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Milnor operations and the generalized Chern character

TAKESHI TORII

We have shown that the n–th Morava K–theory K�.X / for a CW–spectrum X with
action of Morava stabilizer group Gn can be recovered from the system of some
height–.nC 1/ cohomology groups E�.Z/ with GnC1 –action indexed by finite
subspectra Z . In this note we reformulate and extend the above result. We construct
a symmetric monoidal functor F from the category of E_� .E/–precomodules to the
category of K�.K/–comodules. Then we show that K�.X / is naturally isomorphic
to the inverse limit of F.E�.Z// as a K�.K/–comodule.

55N22; 55N20, 55S05

Dedicated to Professor Nishida on the occasion of his 60th birthday

1 Introduction

From the chromatic point of view, the complex K–theory is a height–1 cohomology
theory and the ordinary rational cohomology is a height–0 cohomology theory. As
geometric aspects, the rational cohomology is defined by means of differential forms,
and the K–theory is defined by means of vector bundles. The classical Chern character
associates to a complex vector bundle the sum of exponentials of formal roots of the total
Chern polynomial. It may be regarded as a multiplicative natural transformation from
the K–theory to the rational cohomology, that is to say, from a height–1 cohomology
to a height–0 cohomology. There is a height–2 cohomology theory, which is called the
elliptic cohomology. Conjecturally, the elliptic cohomology may also have a geometric
interpretation analogous to the rational cohomology and the K–theory. A generalization
of Chern character to the elliptic cohomology has been considered by Miller [15]. The
idea is that the formal group law on the moduli stack of elliptic curves is degenerate to
the multiplicative formal group law when it is restricted around a cusp. Miller’s elliptic
character is a multiplicative natural transformation from the elliptic cohomology to the
K–theory with coefficients in the formal Laurent series ring, hence from a height–2

theory to a height–1 theory.

The elliptic character may be regarded as the q–expansion map of modular forms
parametrized by spaces. The q–expansion is the Fourier expansion of modular forms
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at a cusp, which associates a formal Laurent series with variable q D exp.2�
p
�1�/.

The q–expansion map has been extended at more general algebraic setting, and it has
been shown that it has a very good property, which is called q–expansion principle (cf
Deligne–Rapoport [3] and Katz [11]). In particular, the q–expansion map is injective,
and hence the modular forms are controlled by their q–expansion. The analogous
property on the elliptic character has been studied at odd primes by Laures [13]. At
the prime 2, there is a more elaborate cohomology theory related to elliptic curves
and modular forms. It is defined by the spectrum tmf of topological modular forms,
which is introduced by Mike Hopkins. The q–expansion map (evaluation at the Tate
curve) also induces a ring spectrum map from tmf to KŒŒq��. In [14] Laures studied the
K.1/–local topological modular forms at the prime 2, and discussed the relationship
between the q–expansion map, Witten genus and MOh8i–orientation of tmf .

A generalization of Chern character to higher chromatic level has been considered by
Ando, Morava and Sadofsky [1] under geometric background. Their generalized Chern
character is a multiplicative natural transformation from .nC 1/–th Morava E–theory
EnC1 to the n–th Morava E–theory with coefficients in some big Cohen ring. In [23]
we studied the degeneration of formal group law, which is used to construct their Chern
character. By using the results in [23] we refined their generalized Chern character in
[22]. Then we were able to control it algebraically. In this note we reformulate and
extend some results in [22].

Let S be the stable homotopy category of p–local spectra for some prime p . It is
known that there is a filtration of full subcategories of S , which corresponds to the
height filtration of the moduli space of one-dimensional commutative formal group
laws; see Devinatz, Hopkins and Smith [5], Hopkins and Smith [7], Morava [17] and
Ravenel [19]. The layers of this filtration are equivalent to the K.n/–local categories,
where K.n/ is the n–th Morava K–theory. Hence it is considered that the stable
homotopy category S is built from K.n/–local categories. In fact, the chromatic
convergence theorem (cf Ravenel [19]) says that for a p–local finite spectrum X ,
the natural tower � � � ! LnC1X ! LnX ! � � � ! L0X recovers X , that is, the
homotopy inverse limit of the tower is homotopy equivalent to X . Furthermore, the
chromatic splitting conjecture (cf Hovey [8]) implies that the p–completion of a finite
spectrum X is a direct summand of the product

Q
n LK.n/X . This means that it is

not necessarily to reconstruct the tower but it is sufficient to know all LK.n/X to
obtain some information about X . In [8] Hovey observed that the weak form of the
chromatic splitting conjecture should imply many interesting results. The weak form
means that the canonical map Ln.S

0/^p !LnLK.nC1/S
0 is a split monomorphism.

In [16, Remark 3.1(i)] Minami indicated that the weak form implies that there is a
natural map �X for a finite spectrum X from the K.nC 1/–localization LK.nC1/X
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to the K.n/–localization LK.n/X such that the following diagram commutes:

(1)

X
�K.n/

##G
GGGGGGGG

�K.nC1/

zztttttttttt

LK.nC1/X
� // LK.n/X

where �K .n/W X ! LK.n/X and �K .nC 1/W X ! LK.nC1/X are the localization
maps.

In [22] we considered the modulo In version of the algebraic analogue of the dia-
gram (1). The Morava E–theory En defines a functor from the K.n/–local category
to the category of twisted En�–Gn –modules, where Gn is the n–th extended Morava
stabilizer group. The Adams–Novikov spectral sequence based on En –theory has its
E2 –term H��c .GnIEn�.X // and converges to ��.LK.n/X / strongly if X is finite,
where H��c .GnI �/ is the continuous cohomology group of Gn . Hence the category
of twisted En�–Gn –modules can be considered as an algebraic approximation of the
K.n/–local category.

Let BP� be the Brown–Peterson spectrum at an odd prime p and In the invariant
prime ideal generated by p; v1; : : : ; vn�1 . There is a commutative ring spectrum
E DEnC1=In , which is a complex oriented cohomology theory with coefficient ring
E� D EnC1;�=In D FŒŒun��Œu

˙1�. We denote by K�.�/ a variant of n–th Morava
K–theory with coefficient FŒw˙1�. The modulo In –version of the algebraic analogue
of the diagram (1) is

(2)

Sf
K

  B
BB

BB
BB

B
E

||yy
yy

yy
yy

Mf
nC1

� //Mf
n

where Sf is the stable homotopy category of finite spectra, Mf
nC1

is the category
of finitely generated twisted E�–GnC1 –modules and Mn is the category of finitely
generated twisted K�–Gn –modules. So the question is: Does there exist a functor �
from Mf

nC1
to Mf

n which makes the diagram (2) commute?

In [23] we constructed a Galois extension L of the quotient field of FŒŒun��, over
which the formal group FnC1 associated with E is nicely isomorphic to the Honda
group law Hn . By using this result, we constructed a natural transformation ‚ from
E–cohomology to K–cohomology with coefficients in L in [22]:

‚W E�.X / �!L�.X /:
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This is regarded as a generalized Chern character since it is a multiplicative natural
transformation from the height–.nC 1/ cohomology E to the height–n cohomology
K with coefficients in L. Then it is shown that ‚ is equivariant with respect to
the action of GnC1 , and ‚ induces L� ˝E� E�.Z/ Š L� ˝K� K�.Z/, a natural
isomorphism of G–modules for any finite spectrum Z , where G D � Ë .Sn �SnC1/

and L�DLŒu˙1�. By these results, we have shown that there is a natural isomorphism
of twisted K�–Gn –modules:

K�.X /Šlim
 �

Z

H 0.SnC1IL�˝E� E�.Z//

for any CW-spectrum X where Z ranges over finite subspectra of X [22, Corollary 4.3].
Hence if we set the functor �.�/DH 0.SnC1IL�˝E� �/, it makes the diagram (2)
commute.

Essentially, the twisted K�–Gn –module structure gives K�.X / the stable cohomology
operations except for Milnor operations. So in this note we would like to extend the
above result in the form which includes the action of Milnor operations. Note that
the twisted K�–Gn –module structure on K�.X / with Milnor operations is equivalent
to the K�.K/–comodule structure. In this note we construct a symmetric monoidal
functor F from the category of profinite E_� .E/–precomodules to the category of
profinite K�.K/–comodules. Roughly speaking, a profinite E_� .E/–precomodule is a
filtered inverse limit of finitely generated E�–module

M D lim
 �

M=M�

such that M c has a complete E_� .E/–comodule structure, where

M c
Dlim
 �

M=M�CmiM:

For a profinite E_� .E/–precomodule M , there is a natural twisted E�–GnC1 –module
structure on M . Hence M b̋E�L� is a twisted L�–GnC1 –module. We set

F.M /DH 0.SnC1IM b̋E�L�/:

Theorem A (Corollary 6.5) The functor F extends to a symmetric monoidal func-
tor from the category of profinite E_� .E/–precomodules to the category of profinite
K�.K/–comodules.

For a spectrum X we denote by ƒ.X / the category whose objects are maps Z
u
!X

with Z finite. We associate to X a cofiltered system E�.X /DfE�.Z/g and K�.X /D

fK�.Z/g indexed by ƒ.X /. Then E�.X /D lim
 �

E�.X / and K�.X /D lim
 �

K�.X /.

The following is the main theorem of this note.
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Theorem B (Theorem 6.11) For any spectrum X , the generalized Chern character
‚ induces a natural isomorphism of cofiltered system of K�.K/–comodules:

F.E�.X //Š K�.X /:

If X is a space, then this is an isomorphism of systems of K�.K/–comodule algebras.

The organization of this note is as follows. In Section 2.1 we summarize well-known
results on generalized cohomology theories which are Landweber exact over P .n/. In
Section 2.2 we review our main result in [23] on degeneration of formal group laws. In
Section 2.3 we review on the construction of the generalized Chern character.

In Section 3.1 we study the category of complete Hausdorff filtered modules and the
action of a profinite group on a complete module. In Section 3.2 we recall complete
Hopf algebroids and their comodules.

In Section 4.1 we describe the structure of complete Hopf algebroid C.G;Rc/, where
C.G;Rc/ is the ring of all continuous functions from a profinite group G to an
even-periodic complete local ring Rc . In Section 4.2 we show the well-known fact
that the category of complete C.G;Rc/–comodules is equivalent to the category
of complete twisted Rc –G–modules. Usually, we use and study the category of
complete twisted Fpn –Gn –modules. In Section 4.3 we show that there is no essential
difference between the category of complete twisted F–Gn –modules and the category
of complete twisted Fpn –Gn –modules. In Section 4.4 we reformulate a result of
[22]. We construct a symmetric monoidal functor F from the category of profinite
C.GnC1;E

c
�/–precomodules to the category of profinite C.Gn;K�/–comodules, and

show that there is a natural isomorphism between F.E�.X // and K�.X / as systems
of C.Gn;K�/–comodules.

In Section 5.1 we define a complete co-operation ring A_� .A/ for ADEnCk=In , and
study a A_� .A/-(pre)comodule algebra structure on the A–cohomology of the projective
space CP1 and the lens space S2pn�1=.Z=p/. In Section 5.2 we study a twisted E�–
GnC1 –module structure on the exterior algebra ƒE� and show that F.ƒE�/ŠƒK�

as twisted K�–Gn –modules. In Section 5.3 we define Milnor operations QA
i for a

ƒA� –comodule M . In Section 5.4 we study A_� .A/–comodule structures in terms of
CA� –comodule structures and ƒA� –comodule structures. We show that an A_� .A/–
comodule structure is equivalent to a CA� –comodule structure and a ƒA� –comodule
structure which satisfy some compatibility condition.

In Section 6.1 we extend the symmetric monoidal functor F from the category of
profinite E_� .E/–precomodules to the category of profinite K�.K/–comodules. In
Section 6.2 we prove the main theorem.
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In this note p shall be an odd prime except for Section 2.2, F a finite field containing
Fpn and FpnC1 , and Gal the Galois group Gal.F=Fp /. We think a group G acts on
a ring R from the right and denote by rg the right action of g 2 G on r 2 R. For
a power series ˛.X /D

P
˛iX

i 2 RŒŒX ��, we set ˛g.X /D
P
˛

g
i X i for g 2 G . An

R–module means a left R–module if nothing else is indicated.

2 The generalized Chern character

2.1 Landweber exact theories over P.n/

Definition 2.1 A graded commutative ring R� is said to be even-periodic if R� is
concentrated in even degrees and R2 contains a unit in R� . A multiplicative generalized
cohomology theory h�.�/ is said to be even-periodic if the coefficient ring h�Dh�.pt/
is even-periodic.

For a spectrum X , we denote by ƒ.X / the category whose objects are maps Z
u
! X

such that Z is finite, and whose morphisms are maps Z
v
!Z0 such that u0v D u.

Then ƒ.X / is an essentially small filtered category.

Definition 2.2 Let h�.�/ be a generalized cohomology theory. For a spectrum X, we
define a filtration on h�.X / indexed by ƒ.X / as

FZ h�.X /D Ker.h�.X / �! h�.Z//

for Z 2ƒ.X /. We call this filtration the profinite filtration and the resulting topology
the profinite topology.

Remark 2.3 If h�.�/ is even-periodic and the degree–0 coefficient ring h0 is a
complete Noetherian local ring, then h�.Z/ is a finitely generated h�–module for all
Z 2ƒ.X /, and the canonical homomorphism

h�.X / �! lim
 �

Z2ƒ.X/

h�.Z/

is an isomorphism. This implies that h�.X / is complete Hausdorff with respect to the
profinite topology.

Let BP be the Brown–Peterson spectrum at an odd prime p , whose coefficient ring is
given by BP� D Z.p/Œv1; v2; : : :� with jvi j D 2.pi � 1/. Let In be the invariant prime
ideal generated by p; v1; : : : ; vn�1 . There is a commutative BP –algebra spectrum
P .n/, whose coefficient ring is P .n/� D BP�=In . In particular, P .0/ D BP . Let
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X DCP1 the infinite dimensional complex projective space, and YDS2pn�1=.Z=p/
the lens space of dimension 2pn�1, where Z=p is the cyclic group of order p acting
on the unit sphere S2pn�1 in Cpn

by standard way. These spaces are important test
spaces to stable cohomology operations of complex oriented cohomology theories (cf
[2, Section 14]). The P .n/–cohomology of X and Y are given as follows:

P .n/�.X / D P .n/�ŒŒx��;

P .n/�.Y/ D ƒ.y/˝P .n/�Œx�=.x
pn

/;

where x 2 P .n/2.X / is the orientation class and y 2 P .n/1.Y/.

Let F be a p–typical formal group law over a commutative ring R. By universality
of the p–typical formal group law FBP associated to BP , there is a unique ring
homomorphism f W BP� ! R such that F is the base change of FBP by f . If
f .vi/D 0 for 0� i < n, then f induces a ring homomorphism f W P .n/�!R. In
this case we say that a p–typical formal group law F is of strict height at least n.
Hence P .n/� is the universal ring of p–typical formal group law of strict height at least
n. We say that a ring homomorphism P .n/�!R is Landweber exact over P .n/, if the
sequence vn; vnC1; : : : is regular in R. In this case, the functor R�˝P.n/� P .n/�.�/

is a generalized homology theory by Landweber–Yagita exact functor theorem [12; 25],
where R� is the even-periodic commutative ring RŒu˙1� with juj D �2. Furthermore,
if R is a complete Noetherian local ring, then

R�.X /D lim
 �
ƒ.X/

.R�˝P.n/� P .n/�.Z//

is a generalized cohomology theory.

Let F be a finite field which contains the finite fields Fpn and FpnC1 . Let E�n .�/ be a
variant of Morava E–theory whose coefficient ring is given by

En� DW .F/ŒŒu1; : : : ;un�1��Œu
˙1�;

where W .F/ is the ring of Witt vectors with coefficients in F. The grading is given
by ui D 0 for 1 � i < n and juj D �2. Then the degree–0 formal group law Fn

associated to En is a universal deformation of the Honda group law Hn of height
n over F. For 0 � k � n, there is a commutative multiplicative cohomology theory
.En=Ik/

�.�/ whose coefficient ring is just En�=Ik , where Ik is the invariant prime
ideal .p;u1; : : : ;uk�1/.

We define even-periodic graded commutative rings E� and K� as follows:

E� D FŒŒun��Œu
˙1�;

K� D FŒw˙1�;
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where the gradings are given by junj D 0; jwj D juj D �2. The ring homomorphisms
P .n/�!E� given by vn 7! unu�.p

n�1/; vnC1 7! u�.p
nC1�1/; vi 7! 0 for i > nC1,

and P .n/� ! K� given by vn 7! w�.p
n�1/; vi 7! 0 for i > n, make E� and K�

Landweber exact P .n/�–algebras, respectively. Hence

E�.X / D lim
 �

.E�˝P.n/�P .n/
�.Z//;

K�.X / D lim
 �

.K�˝P.n/�P .n/
�.Z//;

define generalized cohomology theories. Note that there are no limit one problems
since the degree–0 subrings are complete Noetherian local rings, respectively. The
cohomology theory K�.�/ is a variant of Morava K–theory and the associated degree–
0 formal group law is the Honda group law Hn of height n over F. Since the
cohomology theory E�.�/ is .EnC1=In/

�.�/, the associated degree–0 formal group
law is the base change of FnC1 to FŒŒun��.

xE D 1˝x 2E0.X /;We set

yE D 1˝y 2E1.Y/;

xK D 1˝x 2K0.X /;

yK D 1˝y 2K1.Y/:

E�.X /ŠE�ŒŒxE ��;Then we have

E�.Y/Šƒ.yE/˝E�ŒxE �=.x
pn

E
/;

K�.X /ŠK�ŒŒxK ��;

K�.Y/Šƒ.yK /˝K�ŒxK �=.x
pn

K
/:

2.2 Degeneration of formal groups

In this subsection we review some results in [23]. In this subsection p is any prime
number. Let EnC1;0 be the degree–0 coefficient ring of the variant of Morava E–theory
EnC1 :

EnC1;0 DW .F/ŒŒu1; : : : ;un��:

The associated degree–0 formal group law FnC1 is a universal deformation of the
Honda group laws HnC1 of height nC 1 over F. The extended Morava stabilizer
group GnC1 D Gal Ë SnC1 is the automorphism group of FnC1 in some generalized
sense (cf Strickland [21] and Torii [23]), where Gal is the Galois group Gal.F=Fp / and
SnC1 is the n–th Morava stabilizer group. Note that SnC1 is the automorphism group
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of HnC1 in the usual sense. The extended Morava stabilizer group GnC1 is a profinite
group and acts on EnC1;0 continuously, where the topology of EnC1;0 is given by the
adic-topology. Since the ideal In D .p;u1; : : : ;un�1/ of EnC1;0 is stable under the
action, GnC1 also acts on the quotient ring EnC1;0=In D FŒŒun�� continuously.

We regard the formal group law FnC1 as being defined over FŒŒun�� by the obvious base
change. This situation is a kind of degeneration and a fundamental technique to study a
degeneration is to investigate the monodromy representation. Let M D F..un// be the
quotient field of FŒŒun�� and M sep its separable closure. Then the height of FnC1 on M

is n. Hence the fibre of FnC1 over M sep is isomorphic to Hn since the isomorphism
classes of formal group laws over a separably closed field are classified by their height.
The monodromy representation of FnC1 around the closed point gives the following
homomorphism:

Gal.M sep=M /D �1.M / �! Aut.Hn/D Sn:

This homomorphism was studied by Gross in [6].

Let ˆ be an isomorphism over M sep between FnC1 and Hn :

ˆ.FnC1.X;Y //DHn.ˆ.X /; ˆ.Y //:

Let L be a separable algebraic extension of M obtained by adjoining all the coefficients
of ˆ.X /. Then the above homomorphism Gal.M sep=M /! Sn induces an isomor-
phism Gal.L=M /

Š
! Sn , and this extends to an isomorphism Gal.L=Fp ..un///ŠGn .

Let G be the semidirect product Gal Ë .Sn �SnC1/. Then G is a profinite group, and
contains Gn and GnC1 as closed subgroups.

The following theorem is a main point of [23].

Theorem 2.4 [23, Section 2.4] The profinite group G acts on the formal group law
.FnC1;L/ in generalized sense. The action of the subgroup GnC1 is an extension
of the action on .FnC1;FŒŒun��/. The action of the subgroup Gn on .FnC1;L/ is the
action of Galois group on L and the trivial action on FnC1 . Under the isomorphism
ˆW FnC1

Š
!Hn , the induced action of G on .Hn;L/ is encoded as the following two

commutative diagrams. For g 2GnC1 , there is a commutative diagram

(3)

FnC1
tE.g///

ˆ

��

FnC1
g

ˆg

��
Hn

D // H
g
n ;
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where tE.g/.X / is an isomorphism from FnC1 to FnC1
g corresponding to g . For

h 2Gn , there is a commutative diagram

(4)

FnC1
D //

ˆ

��

FnC1
h

ˆh

��
Hn

tK .h/ // H h
n ;

where tK .h/.X / is the automorphism of Hn corresponding to h.

2.3 The generalized Chern character

In this subsection we review the generalized Chern character ‚ constructed in [22].

The co-operation ring P .n/�.P .n// is isomorphic to

P .n/�Œt1; t2; : : :�˝ƒ.a.0/; : : : ; a.n�1//

as a left P .n/�–algebra, where jti j D 2.pi � 1/ and ja.i/j D 2pi � 1. In particu-
lar, P .n/�.P .n// is a free P .n/�–module. Hence .P .n/�;P .n/�.P .n/// is a Hopf
algebroid over Fp . By formalism of Boardman [2], there is a natural P .n/�.P .n//–
comodule structure on the completion P .n/�.X /^ with respect to the profinite topol-
ogy:

�W P .n/�.X /^ �! P .n/�.P .n// b̋P.n/�P .n/
�.X /^:

The set of Fp –algebra homomorphisms from P .n/�.P .n//=.a.0/; : : : ; a.n�1// to an
even-periodic Fp –algebra R� is naturally identified with the set of triples .F; f;G/,
where F and G are p–typical formal group laws over R0 with strict height at
least n, and f is an isomorphism between them. Let L� be an even-periodic E�–
algebra LŒu˙1�. By Theorem 2.4 and the above moduli interpretation of the ring
P .n/�.P .n//=.a.0/; : : : ; a.n�1//, there is a ring homomorphism � W P .n/�.P .n//!

P .n/�.P .n//=.a.0/; : : : ; a.n�1//!L� such that the following diagram commutes:

P .n/�
Hn //

�R

��

K�

��
P .n/�.P .n//

� // L�

P .n/�
FnC1 //

�L

OO

E�:

OO

Geometry & Topology Monographs, Volume 10 (2007)



Milnor operations and the generalized Chern character 393

That is, � corresponds to the triple .FnC1; ˆ;Hn/ over L. For Z 2 ƒ.X /, by
extending the natural ring homomorphism

P .n/�.Z/
�
�! P .n/�.P .n//˝P.n/�P .n/

�.Z/
�˝1
�! L�˝P.n/�P .n/

�.Z/

Š L�.Z/

to E�.Z/ D E� ˝P.n/� P .n/�.Z/ ! L�.Z/, we obtain a multiplicative natural
transformation

(5) ‚ WE�.X / �!L�.X /;

which we call the generalized Chern character.

The following lemma is easily checked.

Lemma 2.5 ‚.xE/Dˆ.xK / and ‚.yE/D 1˝yK .

3 Complete Hopf algebroids

3.1 Complete modules

Let k be a commutative ring. We say that .M; fF�M g�2ƒ/ is a filtered k –module if
M is an k –module and fF�M g�2ƒ is a family of k –submodules indexed by a (small)
filtered category ƒ. Then M can be given a linear topology. We denote by FModk the
category of filtered k –modules and continuous homomorphisms. A filtered k –module
.M; fF�M g�2ƒ/ is said to be complete Hausdorff if the canonical homomorphism

M !lim
 �ƒ

M=F�M

is an isomorphism. We denote by FModc
k the full subcategory of FModk whose

objects are complete Hausdorff. We say that .M; fF�M g�2ƒ/ 2 FModc
k is a profinite

k –module if M=F�M is a finitely generated k –module for all � 2ƒ. We denote by
ProFGk the full subcategory of FModc

k whose objects are profinite.

Since FModc
k is a symmetric monoidal category with tensor product b̋k and unit

object k , we can define commutative monoid objects in FModc
k , that is, complete

commutative k –algebras. We denote by FAlgc
k the category of complete commutative

k –algebras. For R 2 FAlgc
k , we can define an R–module in FModc

k , and we denote
by FModc

R the category of R–modules. For R1!R2 2 FAlgc
k , there is a base change

functor
.�/ b̋R1

R2W FModc
R1
����! FModc

R2
:
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If R is a complete Noetherian local k –algebra with maximal ideal m, then R with m–
adic filtration can be regarded as an object in FAlgc

k . We denote by Rc the k –module
R with m–adic filtration, and simply by R the k –module R with trivial filtration f0g.
Note that the base change M b̋RRc for M 2 FModc

R is given by

lim
 �

M=.F�M CmiM /

with inverse limit topology. Since M is isomorphic to the inverse limit of M=miM

for a finitely generated R–module M , we see that M b̋RRc Š M as (abstract)
R–modules for M 2 ProFGR .

Example 3.1 Let h�.�/ be a generalized cohomology theory and X a spectrum. We
defined the profinite filtration on h�.X / in Remark 2.3. If h�.�/ is even-periodic and
the degree–0 coefficient ring h0 is a complete Noetherian local ring, then h�.X / is a
complete Hausdorff profinite h�–module. Hence the cohomology theory h�.�/ gives
a functor from the stable homotopy category to ProFGh� .

Lemma 3.2 Let M 2 FModc
k and M the underlying k –module. If M 2 FModc

R ,
then M is an R–module in the usual sense.

Proof The map R˝M !R b̋M !M gives an R–module structure on M .

Lemma 3.3 If M 2 FModc
R , then for any open k –submodule M� there is an open

R–submodule N such that N �M� .

Proof The fact that M 2 FModc
R implies that the map R b̋M ! M ! M=M�

factors through R˝M=M� for some open k –submodule M� . Hence R �M� �M� .
We take N as R �M� . Since M� �N , N is an open R–submodule. This completes
the proof.

Corollary 3.4 Let M 2 FModc
R . There is a fundamental (open) neighborhood system

at 0 consisting of R–submodules.

Corollary 3.5 Let M and N be objects in FModc
R . Then

M b̋
R

N Š lim
 �
�;�

.M=F�M /˝R .N=F
�N /;

where fF�M g� and fF�N g� are families of all open R–submodules of M and N ,
respectively.
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Lemma 3.6 Let M 2 FModc
R . Then M is an Rc –module compatible with given

R–module structure if and only if for any open R–submodule N there is a nonnegative
integer i such that miM �N .

Proof If M is an Rc –module compatible with given R–module structure, then there
is a continuous map Rc b̋RM �!M , which makes M an Rc –module. Then the
map Rc b̋RM !M !M=N factors through R=mi˝R M=N 0 for some i and some
open R–submodule N 0 . This implies that miM �miM CN 0 �N .

If for any open R–submodule N there is i such that miM � N , then there are
compatible maps Rc b̋RM !R=mi˝R M=N !M=N , which induce a continuous
map Rc b̋RM !M . This map defines an Rc –module structure on M compatible
with given R–module structure.

Lemma 3.7 Let M 2 FModc
k . If a profinite group G acts on M continuously as k –

module homomorphisms, then for any open submodule M� there is an open submodule
N such that G �N �M� .

Proof For any g 2G , there are an open submodule Ng of M and an open neighbor-
hood Ug of g such that Ug �Ng �M� . Since G is compact, G D Ug1

[ � � � [Ugn
.

Take an open submodule N such that N � Ng1
\ � � � \Ngn

. Then for any g 2 G ,
g 2 Ugi

for some i , and for any x 2 N � Ngi
, g � x 2 Ugi

�Ngi
�M� . Hence we

obtain that G �N �M� .

Corollary 3.8 Let M 2 FModc
k . If a profinite group G acts on M continuously

as k –modules homomorphisms, then for any open submodule M� , there is an open
G –submodule N such that N �M� .

Proof By Lemma 3.7, there is an open submodule N 0 such that G �N 0 �M� . Let
N be the submodule generated by G �N 0 . Then N is a G –submodule and N �M� .
Since N 0 �N , N is an open submodule. This completes the proof.

Corollary 3.9 Let M 2 FModc
k and G a profinite group. Suppose that G acts

on M continuously as k –module homomorphisms. There is a fundamental (open)
neighborhood system at 0 consisting of G –submodules.

Theorem 3.10 Let G be a profinite group acting on Rc continuously as k –algebra
homomorphisms, and M a complete twisted Rc –G–module. For any open R–
submodule M� , there is an open R–G –submodule N such that N �M� .
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Proof By Corollary 3.8, there is an open k –G –submodule N 0 such that N 0 �M� .
Let N be the R–submodule generated by N 0 . Then N is an open G –submodule such
that N �M� .

Corollary 3.11 Let M be a complete twisted Rc –G –module. Then there is a funda-
mental (open) neighborhood system at 0 consisting of R–G –submodules.

3.2 Complete Hopf algebroids and complete precomodules

Let A and � be objects in FAlgc
k . We suppose that there are maps in FAlgc

k :

�RW A �! �;

�LW A �! �;

�W � �! �;

"W � �! A:

If the maps .�R; �L; �; "/ satisfy the usual Hopf algebroid relations [18, Appendix 1],
then we say that the pair .A; �/ is a complete Hopf algebroid over k . A Hopf algebroid
is a complete Hopf algebroid with discrete topology. Since P .n/�.P .n// is free over
P .n/� , P .n/�.P .n// is a Hopf algebroid, hence, a complete Hopf algebroid over Fp .

Let A! B be a map in FAlgc
k . We set

�B WD B b̋A� b̋AB:

Then .B; �B/ is a complete Hopf algebroid over k as usual.

Example 3.12 Let h�.�/ be an even-periodic Landweber exact theory over P .n/

such that h0 is a complete Noetherian local ring. Put

�.h/D hc
�
b̋P.n/�P .n/�.P .n// b̋P.n/�h

c
�:

Then .hc
�; �.h// is a complete Hopf algebroid over Fp .

An object M 2 FModc
A is said to be a complete � –comodule if there is a continuous

map �W M ! � b̋AM such that obvious co-associativity and co-unity diagrams
commute.

Definition 3.13 Let R be a complete Noetherian local ring, and .Rc ; �/ a complete
Hopf algebroid over k . An object M 2FModc

R is said to be a complete � –precomodule
if there is a continuous map

�W M �! � b̋RM

such that the following two conditions are satisfied:

Geometry & Topology Monographs, Volume 10 (2007)



Milnor operations and the generalized Chern character 397

(1) For any open R–submodule M� of M , there is an open R–submodule M� such
that the map M

�
! � b̋RM ! � b̋RM=M� factors through M=M� . When the

above condition is satisfied, � induces a continuous map �c W M c! � b̋Rc M c .

(2) The continuous map �c makes M c a complete � –comodule.

Furthermore, if M is a complete Hausdorff commutative R–algebra and �c is a map
of complete Rc –algebras, then M is said to be a complete � –precomodule algebra.

For Z finite, the coaction map P .n/�.Z/!P .n/�.P .n//˝P.n/� P .n/�.Z/ induces
a natural continuous map

h�.Z/ �! �.h/ b̋h�h
�.Z/:

Proposition 3.14 Let h�.�/ be an even-periodic Landweber exact theory over P .n/

such that h0 is a complete Noetherian local ring. Then h�.Z/ has a natural �.h/–
precomodule structure for finite Z . Furthermore, if Z is a finite CW-complex, then
h�.Z/ is a �.h/–precomodule algebra.

Proof Since h�.Z/ is discrete if Z is finite, the condition .1/ is trivial. Actu-
ally, h�.Z/ is a h� ˝P.n/� P .n/�.P .n//˝P.n/� h�–comodule. Hence h�.Z/c D

hc
�
b̋h�h

�.Z/ is �.h/–comodule. If Z is a finite CW-complex. it is easy to see that
h�.Z/ is a �.h/–precomodule algebra.

4 Complete Hopf algebroid C.G; Rc
�
/

4.1 The Hopf algebroid structure of C.G; Rc
�/

Let k be a commutative ring and R� an even-periodic graded commutative k –algebra
such that the degree–0 subring R0 is a complete local ring with maximal ideal m0 . We
denote by Rc

� a graded topological ring R� with m–adic topology, where mDm0R.
Let G be a profinite group, which continuously acts on Rc

� as k –algebra automorphisms
from the right. Let C D C.G;Rc

�/ be the set of all continuous maps from G to Rc
� .

Then C is an even-periodic commutative ring from the ring structure on Rc
� . It is

known that the pair .Rc
�;C / is a graded complete Hopf algebroid over k . In this

section we describe the structure of .Rc
�;C / (cf [9, Section 6.3]).

First, note that there is an isomorphism of commutative rings

C D C.G;Rc
�/Šlim

 �
i

C.G;R�=m
i/;
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where C.G;R�=m
i/ is the ring of all continuous map from G to the discrete ring

R�=m
i . We give the inverse limit topology to C , where C.G;R�=m

i/ is discrete. The
projection Rc

� �G!Rc
� gives a continuous ring homomorphism �RW R

c
�! C . By

the ring homomorphism k!Rc
�

�R
!C , we regard C as a commutative k –algebra. The

action Rc
� �G!Rc

� gives a continuous ring homomorphism �RW R
c
�! C , which is

a k –algebra homomorphism.

Let C.G � G;Rc
�/ be the ring of all continuous maps from G � G to Rc

� . Then
C.G �G;Rc

�/ is a complete commutative k –algebra as in C .

Let G be a profinite group. We denote by C.G;M / the set of all continuous maps
from G to M 2 FModc

k . Then it can be given a k –module structure on C.G;M /

from the k –module structure on M . There is an isomorphism of k –modules

C.G;M /Š lim
 �

N

lim
�!

U

F.G=U;M=N /;

where F.G=U;M=N / is the set of all maps from G=U to M=N , N ranges over
all open submodules of M , and U ranges over all open normal subgroup of G . We
regard C.G;M / as an object in FModc

k by inverse limit topology.

Lemma 4.1 For a profinite group G and M 2 FModc
k , there is a natural isomorphism

in FModc
k :

C.G; k/ b̋kM Š C.G;M /:

Proof We have an isomorphism

C.G; k/ b̋M Š lim
 �

lim
�!

F.G=U; k/˝M=N:

Since G=U is a finite set, F.G=U; k/˝M=N Š F.G=U;M=N /. Hence we see that
C.G; k/ b̋M Š lim

 �
lim
�!

F.G=U;M=N /Š C.G;M /.

Let mW C �C ! C.G�G;Rc
�/ be a map given by m.˛; ˇ/.g1;g2/D ˛.g1/

g2ˇ.g2/

for ˛; ˇ2C;g1;g22G . The map m induces an isomorphism of complete commutative
k –algebras:

C b̋
Rc
�

C
Š
�! C.G �G;Rc

�/:

We define a map  by

 W C
e 
! C.G �G;Rc

�/Š C b̋
Rc
�

C;
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where e is the map induced by the multiplication G �G!G . Then we can check
that  is a continuous k –algebra homomorphism.

Let �W C ! C be the map given by �.˛/.g/D ˛.g�1/g for ˛ 2 C;g 2G . Then it is
easy to see that � is a continuous k –algebra automorphism. Let "W C !Rc

� be the
map given by ".˛/D ˛.e/ for ˛ 2 C , where e is the identity element of G . Then it is
also easy to see that " is a continuous k –algebra homomorphism.

Theorem 4.2 (cf Hovey [9, Section 6.3]) The pair .Rc
�;C / with .�R; �L;  ; �; "/ is

a graded complete Hopf algebroid over k .

Remark 4.3 Let C.G; k/ be the ring of all continuous maps from G to k . There
is an isomorphism C Š C.G; k/ b̋kRc

� of complete k –algebras by Lemma 4.1, and
C.G; k/ is a Hopf algebra over k by Theorem 4.2. The right action of G on Rc

� gives
Rc
� a graded (left) C.G; k/–comodule algebra structure. Let �W Rc

�!C.G; k/ b̋kRc
�

be the comodule algebra structure map. In this situation we can construct a split Hopf
algebroid .Rc

�;C.G; k/ b̋kRc
�/. In fact, � D �L under the above isomorphism, and

the graded complete Hopf algebroid .Rc
�;C / is isomorphic to .Rc

�;C.G; k/ b̋kRc
�/.

4.2 Twisted modules

In this subsection we show that there is an equivalence of symmetric monoidal categories
between the category of complete C –comodules and the category of complete twisted
Rc
�–G –modules.

Definition 4.4 A complete Hausdorff filtered Rc
�–module M is said to be a complete

twisted (right) Rc
�–G –module if G acts on M continuously (from the right) such that

.am/g D ag � .m/g for all m 2M; a 2R�;g 2G .

Remark 4.5 The category of complete twisted Rc
�–G –modules is a symmetric mon-

oidal category under complete tensor product b̋
Rc
�

and unit object Rc
� .

Definition 4.6 A complete Hausdorff filtered Rc
�–module M is said to be a complete

(left) C –comodule if there is a continuous left Rc
�–module homomorphism �M W M !

C b̋
Rc
�

M , which makes co-associativity and co-unity diagrams commute.

Remark 4.7 The category of complete C –comodules is a symmetric monoidal cate-
gory under complete tensor product b̋

Rc
�

and unit object Rc
� .
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Lemma 4.8 For a complete (left) C –comodule M , there is a natural complete twisted
(right) Rc

�–G –module structure on M .

Proof We denote by ev.g/W C !Rc
� the evaluation map at g 2G . Then the map

M �! C b̋
Rc
�

M
ev.g/˝1
������!Rc

�
b̋
Rc
�

M ŠM

defines a twisted R�–G –module structure on M . Hence it is sufficient to show that
the action map M �G!M is continuous.

Let N be an open R–submodule of M . Then miM �N for some i , since M is an
Rc
�–module. In this case, C.G;R=mi/˝R M=N Š C.G;M=N /. Then there is an

open R–submodule N 0 , which makes the following diagram commute:

M //

��

C b̋M

��
M=N 0 // C.G;M=N /:

We note that for any element of M=N 0 the image under the bottom arrow factors through
F.G=U;M=N / for some open normal subgroup U of G . The above commutative
diagram gives us the following commutative diagram:

M �G //

��

M

��
M=N 0 �G // M=N:

By the above remark, the bottom arrow is continuous. Hence top arrow is also continu-
ous. This completes the proof.

Lemma 4.9 Let M be an Rc
�–module and G a profinite group. Then there is an

isomorphism of left Rc
�–modules

C b̋
Rc
�

M Š C.G;M /;

where the left Rc
�–module structure on C b̋M comes from �L of C , and the left

Rc
�–module structure on C.G;M / is given by .r � f /.g/ D rg � f .g/ for r 2 R,

f 2 C.G;M /, g 2G .
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Proof There is an isomorphism C ŠC.G; k/ b̋kRc
� by Lemma 4.1. Hence C b̋Rc

�
M

is isomorphic to C.G; k/ b̋kM . Then we have

C.G; k/b̋kM Š lim
 �

N

lim
�!

U

F.G=U; k/˝k M=N

Š lim
 �

N

lim
�!

U

F.G=U;M=N /

Š lim
 �

N

C.G;M=N /

Š C.G;M /:

It is easy to check that this isomorphism respects the left Rc
�–module structures.

Lemma 4.10 For a complete twisted (right) Rc
�–G–module M , there is a natural

complete (left) C –comodule structure on M .

Proof The G –module structure map M �G!M gives a map M !C.G;M /. By
Lemma 4.9, we obtain a map M ! C b̋M . If this map is continuous, it is easy to
check that it defines a complete C –comodule structure on M . Hence it is sufficient
to show that M ! C.G;M / is continuous. For any open submodule N of M and
g 2 G , there are open submodule Ng of M and an open neighborhood Ug of g

such that Ng �Ug � N . Since G is compact, G D Ug1
[ � � � [Ugn

. Let N 0 be an
open submodule such that N 0 � Ng1

\ � � � \Ngn
. Then N 0 � G � N . Hence the

map M �G!M !M=N factors through M=N 0 �G . This implies that the map
M ! C.G;M /! C.G;M=N / factors through M=N 0 . Hence M ! C.G;M / is
continuous. This completes the proof.

Theorem 4.11 There is an equivalence of symmetric monoidal categories between
the category of complete twisted (right) Rc

�–G –modules and the category of complete
(left) C –comodules.

Proof By Lemma 4.8 and Lemma 4.10, there is an equivalence of categories between
the category of complete C –comodules and the category of complete twisted Rc

�–G –
modules. It is easy to check that this equivalence respects the symmetric monoidal
structures.

4.3 Remark on twisted modules

In this subsection we let G D Gal.Fpn=Fp / Ë Sn . Usually, G is called the n–th
extended Morava stabilizer group, and it is important to study the category of complete
twisted Fpn –G–modules. In this subsection we compare the category of complete
twisted Fpn –G –modules and the category of complete twisted F–Gn –modules.
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There is an exact sequence:

1! Gal.F=Fpn/ �!Gn �!G! 1:

Hence, for a twisted F–Gn –module M , the submodule M Gal.F=Fpn / invariant over
Gal.F=Fpn/ is a twisted Fpn –G–module. Conversely, for a twisted Fpn –G–module
N , we can give F˝Fpn N an obvious twisted F–Gn –module structure.

Lemma 4.12 For a finite dimensional twisted F–Gn –module M , M Gal.F=Fpn / is a
finite dimensional twisted Fpn –G –module, and F˝Fpn M Gal.F=Fpn / is isomorphic to
M as a twisted F–Gn –module.

Proof Let m D dimFM . We obtain an isomorphism M Š F˝Fpn M Gal.F=Fpn / as
twisted F–Gal.F=Fpn/–modules, since we have H 1.Gal.F=Fpn/IGLm.F// D f1g
(cf Serre [20, Proposition X.1.3]). By the above exact sequence, M Gal.F=Fpn / is a
twisted Fpn –G–module, and we see that this is an isomorphism of twisted F–Gn –
modules.

Remark 4.13 Since the cardinality of M is finite, the action of Gn on M and the
action of G on M Gal.F=Fpn / are continuous by Lemma 4.20.

Let M be a profinite twisted F–Gn –module. By Corollary 3.11, we can take a
fundamental neighborhood system fF�M g at 0 consisting of open F–Gn –submodules.
Then

M Gal.F=Fpn /
Š lim
 �

.M=F�M /Gal.F=Fpn / ;

and M Gal.F=Fpn / is a profinite twisted Fpn –G –module with filtration F�.M Gal.F=Fp / /,
where F�.M Gal.F=Fpn / / is the kernel of the map M Gal.F=Fpn /! .M=F�M /Gal.F=Fpn / .
Conversely, for a profinite twisted Fpn –G–module N , we can give F b̋Fpn N an
obvious profinite twisted F–Gn –module structure. By Lemma 4.12 and Remark 4.13,
we obtain the following proposition.

Proposition 4.14 The functor M 7!M Gal.F=Fpn / gives an equivalence of symmetric
monoidal categories between the category of profinite twisted F–G –modules and the
category of profinite twisted Fpn –G–modules. The quasi-inverse of this functor is
given by N 7! F b̋Fpn N .

By Proposition 4.14, there is no essential difference between profinite twisted F–Gn –
modules and profinite twisted Fpn –G –modules.
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4.4 Reformulation

In this section we reformulate the results in [22]. Set

CE� D C.GnC1;E
c
�/;

CK� D C.Gn;K�/:

Then .Ec
�;CE�/ and .K�;CK�/ are graded complete Hopf algebroids over Fp by

Theorem 4.2.

Let M be a profinite CE� –precomodule. Then M c is a complete twisted Ec
�–GnC1 –

module by Lemma 4.8. Note that M cDM as an abstract E�–module. Since the GnC1

action on L is compatible with the GnC1 –action on M , GnC1 acts on M b̋E�L� ,
where L� D LŒu˙1� is regarded as a discrete module. We define F.M / to be the
SnC1 –invariant submodule of L� b̋E�M :

F.M /DH 0.SnC1IL� b̋
E�

M /:

We regard K� D FŒw˙1� as a subring of L� DLŒu˙1� by w Dˆ�1
0

u. The following
lemma was proved in [22, Lemma 4.2].

Lemma 4.15 H 0.SnC1IL�/DK� .

Note that E� with discrete topology is a CE� –precomodule.

Corollary 4.16 F.E�/DK� .

Lemma 4.17 Let ML be a finite dimensional twisted L�–GnC1 –module. Then the
dimension of H 0.SnC1IML/ over K� is finite.

Proof We prove the lemma by induction on the dimension of ML . Suppose that
dim MLD1. If H 0.SnC1IML/D0, then it is okay. Suppose that H 0.SnC1IML/¤0.
Take a nonzero a 2H 0.SnC1IML/. Then ML is isomorphic to L� as a twisted L�–
GnC1 –module. Hence this case follows from Lemma 4.15.

Suppose that dim ML D n > 1, and that the lemma is true for M 0
L

of dimension
< n. If H 0.SnC1IML/D 0, then it is okay. Suppose that H 0.SnC1IML/¤ 0. Let
a 2H 0.SnC1IML/ be a nonzero element, and NL the L�–submodule generated by
a. There is an exact sequence of K�–modules:

0!H 0.SnC1INL/ �!H 0.SnC1IML/ �!H 0.SnC1IML=NL/:

By hypothesis of the induction, the dimension of H 0.SnC1IML=NL/ is finite and
dim H 0.SnC1INL/ D 1. Hence we obtain that dim H 0.SnC1IML/ is finite. This
completes the proof.
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Remark 4.18 More precisely, we see that dimK�H
0.SnC1INL/� dimL�NL by the

proof of Lemma 4.17.

Corollary 4.19 If M is a finitely generated discrete CE� –precomodule, then the
dimension of F.M / over K� is finite.

The following lemma is fundamental on the topology of Gn .

Lemma 4.20 (cf Hovey [9, Theorem A.2]) A subgroup of Gn is open if and only if
its index in Gn is finite.

Let h2Gn and � the image of the projection Gn!Gal. For g 2SnC1 , g� D �g� in
GnC1 , and ghD hg� in G . Hence the following diagram commutes for all g 2 SnC1 :

L� b̋
E�

M �˝h //

g˝g

��

L� b̋
E�

M

g�˝g�

��
L� b̋

E�

M �˝h // L� b̋
E�

M:

This diagram induces an action of Gn on F.M /, and it is easy to check that F.M / is
a twisted K�–Gn –module.

Lemma 4.21 If M is a finitely generated discrete CE� –precomodule, then F.M /

has a natural complete twisted K�–Gn –module structure.

Proof By Corollary 4.19, F.M / is a twisted K�–Gn –module of finite dimension.
Then the action of Gn is continuous by Lemma 4.20.

If M is a complete CE� –precomodule, then there is a fundamental system fF�M g

of (open) neighborhoods at 0 consisting of E�–GnC1 –submodules by Corollary 3.11.
Hence there is an isomorphism

F.M /Š lim
 �
�

F.M=F�M /:

We give F.M / the inverse limit topology. Note that this topology is independent of a
choice of fundamental system of neighborhood at 0. Furthermore, if M is profinite,
then F.M / is also profinite by Corollary 4.19, and complete twisted K�–Gn –module
by Lemma 4.21. Hence we obtain the following proposition.
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Proposition 4.22 F defines a symmetric monoidal functor from the category of
profinite CE� –precomodules to the category of profinite CK� –comodules.

Proof Since the construction of twisted K�–Gn –module structure on F.M / is natu-
ral, we see that F defines a functor from the category of profinite CE� –precomodules to
the category of profinite twisted K�–Gn –modules, which is equivalent to the category
of profinite CK� –comodules by Theorem 4.11. It is easy to check that the functor F
respects the monoidal structures.

Definition 4.23 Let CfE (resp. CfK ) be the category of finitely generated discrete CE� –
precomodules (resp. CK� -(pre)comodules). Define CE (resp. CK/ to be the procategory
of CfE (resp. CfK ), that is, the category of (small) cofiltered system of objects in CfE
(resp. CfK ). These are symmetric monoidal categories.

For a finite Z , E�.Z/ is a natural finitely generated discrete CE� –precomodule
by Proposition 3.14. Furthermore, if Z is a finite CW-complex, then E�.Z/ is a
CE� –precomodule algebra.

Definition 4.24 We define E�.X / 2 CE to be the system

fE�.Z/gZ2ƒ.X /

indexed by ƒ.X /. We also define K�.X / 2 CK by the same manner.

Then we have lim
 �

E�.X /ŠE�.X /;

lim
 �

K�.X /ŠK�.X /;

as profinite CE� –precomodules and profinite CK� -(pre)comodules, respectively. By
Corollary 4.19 and Lemma 4.21, we can extend the functor F from CE to CK by
obvious way:

F W CE �! CK:

Note that F is a monoidal functor.

By [22, Theorem 4.1], the generalized Chern character (5)

‚W E�.X / �!L�.X /

induces a natural isomorphism of twisted L�–G–modules:

L�˝E� E�.Z/
Š
�!L�˝K� K�.Z/
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for finite Z . The following theorem is a reformulation of [22, Corollary 4.3].

Theorem 4.25 For any spectrum X , the generalized Chern character ‚ induces a
natural isomorphism in CK :

F.E�.X //Š K�.X /:

If X is a space, then this is an isomorphism of cofiltered systems of finite CK� –
comodule algebras.

5 Milnor operations

5.1 Complete co-operation ring

In this section we let ADEnCk=In for some k�0. Hence ADE if kD1 and ADK

if k D 0. The coefficient ring A� D FŒŒun; : : : ;unCk�1��ŒuA�; juAj D �2 is a graded
complete Noetherian local ring with maximal ideal mA D .un; : : : ;unCk�1/. Put
GA DGnCk and CA� D C.GA;A�/. We denote by Ab̂A the K.nCk/–localization
of A^A. Since A is a commutative ring spectrum, So is Ab̂A. We define a graded
commutative ring A_� .A/ to be ��.Ab̂A/.

Since A is Landweber exact over P .n/, there is an isomorphism of commutative
Fp –algebras:

(6) ��.A^A/ŠA�˝P.n/� P .n/�.P .n//˝P.n/� A�:

Lemma 5.1 There is an isomorphism of graded commutative Fp –algebras

A_� .A/ŠAc
�
b̋P.n/�P .n/�.P .n// b̋P.n/�A

c
�;

where Ac
� is a graded topological ring A� with mA –adic topology.

Proof By [10, Proposition 7.10(e)], we see that A_� .A/ is the InCk –adic completion
of ��.A^A/. Hence the lemma follows from the isomorphism (6).

By Lemma 5.1, we see that A_� .A/ has a graded complete Hopf algebroid structure
induced from P .n/�.P .n//. We say that A_� .A/ is the complete co-operation ring of
A.

Let ƒZ be the graded commutative algebra over Z generated by a.i/ for 0 � i < n,
where the degree of a.i/ is 2pi � 1. Hence ƒZ is an exterior algebra. For an evenly
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graded commutative ring R� , we set ƒR� DR�˝ƒZ . There is an isomorphism of
commutative Fp –algebras

P .n/�.P .n//Š P .n/�Œt1; t2; : : :�˝ƒZ;

where jti j D 2.pi � 1/. Let CP.n/� be the P .n/�–subalgebra of P .n/�.P .n// gener-
ated by t1; t2; : : ::

CP.n/� D P .n/�Œt1; t2; : : :�:

Then it is known that CP.n/� is a sub-Hopf algebroid of P .n/�.P .n// (cf Wurgler [24]).
Hence we can give Ac

�
b̋P.n/�CP.n/�

b̋P.n/�A
c
� the induced graded complete Hopf

algebroid structure.

Lemma 5.2 There is an isomorphism of graded complete Hopf algebroids over Fp :

.Ac
�;CA�/Š .A

c
�;A

c
�
b̋P.n/�CP.n/�

b̋P.n/�A
c
�/:

Proof We let D� D ��.EnCk b̂EnCk/, where EnCk b̂EnCk is the K.n C k/–
localization of EnCk ^ EnCk . Then D� Š Ec

nCk;�
b̋BP�BP�.BP / b̋BP�E

c
nCk;�

.
Hence .Ec

nCk;�
;D�/ is a graded complete Hopf algebroid over Z.p/ . Furthermore,

.Ec
nCk;�

;D�/Š .E
c
nCk;�

;C.GnCk ;E
c
nCk;�

// [4; 9]. Hence

D�=In ŠAc
�
b̋P.n/�CP.n/�

b̋P.n/�A
c
�

by Lemma 5.1. By Lemma 4.1, C.GnCk ;EnCk;�/ Š C.GnCk ;Z/ b̋EnCk;� . This
implies that C.GnCk ;EnCk;�/=In Š C.GnCk ;A�/. Hence we have the isomorphism
CA� ŠAc

�
b̋P.n/�CP.n/�

b̋P.n/�A
c
� . We can check that this isomorphism induces the

desired isomorphism of Hopf algebroids.

Corollary 5.3 There is an isomorphism of graded complete commutative Fp –algebras:

A_� .A/Š CA�
b̋ƒZ:

Recall that A�.X /c DAc
�
b̋A�A

�.X /. The natural P .n/�.P .n//–comodule structure
on P .n/�.Z/ gives a natural A_� .A/–comodule structure on A�.Z/c , for any finite
spectrum Z . By Lemma 4.1 and Corollary 5.3, this induces an A_� .A/–comodule
structure on A�.X /c :

�W A�.X /c �!A_� .A/ b̋Ac
�
A�.X /c :

If X is a space, then � defines an A_� .A/–comodule algebra structure on A�.X /c .

In the following of this subsection we describe the comultiplication  on aA
.i/

. For
0� i < n, we set

bA
.i/ D u

pi

A
˝ a.i/:
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Then jbA
.i/
j D �1 for all i . In particular, uA D u if AD E and uA D w if ADK .

We put

tA.X /D
X
i�0

�L�FA tA
i X pi

2 CA� ŒŒX ��

bA.X /D

n�1X
iD0

bA
.i/X

pi

2A_� .A/ŒX �;and

where FA is the base change of the universal deformation FnCk on EnCk;0 to
EnCk;0=In .

The comodule algebra structure map �W A�.X /c ! A_� .A/ b̋Ac
�
A�.X /c on xA is

given by the following lemma (cf [2, Section 14]).

Lemma 5.4  A.xA/D tA.xA/.

The comodule algebra structure map �W A�.Y/c!A_� .A/ b̋Ac
�
A�.Y/c on yA is given

by the following lemma (cf [2, Section 14]).

Lemma 5.5 �.yA/D 1˝yAC bA.xA/.

Let il and ir be the left and right inclusion of A_� .A/ into A_� .A/ b̋Ac
�
A_� .A/. The

comultiplication map  on bA
.i/

is encoded in the following lemma.

Lemma 5.6  .bA.X //� ir .bA/.X /C il.bA/.ir .tA/.X // mod .X pn

/.

Proof This follows from the fact that . ˝ 1/�.yA/D .1˝�/�.yA/ and Lemma 5.4
and Lemma 5.5.

Lemma 5.7 Let F be a p–typical formal group law of strict height at least n over an
Fp –algebra R. Then for ai 2R .0� i < n/,

n�1X
iD0

F aiX
pi

� a0X C a1X p
C � � �C an�1X pn�1

mod .X pn

/:

Proof This follows from the fact that F.X;Y /�X CY mod .X;Y /p
n

.

The following theorem describes the structure of graded complete Hopf algebroid
.Ac
�;A

_
� .A//.
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Theorem 5.8 The pair .Ac
�;A

_
� .A// is a graded complete Hopf algebroid over Fp .

There is an extension of graded complete Hopf algebroids

CA� �!A_� .A/ �!ƒAc
�
;

where the algebra ƒAc
�
DAc

�˝ƒ.b
A
.0/
; : : : ; bA

.n�1/
/ is an exterior Hopf algebra over

Ac
� generated by primitive elements bA

.i/
for 0 � i < n. The comultiplication  and

the counit " on bA
.i/

for 0� i < n are given as follows:

 .bA
.i/
/ D 1˝ bA

.i/
C

iX
jD0

bA
.j/
˝ .tA

i�j /
pj ;

".bA
.i/
/ D 0:

Proof The comultiplication  on bA
.i/

is obtained by Lemma 5.5 and Lemma 5.7.

5.2 Exterior algebras ƒE�
and ƒK�

We can give ƒAc
�

a structure of right CA� –comodule algebra by

�
op
C;ƒ
W ƒAc

�

iƒ
�!A_� .A/

 
�!A_� .A/ b̋Ac

�
A_� .A/

�ƒ˝�C
����!ƒAc

�
b̋Ac
�
CA� ;

where iƒ is the canonical inclusion, �C D 1C ˝ "ƒ and �ƒ D "C ˝ 1ƒ . Hence ƒA�

is a profinite right CA� –precomodule algebra.

Lemma 5.9 �
op
ƒ;C

.bA.X //� bA.tA.X // mod .X pn

/.

Proof This follows from Lemma 5.6.

The left Ac
�–module homomorphism ev.g/ ı �W CA� ! CA� ! Ac

� defines a right
action of GA on ƒAc

�
by

ƒAc
�

�
op
ƒ;C

����!ƒAc
�
b̋Ac
�
CA�

1˝.ev.g/ı�/
���������!ƒAc

�
:

Then ƒAc
�

is a twisted Ac
�–GA –module.

Corollary 5.10 For g 2GA , bA
g.X /� bA.tA.g/

�1.X // mod .X pn

/.

Proof This follows from Lemma 5.9 and tA.g
�1/g.X /D tA.g/

�1.X /.

Since ƒE� is a twisted E�–GnC1 –module, ƒL� DL�˝E�ƒE� is a twisted L�–G–
module. We define bb.X /DPn�1

iD0
bb.i/X pi

2ƒL� ŒX � bybb .X /� bE.ˆ
�1.X // mod .X pn

/:
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Lemma 5.11 For any g 2GnC1 , bb g.X /D bb .X /.
Proof By definition and Corollary 5.10, bb g.X / � bE ı t.g/�1 ı .ˆ�1/g.X / mod
.X pn

/. By the diagram (3) in Theorem 2.4, ˆg ı t.g/.X /Dˆ.X /. This implies that
t.g/�1 ı .ˆg/�1.X /Dˆ�1.X /. Hence bb g.X /� b ıˆ�1.X / mod .X pn

/.

By Lemma 5.11, we see that the coefficients of bb .X / are invariant under the action of
GnC1 .

Lemma 5.12 F.ƒE�/DK�˝ƒ.bb .0/; : : : ;bb .n�1// as a graded commutative ring.

Proof We have bb.0/; : : : ;bbn�1 2 F.ƒE�/. Since bb .i/ is a linear combination of
bE
.i/
; : : : ; bE

.n�1/
, we see that K�˝ƒ.bb.0/; : : : ;bb.n�1//� F.ƒE�/. Then the lemma

follows from the fact that dimK�F.ƒE�/� 2n by Remark 4.18.

Recall that tK .h/.X / is the automorphism tK .h/W Hn �!H h
n DHn corresponding

to h 2Gn .

Lemma 5.13 For any h 2Gn , we have bb h.X /D bb ı tK .h/
�1.X /.

Proof By definition and the fact that Gn acts on L as Galois group, we have bb h.X /�

b ı .ˆ�1/h.X / mod .X pn

/. By the diagram (4) in Theorem 2.4, tK .h/ ıˆ.X / D

ˆh.X /. This implies that .ˆh/�1.X /Dˆ�1 ı tK .h/
�1.X /. Hence the congruencebb h.X /� b ıˆ�1 ı tK .h/

�1.X / mod .X pn

/ holds.

Theorem 5.14 As a CK� –comodule, F.ƒE�/ is isomorphic to ƒK� .

Proof The map bb .i/ 7! bK
.i/

gives an isomorphism of twisted K�–Gn –modules by
Corollary 5.10, Lemma 5.12 and Lemma 5.13.

5.3 Milnor operations

Let ADEnCk=In for some k � 0. In this section we study Milnor operations in A.
We abbreviate CA� to C and ƒAc

�
to ƒ. In this section we discuss in the category of

complete Hausdorff filtered Ac
�–modules. We recall that ƒ is a Hopf algebra such that

bA
.i/

is primitive for all i . We take monomials of bA
.i/

as a basis of ƒ, and denote the
dual of bA

.i/
by QA

i in the dual basis. Then the monomials of QA
i form the dual basis.

We call QA
i the Milnor operations.
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Let M be a left ƒ–comodule with comodule structure map � . Then the Milnor
operation QA

i defines a Ac
�–module homomorphism as follows:

M
�
�!ƒ b̋M

QA
i
˝1M

������!M:

We abbreviate this homomorphism also to QA
i . Note that we write the action of

QA
i from the right: if �.x/D 1˝xC

P
i aA
.i/
˝xi C � � �, then .x/QA

i D .�1/jxjC1xi .
There is a relation in the endomorphism ring of M for any i and j :

(7) QA
i QA

j CQA
j QA

i D 0:

In particular, QA
i QA

i D 0. Conversely, if there are Ac
�–module homomorphisms QA

i

for 0� i < n such that (7) holds, then we can construct a ƒ–comodule structure on
M , and this construction gives an equivalence of categories.

The category of complete ƒ–comodules is symmetric monoidal under complete tensor
product b̋Ac

�
and unit object Ac

� .

Lemma 5.15 Let M and N be complete ƒ–comodules. For any x 2M and y 2N ,
.x˝y/QA

i D x˝ .y/QA
i C .�1/jyj.x/QA

i ˝y in M b̋N .

Proof Let �M .x/D 1˝xC
P

i aA
.i/
˝xi C � � � with xi D .�1/jxjC1.x/QA

i , and let
�N .y/D 1˝yC

P
i aA
.i/
˝yi C � � � with yi D .�1/jyjC1.y/QA

i . Then

�
M b̋N

.x˝y/D 1˝x˝yC .�1/jxj
X

i

aA
.i/˝x˝yi C

X
i

aA
.i/˝xi ˝yC � � � :

Hence we have .x˝y/QA
i D .�1/jxjCjyjC1..�1/jxjx˝yi Cxi ˝y/, which equals

x˝ .y/QA
i C .�1/jyj.x/QA

i ˝y .

We say that a natural endomorphism Q of complete Ac
�–modules is a derivation of odd

degree with respect to exterior products if .x˝y/QD x˝ .y/QC .�1/jyj.x/Q˝y

for any x 2M and y 2N . Hence the Milnor operations QA
i is a derivation of odd

degree with respect to exterior products.

Let ƒ� be the dual module of ƒ: ƒ� D HomAc
�
.ƒ;Ac

�/. Then ƒ� is also a Hopf
algebra over Ac

� , and ƒ� ŠAc
�˝ƒ.Q

A
0
; : : : ;QA

n�1
/ such that QA

i are primitive for
all i . Recall that ƒ is a twisted Ac

�–GA –module. We can also define a twisted
Ac
�–GA –module structure on ƒ� by

.�/.�g/D ..� �g�1/�/g;

for � 2ƒ�;g 2GA; � 2ƒ.
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Lemma 5.16 For g 2GA ,

.QA
i /

g
D

n�1X
jDi

tA
j�i.g/

pi

QA
j :

Proof This follows from Corollary 5.10.

Let M be a profinite A_� .A/–comodule. Then M is a twisted Ac
�–GA –module and

ƒ–comodule. The following proposition gives us an interaction of the actions of GA

and QA
i on M .

Lemma 5.17 Let M be a profinite A_� .A/–comodule. For x 2M and g 2GA ,

..x/QA
i /g D ..x/g/.Q

A
i /

g:

Proof By Lemma 5.16, we see that the map

�1W A
_
� .A/

 
�!A_� .A/ b̋A_� .A/

.QA
i
ı�ƒ/˝1

�������!A_� .A/
ev.g/ı�C
������!Ac

�

is equal to the map

�2W A
_
� .A/

 
�!A_� .A/ b̋A_� .A/

.ev.g/ı�C /˝1
��������!A_� .A/

.QA
i
/gı�ƒ

������!Ac
�:

Hence ..x/QA
i /g D .�1 ı �/.x/D .�2 ı �/.x/D ..x/g/.Q

A
i /

g .

These are all relations on the A_� .A/–comodule M between the GA –action and the
ƒ�–action. We give interpretation of these relations in terms of comodule structures in
Section 5.4.

In the following lemma we show that a derivation of odd degree with respect to exterior
products in the category of stable cohomology operations of K�.�/ is characterized
by the action on yK 2K�.Y/.

Lemma 5.18 Let Q be an odd degree stable cohomology operation of K�.�/. Sup-
pose that Q is a derivation with respect to exterior product. Then Q is characterized
by the action on yK 2K1.Y/.

Proof A stable cohomology operation Q 2 K�.K/ is a derivation if and only if
Q is primitive in K�.K/. Since K�.K/ is free over K� , the primitive submod-
ule P .K�.K// is the dual of the indecomposable quotient Q.K�.K// of the co-
operation ring K�.K/. Recall the isomorphism K�.K/Š CK� ˝K� ƒK� . Then we

Geometry & Topology Monographs, Volume 10 (2007)



Milnor operations and the generalized Chern character 413

have Q.K�.K// Š Q.CK�/˚Q.ƒK�/ Š Q.ƒK�/, and Q.ƒK�/ is isomorphic to
K�fa

K
.0/
; : : : ; aK

.n�1/
g. Hence Q is a linear combination

Pn�1
iD0 qiQ

K
i with qi 2K� .

Since we know that QK
i .yK /D xK

pi

, we have Q.yK /D
Pn�1

iD0 qixK
pi

in K�.Y/.
Since xK

pi

for 0� i < n� 1 are linearly independent, this uniquely determines qi .
Hence Q is characterized by the action of yK .

5.4 Complete A_� .A/–comodules

Let ADEnCk=In for some k � 0. In this section we give a description of complete
A_� .A/–comodules in terms of CA� –comodule structure and ƒAc

�
–comodule structure.

In this section we discuss in the category of complete Hausdorff filtered Ac
�–modules,

and abbreviate CA� to C and ƒAc
�

to ƒ.

Let M be a complete A_� .A/–comodule with �M W M!A_� .A/b̋M . By Theorem 5.8,
A_� .A/Š C b̋ƒ as an Fp –algebra, and there is an extension of complete Hopf alge-
broids:

(8) C �!A_� .A/
�ƒ
�!ƒ:

Hence M is a ƒ–comodule by

�ƒ;M
�M
�!A_� .A/ b̋M

�ƒ
�!ƒ b̋M:

The counit of ƒ induces a morphism of Hopf algebroid �C W A
_
� .A/! C , which is a

splitting of the above extension (8). Then M is also a C –comodule by

�C;M W M
�M
�!A_� .A/ b̋M

�C
�! C b̋M:

We recall that ƒ is a (left) C –comodule algebra by the structure map

�C;ƒW ƒ
iƒ
�! C b̋ƒ  

�! .C b̋ƒ/ b̋ .C b̋ƒ/ �ƒ˝�C
����!ƒ b̋C

�
�! C b̋ƒ;

where iƒ is the canonical inclusion and � is given by �˝c 7!�.c/˝�. For a complete
C –comodule M , we denote by �

C;ƒb̋M
the C –comodule structure map of the tensor

product of ƒ and M .

Lemma 5.19 Let M be a complete A_� .A/–comodule. Then �ƒ;M is a morphism
of C –comodules. In other words, the following diagram commutes:

M
�ƒ;M //

�C;M

��

ƒb̋M

�
C;ƒb̋M

��
C b̋M

1C˝�ƒ;M // C b̋ƒb̋M:
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Furthermore, �
C;ƒ b̋M

ı �ƒ;M D .1C ˝ �ƒ;M / ı �C;M is the A_� .A/–comodule
structure map �M .

Proof Let f D .�ƒ˝�C /ı W A
_
� .A/!ƒ b̋C . By the co-associativity of A_� .A/–

comodule M , the following diagram commutes:

M
�ƒ;M //

�M

��

ƒb̋M

1ƒ˝�C;M

��
C b̋ƒb̋M

f˝1M // ƒb̋C b̋M:

Let g D .1C ˝ 1ƒ˝ "C / ı �C;ƒb̋C W ƒ b̋C ! C b̋ƒ. Then we can check that g ıf

is the identity map of C b̋ƒ. Since .g˝ 1M / ı .1ƒ˝�C;M /D �
C;ƒb̋M

, we obtain
that �M D �

C;ƒ b̋M
ı �ƒ;M .

Let hD .�C˝�ƒ/ı W A
_
� .A/!A_� .A/. By the coassociativity of A_� .A/–comodule

M , the following diagram commutes:

M
�C;M //

�M

��

C b̋M

1C˝�ƒ;M
��

C b̋ƒb̋M
h˝1M // C b̋ƒb̋M:

But it is easy to check that h is the identity map of A_� .A/. Hence we obtain that
�M D .1C ˝ �ƒ;M / ı �C;M . This completes the proof.

Definition 5.20 We say that a complete module M is a C –ƒ–comodule if M is
a C –comodule and also a ƒ–comodule such that the structure map of ƒ–comodule
�ƒ;M is a map of C –modules.

Corollary 5.21 A complete A_� .A/–comodule has a natural C –ƒ–comodule struc-
ture.

Let �
ƒ;C b̋ƒ D .�ƒ˝ 1˝ 1/ ı W C b̋ƒ!ƒ b̋C b̋ƒ.

Lemma 5.22 The following diagram commutes:

ƒ
 ƒ //

�C;ƒ

��

ƒb̋ƒ
1ƒ˝�C;ƒ

��
C b̋ƒ �

ƒ;C b̋ƒ // ƒb̋C b̋ƒ:
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Proof Note that this is a diagram of Fp –algebras. So it is sufficient to show the
equality f .b.i//D g.b.i// holds for all 0� i < n, where f D .1ƒ˝�C;ƒ/ ı ƒ and
g D �ƒ;C˝ƒ ı �C;ƒ . We easily obtain that

f .b.i//D b.i/˝ 1˝ 1C 1˝

iX
jD0

�.si�j /
pj
˝ b.j/:

On the other hand,

g.b.i// D

iX
jD0

.1˝�.si�j /
pj
˝ 1/ � .1˝ 1˝ b.j/C

jX
kD0

b.k/˝ s
pk

j�k
˝ 1/

D

iX
jD0

1˝�.si�j /
pj
˝ b.j/C

iX
kD0

iX
jDk

b.k/˝
�
sj�k�.si�j /

pj�k
�pk

˝ 1

D

iX
jD0

1˝�.si�j /
pj
˝ b.j/C b.i/˝ 1˝ 1:

This completes the proof.

Corollary 5.23 If M is a complete C –comodule, then the following diagram com-
mutes:

(9)

ƒb̋M
 ƒ˝1M //

�
C;ƒb̋M

��

ƒb̋ƒb̋M

1ƒ˝�
C;ƒb̋M

��
C b̋ƒb̋M

�
ƒ;C b̋ƒ˝1M

// ƒb̋C b̋ƒb̋M:

Lemma 5.24 Let M be a complete C –ƒ–comodule with C –comodule structure
map �C;M W M ! C b̋M . Then the following diagram commutes:

M
�ƒ;M //

�ƒ;M

��

ƒb̋M

�
C;ƒb̋M //

1˝�ƒ;M

��

C b̋ƒb̋M

1˝1˝�ƒ;M

��
ƒb̋M

 ƒ˝1 //

�C;ƒ˝M

��

ƒb̋ƒb̋M

�
C;ƒb̋ƒb̋M //

1˝�
C;ƒb̋M

��

C b̋ƒb̋ƒb̋M

1˝1˝�
C;ƒb̋M

��
C b̋ƒb̋M

�
�;C b̋ƒ˝1

// ƒb̋C b̋ƒb̋M

�
C;ƒb̋C

˝1˝1

// C b̋ƒb̋C b̋ƒb̋M
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Proof The top left square commutes since M is a ƒ–comodule. From the assumption
that �ƒ;M is a morphism of C –comodules, so is 1ƒ˝ �ƒ;M . Hence we see that the
top right square commutes. The bottom left square commutes by Corollary 5.23. Since
�

C;ƒb̋M
is a morphism of C –comodules, so is 1ƒ˝ �

C;ƒb̋M
. Hence the bottom

right square commutes. This completes the proof.

Lemma 5.25 The map .�
C;ƒ b̋C

˝ 1ƒ/ ı .�
ƒ;C b̋ƒ/ is the comultiplication  .

Proof Let f D .�C;ƒb̋C ˝ 1ƒ/ ı .�ƒ;C b̋ƒ/. Since f is a map of Fp –algebras, it
is sufficient to show that f .c/ D  .c/ for all c 2 C and f .b.i// D  .b.i// for all
0� i < n. It is easy to check that f .c/D  .c/. On the other hand,

f .b.i// D

iX
jD0

jX
kD0

i�jX
lD0

�.sj�k/
pk

s
pj

i�j�l
˝ b.k/˝ s

pi�l

l
˝ 1C 1˝ 1˝ 1˝ b.i/

D

X
k;l�0
kCl�i

0@ i�lX
jDk

�.sj�k/s
pj�k

i�j�l

1Apk

˝ b.k/˝ s
pi�l

l
C 1˝ 1˝ 1˝ b.i/

D 1˝ 1˝ 1˝ b.i/C

iX
kD0

1˝ b.k/˝ s
pk

i�k
˝ 1:

Hence f .b.i//D  .b.i//. This completes the proof.

Let M be a complete C –ƒ–comodule with C –comodule structure map �C;M W M !

C b̋M . We define a map �M W M ! C b̋ƒ b̋M by

�M W M
�ƒ;M
����!ƒ b̋M

�
C;ƒ b̋M

������! C b̋ƒ b̋M:

By Lemma 5.24 and Lemma 5.25, we see that �M gives M a complete A_� .A/–
comodule structure.

Proposition 5.26 Let M be a complete C –ƒ–comodule. Then M has a natural
A_� .A/–comodule structure �M such that the induced C –ƒ–comodule structure coin-
cides with the given one.

Note that if M is a complete C –ƒ–comodule obtained from a complete A_� .A/–
comodule, then the induced A_� .A/–comodule structure coincides with the given one
by Lemma 5.19.

By summarizing the results in this section, we obtain the following theorem.
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Theorem 5.27 There is an equivalence of symmetric monoidal categories between
the category of complete A_� .A/–comodules and the category of complete C –ƒ–
comodules.

6 Main theorem

6.1 Symmetric monoidal functor F

In Proposition 4.22 we showed that F is a monoidal functor from the category of
profinite CE� –precomodules to the category of profinite CK� –comodules. In this
section we show that the functor F extends to a monoidal functor from the category of
profinite E_� .E/–precomodules to the category of profinite K�.K/–comodules.

We let M be a profinite E_� .E/–precomodule. Then M is a profinite CE� –precomod-
ule and also a ƒE� –comodule such that the ƒE� –comodule structure map �M W M !

ƒE b̋M is a map of profinite CE� –precomodules by Corollary 5.21. We note that ƒE�

is a CE� –precomodule and there is an isomorphism of CK� –comodules: F.ƒE�/Š

ƒK� by Theorem 5.14.

Lemma 6.1 If M is a profinite CE� –precomodule, then the natural map

ƒK�
b̋K�F.M /

Š
�! F.ƒE�/ b̋K�F.M / �! F.ƒE�

b̋E�M /

is an isomorphism of CK� –comodules.

Proof Since F.ƒE�/ is isomorphic to ƒK� as a CK� –comodule, ƒE�
b̋E�L� Š

ƒK�
b̋K�L� as twisted L�–G–modules. Hence there are isomorphisms of twisted

L�–G–modules:

ƒE�
b̋E�M b̋E�L� Š

�
ƒE�

b̋E�L�
� b̋L�

�
M b̋E�L�

�
Š
�
ƒK�

b̋K�L�
� b̋L�

�
M b̋E�L�

�
Š ƒK�

b̋K�M b̋E�L�:

By taking SnC1 –invariant submodules, we obtain an isomorphism of twisted K�–Gn –
modules: F.ƒE�

b̋E�M /ŠƒK�
b̋K�F.M /. This implies that the above map is an

isomorphism of profinite CK� –comodules.

By Lemma 6.1, we obtain a map

F. ƒE�
/W ƒK� Š F.ƒE�/ �! F.ƒE�

b̋E�ƒE�/ŠƒK�
b̋K�ƒK� :
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Lemma 6.2 The map F. ƒE�
/ coincides with the comultiplication map  ƒK�

on
ƒK� .

Proof This follows from the fact that the algebra generators bbE

.i/ of F.ƒE�/ are
given by linear combinations of the algebra generators bE

.i/
of ƒE� with coefficients

in L� (see Lemma 5.12).

Corollary 6.3 Let M be a profinite E_� .E/–precomodule with corresponding ƒE� –
comodule structure map �M W M !ƒE�

b̋E�M . Then the map F.�M /W F.M /!

F.ƒE�
b̋E�M / Š ƒK�

b̋K�F.M / defines a natural ƒK� –comodule structure on
F.M /.

Proposition 6.4 If M is a profinite E_� .E/–precomodule, then F.M / has a natural
K�.K/–comodule structure.

Proof Since F is a functor and the ƒE� –comodule structure map �M W M !

ƒE b̋M is a map of CE� –precomodule, F.�M / is a map of CK� –comodules. Hence
the proposition follows from Theorem 5.27.

Corollary 6.5 F extends to a symmetric monoidal functor from the category of
profinite E_� .E/–precomodules to the category of profinite K�.K/–comodules.

Proof By Proposition 6.4, we see that F extends to a functor from the category of
profinite E_� .E/–precomodules to the category of profinite K�.K/–comodules. It is
easy to check that F respects the symmetric monoidal structures.

6.2 Main theorem

In this section we prove the main theorem (Theorem 6.11). The theorem states that for
any spectrum X , F.E�.X // is naturally isomorphic to K�.X / as a cofiltered system
of finitely generated discrete K�.K/–comodules. Furthermore, if X is a space, then
this equivalence respects the graded commutative ring structures.

Definition 6.6 Let Mf
E (resp. Mf

K ) be the category of finitely generated discrete
E_� .E/–precomodules (resp. K�.K/-(pre)comodules). We define ME (resp. MK ) to
be the procategory of Mf

E (resp. Mf
K ).

By Corollary 6.5, we can extend the functor F from ME to MK by obvious way:

F WME �!MK:

Note that F is a monoidal functor. As in the cases of CE and CK , we have the following
lemma.
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Lemma 6.7 For any spectrum X , E�.X / 2ME and K�.X / 2MK .

Hence F.E�.X // 2MK . The natural ƒK� –comodule structure on F.E�.X // gives
natural K�–module homomorphisms bQi on K�.X /D lim

 �
F.E�.X // for 0� i < n

with respect to the algebra generators bK
.i/

of ƒK� .

Lemma 6.8 For 0� i < n, bQi is a stable cohomology operation on K�.X /.

Proof It is sufficient to show that bQi commutes with the suspension isomorphism †.
Let s 2 eK1

.S1/ the canonical generator †.1/. Then the suspension isomorphism is
given by the (exterior) product with s . Since bQi is an odd degree operation, bQi acts
on s trivially. Hence we see that bQi commutes with the product with s since bQi is a
derivation. This completes the proof.

Recall that Y is the lens space S2pn�1=Cp , and K�.Y/Dƒ.uk/˝K�ŒxK �=.x
pn

K
/:

Lemma 6.9 For 0� i < n, bQi.uK /D xK
pi

.

Proof By Lemma 5.5, �.yE/D 1˝yE C bE.xE/. Since bE.X /D bb .ˆ.X // mod
.X pn

/ by definition, we have �.1˝uE/D 1˝1˝uEC
bbE.ˆ.xE//. From that fact

that uK D 1˝uE and ˆ.xE/D xK , we obtain that bQi.uK /D xK
pi

.

Corollary 6.10 For 0� i < n, bQi DQK
i .

Proof By Lemma 6.8, bQi is an odd degree stable cohomology operation, which is
a derivation with respect to the (exterior) product. Hence bQi is characterized by the
action on uK 2K1.Y/. Then the corollary follows from Lemma 6.9.

Recall that the generalized Chern character (5)

‚W E�.X / �!L�.X /

induces a natural isomorphism in CK

F.E�.X //Š K�.X /

by Theorem 4.25. The following is our main theorem of this note.

Theorem 6.11 The generalized Chern character ‚ induces a natural isomorphism in
MK :

F.E�.X //Š K�.X /:

If X is a space, then this is an isomorphism of cofiltered systems of finite K�.K/–
comodule algebras.
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Proof By Theorem 4.25, there is a natural isomorphism F.E�.X //Š K�.X / in CK .
Corollary 6.10 implies that the isomorphism F.E�.Z//ŠK�.Z/ respects the ƒK� –
comodule structures for all Z 2ƒ.X /. Hence the theorem follows from Theorem 5.27.
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