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Determination of the multiplicative nilpotency of
self-homotopy sets

KEN-ICHI MARUYAMA

The semigroup of the homotopy classes of the self-homotopy maps of a finite com-
plex which induce the trivial homomorphism on homotopy groups is nilpotent. We
determine the nilpotency of these semigroups of compact Lie groups and finite Hopf
spaces of rank 2. We also study the nilpotency of semigroups for Lie groups of higher
rank. Especially, we give Lie groups with the nilpotency of the semigroups arbitrarily
large.

55Q05, 55P10, 57T20; 55P60, 20D15

Introduction

Let ŒX;Y � denote the based homotopy classes of maps from X to Y . When X DY , the
self-homotopy set ŒX;X � is a monoid by the binary operation induced by composition
of maps. In this paper we deal with a subset Zn.X / which consists of elements
inducing the trivial homomorphism on homotopy groups in dimensions � n, where
n is a natural number or 1. Zn.X / is a multiplicative subset of ŒX;X �, though it
has no unit element and is merely a semigroup in general. With respect to this binary
operation the (multiplicative) nilpotency is defined (see Section 1). For a finite complex
X , it is known by Arkowitz–Maruyama–Stanley [1] that Zn.X / is nilpotent for a
sufficiently large integer n and the nilpotency is bounded above by other invariants
such as the cone length or the killing length of X . On the other hand, lower bounds
for the nilpotency of Zn.X / or more desirably the precise value of it have not been
studied except for a few cases, see [1]. Our purposes are to know the nilpotency for
compact Lie groups or finite H –spaces of low rank and to obtain lower bounds of the
nilpotency for more general cases. We will determine the nilpotency of Zn.X / when
X is a finite 1–connected H –space of rank 2. We will also determine the nilpotency of
Zn.X / in the rank 3 cases where X D SU.4/ or Sp.3/. Incidentally the nilpotencies
are equal to 2 in these cases. However this is not the case for Lie groups of higher rank.
Actually, we will give the lower bounds of the nilpotency for SU.n/ or Sp.n/ and
show that the nilpotency could be arbitrarily large for these spaces.

Published: 29 January 2007 DOI: 10.2140/gtm.2007.10.281

http://www.ams.org/mathscinet/search/mscdoc.html?code=55Q05, 55P10, 57T20,(55P60, 20D15)
http://dx.doi.org/10.2140/gtm.2007.10.281


282 Ken-ichi Maruyama

We briefly review the sections. In Section 1 we recall some basic definition and the
work of Arkowitz–Maruyama–Stanley [1] and Maruyama [5]. In Section 2 we first
compute the nilpotency of Z�.X / when X is a 1–connected compact Lie group of
rank 2, then apply the result to the case where X is a 1–connected finite H –space of
rank 2. In Section 3 we find the nilpotency of SU.4/ and Sp.3/. To this end we use
S Oka’s work on the structures of self-homotopy sets of SU.4/ and Sp.3/. In Section
4 we derive a property of the nilpotency of the rationalization of an H –space which is
the key to the proof of the theorem on the nilpotency of SU.n/ and Sp.n/ mentioned
above.

I would like to thank Martin Arkowitz for helpful comments. I am also grateful to the
referee for many useful remarks.

The author was partially supported by Grant-in-Aid for Scientific Research (14540063),
Japan Society for the Promotion of Science.

1 Preliminaries

In this section we fix our notation and recall some results in [1]. For spaces X and Y ,
let Zn.X;Y / denote the subset of ŒX;Y � consisting of all homotopy classes ˛ 2 ŒX;Y �
such that ˛� D 0W �i.X /! �i.Y / for i � n. If n D1 we write Z1.X;Y /. We
also write Z.X;Y / for Zdim X .X;Y / if n D dim X . Finally we write Zn.X / for
Zn.X;X / and Z1.X / for Z1.X;X /.

Zn.X / is a semigroup by the binary operation induced by composition of maps.

Definition 1.1 If there exists an integer t � 1 such that a1 ı a2 ı � � � ı at D 0 for all
a1; a2; : : : ; at 2Z.X /, then Z.X / is called nilpotent. The smallest such t is called the
nilpotency of Z.X / and written t.X /. Similarly we define the nilpotency of Z1.X /
and denote it by t1.X /.

Clearly t1.X /� t.X /. In [1] it is shown that if X is a finite complex, then t.X / and
thus t1.X / are finite and the following inequalities allow us to know about the upper
bounds for the nilpotency.

Theorem 1.2 (Arkowitz, Maruyama and Stanley [1]) If X is a 1–connected finite
complex then,

t1.X /� t.X /� kls.X /� cls.X /

where kls.X / is the spherical killing length of X and cls.X / is the spherical cone
length of X .
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In this paper we deal with the spaces which have multiplications. When G is a group-
like finite complex, ŒG;G� is a nilpotent group (see Whitehead [12]) and Zn.G/ is a
subgroup. There exists the following naturality property of localization which will be
used in the proofs of the results in the later sections.

Proposition 1.3 (Maruyama [5]) Let G be a group-like finite complex. Then with
respect to the group structures induced from the multiplication of G , Z.G/p Š Z.Gp/

and Z1.G/p Š Z1.Gp/ for any prime p . Here Xp is the localization of X at p .

2 The rank 2 case

In this section we consider simply connected compact Lie groups of rank 2 and related
H –spaces.

Theorem 2.1 Let G be a 1–connected compact Lie group of rank 2. Then

t.G/D t1.G/D 2:

Proof It is known that G is isomorphic to one of the Lie groups

S3
�S3;SU.3/;Sp.2/;G2:

We have the exact sequence

0! ŒS3
^S3;S3

�S3�
q�

�! ŒS3
�S3;S3

�S3�! ŒS3
_S3;S3

�S3�! 0;

where qW S3�S3!S3^S3 is the projection map to the smash product. Since generally
the projection qW Sm � Sn! Sm ^ Sn ' SmCn belongs to Z1.Sm � Sn;SmCn/

and by the above exact sequence we easily obtain

Z1.S3
�S3/D Z.S3

�S3/D Im q� D �6.S
3/˚�6.S

3/D Z12˚Z12:

Let f1; f2 2 Z1.S3 � S3/ ( = Z.S3 � S3/), then f1 ı f2 D 0. We already know
that Z1.S3�S3/ is not trivial. Thus t1.S

3�S3/D t.S3�S3/D 2: Now we turn
to the other cases. Let G be one of our Lie groups other than S3 �S3 and let

q�G W �dim G.G/! Z.G/

denote the induced map of qG W G ! Sdim G , the pinching map to the top cell. If
G D SU.3/ or Sp.2/, then Z1.G/ D Z.G/ 6D 0 by Maruyama [6] (isomorphic
to Z12;Z120 respectively) and they coincide with Im q�

G
. Let f1; f2 2 Im q�

G
and

f1 D q�
G
.x1/; f2 D q�

G
.x2/, then f1 ıf2 is trivial since in the composition

f1 ıf2W G
qG
��! Sdim G x2

�!G
qG
��! Sdim G x1

�!G
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x2 is of finite order while ŒSdim G ;Sdim G � is isomorphic to Z: Therefore we obtain
that t.G/D t1.G/D 2 for G D SU.3/ and Sp.2/. Though it is shown that Z.G2/

is isomorphic to Z2˚Z2˚Z8˚Z21 , Z1.G2/ is not determined (for some partial
results see [6]). However by [6] and Ōshima [10] Z.G2/ is generated by the elements
of Im q�

G2
and Œ1; ˛�. Here Œ1; ˛� is the commutator of the identity map and some

˛ 2 ŒG2;G2� of infinite order. Œ1; ˛� is known to be of order 2. Thus Z1.G2/ is not
trivial as Œ1; ˛� is an element of Z1.G2/: Let f D q�

G2
.x/ 2 Im q�

G2
.x 2 �14.G2//

and g 2 Z.G2/, then f ıg D 0D g ıf . For,

g ıf W G2

qG2
��! S14 x

�!G2

g
�!G2

is trivial since g 2 Z.G2/.

f ıgW G2

g
�!G2

qG2
��! S14 x

�!G2

is also trivial as for the previous cases. Moreover Œ1; ˛� ı h D Œh; ˛ ı h� D 0 for any
h2Z.G2/, because ˛ıh is an element of Z.G2/ and the group Z.G2/ is commutative.
Let f; f 0 2 Im q�

G2
: By the above arguments

.f C Œ1; ˛�/ ı .f 0C Œ1; ˛�/D f ı .f 0C Œ1; ˛�/C Œ1; ˛� ı .f 0C Œ1; ˛�/D 0:

Thus we have shown that all the compositions of the elements of Z.G2/ are trivial. As
was noted above Z1.G2/ contains an nontrivial element Œ1; ˛�, t1.G2/ > 1 (actually
jZ1.G2/j is greater than 42 see [6]). Therefore t.G2/D t1.G2/D 2, and we obtain
the result.

The assertion of Theorem 2.1 also holds for finite H –spaces of rank 2.

Theorem 2.2 Let X be a 1–connected finite H –space of rank 2. Then

t.X /D t1.X /D 2:

We will use the following lemma.

Lemma 2.3 Let X be a finite nilpotent space. If t.Xp/� n for all prime numbers p ,
then t.X /� n. The same is true for t1.X /.

Proof Let a1; : : : ; an be elements of Z.X /. Then

.a1 ı � � � ı an/p D 0

for any prime number p by the assumption. Thus a1 ı � � � ı an is trivial by Hilton–
Mislin–Roitberg [3, Corollary 5.12, Chapter II].
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Proof of Theorem 2.2 By the classical result of Mimura, Nishida and Toda [7], a
1–connected finite H –space X of rank 2 is homotopy equivalent to one of S3 �S3 ,
SU.3/, Ek (k = 0, 1, 3, 4, 5), S7�S7 or G2;b (�2�b�5). Here Ek is the principal
S3 –bundle over S7 with the characteristic class k! 2 �7.BS3/, ! a generator, and
G2;b is the principal S3 –bundle over the Stiefel manifold V7;2 induced by a suitable
map fbW V7;2! BS3 . We note that E1 =Sp.2/, G2;0 D G2 and we have already
shown the assertion for SU.3/, Sp.2/ and G2 in Theorem 2.1. By definition we
obtain

.E3/p ' Sp.2/p for p 6D 3 .E3/3 ' S3
3 �S7

3

.E4/p ' Sp.2/p for p 6D 2 .E4/2 ' S3
2 �S7

2

.E5/p ' Sp.2/p for all p:

Let p be a prime number, then

.G2;b/p ' .G2/p or .G2;b/p ' S3
p �S11

p

depending on p by [7]. Therefore if X is a 1–connected finite H –space of rank 2,
then Xp is homotopy equivalent to Gp or Sm

p �Sn
p for each prime number p , where

G is a 1–connected Lie group of rank 2 and m; n 2 f3; 5; 7; 11g. It is easy to see that
t.Sm

p �Sn
p /� 2 for any prime p . On the other hand, Z.Gp/DZ.G/p by Proposition

1.3 and Z.G/p � Z.G/ since Z.G/ is a finite nilpotent group for a 1–connected
compact Lie group G of rank 2. Thus t.Gp/ � 2 for an arbitrary prime number p .
Thus we obtain that if X is a 1–connected finite H –space of rank 2, then t.Xp/� 2

for all prime numbers p and hence t.X /� 2 by Lemma 2.3.

Next we will show that t1.X / > 1 for our spaces. Namely, Z1.X / 6D 0. First we
consider the case where X = S7�S7 . As in the proof of Theorem 2.1 Z1.S7�S7/D

�14.S
7/˚ �14.S

7/ which is isomorphic to Z120˚ Z120 by Toda [11]. We should
note that ŒS7 �S7;S7 �S7� is a group despite that S7 is not homotopy associative
(see Mimura–Ōshima [8]) though we do not need the group structure for our purpose.
Let X be an H –space. If n� dim X , by a result of James [4] there exists a bijection

(2–1) T W Zn.X /! En
# .X /

defined by f ! 1Cf . Here En
# .X / is the group of homotopy classes of self-homotopy

equivalences which induce the identity map on �i.X / for i � n.

E1# .Ek/5 Š E1# ..Ek/5/;
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by [5]. Note that .Ek/5 is homotopy equivalent to S3
5
�S7

5
: Namely Ek is 5-regular.

The group E1# .S3
5
�S7

5
/ is easily shown to be isomorphic to Z5 (see [6] or [8]). Hence

E1# .Ek/5 Š Z5:

Thus by the bijection T , Z1.Ek/ is not trivial for k = 0, 1, 3, 4, 5. Similarly it is
known that the spaces G2;b (�2� b � 5) are 7–regular, that is

.G2;b/7 ' S3
7 �S11

7 :

Therefore we obtain
E1# .G2;b/7 Š E1# .S3

�S11/7:

The group E1# .S3�S11/7 is not trivial (ŠZ7 see [6]). Thus Z1.G2;b/ is non-trivial
by the same reason for Ek .

Consequently, t1.X / > 1 for all the 1–connected finite H –spaces of rank 2. We
complete the proof.

Remark In the above proof we cannot use Proposition 1.3 directly to show that
t1.X / > 1 because the spaces are not necessarily homotopy associative.

3 SU.4/ and Sp.3/

In this section we consider rank 3 Lie groups SU.4/ and Sp.3/. The statement of
our theorem is completely the same as that of Theorem 2.1, but its proof is more
complicated.

Theorem 3.1 t.G/D t1.G/D 2 for G D SU.4/ and Sp.3/.

Our arguments in this section depend heavily on Oka’s results in [9].

Let C' be the mapping cone of 'W X ! Y , qW C' !†X the projection map. Recall
that there exists an action of Œ†X;C' � on ŒC' ;C' � induced by the coaction map
`W C'!†X _C' . Namely, for ˛ 2 Œ†X;C' � and g 2 ŒC' ;C' �, ˛ �g is the following
composition:

C'
`
�!†X _C'

˛_g
���! C' _C'

r
�! C'

where r is the folding map. The following lemma is well known.

Lemma 3.2 (Hilton [2, Theorem 15.7]) Let ˛ 2 Œ†X;C' � and g; h 2 ŒC' ;C' � be
arbitrary elements. If C' is an H –space, then

˛ �g D q�.˛/Cg and h ı .q�.˛/Cg/D h ı q�.˛/C h ıg;

where C denotes the addition induced by the H –structure of C' .
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Now we consider the case where G D SU.4/. As noted by Oka [9, (2.2)], there exists
a homotopy equivalence as follows.

SU.4/=SU.4/7!†K _S15;

where SU.4/7 is the 7–skeleton of SU.4/ and K D .S7 _S9/[ e11 . We denote by

�1W SU.4/!†K

the projection map. We have the following maps (homomorphisms):

q�SU.4/W �15.SU.4//! ŒSU.4/;SU.4/�

��1 W Œ†K;SU.4/�! ŒSU.4/;SU.4/�

Lemma 3.3 Z.SU.4// and Z1.SU.4// are generated by elements of Im q�
SU.4/

[

Im��
1

. In particular they are abelian groups.

Proof We show our claim is true for Z.SU.4// since Z1.SU.4// is a subgroup of
Z.SU.4//. Let E�.X / denote the the group of homotopy classes of self-homotopy
equivalences which induce the identity map on the integral homology groups of X .
Since H�.SU.4// is isomorphic to the exterior algebra ƒZ.x3;x5;x7/, we have

En
# .SU.4//� E�.SU.4//:

Here n� 7. By [9, Theorem 2.4, Thorem 8.3], E�.SU.4// is generated by elements

q�SU.4/.x/C 1SU.4/ and ��1 .y/C 1SU.4/;

where x 2 �15.SU.4// and y 2 Œ†K;SU.4/�. We easily see that

.q�SU.4/.x/C 1SU.4//
n
D q�SU.4/.nx/C 1SU.4/;

.��1 .y/C 1SU.4//
n
D ��1 .ny/C 1SU.4/

for n 2 Z, (cf [9]). Moreover,

.��1 .y/C1SU.4//ı.q
�
SU.4/.x/C1SU.4//D q�SU.4/.y ı�1ıxCx/C��1 .y/C1SU.4/;

by Lemma 3.2, and

.q�SU.4/.x/C 1SU.4// ı .�
�
1 .y/C 1SU.4//D q�SU.4/.x/C�

�
1 .y/C 1SU.4/:

The second equality follows from

qSU.4/ ı .�
�
1 .y/C 1SU.4//D qSU.4/:
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Therefore by the bijection T given in (2–1) Z.SU.4// is generated by some elements
of Im q�

SU.4/
and Im ��

1
.

It is known that Im q�
SU.4/

is in the center of ŒSU.4/;SU.4/� by [12]. Therefore
Z.SU.4// is an abelian group since Im ��

1
is abelian.

Now we prove the main theorem in this section.

Proof (of Theorem 3.1) By Lemma 3.3 an element of Z.SU.4// is of the form
z D f C g with f 2 Im q�

SU.4/
and g 2 Im ��

1
. Since f induces the trivial map

on �i.SU.4//, i � 15, g is an element of Z.SU.4//. Therefore gıfD0. We also
have f ıgD0 easily. Let f1; f2 be elements of Im q�

SU.4/
, then f1ıf2D0. Now

Œ†K;SU.4/� is a finite group and �1�W Œ†K;SU.4/� ! Œ†K; †K� is a homomor-
phism. We have the following isomorphism by [9, Lemma 3.3]:

Œ†K; †K�Š Z˚Z˚Z:

Therefore g1ıg2 D 0 for g1;g2 2 Im ��
1

. Let hW SU.4/! SU.4/ be any map, then
we have .f Cg/ıhDf ıhCgıh; since the addition is defined by the group structure of
SU.4/. Moreover by Lemma 3.2 hı.f Cg/D hıf Chıg . Here f 2 Im q�

SU.4/
and

g 2 Im ��
1

as above. Consequently, the composition of any two elements z D f1Cg1 ,
z0 D f2Cg2 of Z.SU.4// is trivial, where f1; f2 2 Im q�

SU.4/
and g1;g2 2 Im ��

1
.

Therefore we have obtained that t.SU.4// � 2 and thus t1.SU.4// � 2 (recall that
t1.SU.4//� t.SU.4//).

Next we will show that 1 < t1.SU.4//, that is, Z1.SU.4// is not trivial. It is
known that SU.4/3 is homotopy equivalent to Sp.2/3 �S5

3
. Therefore Z1.Sp.2/3/

� Z1.SU.4/3/. As was mentioned in the proof of Theorem 2.1, Z1.Sp.2// is
isomorphic to Z120 , and hence Z1.SU.4/3/ is nontrivial. Therefore by Proposition
1.3, Z1.SU.4// is also nontrivial.

The proof for Sp.3/ is parallel to that of SU.4/ by using [9, Theorem 2.5, Theorem
4.3]. We can show that t.Sp.3//� 2 as in the SU.4/ case. To show that t.Sp.3//D 2,
we use the equivalence Sp.3/7' .S

3�S7�S11/7 and the nontriviality of Z1..S3�

S7 �S11/7/. This nontriviality is obtained by the existence of an essential map:

S3
�S7

�S11
! S3

�S11
! S14 ˛1

�! S3
! S3

�S7
�S11

where ˛1 is a generator of �14.S
3/7ŠZ7 and other maps are the canonical projections

and the inclusions.
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4 The lower bounds for classical groups

In this section we give a lower bound for t�.G/ when G is SU.n/ or Sp.n/. We
should admit that it is a crude one, but it gives us the theorem which states that t1.G/

could be arbitrarily large for classical groups.

Proposition 4.1 Let X be a homotopy associative finite H –space, then t.X /� t.X0/

and t1.X /� t1.X0/.

Proof The rational cohomology ring H�.X IQ/ is isomorphic to the exterior algebra
ƒQ.x1; � � �xr / on primitive elements xi with dim xi D ni odd. Let n denote t.X /

and a1; : : : ; an be elements of Z.X0/: We will show that a1 ı � � � ı an D 0. As
X0 is homotopy equivalent to the product of the Eilenberg-MacLane spaces, the
elements of ŒX0;X0� are determined by their induced maps on cohomology groups.
Actually Z.X0/ is isomorphic to the module generated by the decomposable elements
of degree fdim xig. We define a basis for Z.X0/ as follows. Let fxi1

xi2
� � �xij g with

i1 < i2 < � � �< ij be the basis for the module of decomposable elements of H�.X IQ/:

Let fi1 < i2 < � � �< ij g be a set of subsets of f1; : : : ; rg such that

dim xi1
C dim xi2

C � � �C dim xij D dim xi :

Let ^W
Qj

kD1
K.Q; nik

/! ^
j

kD1
K.Q; nik

/ be the projection to the smash product.
Then the map fi1i2���ij is defined by the composition

X0!
Qj

kD1
K.Q; nik

/
^
�!^

j

kD1
K.Q; nik

/!K.Q; ni/!X0;

where the first and the last maps in the composition are the projection and inclusion
maps, the third map is the map corresponding to the cohomology element xi1

xi2
� � �xij .

Now we assume that a1 ı � � � ı an is not trivial. Hence .a1 ı � � � ı an/
�.xk/ 6D 0 for

some xk . We have

.a1 ı � � � ı ai�1/
�.xk/D†tj xj1

xj2
� � �xj`

;

for i � n, where tj are nonzero rational numbers. Thus

a�i .xj1
xj2
� � �xj`

/

is nontrivial for some xj1
xj2
� � �xj`

. It follows that for each xjt
there exist de-

composable elements xs1
xs2
� � �xsk

such that dim xjt
D dim xs1

xs2
� � �xsk

: There-
fore the maps fs1s2���sk

are defined for fxs1
xs2
� � �xsk

g; and a�i .xj1
xj2
� � �xj`

/ is
.†rs1s2���sk

fs1s2���sk
/�.xj1

xj2
� � �xj`

/, where rs1s2���sk
are rational numbers. From the

nontriviality of .a1 ı � � � ı an/
�.xk/, we obtain the nontrivial iterated composition :

g1 ı � � � ıgn 2 Z.X0/
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such that gi D†fi1i2���ij for each gi . Let m1; : : : ;mn be nonzero integers. Since we
see that

.m1g1 ı � � � ımngn/
�.xk/D dxi1

xi2
� � �xij

for some xi1
xi2
� � �xij with i1 < i2 < � � � < ij and nontrivial integer d , thus the

composition m1g1 ı � � � ımngn is essential. Here we should note that .m1g1 ı � � � ı

mngn/
�.xk/ is not equal to m1m2 � � �mn.g1 ı � � � ı gn/

�.xk/ in general. As the
homomorphism Z.X /! Z.X0/ is the localization by Proposition 1.3, migi is an
element of Z.X / for some nonzero integer mi . So, we can find a nontrivial composition
m1g1 ı � � � ımngn with migi 2 Z.X /, this is a contradiction, hence we obtain that
t.X /� t.X0/.

Since Z.X0/DZ1.X0/ in our case, we can show that t1.X /� t1.X0/ similarly.

Now we apply Proposition 4.1 to the classical groups SU.n/ and Sp.n/.

Theorem 4.2 Let ` be a natural number. Then

t1.SU.n// > ` for n� .3`C 1/2=2

t1.Sp.n// > ` for n� .2 � 52`
C 5`C 1/=4:

Proof Recall that SU.n/ is rationally equivalent to

S3
0 � � � � �S2n�1

0 :

By Proposition 4.1 it suffices to construct a desired nontrivial composition in Z1.S3
0
�

� � � �S2n�1
0

/. To this end, we take the smash product for each successive 3k spheres
in the product space. We already have dealt with such a map in Proposition 4.1, that is
fi . However here we need a more careful consideration about dimensions. Now we
assume that n is sufficiently large. We let

^2i�1;2iC1;2iC3W S
2i�1
0 �S2iC1

0
�S2iC3

0
! S6iC3

0
:

denote the projection map to the smash product. Then we take the product of these
maps

3`�1Y
iD1

^6i�3;6i�1;6iC1W

3`Y
iD1

S2iC1
0

!

3`�1Y
iD1

S18i�3
0 :

We define a map a1W S
3
0
� � � � � S2n�1

0
! S3

0
� � � � � S2n�1

0
to be the following

composition.

n�1Y
iD1

S2iC1
0

!

3`Y
iD1

S2iC1
0

…3`�1

iD1
^6i�3;6i�1;6iC1

����������������!

3`�1Y
iD1

S18i�3
0 !

n�1Y
iD1

S2iC1
0
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where the first map is the projection and the third map is the inclusion.

Similarly we construct a2 as follows:

n�1Y
iD1

S2iC1
0

!

3`�1Y
iD1

S18i�3
0

…3`�2

iD1
^54i�39;54i�21;54i�3

�������������������!

3`�2Y
iD1

S162i�63
0 !

n�1Y
iD1

S2iC1
0

:

We continue this process and finally we obtain a` :

n�1Y
iD1

S2iC1
0

!

3Y
iD1

S
3`�1..2i�1/3`�1C2/
0

! S32`C2�3`

0
!

n�1Y
iD1

S2iC1
0

:

Clearly a map a` ı a`�1 � � � ı a2 ı a1 induces a nontrivial map on cohomology and
moreover induces the trivial map on the homotopy groups. The construction is possible
if 2n� 1� 32`C 2 � 3` . Namely, if n� .3`C 1/2=2 then

t1.SU.n// > `:

This completes the claim for SU.n/. To prove the Sp.n/ case we can use the same
methods for the SU.n/ case. For Sp.n/ this time we consider the projection maps to
the smash products from successive 5k spheres instead of 3k spheres which were used
in the proof of SU.n/. Then we obtain that if n� .2 � 52`C 5`C 1/=4,

t1.Sp.n// > `:

Remark We can apply the similar arguments in the proof of the above theorem to
other classical groups. We obtain

t1.U.n// > ` for n� .3`C 1/2=2;

and

t1.G.m// > ` for

(
m� .2 � 52`C 5`C 3/=2 if m is odd

m� .2 � 52`C 5`C 5/=2 if m is even,

where ` is an integer, and G.m/D SO.m/;Spin.m/ or O.m/.
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[10] H Ōshima, Self homotopy group of the exceptional Lie group G2 , J. Math. Kyoto Univ.
40 (2000) 177–184 MR1753505

[11] H Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics
Studies, No. 49, Princeton University Press, Princeton, N.J. (1962) MR0143217

[12] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61,
Springer, New York (1978) MR516508

Faculty of Education, Chiba University
Chiba 263-8522, Japan

maruyama@faculty.chiba-u.jp

Received: 13 August 2004 Revised: 22 June 2005

Geometry & Topology Monographs, Volume 10 (2007)

http://www.ams.org/mathscinet-getitem?mr=0478146
http://www.ams.org/mathscinet-getitem?mr=0133132
http://dx.doi.org/10.1093/qjmath/53.1.47
http://www.ams.org/mathscinet-getitem?mr=1887669
http://www.ams.org/mathscinet-getitem?mr=2204034
http://www.ams.org/mathscinet-getitem?mr=0334195
http://www.ams.org/mathscinet-getitem?mr=1661032
http://www.ams.org/mathscinet-getitem?mr=628723
http://www.ams.org/mathscinet-getitem?mr=1753505
http://www.ams.org/mathscinet-getitem?mr=0143217
http://www.ams.org/mathscinet-getitem?mr=516508
mailto:maruyama@faculty.chiba-u.jp

	Introduction
	1. Preliminaries
	2. The rank 2 case
	3. SU(4) and Sp(3)
	4. The lower bounds for classical groups
	References

