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On the E1–term of the gravity spectral sequence

DAI TAMAKI

The author constructed a spectral sequence strongly converging to h�.�
n†nX / for

any homology theory in [13]. In this note, we prove that the E1–term of the spectral
sequence is isomorphic to the cobar construction, and hence the spectral sequence is
isomorphic to the classical cobar-type Eilenberg–Moore spectral sequence based on
the geometric cobar construction from the E1–term. Similar arguments can be also
applied to its variants constructed in [14].

55T20; 55P48

1 Introduction

In [13], the author introduced a filtration fF�sCn.j /gs�0 on the space of little cubes
Cn.j / with

∅D F�j�1Cn.j /� � � �F�s�1Cn.j /� F�sCn.j /� � � �

� F�1Cn.j /D F0Cn.j /D Cn.j /:

This is called the gravity filtration. By using the Snaith splitting,

�n†nX '
S

1_
jD1

Cn.j /C ^†j
X^j

we obtain a stable filtration on �n†nX and hence a spectral sequence for computing
h�.�

n†nX /. This spectral sequence is called the gravity spectral sequence. The
author proved in [13] the following:

Theorem 1.1 For any homology theory h�.�/, the gravity filtration induces a spectral
sequence strongly converging to h�.�

n†nX /.

When h� is multiplicative and h�.�
n�1†nX / is h�.�/–flat, we have

E2
Š Cotorh�.�

n�1†nX /.h�.�/; h�.�//:
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Later in [14], the author constructed spectral sequences for fibrations related to iterated
Freudenthal suspensions by adopting the gravity filtration.

The Eilenberg–Moore spectral sequence constructed by the (algebraic or geometric)
cobar construction (see Eilenberg–Moore [4; 5], Rector [7] and Dwyer [2; 3]), the so-
called cobar-type Eilenberg–Moore spectral sequence, also has its E2–term isomorphic
to Cotor. A natural question is if the gravity spectral sequence is isomorphic to the
cobar-type Eilenberg–Moore spectral sequence.

In the case of the cobar-type Eilenberg–Moore spectral sequence for the path-loop
fibration

�X �! PX �!X;

the E1–term is given by the (algebraic) cobar construction, ie

E1
�s;� Š

�
†�1zh�.X /

�˝s
;

if h� is multiplicative and h�.X / is h�.�/–flat.

The purpose of this note is to prove the following theorem.

Theorem 1.2 The E1–term of the gravity spectral sequence [13] is isomorphic to the
cobar construction, ie

E1
�s;� Š

�
†�1zh�.�

n�1†nX /
�˝s

as chain complexes, if h� is multiplicative and h�.�
n�1†nX / is h�.�/–flat. Hence

the gravity spectral sequence is isomorphic to the classical cobar-type Eilenberg–Moore
spectral sequence as spectral sequences.

This result is useful for practical applications of the gravity spectral sequence and
simplifies the arguments in the computation performed in the last section of [14].

This result also gives us a “geometric model” for the cobar differential. Note that the
spectral sequence splits into a direct sum of small spectral sequences each of which is
induced from the filtration on Cn.j / for j D 1; 2; � � � . By definition, the d1 differential
on Cn.j / part is given by the following composition

F�sCn.j /=F�s�1Cn.j /' F�sCn.j /[CF�s�1Cn.j /

�!†F�s�1Cn.j / �!†F�s�1Cn.j /=F�s�2Cn.j /

where the NDR representation of .F�sCn.j /;F�s�1Cn.j //, which has an explicit
description in terms of the centers and radii of little cubes, gives the first homotopy
equivalences.
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In particular, as the referee pointed out, in the case of n D 2, the d1 differential is
given in terms of shuffles for smash products of †X . Note that the decomposition of
the permutation representation

Rj
Š

n
.b1; � � � ; bj / 2 Rj

ˇ̌̌X
bk D 0

o
˚f.t; � � � ; t/ j t 2 Rg

allows us to associate a map

sW .†X /^j
�! .†X /^j

to an element s of the group ring ZŒ†j � which induces the action of s in homology.
Let si;j 2 ZŒ†iCj � be the sum of all .i; j /–shuffles.

With this notation, we see that, when nD 2, the d1 differential

d1
s;�W E

1
�s;� Š .†

�1T .zh�.†X ///˝s
�! .†�1T .zh�.†X ///˝sC1

ŠE1
�s�1;�

is induced by the following map:

(1)
sX

mD1

jm�1X
`D1

1^ � � � ^ s`;jm�` ^ � � � ^ 1W .†X /^j1 ^ � � � ^ .†X /^js �!

_
.k1;��� ;ksC1/

.†X /^k1 ^ � � � ^ .†X /^ksC1 ;

where the wedge sum in the range is taken over .sC 1/–tuples of positive integers
.k1; � � � ; ksC1/ with

k1C � � �C ksC1 D j1C � � �C js:

This paper is organized as follows: we recall the definition of the gravity filtration
together with the basic properties of the little cubes operad in Section 2. The E1 –term
of the gravity filtration is analyzed in the first half of Section 3 and then it is proved
that the E1–term and the first differential of the gravity spectral sequence coincides
with those of the classical Eilenberg–Moore spectral sequence in the rest of Section
3. In Section 4, we recall Rector’s and Larry Smith’s constructions in order to prove
that their spectral sequences are isomorphic to the gravity spectral sequence from the
E1–terms in Section 5.

Acknowledgements This paper should be considered as a complement to [13], which
was a part of the author’s PhD thesis supervised by Fred Cohen. The author is grateful
to him for asking about the E1–term of the gravity spectral sequence. The result in
this paper would not have come out without his persuasion. The author would also
like to thank the referee for pointing out that the d1 differential for �2†2X could be
written in terms of shuffles on .†X /^j .
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2 The gravity filtration

Let us first recall the construction of the gravity spectral sequence in [13].

Definition 2.1 A little n–cube is an embedding

cW Œ�1; 1�n ,! Œ�1; 1�n

of the form c D `1 � � � � � `n

where each `i is an orientation preserving affine embedding

`i W Œ�1; 1� �! Œ�1; 1�:

The space of little n–cubes (with compact-open topology) is denoted by Cn.1/.

Note that a 1–cube c is determined by its center C D c.0/ and radius RD c.1/�c.0/.

Definition 2.2 The space of j little n–cubes Cn.j / is defined by

Cn.j /D
n
.c1; � � � ; cj / 2 Cn.1/

j
ˇ̌̌
Im ci \ Im ck D∅ .i ¤ k/

o
;

where Im ci D ci..�1; 1/n/. The symmetric group of j letters †j acts on Cn.j / by
permuting cubes.

Note that, for any finite set S , the space of n–cubes indexed in S , Cn.S/, is defined.
Thus Cn can be regarded as a contravariant functor

CnW Finite Sets �! Spaces

from the category of finite sets and injective maps to the category of topological spaces.

The gravity filtration on Cn.j / is defined as follows.

Definition 2.3 Let F0Cn.j /D Cn.j /. For s � 1, define

.c1; � � � ; cj / 2 F�sCn.j /”We need to decompose the set fc1; � � � ; cj g into

at least s disjoint subsets in order to make

each group “stable under gravity”.

We say a collection of little n–cubes fci1
; � � � ; cik

g is stable under gravity if the center
of the first coordinate of each cube is contained in the images of the first coordinate
of other cubes. For example, the two 2-cubes in the picture below are stable under
gravity.
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r
r

In other words, the vertical hyperplane through the center of a cube must intersect with
the interior of other cubes.

It is more useful to describe the above filtration in terms of functions which measure
overlaps of the first coordinates of cubes.

Definition 2.4 Let b be a little 1–cube with center C and radius R. For x 2 .�1; 1/,
define

d.x; b/D
2R� jjC CR�xj � jC �R�xjj

2R
:

For c1; c2 2 Cn.1/, define

dis.c1; c2/Dminfd.c01.0/; c
0
2/; d.c

0
2.0/; c

0
1/g;

where c0i is the first coordinate of ci .

Definition 2.5 For S � f1; � � � ; j g and c 2 Cn.j /, define

OL.c;S/Dminfdis.ck ; c`/jk; ` 2 Sg:

For a partition P W S1q� � �qSs D f1; � � � ; j g, define

MOL.c;P /Dmin
k
fOL.c;Sk/g:

And for c 2 F�sCn.j /, define

us.c/DmaxfMOL.c;P /jP W partition into s subsetsg:

Recall that the configuration space of j points in Rn , F.Rn; j /, is †j –equivariantly
homotopy equivalent to Cn.j /. And it is possible and seems more natural to define a
filtration on F.Rn; j / by the number of distinct first coordinates. In fact, this filtration
on F.Rn; j / was the origin of the gravity filtration on Cn.j /. The following fact is an
essential difference between these two filtrations and is proved in [13].

Geometry & Topology Monographs, Volume 10 (2007)



352 Dai Tamaki

Lemma 2.6 The map
usW F�sCn.j / �! Œ0; 1�

is continuous and
u�1

s .0/D F�s�1Cn.j /:

Furthermore there exists a homotopy

hsW F�sCn.j /� I �! F�sCn.j /

with which .hs; zus/ is an NDR representation for .F�sCn.j /;F�s�1Cn.j //, where
zus Dm ıus and the function

mW Œ0; 1� �! Œ0; 1�

is defined by m.t/D

(
2t 0� t � 1

2

1 1
2
� t � 1:

The following property of uq is not used in [13], but turns out to be very useful for
identifying the E1–term.

Lemma 2.7 us.c/ D 1 if and only if c consists of s piles of cubes each of which
consists of cubes whose centers are lined up on a single vertical line (hyperplane).

By using the base point relation, we can form a single space by gluing Cn.j /�†j
X j

together.

Definition 2.8 For a pointed space X , define

Cn.X /D

� 1a
jD1

Cn.j /�†j
X j

��
�

where the relation � is given by

.c1; � � � ; cj Ix1; � � � ;xj /� .c1; � � � ; yci ; � � � ; cj Ix1; � � � ; yxi ; � � � ;xj /;

if xi D �.

Cn.X / is an approximation to �n†nX up to a weak equivalence.

Theorem 2.9 (Approximation Theorem [6]) For a path-connected space X with
nondegenerate base point, we have the following natural weak equivalence

Cn.X /'
w
�n†nX:
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Unfortunately the gravity filtration is not compatible with the base point relation in
the definition of Cn.X /. Fortunately, however, we can introduce a stable filtration on
Cn.X /, thanks to the following famous theorem.

Theorem 2.10 (Snaith Splitting [10]) For a path-connected space X with a non-
degenerate base point, we have the following natural weak equivalence in the stable
homotopy category,

(2) Cn.X /'
S

1_
jD1

Cn.j /C ^†j
X^j :

Definition 2.11 We define

F�sCn.X /D

1_
jD1

F�sCn.j /C ^†j
X^j :

This can be regarded as a filtration on �n†nX in the stable homotopy category.

We use the following notations:

D
.n/
j .X /D Cn.j /C ^†j

X^j

F�sD
.n/
j .X /D F�sCn.j /C ^†j

X^j

This stable filtration gives a spectral sequence strongly converging to h�.�
n†nX / for

any homology theory h�.�/, whose E1–term is given by

E1
�s;t D h�sCt .F�sCn.X /;F�s�1Cn.X //

Š

M
j�1

h�sCt

�
F�sD

.n/
j .X /;F�s�1D

.n/
j .X /

�
Š

M
j�1

zh�sCt

�
F�sD

.n/
j .X /=F�s�1D

.n/
j .X /

�
since

�
F�sD

.n/
j .X /;F�s�1D

.n/
j .X /

�
is an NDR pair if the base point of X is nonde-

generate, thanks to Lemma 2.6.

3 Decomposition of cubes

Let h�.�/ be a homology theory satisfying the strong form of Künneth isomorphism
for �n�1†nX . Then the E1–term of the classical Eilenberg–Moore spectral sequence
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for the path-loop fibration on �n�1†nX is isomorphic to

E1
�s;t Š

zht

��
�n�1†nX

�^s
�

Š zht

�
Cn�1.†X /^s

�
:

Under the Snaith splitting, we have

zht

�
Cn�1.†X /^s

�
Š

M
P

ikDj

zht

�
D
.n�1/
i1

.†X /^ � � � ^D
.n�1/
is

.†X /
�
:

Thus, with the notations in Section 2, all we want to do is to find a natural homotopy
equivalence

†sF�sD
.n/
j .X /=F�s�1D

.n/
j .X /'

_
P

ikDj

D
.n�1/
i1

.†X /^ � � � ^D
.n�1/
is

.†X /

or a †j –equivariant homotopy equivalence

†sF�sCn.j /=F�s�1Cn.j /'
_
qSkD

f1;��� ;jg

�
Cn�1.S1/C ^S jS1j

�
^� � �^

�
Cn�1.Ss/C ^S jSs j

�

where Cn.S/ is the space of little n–cubes indexed by the set S and the wedge sum
on the right hand side runs over all partitions of f1; � � � ; j g into nonempty k subsets.

However this is not easy. To understand the difficulty, let us try to define a map

†2F�2Cn.3/=F�3Cn.3/ �!
_

S1qS2D

f1;2;3g

�
Cn�1.S1/C ^S jS1j

�
^

�
Cn�1.S2/C ^S jS2j

�
:

rc1

rc2

r c3

Forget about the suspension coordinates. Consider the cubes in the above picture. This
element belongs to F�2Cn.3/�F�3Cn.3/ and there are two ways to decompose it into
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two collections of cubes stable under gravity, ie

f1; 2; 3g D f1; 2gq f3g

f1; 2; 3g D f1; 3gq f2g:

Thus a canonical map we obtain is

†2F�2Cn.3/=F�3Cn.3/ �!
Y

S1qS2D

f1;2;3g

�
Cn�1.S1/C ^S jS1j

�
^

�
Cn�1.S2/C ^S jS2j

�
;

not into
W

.

More generally, taking all possible decompositions would give the following map

†sF�sCn.j /
�
F�s�1Cn.j /

�!

Y
qSkD

f1;��� ;jg

�
Cn�1.S1/C ^S jS1j

�
^� � �^

�
Cn�1.Ss/C ^S jSs j

�
:

We need to compress the image of this map into_
qSkDf1;��� ;jg

�
Cn�1.S1/C ^S jS1j

�
^ � � � ^

�
Cn�1.Ss/C ^S jSs j

�
:

To this end, our idea is to deform †sF�sCn.j /=F�s�1Cn.j / into a smaller space of
“decomposable cubes”.

G Dunn introduced the notion of decomposable cubes in [1] and proved a decomposition
of the little n–cubes operad

Cn ' C1˝ � � �˝ C1„ ƒ‚ …
n

:

In our case, we need the notion of horizontally decomposable cubes.

Definition 3.1 Let Ds
n.j / be the subset of Cn.j / consisting of cubes which are

horizontally decomposable into s collections (as in the picture below).
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More precisely, let
i1W C1.j / ,! Cn.j /

be the inclusion of the first coordinate given by the multiplication of the identity
.n� 1/–cube.

Namely i1.c1; � � � ; cj /D .c1 � 1I n�1 ; � � � ; cj � 1I n�1/:

Then Ds
n.j / is the image of the following restriction of the operad structure map


 W i1.C1.s//�

0@ a
P

ikDj

Cn.i1/� � � � � Cn.is/

1A �! Cn.j /:

We have the following diagram:

Ds
n.j / F�sCn.j /

DsC1
n .j / F�s�1Cn.j /

-�

6
[

-�

6
[

We want to show that the inclusion gives a homotopy equivalence

Ds
n.j /=DsC1

n .j //' F�sCn.j /=F�s�1Cn.j /:

Note that if cD .c1; � � � ; cj / 2 F�sCn.j /, then there are at least s cubes ci1
; � � � ; cis

whose centers of the first coordinates are distinct.

rc1

rc2

r c3

Thus by shrinking the radii of the first coordinates of cubes, we can deform F�sCn.j /

into Ds
n.j /. The cubes in the above picture are in F�2C2.3/ but not in D2

2
.3/. A

horizontal shrinking deforms the cubes into D2
2
.3/.

Definition 3.2 Let
H W Cn.j /� Œ0; 1/ �! Cn.j /
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be the homotopy which shrinks the radius of the first coordinate of each cube linearly
without moving the center.

�sW F�sCn.j / �! Œ0; 1/Define

�s.c/D infft jH.c; t/ 2Ds
n.j /g:by

Then obviously �s is continuous and gives the minimal amount of the radii of the first
coordinates we need to shrink for those cubes in F�sCn.j / in order to compress them
into Ds

n.j /. For most cubes c 2 F�sCn.j /, H.c; �qC1.c// is defined. However, if c
consists of s piles of cubes each of which consists of cubes whose centers are lined up
in a single vertical line (hyperplane), H.c; �qC1.c// squashes the cubes flat vertically.
For those cubes we need to use H.c; �s.c//. Namely, the amount of shrinking varies
for different configurations of cubes.

Fortunately, we can distinguish those vertically aligned cubes by using the function

usW F�sCn.j / �! Œ0; 1�;

thanks to Lemma 2.7. Now the following gives us a homotopy we want

G.c; t/DH.c; t.us.c/�s.c/C .1�us.c//�sC1.c///:

Note that G.c; 1/ 2Ds
n.j /

since �s.c/� �sC1.c/. Thus we have a †j –equivariant homotopy equivalence

Dq
n.j /=DqC1

n .j /' F�qCn.j /=F�q�1Cn.j /:

Horizontally decomposable cubes decompose. Thus it is enough to prove the following
homotopy equivalence:�

D1
n.j /=D2

n.j /^†j
X^j

�
^S1

'D
.n�1/
j .†X /:

Note that D1
n.j / contains cubes that are not necessary for analyzing the filtration

quotients. Namely, we don’t need those cubes with Im c0
1
\ � � � \ Im c0j D∅, where c0i

is the first coordinate of the cube ci , as with the four cubes in the picture below.
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In order to be more efficient, let us introduce yet another filtration.

Definition 3.3 Define G�sCn.j / to be the subset of Cn.j / consisting of cubes
.c1; � � � ; cj / which cannot be decomposed into .s � 1/ collections of cubes each
of which can be skewered by a vertical line (hyperplane) intersecting with each interior.

Then we have the homotopy equivalence

G�1Cn.j /=G�2Cn.j /'D1
n.j /=D2

n.j /;

and the scanning map

scan1W

�
G�1Cn.j /=G�2Cn.j /^†j

X^j
�
^

�
�1=@�1

�
�!D

.n�1/
j .†X /

given by taking the intersection with the vertical hyperplane with the first coordinate
t 2�1 is surjective. However, it is not easy to find a homotopy inverse to this map.
We use the following auxiliary space instead.

Definition 3.4 Let C"n.j / be the subset of Cn.j / consisting of cubes whose first
coordinates have radius ".

For those cubes in G�1Cn.j /�G�2Cn.j /, we can deform the radii in the horizontal
direction freely and we have a homotopy equivalence

G�1Cn.j /=G�2Cn.j /'G�1C"n.j /=G�2C"n.j /

for " small enough.

Since the cubes in C"n.j / are determined by their centers, we have the following
homeomorphism

G�1C"n.j /=G�2C"n.j /Š P "
j =dP "

j ^ Cn�1.j /C;

where P "
j is the convex polytope in Œ�1; 1�j given by

P "
j D

n
.b1; � � � ; bj / 2 Œ�1; 1�j

ˇ̌̌
jbi � bk j � 2" for any i; k

o
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and dP "
j is given by

dP "
j D

n
.b1; � � � ; bj / 2 Œ�1; 1�j

ˇ̌̌
jbi � bk j D 2" for some i; k

o
:

By projecting onto the hyperplane

V D
n
.b1; � � � ; bj / 2 Œ�1; 1�j

ˇ̌̌X
bk D 0

o
we obtain a homotopy equivalence

P "
j =dP "

j ' P "
j \V =dP "

j \V:

The picture below illustrates the case j D 2.

-

6

�
�
�
�
�

�
�
�
�
�

@
@
@
@
@
@
@
@

P "
j \V is a .j�1/–dimensional convex polytope (dual of permutohedron) and dP "

j \V

is its boundary. The decomposition of the permutation representation

Rj
Š

n
.b1; � � � ; bj / 2 Rj

ˇ̌̌X
bk D 0

o
˚f.t; � � � ; t/ j t 2 Rg

gives a †j –equivariant homotopy equivalence

.P "
j \V =dP "

j \V /^ .R[f1g/' .S1/^j

And we obtain a homotopy equivalence�
G�1Cn.j /=G�2Cn.j /^†j

X^j
�
^S1

' .P "
j =dP "

j ^ Cn�1.j /C ^†j
X^j /^S1

' Cn�1.j /C ^†j
.S1
^X /^j

DD
.n�1/
j .†X /:

This completes the proof of the identification of the E1–term of the gravity filtration
with the desired tensor algebra.
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Let us consider d1 next. What we have proved so far is the following fact.

†sF�sCn.j /C ^†j
X^j=F�s�1Cn.j /C ^†j

X^j

D†sF�sCn.j /=F�s�1Cn.j /^†j
X^j

'

0@ _
S1q���qSsDf1;��� ;jg

Cn�1.S1/C ^SS1 ^ � � � ^ Cn�1.Ss/C ^SSs ^X^j

1A�
†j

'

0@ _
S1q���qSsDf1;��� ;jg

Cn�1.S1/C ^ .†X /^S1 ^ � � � ^ Cn�1.Ss/C ^ .†X /^Ss

1A�
†j

where the wedge in the first homotopy equivalence runs over all decomposition of the
set f1; � � � ; j g into a disjoint of nonempty s subsets

S1q� � �qSs D f1; � � � ; j g;

and for S �f1; � � � ; j g, we abuse the notation to denote Y ^jS j together with the action
of the symmetric group by Y ^S .

Under the identification by the action of †j , we obtain the wedge over all j1C� � �CjsD

j and

†sF�sCn.j /=F�s�1Cn.j /^†j
X^j

'

_
j1C���CjsDj

Cn�1.j1/C ^†j1
.†X /^j1 ^ � � � ^ Cn�1.js/C ^†js

.†X /^js :

However in order to compute d1 , we should compute the map

†sF�sCn.j /=F�s�1Cn.j /^X^j
�!†sC1F�s�1Cn.j /=F�s�2Cn.j /^X^j

before we take the quotient by the action of †j . This “connecting homomorphism” is
given by the composition

(3) F�sCn.j /=F�s�1Cn.j /' F�sCn.j /[CF�s�1Cn.j /

�!†F�s�1Cn.j / �!†F�s�1Cn.j /=F�s�2Cn.j /:

The first homotopy equivalence in the above sequence of maps is obtained from an
NDR representation for the pair .F�sCn.j /;F�s�1Cn.j //. More precisely, for an
NDR pair .X;A/ with NDR representation .h;u/ satisfying

h.x; s/ 2A for u.x/ < s;

the map zhW X=A
'
�!X [CA
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defined by zh.Œx�/D

(
h.x; 1/ u.x/D 1

.h.x; 1/;u.x// u.x/ < 1

is a homotopy equivalence (see Strøm [11; 12]). It is straightforward to check that the
NDR representation .hs; zus/ for .F�sCn.j /;F�s�1Cn.j // satisfies the above Strøm
condition.

Recall that we have proved that F�sCn.j / can be replaced with the space of little
cubes whose first coordinates have a fixed small radius ", G�sC"n.j /. In the case of
s D 1, the map

(4) G�1C"n.j /=G�2C"n.j / �!†G�2C"n.j /=G�3C"n.j /

is given by shrinking the radii of the first coordinate. And the identification

†2G�2C"n.j /=G�3C"n.j /'
_

S1qS2Df1;��� ;jg

Cn�1.S1/C ^SS1

^ Cn�1.S2/C ^SS2

is given by measuring the distance of the centers of the first coordinates. Namely the
component to which the image of an element .c1; � � � ; cj / 2 G�1C"n.j / belongs under
the above identification is determined by measuring the difference of the centers of the
first coordinates. Under the identification

†G�1C"n.j /=G�2C"n.j /' Cn�1.j /C ^Sj

the map (4) can be identified with

Cn�1.j /C ^Sj
�! Cn�1.j /C ^ .S

1
_S1/^j

D

_
S1qS2Df1;��� ;jg

Cn�1.S1/C ^SS1

^ Cn�1.S2/C ^SS2 :

The suspension coordinate in †G�1C"n.j /=G�2C"n.j / determines the position in the
first coordinate with which .c1; � � � ; cj / is cut into two collections. Thus d1 is given
by taking all possible decompositions f1; � � � ; j gDS1qS2 and summing it up, before
we divide by the action of †j .

Therefore we see that (3) is given by taking all possible decomposition of indexing sets

f1; � � � ; j g D S1q� � �qSs

under the horizontal decomposition above.

Geometry & Topology Monographs, Volume 10 (2007)



362 Dai Tamaki

On the other hand, it is well-known that, under the Snaith splitting, the coproduct on
Cn�1.†X / is given by

D
.n�1/
j .†X / �!D

.n�1/
j .†X _†X /

D

_
j1Cj2Dj

Cn�1.j /C ^†j1
�†j2

.†X /^j1 ^ .†X /^j2

�!

_
j1Cj2Dj

D
.n�1/
j1

.†X /^D
.n�1/
j2

.†X /:

Thus the map induced by the composition (3) in homology coincides with the cobar
differential.

Consider the case nD 2. Recall that C1.j /'†j , †j –equivariantly, and we have

D
.1/
j .†X /D C1.j /C ^†j

.†X /^j
' .†X /^j :

Thus the d1 differential in the case of �2†2X is given by the map described in (1).

4 Constructions by Rector and Smith

In the previous section, we have seen that the E1–term of the gravity spectral sequence
is isomorphic to the E1–term of the classical cobar-type Eilenberg–Moore spectral
sequence. In order to finish the proof of Theorem 1.2, we need to compare the Er –terms
for r � 2.

A couple of ways are known to construct a spectral sequence for a diagram

X �B Y X

Y B

-

? ?
-

with E2–term E2
Š Cotorh�.B/.h�.X /; h�.Y //

for reasonably good homology theory h�.�/. Our gravity spectral sequence is one of
them. Rector’s construction [7] is a generalization of the classical Eilenberg–Moore
spectral sequence [4; 5]. A construction due to Larry Smith [8; 9] gives us a general
framework for this kind of construction. We prove the remaining part of Theorem
1.2 by comparing the gravity spectral sequence with Rector’s construction of the
Eilenberg–Moore spectral sequence with an aid of Larry Smith’s construction.
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Let us briefly recall Rector’s construction in [7]. Given a diagram

Y
f
�! B

p
 �X

we can form a cosimplicial space

�0.Y;B;X /

ı0

�!

ı1

�!

�1

 �

�1.Y;B;X /

ı0

�!

ı1

�!

ı2

�!

�1

 �

�2

 �

�2.Y;B;X / � � �

where �n.Y;B;X /D Y �Bn
�X

and the maps are defined by

ıi.y; b1; � � � ; bn;x/D

8<:
.y; f .y/; b1; � � � ; bn;x/ if i D 0

.y; b1; � � � ; bi ; bi ; � � � ; bn;x/ if 1� i � n

.y; b1; � � � ; bn;p.x/;x/ if i D n

� i.y; b1; � � � ; bn;x/D .y; b1; � � � ; bi�1; biC1; � � � ; bn;x/:

Rector defined a sequence of pointed cofibrations

�0

'�1
�!��1 �!��1

��1

'�2
�!��2 �!��2

:::(5)

��nC1

'�n
�!��n �!��n

:::

directly from the cosimplicial cobar construction ��.Y;B;X / as follows.

First define ��n D�
n.Y;B;X /= Im ı1

[ � � � [ Im ın:

The map ı0 induces a well-defined map

 �nW ��nC1 �!��n:

It is easy to check that  �n�1 �n D �. ��n ’s are defined inductively on n. Define

�0 D�
0.Y;B;X /D Y �X:
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Note that �0 D�0=∅. Let '�1 be the composition

�0 �!�0=∅D�0

 �1
�!��1:

Let ��1 be the (reduced) mapping cone of '�1 . Since  �2 �1 D �,  �2 induces a
well-defined map

'�2W ��1 �!��2:

More explicitly '�2 is given by

'�2.x/D

�
 �2.x/ if x 2��1

� otherwise.

From this description, it is easy to show  �3'�2 D �.

Inductively we obtain a map

'�nW ��nC1 �!��n

with  �n�1'�n D �. Define ��n to be the mapping cone of '�n .

For any homology theory h�.�/, the sequence of cofibrations (5) induces an exact
couple

RD1
�p;q D

zhq.��p/

RE1
�p;q D

zhq.��p/

Rector proved the following theorem in [7].

Theorem 4.1 When h�.�/ is the singular homology theory, the spectral sequence
associated with the above exact couple is naturally isomorphic to the original Eilenberg–
Moore spectral sequence constructed in [4; 5].

On the other hand, in [8; 9], Larry Smith introduced another construction. The first step
in Smith’s approach is to consider a fibration X

p
�! B as an object in the category of

spaces over B .

Definition 4.2 Let B be an arbitrary space. A space over B is a continuous map
f W X �! B . A pointed space over B is a pair of maps

f W X �! B

sW B �!X

with f ı s D idB . For simplicity, we denote this object by .f; s/. Morphisms between
these objects are obviously defined.
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If f W X �! B is a space over B , we sometimes denote the “total space” X by
T .f /. Similarly, for .f; s/ a pointed space over B , we use the notation T .f /DX if
f W X �! B .

The category of spaces over B is denoted by Spaces =B . The category of pointed
spaces over B is denoted by .Spaces =B/� .

When BD�, we simply denote Spaces and Spaces� for Spaces =� and .Spaces =�/� ,
respectively. They are the usual categories of spaces and pointed spaces, respectively.

Almost all important constructions and notions in Spaces or in Spaces� have analogies
in Spaces =B or in .Spaces =B/� . To be self-contained, we record some of them used
in the following section.

Definition 4.3 For morphisms '0; '1W .f; s/ �! .g; t/, a homotopy from '0 to '1

is a map

'W T .f /� I �! T .g/

which fits into the following commutative diagrams, where r 2 Œ0; 1�.

T .f /� I T .g/ T .f /� I T .g/

T .f / T .f /� frg

B B B B

-'

?

?

g

-'

?

f

6

-D

6
s

-D

6

t

T .f /� f0g T .f /� I T .f /� f1g

T .g/ T .g/ T .g/

-

?

'0

?

'

�

?

'1

-D � D

Definition 4.4 A morphism 'W .f; s/ �! .g; t/ in .Spaces =B/� is called a cofibra-
tion in .Spaces =B/� if it has the homotopy extension property with respect to the
homotopy defined above.
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Definition 4.5 For a morphism 'W .f; s/ �! .g; t/ in .Spaces =B/� , the (reduced)
mapping cone of ' , denoted by .C.'/;SC .'//, is defined as follows.

T .C.'//DT .f /�IqT .g/

, .x; 0/� '.x/ for x 2 T .f /

.s.b/; r/� t.b/ for b 2 B; r 2 I

.x; 1/� .x0; 1/ if f .x/D f .x0/ for x;x0 2 T .f /

The projection C.'/W T .C.'// �! B is given by f on T .f / � I and by g on
T .g/. The section SC .'/W B �! T .C.'// is defined either by s or t which agree in
T .C.'//.

Definition 4.6 For an object .f; s/ 2 .Spaces =B/� the (reduced) suspension of
.f; s/ 2 .Spaces =B/� , denoted by S.f; s/D .S.f /;S.s//, is defined by

T .S.f //D T .f /� I

, .x; 0/� .x0; 0/ if f .x/D f .x0/ for x;x0 2 T .f /

.x; 1/� .x0; 1/ if f .x/D f .x0/ for x;x0 2 T .f /

.s.b/; r/� .s.b/; r 0/ for b 2 B and r; r 0 2 I

and S.f /.x; t/D f .x/

S.s/.b/D .s.b/; 0/:

Definition 4.7 For objects .f; s/ and .g; t/ in .Spaces =B/� , the smash product of
.f; s/ and .g; t/, denoted by .f; s/^ .g; t/D .f ^B g; s ^B t/, is defined by

T .f ^B g/D T .f /�B T .g/=.x; t.b//� .s.b/;y/

if f .x/D g.y/D b for x 2 T .f /;y 2 T .g/; b 2 B

and .f ^B g/.x;y/D f .x/D g.y/

.s ^B t/.b/D .s.b/; t.b//

Lemma 4.8 If .f; s/
'
�! .g; t/ is a cofibration in .Spaces =B/� , then so is

.h;u/^ .f; s/
id^'
�! .h;u/^ .g; t/

with cofiber .h;u/^ .C.'/;SC .'//.

We fix notations for forgetful functors and their adjoints among the above categories.

Definition 4.9 Consider the functor given by forgetting sections

F W .Spaces =B/� �! Spaces =B:
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Its adjoint is denoted by

GW Spaces =B �! .Spaces =B/�

which is given, on total spaces, by

T .G.f //D T .f /qB:

The section is defined to be the identity map into the second component B .

Let �W Spaces� �! .Spaces =B/�

be the functor defined on the total spaces, by

T .�.X //DX �B:

The section is defined by the composition

B D f�g�B ,!X �B

where � is the base point of X . Its adjoint is the functor

ˆW .Spaces =B/� �! Spaces�

defined, for an object .f; s/, by

ˆ.f; s/D T .f /=s.B/:

Definition 4.10 For any nonnegative integer n, we denote .Sn
B
; sn

B
/D �.Sn/.

With these functors, we can describe the definition of homotopy in .Spaces =B/� more
compactly.

Lemma 4.11 For morphisms '0; '1W .f; s/ �! .g; t/, a homotopy from '0 to '1 is
a morphism

'W .f; s/^B �.IC/ �! .g; t/

with the following commutative diagram

.f; s/^B �.f0gC/ .f; s/^B �.IC/ .f; s/^B �.f1gC/

.f; s/ .g; t/ .f; s/
?

k

-

?

'

�

?

k

-'0 � '1

The functor ˆ has a very good property.
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Lemma 4.12 For any cofibration

.f0; s0/ �! .f1; s1/ �! .f2; s2/

in .Spaces =B/� ,
ˆ.f0; s0/ �!ˆ.f1; s1/ �!ˆ.f2; s2/

is a cofibration in Spaces� .

Thanks to this lemma, any (reduced) homology theory on Spaces� naturally extends
to .Spaces =B/� .

Definition 4.13 Let zh�.�/ be any homology theory on Spaces� and .f; s/W X �! B

any object in .Spaces =B/� . Define

hB
� .f; s/D

zh� ıˆ.f; s/D zh�.X=s.B//:

Thus we have a covariant functor

hB
� .�/W .Spaces =B/� �!Graded Abelian Groups;

where Graded Abelian Groups denotes the category of graded Abelian groups. The
functor hB

� .�/ is referred to as the homology theory on .Spaces =B/� associated with
zh�.�/.

Corollary 4.14 For any cofibration in .Spaces =B/�

.f0; s0/ �! .f1; s1/ �! .f2; s2/

and a homology theory zh�.�/ on Spaces� , we have a long exact sequence:

� � � �! hB
� .f0; s0/ �! hB

� .f1; s1/ �! hB
� .f2; s2/

@
�! hB

��1.f0; s0/ �! � � �

Now we are ready to recall the construction of a cobar-type Eilenberg–Moore spectral
sequence by Larry Smith. His idea is to construct a spectral sequence out of a “filtra-
tion” in the category .Spaces =B/� , ie display. Smith made a lot of assumptions on
(co)homology theory and the space B in his paper [9]. Most of his assumptions are
for the existence of a display and the convergence of the spectral sequence. Since our
purpose is to show Rector’s construction and the gravity filtration on �n†nX give rise
to displays, we do not need these assumptions. What we really need is the following.

Assumption 4.15 Throughout the rest of this section, zh�.�/ denotes a (reduced)
multiplicative homology theory. We also assume that the external product

zh�.BC/˝h�
zh�.X / �! zh�.BC ^X /
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is an isomorphism for any pointed space X . This condition is satisfied, for example, if
zh�.BC/ is h�–flat.

This condition is necessary for the following definition.

Definition 4.16 Given any pointed space .f; s/ over B , define a structure of left
hB
� .S

0
B
; s0

B
/–comodule on hB

� .f; s/ by the composition

hB
� .f; s/Š

zh�.ˆ.f; s//
��
�! zh�.ˆ.f; s/^ˆ.f; s//

ˆ.�/^id
�! zh�.ˆ.S

0
B; s

0
B/^ˆ.f; s//

D zh�.BC ^ˆ.f; s//

Š zh�.BC/˝h�
zh�.ˆ.f; s//

D hB
� .S

0
B; s

0
B/˝h� hB

� .f; s/:

Similarly hB
� .f; s/ also has a structure of right hB

� .S
0
B
; s0

B
/–comodule.

Definition 4.17 Let .f; s/ be an object in .Spaces =B/� . An hB
� –display of .f; s/

is a sequence of cofibrations

.f; s/
˛0
�! .h0;u0/

ˇ�1
�! .f�1; s�1/

.f�1; s�1/
˛�1
�! .h�1;u�1/

ˇ�2
�! .f�2; s�2/

:::

.f�i ; s�i/
˛�i
�! .h�i ;u�i/

ˇ�i�1
�! .f�i�1; s�i�1/

:::

satisfying the following two conditions.
(1) hB

� .h�i ;u�i/ is a flat h�–module and an injective hB
� .S

0
B
; s0

B
/ Š h�.BC/–

comodule for each i .
(2) ˛�i�W h

B
� .f�i ; s�i/ �! hB

� .h�i ;u�i/ is a monomorphism.

Suppose f.f�i ; s�i/; .h�i ;u�i/g is an hB
� –display of .f; s/. Let .g; t/ be another

pointed space over B . By Lemma 4.8, smashing with .g; t/ preserves cofibrations and
we have cofibrations:

.g; t/^ .f; s/
id^˛0
�����! .g; t/^ .h0;u0/

id^ˇ�1
������! .g; t/^ .f�1; s�1/

.g; t/^ .f�1; s�1/
id^˛�1
�����! .g; t/^ .h�1;u�1/

id^ˇ�2
������! .g; t/^ .f�2; s�2/

:::

.g; t/^ .f�i ; s�i/
id^˛�i
�����! .g; t/^ .h�i ;u�i/

id^ˇ�i�1
������! .g; t/^ .f�i�1; s�i�1/

:::
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Thus we obtain an exact couple by applying hB
� .�/.

Definition 4.18 Define

D1
�p;q..f; s/; .g; t//D hB

�p..f�p; s�p/^ .g; t//

E1
�p;q..f; s/; .g; t//D hB

�p..h�p;u�p/^ .g; t//:

The cobar spectral sequence or the Künneth spectral sequence defined by an hB
� –display

f.f�i ; s�i/; .h�i ;u�i/g

is the spectral sequence denoted fEr
�;�..f; s/; .g; t//g associated with this exact couple.

In order to identify the E2–term, it is important to use a special kind of display. To
see this, let .f; s/; .g; t/ 2 .Spaces =B/� and

f.f�i ; s�i/; .h�i ;u�i/g

be an hB
� –display. Since hB

� .h�i ;u�i/ is flat over h� ,

zh�.ˆ.h�i ;u�i/^ˆ.g; t//Š zh�.ˆ.h�i ;u�i//˝h�
zh�.ˆ.g; t//

D hB
� .h�i ;u�i/˝h� hB

� .g; t/:

Note that the following composition is trivial:

hB
� ..h�i ;u�i/^ .g; t// �! zh�.ˆ.h�i ;u�i/^ˆ.g; t//

Š hB
� .h�i ;u�i/˝h� hB

� .g; t/

 ˝id�id˝'
��������! hB

� .h�i ;u�i/˝h� hB
� .S

0
B; s

0
B/˝h� hB

� .g; t/:

where ��W h
B
� .S

0
B; s

0
B/ �! hB

� .S
0
B; s

0
B/˝h� hB

� .S
0
B; s

0
B/

 W hB
� .h�i ;u�i/ �! hB

� .h�i ;u�i/˝h� hB
� .S

0
B; s

0
B/

'W hB
� .g; t/ �! hB

� .S
0
B; s

0
B/˝h� hB

� .g; t/

are coalgebra and comodule structure maps, respectively. Thus we obtain a map

hB
� ..h�i ;u�i/^ .g; t// �! Ker. ˝ id� id˝'/:

By the definition of cotensor product

Ker. ˝ id� id˝'/D hB
� .h�i ;u�i/�hB

� .S
0
B
;s0

B
/h

B
� .g; t/:

It is convenient to assume the resulting map

‰W hB
� ..h�i ;u�i/^ .g; t// �! hB

� .h�i ;u�i/�hB
� .S

0
B
;s0

B
/h

B
� .g; t/
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is an isomorphism.

Definition 4.19 Let .f; s/ and .g; t/ be pointed spaces over B . An hB
� –display of

.f; s/

f.f�i ; s�i/; .h�i ;u�i/g

is said to be injective with respect to .g; t/ if

‰W hB
� ..h�i ;u�i/^ .g; t// �! hB

� .h�i ;u�i/�hB
� .S

0
B
;s0

B
/h

B
� .g; t/

is an isomorphism.

The following lemma is immediate from the definition.

Lemma 4.20 If fEr
�;�..f; s/^ .g; t//; d

r g is a cobar spectral sequence defined by an
injective hB

� –display of .f; s/ with respect to .g; t/, then we have

E2
�;�..f; s/^ .g; t//Š CotorhB

� .S
0
B
;s0

B
/.hB
� .f; s/; h

B
� .g; t//

D Cotor
zh�.BC/.zh�.ˆ.f; s//; zh�.ˆ.g; t///:

This lemma suggests that cobar spectral sequences defined by using injective displays
are isomorphic to each other from the E2–term on. In fact, this is the case.

Theorem 4.21 Let .f; s/ and .g; t/ be pointed spaces over B . Let

f.f�i ; s�i/; .h�i ;u�i/g

f.f 0�i ; s
0
�i/; .h

0
�i ;u

0
�i/g

be injective hB
� –displays for .f; s/ with respect to .g; t/. Let fEr g and f0Er g be the

cobar spectral sequences defined by the first and the second display, respectively. Then
we have an isomorphism of spectral sequences for r � 2,

Er
Š
0Er :

Proof See pp 119–120 of [9]. Smith proved this fact by finding an intermediate display

f. xf�i ;xs�i/; .xh�i ; xu�i/g

and maps

f.f�i ; s�i/; .h�i ;u�i/g �! f. xf�i ;xs�i/; .xh�i ; xu�i/g  � ff
0
�i ; s

0
�i/; .h

0
�i ;u

0
�i/g:

The existence of such a display in our case is essentially proved in pp 112–113 of the
same paper.
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5 Comparing spectral sequences

Let us compare Rector’s construction for

� �!�n�1†nX  � P�n�1†nX

with the construction by the gravity filtration. We proved that the E1–terms of spectral
sequences are isomorphic as chain complexes in Section 3. In order to show that these
spectral sequences are isomorphic from the E2–term, it is enough to show that they
both give rise to injective displays.

We first prove the following general fact.

Theorem 5.1 Consider the pullback diagram:

Y �B X X

Y B
?

-

?

p

-f

If zh�.BC/ is h�–flat and p is a fibration, the spectral sequence induced from Rector’s
geometric cobar construction for this pullback diagram is isomorphic to Smith’s spectral
sequence from the E2–term on.

Let pW X �! B be a fibration. Using the functor

GW Spaces =B �! .Spaces =B/�

we obtain an object G.p/ in .Spaces =B/� . Let f W Y �!B be a continuous map. In
the following we construct a display for G.p/

G.p/ �! .!�1;u�1/ �! .p�1; s�1/

.p�1; s�1/ �! .!�2;u�2/ �! .p�2; s�2/
:::

so that the filtration on Y �B X induced by this display is the same as Rector’s
cosimplicial construction.

Recall that Rector’s spectral sequence is induced from the cofibration sequences

:::

��`C1

'�`
�! ��` �! ��`

:::
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while Smith’s spectral sequence is induced from cofibration sequences:

ˆ.G.f /^B G.p// �!ˆ.G.f /^B .!�1;u�1//�!ˆ.G.f /^B .p�1; s�1//

ˆ.G.f /^B .p�1; s�1//�!ˆ.G.f /^B .!�2;u�2//�!ˆ.G.f /^B .p�2; s�2//
:::

But it is not difficult to find .p�`; s�`/ and .!�`;u�`/ with

��` 'ˆ.G.f /^B .p�`; s�`//

��` 'ˆ.G.f /^B .!�`;u�`//:

It is natural to expect that the process of constructing such a display is very similar
to that of the cofibration sequences of Rector’s. We first define .!�`;u�`/ and then,
inductively, .p�`; s�`/.

Definition 5.2 For `� 0, define

T .!�`/D B � .B` �X= Im ı1
[ � � � [ Im ı`/

where the maps ıi for i D 1; � � � ; ` are the maps in the geometric cobar construction
with Y D �. The map

!�`W T .!�`/ �! B

is just the projection onto the first factor. The section

u�`W B �! T .!�`/

is defined by u�`.b/D .b;�/.

As is the case of the geometric cobar construction, “ı0 ” induces a map

 �`W .!�`;u�`/ �! .!�`�1;u�`�1/

 �`.bI b1; � � � ; b`;x/D .bI b; b1; � � � ; b`;x/:defined by

We also have  �`�1 �` D �.

We need to check the following lemma.

Lemma 5.3 Suppose f W Y �! B is surjective. Then for ` � 0, we have a homeo-
morphism

��` Šˆ.G.f /^ .!�`;u�`//
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making the following diagram commutative.

(6)

��` ˆ.G.f /^ .!�`;u�`//

��`�1 ˆ.G.f /^ .!�`�1;u�`�1//

?

 �`

-Š

?

ˆ.1^ �`/

-Š

Proof By the definition of the smash product in Spaces� =B .

T .G.f /^ .!�`;u�`//D T .G.f //�B T .!�`/=.y;u�`.b//� .b;x/ if f .y/D b/

D .Y qB/�B B � .B` �X= Im ı1
[ � � � [ Im ı`/=

.y; f .y/;�/� .f .y/;x/

D Y � .B` �X= Im ı1
[ � � � [ Im ı`/

qB � .B` �X= Im ı1
[ � � � [ Im ı`/=.y;�/� .f .y/;x/:

Thus

ˆ.T .G.f /^ .!�`;u�`///

D
Y � .B` �X= Im ı1[ � � � [ Im ı`/qB � .B` �X= Im ı1[ � � � [ Im ı`/

.y;�/� .f .y/;x/

,
B��

D Y � .B` �X= Im ı1
[ � � � [ Im ı`/=Y ��

D Y �B` �X= Im ı1
[ � � � [ Im ı`

D��`:

With this description of the homeomorphism, it is easy to check the diagram (6)
commutes.

We can deform any continuous map f W Y �!B into a surjective map up homotopy.
This does not change the homotopy type of the pullback by f since p is a fibration.

In the following, we always assume that f W Y �! B is surjective.

Corollary 5.4 For each `, if zh�.BC/ is h�–flat, we have an isomorphism

hB
� .G.f /^ .!�`;u�`//Š hB

� .G.f //�hB
� .S

0
B
;s0

B
/h

B
� .!�`;u�`/:

Thus the sequence of cofibrations

f.p�`C1; s�`C1/ �! .!�`;u�`/ �! .p�`; s�`/g`D1;2;���

just constructed is an injective hB
� –display of G.p/ with respect to G.f /.
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Proof Rector proved in [7] that

zh�.��`/Š zh�.YC/�zh�.BC/
zh�.ˆ.!�`;u�`//

Š hB
� .G.f //�hB

� .S
0
B
;s0

B
/h

B
� .!�`;u�`/:

Therefore the display f.p�`; s�`/; .!�`;u�`/g is an injective display.

Let us prove that the spectral sequence induced by the above display is identical to
Rector’s spectral sequence.

Let ˛�1W G.p/�! .!�1;u�1/ be the map in .Spaces =B/� defined on the total space
by the following composition.

T .G.p//DX qB
p�idXqidB
��������! B �X qB D B �X qB � f�g

D B �X=� D T .!0/
 �1
�! T .!�1/:

Let .p�1; s�1/ be the cofiber of ˛�1 . Since  �1 �2 D �,  �2 induces a map

˛�2W .p�1; s�1/ �! .!�2;u�2/

with  �3˛�2 D �. Inductively on `, we can define .p�`C1; s�`C1/ and a map

˛�`W .p�`C1; s�`C1/ �! .!�`;u�`/

with  �`�1˛�` D �:

By the commutativity of the diagram (6) and Lemma 4.12, we have an equivalence of
cofibrations

��`C1 ˆ.G.f /^ .p�`C1; s�`C1//

��` ˆ.G.f /^ .!�`;u�`//

��` ˆ.G.f /^ .p�`; s�`//

?

-

?

?

-

?
-

This completes the proof of Theorem 5.1.
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It remains to show that the gravity filtration gives rise to an injective display. Before
we investigate the gravity spectral sequence, we consider a more general situation. Let

F E

f�g B:

-

? ?

p

-

be a pullback diagram of pointed spaces. The construction of the Eilenberg–Moore
spectral sequence in Section 4 is based on the notion of display which is a filtration
on G.p/ in the category of pointed spaces over B . As we have seen in Section 4,
a display induces a stable decreasing filtration on F , and hence a spectral sequence
abutting to the homology of F . In some cases, however, the total space E itself has a
stable decreasing filtration which induces a stable decreasing filtration on F . In fact,
under some conditions, a decreasing filtration on E defines a display for G.p/ which
induces the same stable filtration on F as the one induced by the filtration on E . To
be more precise, consider the following data and conditions.

(1) A pullback diagram of pointed spaces

F E

f�g B

-

? ?

p

-�0

(2) A decreasing filtration on E

� � � � F�q�1E � F�qE � � � � � F�1E � F0E DE

in which each inclusion

F�q�1E
i�q�1

����! F�qE

is a pointed cofibration

(3) In the induced decreasing filtration on F

� � � � F�q�1F � F�qF � � � � � F�1F � F0F D F;

where F�qF D F�qE \F , each inclusion is also a pointed cofibration

Geometry & Topology Monographs, Volume 10 (2007)



On the E1–term of the gravity spectral sequence 377

Proposition 5.5 Given the above data, let p�qW F�qE �! B be the restriction of p

on F�qE . If

zh�.F�qE=F�q�1E/Š zh�.F�qF=F�q�1F /˝h�
zh�.BC/

as zh�.BC/–comodules, then

G.p/ �! C.G.i�1// �! †G.p�1/

†G.p�1/ �! †C.G.i�2// �! †2G.p�2/
:::

†qG.p�q/ �! †qC.G.i�q�1// �! †qC1G.p�q�1/
:::

is an injective hB
� –display of G.p/ with respect to G.�0/. The stable filtration on F

induced by this display coincides with the one induced directly from the filtration on
E .

Proof By the construction, f†qG.p�q/; †
qC.G.i�q�1//g is a display. Consider the

map of cofibrations:

ˆ.G.p�q�1// ˆ.G.p�q// ˆ.C.G.i�q�1///

F�q�1EC F�qEC F�qE=F�q�1E
?

k

- -

?

k

pppppppp?
- -

Since the left and the middle vertical map are homotopy equivalences, the induced map
in the right is also a homotopy equivalence. Thus

ˆ.C.G.i�q�1///' F�qE=F�q�1E:

On the other hand, since
F�qE �B f�g D F�qF;

we have G.p�q/^G.�0/DG.p�q ı j�q/;

where j�qW F�qF ,! F�qE is the inclusion. Therefore

C.G.i�q�1//^G.�0/' C

�
G.p�q�1/^G.�0/

G.i�q�1/
������!G.p�q�1/^G.�0/

�
' C

�
G.p�q�1 ı j�q/ �!G.p�q ı j�q/

�
:
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Thus the following chain of equalities holds:

hB
� .†

qC.G.i�q�1//^G.�0//D hB
� .†

qC.G.p�q�1 ı j�q/ �!G.p�q ı j�q///

D zh�.†
q.F�qF=F�q�1F //

Š zh�.†
q.F�qE=F�q�1E//�zh�.BC/h�

D hB
� .†

qG.p�q//�hB
� .S

0
B
;s0

B
/h

B
� .G.�//

This proves that f†qG.p�q/; †
qC.G.i�q�1//g is an injective hB

� –display of G.p/

with respect to G.�/.

Corollary 5.6 Under the assumption in the above proposition, the spectral sequence
defined by the filtration on F

E1
�q;� D

zh�.F�qF=F�q�1F /H) zh�.F /

is isomorphic to the classical Eilenberg–Moore spectral sequence for the pullback
diagram

F E

� B

-

? ?

p

-

from the E2–term on.

Let us apply this fact to the path-loop fibration,

�n†nX �! P�n�1†nX �!�n�1†nX;

namely the pullback diagram

(7)

�n†nX P�n�1†nX

f�g �n�1†nX

-

? ?
-

or its little cube model

Cn.X / En.CX;X /

� Cn�1.†X /
?

-

?
-
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due to May [6]. Let us recall the definition of En.CX;X /.

Definition 5.7 Let .Y;B/ be a pointed pair. We define a subspace En.j IY;B/ of
Cn.j /�Y j as follows.

.c1; � � � ; cj Iy1; � � � ;yj / 2 En.j IY;B/” if yk 62 B then ck can be extended

to the right,

where by “extend to the right”, we mean the following: for a cube

c D .f1; � � � ; fn/W .�1; 1/n �! .�1; 1/n;

let f 0
1
.t/ be the interval with f 0

1
.�1/Df1.�1/ and f 0

1
.1/D1. Let zcD .f 0

1
; f2; � � �; fn/.

For cD .c1; � � � ; cj / 2 Cn.j /, we say ck , for 1� k � j , can be extended to the right
if the image of zck does not intersect with the images of other cubes, Im zck \ Im cl D �

for l ¤ k .

By restricting the defining relation of Cn.Y / to qCn.j /�†j
Y j , we define

En.Y;B/D .
a
j

En.j IY;B/=†j /=� :

For k > 0, we define

FkEn.Y;B/D Im.
ka

jD1

En.j IY;B/=†j �!En.Y;B//

eEn.j IY;B/D Fj En.Y;B/=Fj�1En.Y;B/:and

These constructions have the following properties.

Theorem 5.8 Under the same condition as above, the sequence

Cn.X / �!En.CX;X / �! Cn�1.†X /

is a quasifibration which is weakly homotopy equivalent to the path-loop fibration

�n†nX �! P�n�1†nX �!�n�1†nX:

The stable splitting theorem (Theorem 2.10) generalizes.

Theorem 5.9 Under the same condition as above, we have the following natural stable
homotopy equivalences

(8) En.CX;X /'
S

1_
jD1

eE n.j ICX;X /=†j :

Geometry & Topology Monographs, Volume 10 (2007)



380 Dai Tamaki

With these theorems, we can replace the pullback diagram (7) by the diagram

1_
jD1

Cn.j /^†j
X^j

1_
jD1

eE n.j ICX;X /=†j

f�g

1_
jD1

Cn�1.j /^†j
.†X /^j

-

?

?

-

which is stably homotopy equivalent to (7).

In [13], the author defined a †j –equivariant decreasing filtrations on eE n.j ICX;X /

which is compatible with the gravity filtration on Cn.j / . Thus we have a filtration on
1_

jD1

eE .j ICX;X /=†j

which induces the gravity filtration on
1_

jD1

Cn.j /C ^†j
X^j :

It is essentially proved in [13] that these filtrations satisfy the condition in Proposition
5.5, hence, by Corollary 5.6, the gravity spectral sequence in [13] is isomorphic to the
classical Eilenberg–Moore spectral sequence from the E2–term on.

In order to see this is the case, we record the basic properties of the filtrations proved
in [13].

Proposition 5.10 The above filtrations on Cn.j / and eE n.j ICX;X /

� D F�j�1Cn.j /� F�jCn.j /� � � � � F�1Cn.j /D F0Cn.j /D Cn.j /

� D F�j�1
eEn.j ICX;X /� F�j

eEn.j ICX;X /� � � �

� F�1
eEn.j ICX;X /� F0

eEn.j ICX;X /

satisfy the following properties.

(1) The inclusions

F�q�1Cn.j /C ^†j
X^j

� F�qCn.j /C ^†j
X^j

F�q�1
eEn.j ICX;X /� F�q

eEn.j ICX;X /
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are pointed cofibrations for each q .

(2) The inclusion
Cn.j /C ^X^j

� eE n.j ICX;X /

is filtration preserving.

(3) Define

F�qCn.X /D

1_
jD1

F�qCn.j /C ^†j
X^j

F�qEn.CX;X /D

1_
jD1

F�q
eEn.j ICX;X /=†j :

Then for each q we have a stable homotopy equivalence:

F�qEn.CX;X /=F�q�1En.CX;X /'
S

F�qCn.X /=F�q�1Cn.X /^�
n�1†nX

From these facts it is clear that the gravity filtration on
1_

jD1

eE n.j ICX;X /=†j

satisfies the condition in Proposition 5.5. Thus we obtain the following remaining part
of Theorem 1.2.

Corollary 5.11 If h�.�
n�1†nX / is h�–flat, the gravity spectral sequence in [13] is

isomorphic to the classical Eilenberg–Moore spectral sequence from the E2–term on.

Remark 5.12 The same argument works for spectral sequences constructed in [14].
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