroups of simple Lie groups. A survey of
the p–compactness of BG for a single prime is included.

55R35; 55P15, 55P60

A p–compact group (see Dwyer–Wilkerson [8]) is a loop space X such that X is
Fp –finite and that its classifying space BX is Fp –complete (see Andersen–Grodal–
Møller–Viruel [2] and Dwyer–Wilkerson [11]). We recall that the p–completion of
a compact Lie group G is a p–compact group if �0.G/ is a p–group. Next, if
C.�/ denotes the centralizer of a group homomorphism � from a p–toral group to a
compact Lie group, according to [8, Theorem 6.1], the loop space of the p–completion
�.BC.�//^p is a p–compact group.

In a previous article [19], the classifying space BG is said to be p–compact if �.BG/^p
is a p–compact group. There are some results for a special case. A survey is given
in Section 1. It is well-known that, if †3 denotes the symmetric group of order 6,
then B†3 is not 3–compact. In fact, for a finite group G , the classifying space BG

is p–compact if and only if G is p–nilpotent. Moreover, we will see that BG is p–
compact toral (see Ishiguro [20]) if and only if the compact Lie group G is p–nilpotent
(see Henn [14]). For the general case, we have no group theoretical characterization,
though a few necessary conditions are available. This problem is also discussed in the
theory of p–local groups (see Broto, Levi and Oliver [6; 7]) from a different point of
view.

We consider the p–compactness of BG for a set of primes. Let … denote the set of
all primes. For a non–empty subset P of …, we say that BG is P–compact if this
space is p–compact for any p 2 P. If G is connected, then �.BG/^p 'G^p for any
prime p , and hence BG is …–compact. The connectivity condition, however, is not
necessary. For instance, the classifying space of each orthogonal group O.n/ is also
…–compact. Since �0.O.n//D Z=2 is a 2–group, BO.n/ is 2–compact, and for any
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196 Kenshi Ishiguro

odd prime p , the p–equivalences BO.2m/'p BO.2mC 1/'p BSO.2mC 1/ tell
us that BO.n/ is …–compact.

Next let P.BG/ denote the set of primes p such that BG is p–compact. In [20] the
author has determined P.BG/ when G is the normalizer N T of a maximal torus T

of a connected compact simple Lie group K with Weyl group W .K/. Namely

P.BN T /D

(
… if W .K/ is a 2–group,

fp 2… j jW .K/j 6� 0 mod pg otherwise.

Other examples are given by a subgroup H Š SU.3/Ì Z=2 of the exceptional Lie
group G2 and its quotient group �2 DH=.Z=3/.

Z=3 Z=3 ����! �??y ??y ??y
SU.3/ ����! H ����! Z=2??y ??y 



PU.3/ ����! �2 ����! Z=2

A result of [19] implies that P.BH /D… and P.B�2/D…�f3g.

In this paper we explore some necessary and sufficient conditions for a compact Lie
group to be …–compact. First we consider a special case. We say that BG is P–
compact toral if for each p 2 P the loop space �.BG/^p is expressed as an extension
of a p–compact torus T ^p by a finite p–group � so that that there is a fibration
.BT /^p �! .BG/^p �! B� . Obviously, if BG is P–compact toral, the space is
P–compact. A necessary and sufficient condition that BG be p–compact toral is given
in [20]. As an application, we obtain the following:

Theorem 1 Suppose G is a compact Lie group, and G0 denotes its connected compo-
nent with the identity. Then BG is …–compact toral if and only if the following two
conditions hold:

(a) G0 is a torus T , and the group G=G0 D �0G is nilpotent.

(b) T is a central subgroup of G .

For a torus T and a finite nilpotent group 
 , the product group G D T � 
 satisfies
conditions (a) and (b). Thus BG is …–compact toral. Proposition 2.2 will show,
however, that a group G with BG being …–compact toral need not be a product
group.
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Classifying spaces of compact Lie groups that are p–compact for all prime numbers 197

Next we ask if BH is P–compact when H is a subgroup of a simple Lie group G .
For PD…, the following result determines certain types of .G;H0/ where H0 is the
connected component of the identity. We have seen the cases of .G;H /D .G;N T /

when W .G/DN T=T is a 2–group, and of .G;H /D .G2;SU.3/Ì Z=2/ which is
considered as a case with .G;H0/D .G2;A2/. Recall that the Lie algebra of SU.nC1/

is simple of type An , and the Lie group SU.3/ is of A2 –type (see Bourbaki [4]).

Theorem 2 Suppose a connected compact Lie group G is simple. Suppose also that
H is a proper closed subgroup of G with rank.H0/ D rank.G/, and that the map
BH�!BG induced by the inclusion is p–equivalent for some p . Then the following
hold:

(a) If the space BH is …–compact, .G;H0/ is one of the following types:

.G;H0/D

8̂̂<̂
:̂
.G;TG/ for G DA1 or B2.D C2/

.Bn;Dn/

.C2;A1 �A1/

.G2;A2/

where TG is the maximal torus of G .

(b) For any odd prime p , all above types are realizable. Namely, there are G and H

of types as above such that BH is …–compact, together with the p–equivalent
map BH�!BG . When p D 2, any such pair .G;H / is not realizable.

We make a remark about covering groups. Note that if ˛�!eG�!G is a finite
covering, then ˛ is a central subgroup of eG . For a central extension ˛�!eG�!G

and a subgroup H of G , we consider the following commutative diagram:

˛ ����! eG ����! G


 x?? x??
˛ ����! eH ����! H

Obviously the vertical map H�!G is the inclusion, and eH is the induced subgroup
of eG . We will show that the pair .G;H / satisfies the conditions of Theorem 2 if
and only if its cover .eG ; eH / satisfies those of Theorem 2. Examples of the type
.G;H0/ D .Bn;Dn/, for instance, can be given by .SO.2n C 1/;O.2n// and the
double cover .Spin.2nC 1/;Pin.2n//.

For the case .G;H0/D .G2;A2/, we have seen that H has a finite normal subgroup
Z=3, and that for its quotient group �2 the classifying space B�2 is p–compact if and
only if p ¤ 3. So P.B�2/¤…. The following result shows that this is the only case.
Namely, if � is such a quotient group for .G;H0/¤ .G2;A2/, then P.B�/D….
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198 Kenshi Ishiguro

Theorem 3 Let .G;H / be a pair of compact Lie groups as in Theorem 2. For a finite
normal subgroup � of H , let � denote the quotient group H=� . If .G;H0/¤ .G2;A2/,
then B� is …–compact.

The author would like to thank the referee for the numerous suggestions.

1 A survey of the p–compactness of BG

We summarize work of earlier articles [19; 20] together with some basic results, in order
to introduce the problem of p–compactness. For a compact Lie group G , the classifying
space BG is p–compact if and only if �.BG/^p is Fp –finite. So it is a mod p finite
H–space. The space B†3 is not p–compact for p D 3. We notice that �.B†3/

^
3

is
not a mod 3 finite H–space, since the degree of the first non–zero homotopy group
of �.B†3/

^
3

is not odd. Actually there is a fibration �.B†3/
^
3
�!.S3/^

3
�!.S3/^

3

(see Bousfield and Kan [5]).

First we consider whether BG is p–compact toral, as a special case. When G is finite,
this is the same as asking if BG is p–compact. Note that, for a finite group � , the
classifying space B� is an Eilenberg–MacLane space K.�; 1/. Since .BT /^p is also
Eilenberg–MacLane, for BG being p–compact toral, the n–th homotopy groups of
.BG/^p are zero for n� 3. A converse to this fact is the following.

Theorem 1.1 [20, Theorem 1] Suppose G is a compact Lie group, and X is a
p–compact group. Then we have the following:

(i) If there is a positive integer k such that �n..BG/^p/ D 0 for any n � k , then
BG is p–compact toral.

(ii) If there is a positive integer k such that �n.BX /D 0 for any n� k , then X is
a p–compact toral group.

This theorem is also a consequence of work of Grodal [12; 13]

A finite group 
 is p–nilpotent if and only if 
 is expressed as the semidirect product
� Ì 
p , where � is the subgroup generated by all elements of order prime to p , and
where 
p is the p–Sylow subgroup. The group †3 is p–nilpotent if and only if p¤ 3.
Recall that a fibration of connected spaces F�!E�!B is said to be preserved by the
p–completion if F^p�!E^p�!B^p is again a fibration. When �0.G/ is a p–group,
a result of Bousfield and Kan [5] implies that the fibration BG0�!BG�!B�0G is
preserved by the p–completion, and BG is p–compact.

We have the following necessary and sufficient conditions that BG be p–compact
toral.
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Theorem 1.2 [20, Theorem 2] Suppose G is a compact Lie group, and G0 is the
connected component with the identity. Then BG is p–compact toral if and only if the
following conditions hold:

(a) G0 is a torus T and G=G0 D �0G is p–nilpotent.

(b) The fibration BT�!BG�!B�0G is preserved by the p–completion.

Moreover, the p–completed fibration .BT /^p�!.BG/^p�!.B�0G/^p splits if and
only if T is a central subgroup of G .

Next we consider the general case. What are the conditions that BG be p–compact?
For example, for the normalizer N T of a maximal torus T of a connected compact
Lie group K , it is well–known that .BN T /^p ' .BK/^p if p does not divide the order
of the Weyl group W .K/. This means that BN T is p–compact for such p . Using
the following result, we can show the converse.

Proposition 1.3 [20, Proposition 3.1] If BG is p–compact, then the following hold:

(a) �0G is p–nilpotent.

(b) �1..BG/^p/ is isomorphic to a p–Sylow subgroup of �0G .

The necessary condition of this proposition is not sufficient, even though the rational
cohomology of .BG/^p is assumed to be expressed as a ring of invariants under the
action of a group generated by pseudoreflections.

Theorem 1.4 [19, Theorem 1] Let G D �2 , the quotient group of a subgroup
SU.3/Ì Z=2 of the exceptional Lie group G2 . For p D 3, the following hold:

(1) �0G is p–nilpotent and �1..BG/^p/ is isomorphic to a p–Sylow subgroup of
�0G .

(2) .BG/^p is rationally equivalent to .BG2/
^
p .

(3) BG is not p–compact.

We discuss invariant rings and some properties of B�2 and BG2 at p D 3. Sup-
pose G is a compact connected Lie group. The Weyl group W .G/ acts on its
maximal torus T n , and the integral representation W .G/�!GL.n;Z/ is obtained
(see Dwyer and Wilkerson [9; 10]). It is well–known that K.BG/ŠK.BT n/W .G/

and H�.BGI Fp/ Š H�.BT nI Fp/
W .G/ for large p . Let W .G/� denote the dual

representation of W .G/. Although the mod 3 reductions of the integral represen-
tations of W .G2/ and W .G2/

� are not equivalent, there is  2 GL.2;Z/ such
that  W .G2/ 

�1 DW .G2/
� [19, Lemma 3]. Consequently, K.BT 2IZ^

3
/W .G2/ Š

K.BT 2IZ^
3
/W .G2/

�

. Since K.B�2IZ
^
3
/ŠK.BT 2IZ^

3
/W .G2/

�

, we have the follow-
ing result.
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200 Kenshi Ishiguro

Theorem 1.5 [19, Theorem 3] Let �2 be the compact Lie group as in Theorem 1.4.
Then the following hold:

(1) The 3–adic K-theory K.B�2IZ
^
3
/ is isomorphic to K.BG2IZ

^
3
/as a �–ring.

(2) Let � be a compact Lie group such that �0 D PU.3/ and the order of �0.�/ is
not divisible by 3. Then any map from .B�/^

3
to .BG2/

^
3

is null homotopic. In
particular Œ.B�2/

^
3
; .BG2/

^
3
�D 0.

We recall that if a connected compact Lie group G is simple, the following results
hold:

(1) For any prime p , the space .BG/^p has no nontrivial retracts (see Ishiguro [15]).
(2) Assume jW .G/j � 0 mod p . If a self-map .BG/^p�!.BG/p is not null

homotopic, it is a homotopy equivalence (see Møller [22]).
(3) Assume jW .G/j � 0 mod p , and let K be a compact Lie group. If a map

f W .BG/^p�!.BK/^p is trivial in mod p cohomology, then f is null homotopic
(see Ishiguro [16]).

Replacing G by �2 at p D 3, we will see that (3) still holds. On the other hand it is
not known if (1) and (2) hold, though on the level of K-theory they do.

2 …–compact toral groups

Recall that a finite group 
 is p–nilpotent if and only if 
 is expressed as the semidirect
product � Ì 
p , where the normal p–complement � is the subgroup generated by
all elements of order prime to p , and where 
p is the p–Sylow subgroup. For
such a group 
 , we see .B
 /^p ' B
p . For a finite group G , one can show that
P.BG/Dfp 2… j G is p–nilpotentg. Consequently, if GD†n , the symmetric group
on n letters, then P.B†2/D…, P.B†3/D…�f3g, and P.B†n/Dfp 2… j p> ng

for n� 4.

In [14], Henn provides a generalized definition of p–nilpotence for compact Lie groups.
A compact Lie group G is p–nilpotent if and only if the connected component of the
identity, G0 , is a torus; the finite group �0G is p-nilpotent, and the cojugation action
of the normal p–complement is trivial on T . We note that such a p–nilpotent group
need not be semidirect product.

Let 
 D �0G . Then, from the inclusion 
p�!
 , a subgroup Gp of G is obtained as
follows:

T ����! G ����! 



 x?? x??
T ����! Gp ����! 
p
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A result of Henn [14] shows .BG/^p ' .BGp/
^
p if and only if the compact Lie group

G is p–nilpotent.

Lemma 2.1 A classifying space BG is p–compact toral if and only if the compact
Lie group G is p–nilpotent.

Proof If BG is p–compact toral, we see from [20, Theorem 2] that the fibration
BT�!BG�!B�0G is preserved by the p–completion. Let � D �0G . Then we
obtain the following commutative diagram:

.BT /^p ����! .BG/^p ����! .B�/^p


 x?? x??

.BT /^p ����! .BGp/
^
p ����! .B�p/

^
p

By [20, Theorem 2], the finite group � is p–nilpotent, so the map .B�p/
^
p�!.B�/

^
p

is homotopy equivalent. Thus .BG/^p ' .BGp/
^
p ,and hence the result of [14] implies

that G is p–nilpotent. Conversely, if G is p–nilpotent, then the following commutative
diagram

BT ����! BG ����! B�


 x?? x??
BT ����! BGp ����! B�p

tells us that BT�!BG�!B� is p–equivalent to the fibration

.BT /^p�!.BGp/
^
p�!.B�p/

^
p :

From [20, Theorem 2], we see that BG is p–compact toral.

Proof of Theorem 1 First suppose BG is …–compact toral. Lemma 2.1 implies
that G0 is a torus T and G=G0 D �0G is p–nilpotent for any p . According to [20,
Lemma 2.1], the group �0G must be nilpotent. We notice that for each p the normal
p–complement of �0G acts trivially on T . Thus �0G itself acts trivially on T , and
T is a central subgroup of G . Conversely, assume that conditions (a) and (b) hold.
According to [14, Proposition 1.3], we see that G is p–nilpotent for any p . Therefore
BG is …–compact toral.

We will show that a group which satisfies conditions (a) and (b) of Theorem 1 need not
be a product group. For instance, consider the quaternion group Q8 in SU.2/. Recall
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that the group can be presented as Q8D hx;y j x
4D 1;x2D y2;yxy�1D x�1i. Let

�W Q8�!U.2/ be a faithful representation given by the following:

�.x/D

�
i 0

0 �i

�
; �.y/D

�
0 �1

1 0

�
Let S denote the center of the unitary group U.2/ and let G be the subgroup of U.2/

generated by �.Q8/ and S . Then we obtain the group extension S�!G�!Z=2˚Z=2.
Since S Š S1 , this group G satisfies conditions (a) and (b). On the other hand, we see
that the non–abelian group G can not be a product group. This result can be generalized
as follows:

Proposition 2.2 Suppose �W ��!U.n/ is a faithful irreducible representation for a
non–abelian finite nilpotent group � . Let S be the center of the unitary group U.n/

and let G be the subgroup of U.n/ generated by �.�/ and S with group extension
S�!G�!�0G . Then this extension does not split, and G satisfies conditions (a) and
(b) of Theorem 1.

Proof First we show that G satisfies conditions (a) and (b) of Theorem 1. Since �
is nilpotent, so is the finite group �0G Š G=S . Recall that the center of the unitary
group U.n/ consists of scalar matrices, and is isomorphic to S1 . Thus we obtain the
desired result.

Next we show that the group extension S�!G�!�0G does not split. If this extension
did split, then we would have GŠS Ì�0G . Since the action of �0G on the center S is
trivial, it follows that G is isomorphic to the product group S��0G . Let Z.�/ denote
the center of � . Since the representation �W ��!U.n/ is irreducible and faithful,
Schur’s Lemma implies S \ �.�/DZ.�.�//ŠZ.�/. Thus we obtain the following
commutative diagram:

S ����! G ����! �0Gx?? x?? 



Z.�/ ����! �

q
����! �0G

Regarding � as a subgroup of G D S � �0G , an element y 2 � can be written as
y D .s;x/ for s 2 S and x 2 �0G . Notice that �0G is nilpotent and this group has a
non–trivial center, since � is non–abelian. The map qW ��!�0G is an epimorphism.
Consequently we can find an element y0 D .s0;x0/ where s0 2 S and x0 is a non–
identity element of Z.�0G/. This means that y0 is contained in Z.�/, though q.y0/

is a non–identity element. This contradiction completes the proof.
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3 …–compact subgroups of simple Lie groups

We will need the following results to prove Theorem 2.

Lemma 3.1 Let K be a compact Lie group, and let G be a connected compact Lie
group. If .BK/^p ' .BG/^p for some p , we have a group extension as follows:

1�!W .K0/�!W .G/�!�0K�!1

Proof It is well–known that H�..BG/^p IQ/ D H�..BTG/
^
p IQ/

W .G/ , and since
.BK/^p ' .BG/^p , it follows that H�..BG/^p IQ/ D H�..BK/^p IQ/. Notice that
H�..BK/^p IQ/DH�..BK0/

^
p IQ/

�0K D .H�..BTK0
/^p IQ/

W .K0//�0K . Galois the-
ory for the invariant rings (see Smith [23]) tells us that W .K0/ is a normal subgroup
of W .G/ and that the quotient group W .G/=W .K0/ is isomorphic to �0K . This
completes the proof.

Lemma 3.2 For a compact Lie group K , suppose the loop space of the p–completion
�.BK/^p is a connected p–compact group. Then p doesn’t divide the order of �0K .

Proof Since BK is p–compact, �0K is p–nilpotent. So, if � denotes a p–Sylow
subgroup of �0K , then .B�0K/^p ' B� . Notice that .BK/^p is 1–connected. Hence
the map .BK/^p�!.B�0K/^p induced from the epimorphism K�!�0K is a null
map. Consequently the p–Sylow subgroup � must be trivial.

For K DN T , the normalizer of a maximal torus T of a connected compact simple
Lie group, the converse of Lemma 3.2 is true, though it doesn’t hold in general. Note
that �0�2 D Z=2 and that B�2 is not 3–compact [19].

Proof of Theorem 2 (1) Since .BH /^p ' .BG/^p for some p , Lemma 3.1 says
that the Weyl group W .H0/ is a normal subgroup of W .G/. First we show that
W .H0/ ¤ W .G/. If W .H0/ D W .G/, the inclusion H0�!G induces the isomor-
phism H�.BH0IQ/ŠH�.BGIQ/, since rank.H0/D rank.G/. Hence BH0'0 BG .
Consequently if eH 0 and eG denote the universal covering groups of H0 and G

respectively, then eH 0 Š
eG . The maps B eH 0�!BH0 and BeG�!BG are rational

equivalences. According to [18, Lemma 2.2], we would see that H0 DH DG . Since
H must be a proper subgroup of G , we obtain the desired result.

We now see that W .H0/ is a proper normal subgroup of W .G/. If W .H0/ is a
nontrivial group, a result of Asano [3] implies that .G;H0/ is one of the following
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types:

.G;H0/D

8̂̂̂̂
<̂
ˆ̂̂:
.Bn;Dn/

.Cn;A1 � � � � �A1/

.G2;A2/

.F4;D4/

According to [20, Lemma 2.1 and Proposition 3.1], we notice �0H DW .G/=W .H0/ is
a nilpotent group since BH is …–compact. Recall that W .Cn/=W .A1�� � ��A1/Š†n

and W .F4/=W .D4/Š†3 . For n� 3, we notice that the symmetric group †n is not
nilpotent. Hence the group W .G/=W .H0/ is nilpotent when W .G/=W .H0/Š Z=2.
Consequently, we see the following:

.G;H0/D

8̂<̂
:
.Bn;Dn/

.C2;A1 �A1/

.G2;A2/

It remains to consider the case that W .H0/ is a trivial group. In this case �0H D

W .G/, and W .G/ is a nilpotent group. From [20, Proposition 3.4], we see that
G DA1 or B2.D C2/.

(2) We first show that, for any odd prime p , all types of the pairs are realized for
some G and H . To begin with, we consider the case .G;TG/ for G D A1 . Take
.G;H /D .SO.3/;O.2//. Since �0.O.2//DZ=2 and BO.2/'p BSO.3/ for odd prime
p , the space BO.2/ is …–compact. In the case G D B2 , take .G;H /D .G;N TG/

for G D Spin.5/. Then �0H is a 2–group and BN TG 'p BG for odd prime p , and
hence BN TG is …–compact.

In the case of .Bn;Dn/, take .G;H /D .SO.2nC1/;O.2n//. Since �0.O.2n//DZ=2

and BO.2n/ 'p BSO.2nC 1/ for odd prime p , the space BO.2n/ is …–compact.
For .C2;A1 �A1/, take G D Sp.2/ and H D .Sp.1/� Sp.1//Ì Z=2hai where aD�

0 1
1 0

�
2 Sp.2/. For complex numbers z and w , we see that�

0 1

1 0

��
z 0

0 w

��
0 1

1 0

�
D

�
w 0

0 z

�
:

Thus the action of Z=2hai is given by
�

0 1
1 0

�
. We note that

W .Sp.2//DD8 D

��
�1 0

0 1

�
;

�
1 0

0 �1

�
;

�
0 1

1 0

��
:

Consequently �0H is a 2–group and BH 'p BG for odd prime p , and hence BH

is …–compact. Finally, for .G2;A2/, as mentioned in the introduction, take G D G2

and H D SU.3/Ì Z=2. Then BH is …–compact.
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It remains to consider the case p D 2. Note that jW .G/=W .H0/j for each of such
.G;H0/’s is a power of 2. Lemma 3.1 implies that the finite group �0H must be a
2–group. Lemma 3.2 says that j�0H j is not divisible by 2, since .BH /^

2
' .BG/^

2
.

Thus H is connected, and hence H DG . This completes the proof.

Any proper closed subgroup of G which includes the normalizer N T satisfies the
assumption of Theorem 2. So, this theorem shows, once again, that almost all BN T

are not …–compact [20]. Furthermore, for any connected compact Lie group G , it is
well-known that .BN T /^p ' .BG/^p if p does not divide the order of the Weyl group
W .G/, hence BN T is p–compact for such p . The converse is shown in [20].

Lemma 3.3 Let ˛�!eG�!G be a central extension of compact Lie groups. Then
BG is p–compact if and only if BeG is p–compact.

Proof First assume that BG is p–compact. Since ˛�!eG�!G is a central ex-
tension, the fibration B˛�!BeG�!BG is principal. Thus we obtain a fibration
BeG�!BG�!K.˛; 2/. The base space is 1–connected, so the fibration is preserved
by the p–completion, and hence we obtain the fibration

.B˛/^p�!.B
eG /^p�!.BG/^p :

Since the loop spaces �.B˛/^p and �.BG/^p are Fp –finite, so is �.BeG/^p . Thus BeG
is p–compact.

Conversely we assume that BeG is p–compact. Consider the fibration

�.BG/^p�!.B˛/
^
p�!.B

eG /^p :
Since the map .B˛/^p�!.B

eG /^p is induced from the inclusion ˛ ,! eG , it is a
monomorphism of p–compact groups. Hence its homotopy fiber �.BG/^p is Fp –
finite, and therefore BG is p–compact.

Corollary 3.4 Let ˛�!eG�!G be a central extension of compact Lie groups, and
let H be a subgroup of G so that there is the commutative diagram:

˛ ����! eG ����! G


 x?? x??
˛ ����! eH ����! H

Then the pair .G;H / satisfies the conditions of Theorem 2 if and only if so does the
pair .eG ; eH /.

Geometry & Topology Monographs, Volume 10 (2007)



206 Kenshi Ishiguro

Proof Lemma 3.3 implies that BH is …–compact if and only if B eH is …–compact.
It is clear that rank.H0/D rank.G/ if and only if rank. eH 0/D rank.eG /. Finally we see
.BH /^p ' .BG/^p if and only if .B eH /^p ' .B

eG /^p from the following commutative
diagram of fibrations:

.B˛/^p ����! .BeG/^p ����! .BG/^p


 x?? x??

.B˛/^p ����! .B eH /^p ����! .BH /^p

This completes the proof.

Lemma 3.5 Let M�!K�!L be a short exact sequence of groups. If � is a normal
subgroup of K , the kernel �0 of the composition ��!K�!L is a normal subgroup
of M .

Proof We consider the following commutative diagram:

�0 ����! M??y ??y
� ����! K??y ??yq

q.�/ ����! L

For x 2 �0 and m 2M , it follows that

q.mxm�1/ D q.m/q.x/q.m�1/

D q.m/q.m/�1 D e

Thus mxm�1 2 ker q . Since �0 � � , M �K , and � C K , we see that mxm�1 2 � .
So mxm�1 2 ker q\ � D �0 , and therefore �0 C M .

Proof of Theorem 3 First suppose .G;H0/D .Bn;Dn/ or .C2;A1�A1/. Let �0 be
the kernel of the composition ��!H�!�0H . Consider the following commutative
diagram:

�0 ����! H0??y ??y
� ����! H??y ??yq

q.�/ ����! �0H
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Lemma 3.5 says that �0C H0 . Since �0 is a finite normal subgroup of H0 , it is a finite
2–group. As we have seen in the proof of Theorem 2, �0H D W .G/=W .H0/ is a
2–group, and hence so is q.�/. Consequently � is a 2–group.

Now consider the following commutative diagram:

�0 ����! � ����! q.�/??y ??y ??y
H0 ����! H ����! �0H??y ??y ??y
�0 ����! � ����! �0�

Since �0� is a 2–group, the fibration B�0�!B��!B�0� is preserved by the 2–
completion (see Bousfield and Kan [5]). Hence B� is 2–compact. Next, for odd
prime p , we see that .B�/^p ' .BH /^p , since � is a 2–group. We see also that G has
no odd torsion and H�.BH I Fp/DH�.BH0I Fp/

�0H ŠH�.BGI Fp/. Consequently
the space .B�/^p is homotopy equivalent to .BG/^p . Therefore B� is …–compact.

It remains to consider the case .G;H0/ D .G;TG/ for G D A1 or G D B2.D C2/.
Since H0 D TG and H0 C H , we see that H is a subgroup of the normalizer N TG .
Consider the following commutative diagram:

TG ����! N TG ����! W .G/


 x?? x??
TG ����! H ����! �0H

Since the map BH�!BG is p–equivalent for some p , it follows that �0H DW .G/.
Consequently H DN TG .

If � is a finite normal subgroup of N TG , then B� is contained in the kernel of the
map .BG/^p ' .BN TG/

^
p�!.B�/

^
p . Since G is simple and G ¤G2 , according to

[16; 17], the group � is included in the center of G . Thus � is a 2–group. Therefore
.B�/^p ' .BN TG/

^
p ' .BG/^p for odd prime p , and hence B� is p–compact for

such p . Finally we note that W .G/ is a 2–group, and hence B� is 2–compact.

We will discuss a few more results. Basically we have been looking at three Lie groups
H0 �H �G . The following shows a property of the (non–connected) middle group
H .
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Proposition 3.6 Suppose G is a connected compact Lie group, and H is a proper
closed subgroup of G with rank.H0/D rank.G/. If the order of �0H is divisible by a
prime p , so is the order of W .G/=W .H0/.

Proof Assuming jW .G/=W .H0/j 6�0 mod p , we will show �0H 6�0 mod p . Notice
that we have the following commutative diagram

T ����! NGT ����! W .G/


 x?? x??
T ����! NH0

T ����! W .H0/;

where the vertical maps are injective, since rank.H0/ D rank.G/. We recall, from
Jackowski, McClure and Oliver [21], that the Sylow theorem for compact Lie groups G

holds. Namely G contains maximal p–toral subgroups, and all of which are conjugate
to NpT , where Np.T /=T is a p–Sylow subgroup of N.T /=T DW .G/.

Suppose K is a p–toral subgroup of H . Since jW .G/=W .H0/j 6� 0 mod p , we
see that K is a subgroup of H0 up to conjugate. Consequently, the composite map
K ,!H�!�0H must be homotopy equivalent to a null map. Since H�!�0H is
surjective, the p–part of �0H is trivial.

For each pair mentioned in the part (a) of Theorem 2, we note that jW .G/=W .H0/j is
a power of 2. Proposition 3.6 says, for instance, that �0H is a 2–group for any .G;H /

such that jW .G/=W .H0/j is a power of 2. As an application, one can show that if
H is a non–connected proper closed subgroup of SO.3/ with H0 D SO.2/, then H is
isomorphic to O.2/. A proof may use the fact that H is 2–toral, and that a maximal
2–toral subgroup in H is 2–stubborn [21]. A 2–compact version of this result also
holds. Suppose X is a 2–compact group such that there are two monomorphisms of
2–compact groups BSO.2/^

2
�!BX and BX�!BSO.3/^

2
. Then, along the line of a

similar argument, one can also show that BX is homotopy equivalent to BO.2/^
2

if
X is not connected. In the case of X being connected, the classifying space BX is
either BSO.2/^

2
or BSO.3/^

2
.

In Theorem 2, Lie groups of type .C2;A1 �A1/ has been discussed. An example is
given by Sp.1/� Sp.1/ � .Sp.1/� Sp.1//Ì Z=2 � Sp.2/. The middle group can be
regarded as the wreath product Sp.1/ s †n for nD 2. We ask for what n and p its
classifying space is p–compact. Note that Sp.1/ s †n is a proper closed subgroup of
Sp.n/.
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Proposition 3.7 Let �.n/ denote the wreath product Sp.1/ s †n . Then

P.B�.n//D

(
… if nD 2

fp 2… j p > ng if n� 3

Proof When nD 2, the desired result has been shown in our proof of the part (b) of
Theorem 2. Recall from [20] that if B�.n/ is p–compact, then �0B�.n/D†n must
be p–nilpotent. For n � 4, it follows that †n is p–nilpotent if and only if p > n.
Since the group �.n/ includes the normalizer of a maximal torus of Sp.n/, we see
B�.n/'p BSp.n/ if p > n. Thus P.B�.n//D fp 2… j p > ng for n� 4.

For nD 3, note that †3 is p–nilpotent if and only if p ¤ 3. So it remains to prove
that B�.3/ is not 2–compact. We consider a subgroup H of �.3/ which makes the
following diagram commutative:

3Y
Sp.1/

3Y
Sp.1/ ����! �??y ??y ??y

H ����! �.3/ ����! Z=2??y ??y 



Z=3 ����! †3 ����! Z=2

The fibration BH�!B�.3/�!BZ=2 is preserved by the completion at pD2. Hence,
if B�.3/ were 2–compact, the space �.BH /^

2
would be a connected 2–compact

group so that the cohomology H�.BH IQ^
2
/ should be a polynomial ring, (see Dwyer

and Wilkerson [8, Theorem 9.7]). Though H�
�
B
Q3

Sp.1/IQ^
2

�
is a polynomial ring,

its invariant ring H�.BH IQ^
2
/DH�

�
B
Q3

Sp.1/IQ^
2

�Z=3 is not a polynomial ring,
since the group Z=3 is not generated by reflections. This contradiction completes the
proof.

For .G;H /D .Sp.n/; Sp.1/ s †n/, we note that .G;H0/ is a type of .Cn;A1 � � � � �

A1/. This is one of the cases that the Weyl group W .H0/ is a normal subgroup of
W .G/ (see Asano [3]) discussed in our proof of the part (a) of Theorem 2. Finally
we talk about the only remaining case .G;H0/D .F4;D4/. An example is given by
Spin.8/� Spin.8/Ì†3 �F4 . Let � denote the middle group Spin.8/Ì†3 . Then we
can show that P.B�/D fp 2… j p > 3g. To show that B� is not 2–compact, one
might use the fact, (see Adams [1, Theorem 14.2]), that W .F4/DW .Spin.8//Ì†3 ,
and that its subgroup W .Spin.8//Ì Z=3 is not a reflection group.
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