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On the homotopy groups of E.n/–local spectra
with unusual invariant ideals

HIROFUMI NAKAI

KATSUMI SHIMOMURA

Let E.n/ and T .m/ for nonnegative integers n and m denote the Johnson–Wilson
and the Ravenel spectra, respectively. Given a spectrum whose E.n/�–homology is
E.n/�.T .m//=.v1; : : : ; vn�1/ , then each homotopy group of it estimates the order of
each homotopy group of LnT .m/ . We here study the E.n/–based Adams E2 –term
of it and present that the determination of the E2 –term is unexpectedly complex for
odd prime case. At the prime two, we determine the E1–term for ��.L2T .1/=.v1// ,
whose computation is easier than that of ��.L2T .1// as we expect.

55Q99

1 Introduction

In [4], Ravenel has constructed the homotopy associative commutative ring spectrum
T .m/ as a summand of p–component of the Thom spectrum associated with the map
�SU.pm/! BU . It is extensively used in [4, Section 7] to compute the homotopy
groups of spheres in terms of “the method of infinite descent”. The Adams–Novikov
E2 –term converging to the stable homotopy groups ��.T .m// is described by use of
the Hopf algebroid .BP�; �.mC 1// (cf [4, Definition 7.1.1]). In particular, the 0–th
line is

Ext0�.mC1/.BP�;BP�/D Z.p/Œv1; : : : ; vm�� BP� D Z.p/Œv1; : : :�;

and the more the value of m, the more primitives we obtain. Since vk for 1� k �m

is a permanent cycle of the spectral sequence, we obtain spectra T .m/=.vk/ and
T .m/=.vk ; vl/ for 1 � k; l �m (see Lemma 3.7.) Here T .m/=J for an ideal J of
BP� denotes a spectrum such that BP�.T .m/=J /D BP�=J .

Let BP hni denote the Johnson–Wilson ring spectrum with BP hni�DZ.p/Œv1; : : : ; vn�

and put E.n/D v�1
n BP hni as usual. Then we have the E.n/–based Adams spectral

sequence E
s;t
r .X / ) ��.LnX / for a spectrum X , whose E2 –term is E�

2
.X / D

Ext�
E.n/�.E.n//

.E.n/�;E.n/�.X //. Here Ln denotes the Bousfield localization func-
tor with respect to E.n/. Note that BP�.T .m//D BP�Œt1; : : : ; tm�� BP�Œt1; : : :�D
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320 Hirofumi Nakai and Katsumi Shimomura

BP�.BP /. In order to study the E2 –term for a spectrum X with E.n/�.X / D

E.n/�=J Œt1; : : : ; tm� for an ideal J of E.n/� , we introduce the generalized Johnson–
Wilson spectrum Em.n/D v

�1
n BP hnCmi. Then

†.n;m/DEm.n/�˝BP� BP�ŒtmC1; tmC2; : : :�˝BP� Em.n/�

is a Hopf algebroid over Em.n/� , and the E.n/–based Adams E2 –term E�
2
.X / is

isomorphic to Ext�
†.n;mC1/

.Em.n/�;Em.n/�=J /, which we denote Ext�.Em.n/�=J /,
by a similar change-of-rings theorem of Hovey and Sadofsky [1].

Consider Jn be the sequence v1; v2; : : : ; vn�1 . Then T .m/=.Jn/ exists if n � 2 as
commented above. Besides, if LnT .m/=J exists, then the E.n/–based Adams E2 –
term for ��.LnT .m/=J / is isomorphic to an Ext group Ext�.E.n/�=J /. Consider
the long exact sequence of Ext groups associated to the short exact sequence

0 w Em.n/�=.Jn/ w p�1Em.n/�=.Jn/ w Em.n/�=.p
1;Jn/ w 0:

Since Ext�.p�1Em.n/�=.Jn//DQ, Corollary 4.5 implies our first theorem:

Theorem 1.1 The Ext group Ext0.Em.n/�=.Jn// is isomorphic to Z.p/ , and the
group E1

2
.Em.n/�=.Jn// is isomorphic to the direct sum of the cyclic module over the

ring Z.p/Œv
˙1
n ; vnC1; : : : ; vm� generated by

v
e1

mC1
: : : v

en

mCn

p1C�.ek/

of order p1C�.ek/ with �.ek/Dminf�.e1/; : : : ; �.en/g, where the integer �.`/ denotes
the maximal power of p that divides `.

For the case where n>m, we have an example which has a similar result to the above
theorem (cf Proposition 4.7):

Proposition 1.2 The E.2/–based Adams E2 –term E0
2
.T .1/=.v1// is isomorphic to

Z.p/ and E1
2
.T .1/=.v1// is the direct sum of the cyclic module over Z.p/ generated

by vspi

2
vtpj

3
=p1Cmin.i;j/ of order p1Cmin.i;j/ .

In these cases, we did not determine Es
2

for s > 1 since there is an obstruction, which
comes from the generators known as bi;j (see (3–2)). This is what we did not expect.
For p D 2, we have the relation bi;j D h2

i;j , which makes possible to compute for
s > 1. Since the E.2/–based Adams differentials are read off from Mahowald and
Shimomura [2], we obtain the E1–term.
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Spectra with unusual invariant ideals 321

Theorem 1.3 Let p D 2. The E.2/–based Adams E1–term for ��.L2T .1/=.v1//

is isomorphic to Z.2/ if s D 0 and is isomorphic to the tensor product of ƒ.�2/ and
the direct sum of

(1) Cv2AŒh20� , v3BŒh30�=.h
3
30
/ and v3Bh30h31 whose elements are of order two,

(2) M 0 and M 1 .

Here the modules are given in Section 5.

In Section 2, we consider the Hopf algebroid .Em.n/�; †.n;mC 1// and show a
variation of the change-of-rings theorem given in Hovey and Sadofsky [1]. In Section 3,
we exhibit the formulas for the structure maps (the right unit �R and the diagonal maps
�). We then observe the existence of spectra of the form T .m/=J . Section 4 is devoted
to prove Theorem 1.1 and Proposition 1.2. In Section 5, we determine the E1–term
for ��.L2T .1/=.21; v1//. The homotopy groups ��.L2T .1// is determined easily
if p is odd, and stays undetermined if p D 2. The result of this section is the first step
to understand ��.L2T .1// at the prime two.

Acknowledgements We wish to thank to the organizers of Nishida Conference held
on August 2003 for making arrangement of the publication for the Proceedings. We
are also grateful to Ippei Ichigi for reading the draft paper carefully and for pointing
out some misprints.

2 A generalized Johnson–Wilson theory

Let BP and BP hni denote the Brown–Peterson and the Johnson–Wilson spectra
characterized by ��.BP /DBP�DZ.p/Œv1; : : : ; vn; : : :� and ��.BP hni/DBP hni�D

Z.p/Œv1; : : : ; vn� � BP� with jvnj D jtnj D 2.pn � 1/. Then the BP�–homology of
BP is BP�.BP /D BP�Œt1; : : : ; tn; : : :�, We put

Em.n/D v
�1
n BP hnCmi

for nonnegative integers n and m. Then

Em.n/� DE.n/�ŒvnC1; : : : ; vnCm�� v
�1
n BP�:

We notice that E0.n/ is the localized Johnson–Wilson spectrum E.n/.

Let �.mC 1/ (cf Ravenel [4, 7.1.1]) be the BP�.BP /–comodule defined by

�.mC 1/D BP�.BP /=.t1; : : : ; tm/D BP�ŒtmC1; tmC2; : : :�:
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Then the pair .BP�; �.mC 1// has the structure of the Hopf algebroid inherited from
.BP�;BP�.BP //. Put

†m.n; i/DEm.n/�˝BP� �.i/˝BP� Em.n/�:

In particular, we write

†.n;mC 1/D†m.n;mC 1/DEm.n/�˝BP� �.mC 1/˝BP� Em.n/�:

The pair .Em.n/�; †m.n; i// is a Hopf algebroid with the structure maps inherited
from those of the Hopf algebroid .BP�; �.i// for all i > 0. Consider the map between
Hopf algebroids .Em.n/�; †m.n; 1// w .Em.n/�; †.n;mC 1// induced from the
projection from BP�.BP / to �.mC 1/. The map is normal and that

(2–1) Em.n/�.T .m//DEm.n/��†.n;mC1/†m.n; 1/

if m> 0. Here, T .m/ denotes the Ravenel spectrum [4, 6.5.1], which is an associative
commutative ring spectrum characterized by BP�.T .m// D BP�Œt1; : : : ; tm�. Since
†m.n; 1/ is Em.n/�.Em.n//, the change-of-rings theorem [4, A1.3.12] shows the
following:

Lemma 2.2 There is an isomorphism

ExtEm.n/�.Em.n//.Em.n/�;Em.n/�.T .m///D Ext†.n;mC1/.Em.n/�;Em.n/�/:

Remark 2.3 In general, equation (2–1) does not hold if we work on E.n/�E.n/–
comodules. For example, if we set .n; i/D .2; 3/, then

†0.2; 3/DE.2/�Œt3; t4; : : :�=.�R.vk/ W k > 2/:

In the right hand side we have the relation v2t
p2

1
� v

p
2

t1 mod .p/ since �R.v3/D 0.
On the other hand, we do not have any relation on t1 in E.2/�T .2/DE.2/�Œt1; t2�:

Since Em.n/� is a free E.n/�–module over the bases vE D v
e1

nC1
: : : v

em

nCm for E D

.e1; : : : ; em/ with ek � 0, there is a homotopy equivalence Em.n/D
W

E †
jEjE.n/.

This shows that the E.n/–based and the Em.n/–based Adams spectral sequences
agrees from the E2 –term (cf Hovey and Sadofsky [1]).

3 Existence of some spectra

An ideal I D .a0; a1; : : : ; an�1/ of BP� is called invariant if �R.ai/ � ai mod
.a0; a1; : : : ; ai�1/ for each 0� i < n as a BP�BP –comodule. It is well known that
if there is a spectrum X such that BP�.X /D BP�=I , then I is invariant. Consider
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now the Ravenel spectrum T .m/. Then the E2 –term of the Adams–Novikov spectral
sequence for ��.W ^T .m// for a spectrum W is isomorphic to an Ext group over
the Hopf algebroid .BP�; �.mC 1//. We call an ideal J D .w0; w1; : : : ; wn�1/ of
BP� unusual if it is not invariant and �R.wi/�wi mod .w0; w1; : : : ; wi�1/ for each
0� i < n as a �.mC1/–comodule. In the same manner as above, if there is a spectrum
X such that BP�.X /D BP�=J Œt1; : : : ; tm� for m> 0, then J is invariant or unusual.
In this section, we study the existence of a spectrum X with BP�–homology (resp.
E.n/�–homology)

BP�.X /D BP�=J Œt1; : : : ; tm� .resp: E.n/�.X /DE.n/�=J Œt1; : : : ; tm�/

for an unusual ideal J . We write T .m/=J (resp. LnT .m/=J ) for such X .

The next lemma is verified by Hazewinkel’s and Quillen’s formulas (see Miller, Ravenel
and Wilson [3, (1.1)–(1.3)]):

Lemma 3.1 Assume that n � m. Let Jn denote the ideal .v1; : : : ; vn�1/ of BP� .
Then the structure maps in .BP�; �.mC 1// act as

�R.vk/ � vk for n� k �m,
�R.vmCk/ � vmCk CptmCk for 0< k � n,
�.tmCk/ � tmCk ˝ 1C 1˝ tmCk for 0� k � n,

�.tmCnC1/ � tmCnC1˝ 1C 1˝ tmCnC1C vnbmC1;n�1

mod Jn , where

(3–2) bi;j D
�
t
pjC1

i ˝ 1C 1˝ t
pjC1

i � .ti ˝ 1C 1˝ ti/
pjC1�

=p:

By this lemma, we read off the behavior of the structure maps �R and � mod Jn of
the Hopf algebroid .Em.n/�; †.n;mC 1//. For n > m, we only consider the case
where nD 2 and mD 1.

Lemma 3.3 The structure maps in .BP�; �.2// acts as

�R.vi/� vi Cpti for i D 2 and 3;

�R.v4/� v4C v2t
p2

2
Cpt4C v2c21� �R.v2/

p2

t2;

�R.v5/� v5C v3t
p3

2
C v2t

p2

3
Cpt5C v2c31C v3c22� �R.v3/

p2

t2� �R.v2/
p3

t3;

�.ti/� ti ˝ 1C 1˝ ti for i D 2 and 3;

�.t4/� t4˝ 1C 1˝ t4C t2˝ t
p2

2
C v2b21;

�.t5/� t5˝ 1C 1˝ t5C t3˝ t
p3

2
C t2˝ t

p2

3
C v2b31C v3b22
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mod .v1/, where ci;j Dp�1.v
pjC1

i ��R.v
pjC1

i //. In particular, bi;j � t2j

i ˝ t2j

i mod
.2/ for p D 2.

We consider the Adams–Novikov spectral sequence

(3–4) E
�;�
2
.X /D Ext�;�

BP�.BP/
.BP�;BP�.X // H) ��.X /:

By the change-of-rings theorem [4, A1.3.12], we have an isomorphism

(3–5) E�2 .T .m/=In/D Ext0�.mC1/.BP�=In/:

Hereafter we use the abbreviation:

Ext�.A;�/D Ext�.�/ for a Hopf algebroid .A; �/.

Lemma 3.1 implies the following:

Lemma 3.6 For 0� k �m,

vnCk 2E0
2.T .m/=In/D Ext0�.mC1/.BP�=In/;

where In D .p/CJn .

Lemma 3.7 Let M be a T .m/–module spectrum. If ˛ and ˇ 2E2.T .m// are perma-
nent cycles in the spectral sequence (3–4), then there exist spectra of the form M=.˛a/

and M=.˛a; ˇb/ for positive integers a and b . In particular, we have T .m/=.va
k
/ and

T .m/=.va
i ; v

b
j / for i; j ; k <mC 2.

Proof Since M is a T .m/–module spectrum, the elements ˛ and ˇ yield the self
maps on M , which we also denote by ˛ and ˇ . Now M=.˛a/ is a cofiber of the self
map ˛a , and the M=.˛a; ˇb/ is obtained by use of Verdier’s axiom on the equation
˛aˇb D ˇb˛a in ŒM;M �� .

Since the reduced comodule �.mC 1/ is .2pmC1�3/–connected, we have the vanish-
ing line E

s;t
2
.T .m//D0 for t <2s.pmC1�1/ by (3–5). It follows that vk 2E�

2
.T .m//

in Lemma 3.6 is permanent if k <mC 2.

The existence of a spectrum with BP�–homology BP�=In is problematic and we still
have little information for such a spectrum, which we usually call the (.n�1/st) Smith–
Toda spectrum and is denoted by V .n� 1/ (eg Smith [6], Toda [7] and Ravenel [4]).
For n � 3, it is shown that V .n/ exists if and only if p > 2n. On the other hand,
LnV .n�1/ exists if n2Cn< 2p [5]. The smash products T .m/ and these Smith–Toda
spectra show the following:

Proposition 3.8 If p > 2n, T .m/=In exists, and if n2Cn< 2p , LnT .m/=In exists.
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4 Exts
†.n;mC1/

.Em.n/�=Jn/ for small s

In this section, let Jn denote the sequence v1; : : : ; vn�1 of elements of Em.n/� .
Applying Ext to the short exact sequence

0 w Em.n/�=.p;Jn/ w

1=p
Em.n/�=.p

1;Jn/ w

p
Em.n/�=.p

1;Jn/ w 0;

we have the long exact sequence of Ext groups with connecting homomorphism

(4–1) ıW Extr .Em.n/�=.p
1;Jn// w ExtrC1.Em.n/�=.p;Jn//:

By [4, Theorem 6.5.6], we know the structure of Ext.Em.n/�=.p;Jn//, which means
that Ext.Em.n/�=.Jn// is a computable object.

To compute Ext.Em.n/�=.p
1;Jn//, we redefine the class hmCk;0 .0< k � n/ by

(4–2) hi;0 D

�
log.1Cpv�1

i ti/

p

�
D

�X
n>0

.�1/n�1 .pv
�1
i ti/

n

pn

�
:

Lemma 4.3 For 0< k � n, the connecting homomorphism ı in (4–1) acts for all `
as ı.hmCk;0=p

`/D 0.

Proof It suffices to show that phmCk;0 D d.log.vmCk//. By Lemma 3.1, we have
�R.vmCk/D vmCk CptmCk for 0< k � n, so the equation

log.1Cpv�1
mCk tmCk/D log.�R.vmCk//� log.vmCk/D d.log.vmCk//

holds.

The element vkC1
mCk

x is well-defined in †.n;mC 1/=.pk/, although the representa-
tive x D log.1Cpv�1

mCk
tmCk/=p of hmCk;0 has negative exponents of vmCk in the

coefficient.

An easy computation with Lemma 3.1 shows the following:

Lemma 4.4 Put �.ek/Dminf�.e1/; : : : ; �.en/g. Then we have

ı

�
v

e1

mC1
: : : v

en

mCn

p1C�.ek/

�
D v

e1

mC1
: : : v

en

mCnhmCk;0C � � �

in Ext1.Em.n/�=.p;Jn// up to unit. For � , see Theorem 1.1.
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Corollary 4.5 Ext0.Em.n/�=.p
1;Jn// is the direct sum of

(1) the cyclic Z.p/Œv
˙1
n ; vnC1; : : : ; vm�–module generated by

v
e1

mC1
: : : v

en

mCn

p1C�.ek/

of order p1C�.ek/ with �.ek/Dminf�.e1/; : : : ; �.en/g and
(2) Q=Z.p/Œv

˙1
n ; vnC1; : : : ; vm�.

Example 4.6 For mD nD 2, we have

ı

�
v

spi

3
v

tpj

4

p1Cmin.i;j/

�
D

8̂̂<̂
:̂
v

spi

3
v

tpj

4
h40 for i > j

v
spi

3
v

tpj

4
h30 for i < j

v
spi

3
v

tpj

4
.h30C ah40/ for i D j

in Ext1.E2.2/�=.p; v1// up to unit (where a2.Z=.p//�), and Ext0.E2.2/�=.p
1; v1//

is the direct sum of
(1) the cyclic module over Z.p/Œv

˙
2
� generated by vspi

3
v

tpj

4
=p1Cmin.i;j/ of order

p1Cmin.i;j/ and
(2) Q=Z.p/Œv

˙1
2
�.

In the computations for ı.h31/ and ı.h41/, the elements bi;j (cf Lemma 3.1) occur,
which are hard to express in terms of generators appearing in [4, Theorem 6.5.6]. We
observe that the specific property bi;j D h2

i;j at p D 2 makes the computations easy.

We consider the spectrum LnT .m/=.Jn/ for .n;m/ D .2; 1/, which is the simplest
case satisfying n > m, and compute Exts

†.2;2/
.E1.2/�=.v1// for s < 2 for an odd

prime. We consider the case for p D 2 in the next Section 5. Since p is odd, the
condition of [4, Theorem 6.5.6] is always satisfied and Ext†.2;2/.E1.2/�=.p; v1// is
obtained as

K.2/�Œv3�˝ƒ.hi;j W 2� i � 3; j 2 Z=2/:

Starting from this, Ext0
†.2;2/

.E1.2/�=.p
1; v1// is determined by computing the con-

necting homomorphism (4–1) for .m; n/D .1; 2/ as follows Corollary 4.5:

Proposition 4.7 For spi 2 Z and tpj � 0, we have

ı.v
spi

2
v

tpj

3
=p1Cmin.i;j//D

8̂̂<̂
:̂

sv
spi�1
2

v
tpj

3
h20 if i < j ;

tv
spi

2
v

tpj�1
3

h30 if i > j ;

v
spi�1
2

v
tpj�1
3

.sv3h20C tv2h30/ if i D j ,

and Ext0
†.2;2/

.E1.2/�=.p
1; v1// is the direct sum of
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(1) the cyclic Z.p/–module generated by vspi

2
v

tpj

3
=p1Cmin.i;j/ of order p1Cmin.i;j/

and

(2) Q=Z.p/ .

5 The homotopy groups ��.L2T.1/=.v1// at the prime two

We begin with recalling the result of Mahowald and Shimomura [2]:

(5–1) Ext.E1.2/�=.2; v1//DK.2/�Œv3; h20�˝ƒ.h21; h30; h31; �2/

where �2 is the generator of degree 0 represented by the cocycle v�5
2

t4C v
�10
2

t2
4

. We
see that (4–2) for p D 2 is also a cocycle with leading term v�2

i t2
i , and replace the

representative cocycles by

hi;0 D Œti � and hi;1 D

�X
n>0

.�1/n�1 .2v
�1
i ti/

n

2n

�
:

Setting B D Z=2Œv˙2
2
; v2

3
�, we rewrite the right hand side of (5–1) as

B˝ƒ.v3/˝ƒ.h21; h30; h31/˝ƒ.v2/˝Z=2Œh20�˝ƒ.�2/:

Since h21h31 D v
�1
2 v2

3h20h21C v
2
2h2

30C v2h20h31

by [2, p 243 (1)], we replace h21h31 (resp. h21h30h31 ) with h2
30

(resp. h3
30

).

Lemma 5.2 As the Z=2–module, Ext.E1.2/�=.2; v1// is isomorphic to

A˝ƒ.v2/˝Z=2Œh20�˝ƒ.�2/

where AD B˝ƒ.v3/˝
�
Z=2Œh30�=.h

4
30/˚Z=2fh21; h31g˝ƒ.h30/

�
and B D Z=2Œa˙1

2 ; a3� with ai D v
2
i :

Lemma 5.3 The connecting homomorphism (4–1) for .m; n/D .1; 2/ acts as

ı.vs
i =2/D v

s�1
i hi;0 and ı.a2ns

i =2nC2/D a2ns
i hi;1 .i D 2; 3/

for odd s and n� 0.

Proof It follows from

.vs
i / � 2vs�1

i ti mod .4/;
d.a2ns

i / � 2nC2v2nC1s
i .v�1

i ti C v
�2
i t2

i / mod .2nC3/:
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Ext.E1.2/�=.2; v1// is decomposed into the following four summands tensoring with
ƒ.�2/:

v2A˚ƒ.v2/˝A˝Z=p.h20/h20

v3B˚ƒ.v3/˝Bfh30; h
2
30; h

3
30g˚ v3h30h31B

B˚B fh21; h31g˚ v3h21h30B

Bh30 fh21; h31g˚ v3B fh21; h31g

With respect to each summand, we construct a long exact sequence in Lemma 5.4,
Lemma 5.5 and Lemma 5.6. We often use the replacement

h31 D Œv
�1
3 t3C v

�2
3 t2

3 �D v
�1
3 h30C � � � :

If we define Pi .i � 0/ and Qj .j > 0/ by

Pi D Z.2/
˚
a2i s

2 a2j t
3 W 0� j � i; 0¤ s 2 Z; t � 0

	
;

Qj D Z.2/
˚
a2i s

2 a2j t
3 W 0� i < j ; s 2 Z; t > 0

	
;

then we decompose B into

B D

�M
i�0

Pi

�
˚

�M
j>0

Qj

�
:

Define M 0 and M 1 by

M 0
D

�M
i�0

Pi

n 1

2iC2

o�
˚

�M
j>0

Qj

n 1

2jC2

o�
˚Q=Z.2/;

M 1
D

�M
i�0

Pi

n h21

2iC2

o�
˚

�M
j>0

Qj

n h31

2jC2

o�
:

Then we have the following results:

Lemma 5.4 We have two long exact sequences

B M 0 M 0

Bfh21; h31g M 1 M 1

v3h21h30B

v w w
2
������������ ı

w w
2
������������� ı
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and

v3Bfh21; h31g .v3=2/Bfh21; h31g .v3=2/Bfh21; h31g

Bh30fh21; h31g:

v w w
2

������������������
ı

Proof In the first sequence the connecting homomorphism acts as:

ı.a2i s
2 a2j t

3 =22Cmin .i;j//D

8̂<̂
:

a2i s
2

a2j t
3

h21 .i < j /

a2i s
2

a2j t
3

h31 .i > j /

a2i s
2

a2j t
3
.h21C h31/ .i D j /

We also see that ı.a2i s
2

a2j t
3

h31=2
iC2/ for i < j ; ı.a2i s

2
a2j t

3
h21=2

jC2/ for i > j ; and
ı.a2i s

2
a2i t

3
h21=2

iC2/ are equal to a2i s
2

a2j t
3

h21h31 . Replacing h31 with v�1
3

h30C� � � ,
we have the first sequence. The second sequence is obvious.

Lemma 5.5 We have a long exact sequence

v3B .v3=2/B .v3=2/B

h30B˝ƒ.v3/ .v3h30=2/B .v3h30=2/B

h2
30

B˝ƒ.v3/

˚.v3h30h31/B

.v3h2
30
=2/B

˚.v3h30h31=2/B

.v3h2
30
=2/B

˚.v3h30h31=2/B

h3
30B˝ƒ.v3/:

v w w
2
����������������

ı

w w
2

��������������

ı

w w
2

�������������� ı

Proof It follows from

ı.a2i s
2 a2j t

3 v3hk
30=2/D a2i s

2 a2j t
3 hkC1

30
for 0� k � 2;

ı.a2i s
2 a2j t

3 v3h30h31=2/D a2i s
2 a2j t

3 h2
30h31 D a2i s

2 a2j t�1
3 v3h3

30C � � �

Lemma 5.6 We have a long exact sequence

v2A .v2=2/A .v2=2/A

h20A˝ƒ.v2/ .v2h20=2/A .v2h20=2/A

h2
20A˝ƒ.v2/ .v2h2

20=2/A
� � � :

v w w
2
���������������

ı

w w
2

��������������

ı

w w
2
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Proof Notice that each exponent of v2 in .v2hk
20
=2/A is odd. Since we have d.x/D0

for x 2A in the cobar complex, we have

d.v2sC1
2

vt
3x/D d.v2sC1

2
vt

3/˝x:

We see that

d.v2sC1
2

vt
3/D

�
2v2s

2
v2n

3
t2C � � � for t D 2n;

d.v2sC1
2

vt
3
/D 2v2s

2
v2n

3
.v3t2C v2t3/C � � � for t D 2nC 1:

In both cases we obtain

ı

 
v2sC1

2
vt

3
x

2

!
D v2s

2 v
t
3h20x

replacing v3h20 by v3h20 D Œv3t2C v2t3� only for the case t D 2nC 1.

By the above three lemmas, we obtain the chart of differentials

v3B h30B

v3h30B h2
30B

v3h2
30

B h3
30B

v3h30h31B v3h3
30B

w

w

w

w

B h21B

h31B v3h21h30B

v3Bfh21; h31g h30Bfh21; h31g

w
�
�
�
�
�
�
���

�
�
�
�
�
�
��

w

w

v2A h20A

v2h20A h2
20A

v2h2
20

A h3
20A

:::

w

w

w
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Thus we conclude the following:

Lemma 5.7 Ext†.2;2/.E1.2/�;E1.2/�=.2
1; v1// is the tensor product of ƒ.�2/ and

the direct sum of

(1) v2AŒh20�, v3BŒh30�=.h
3
30
/ and v3Bh30h31 whose elements are of order two,

(2) M 0 and M 1 .

Let E�1.X / for a spectrum X denote the E1–term of the E.2/–based Adams spectral
sequence converging to the homotopy groups ��.L2X /.

Theorem 5.8 The E1–term E�1.L2T .1/=.21; v1// is the tensor product of ƒ.�2/

and the direct sum of

(1) Cv2AŒh20� , v3BŒh30�=.h
3
30
/ and v3Bh30h31 whose elements are of order two,

(2) M 0 and M 1 ,

where Cv2AŒh20� denotes the module�
Z=2Œv˙2

2 ; v4
3 �˝ƒ.v3/˝

�
Z=2Œh30�=.h

4
30/˚Z=2fh21; h31g˝ƒ.h30/

��
Œh20�=.h

3
20/:

Proof In [2], the differentials of E.2/–based Adams spectral sequence for L2T .1/=I2

(written as D in [2]) are determined as

d3.v3/D 0 and d3.v
k
3 /D v

2
2v

k�2
3 h3

20 for 2� k � 3,

and d3.v
k
3

x/D d3.v
k
3
/x for x D h20 , h21 , h30 and h31 . Note that for each element

wa2tC1
3

2 v2AŒh20�, we see that

d3.wa2tC1
3

=2/D wa2t
3 h3

20=2 2 v2AŒh20�:

This shows the structure of ��.L2T .1/=.21; v1//, since it has a horizontal vanishing
line.

Proof of Theorem 1.3 Consider the cofiber sequence

T .1/=.v1/ T .1/=.v1/^SQ T .1/=.21; v1/:w w

Then the homotopy groups of T .m/=.v1/^SQ and T .1/=.21; v1/ are determined
in [4, Corollary 6.5.6] and Theorem 5.8, respectively.
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