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On excess filtration on the Steenrod algebra

ATSUSHI YAMAGUCHI

In this note, we study some properties of the filtration of the Steenrod algebra
defined from the excess of admissible monomials. We give several conditions on a
cocommutative graded Hopf algebra A* which enable us to develop the theory of
unstable A*-modules.
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Introduction

The theory of unstable modules over the Steenrod algebra has been developed by
many researchers and has various geometric applications. (See Schwartz [6] and its
references.) It was so successful that it might be interesting to consider the structure of
the Steenrod algebra which enable us to define the notion of unstable modules. Let
us call the filtration on the Steenrod algebra defined from the excess of admissible
monomials the excess filtration. (See Definition 1.7 below.) We note that this filtration
plays an essential role in developing the theory of unstable modules.

The aim of this note is to give several conditions on filtered graded Hopf algebra A4*
which allows us to deal the theory of unstable A*-modules axiomatically. In the
first and second sections, we study properties of the excess filtration on the Steenrod
algebra A,. In Section 3, we propose nine conditions on a decreasing filtration on
a cocommutative graded Hopf algebra A* over a field which may suffice to develop
the theory of unstable modules. We also verify several facts (eg Proposition 3.12,
Lemma 3.13, Proposition 3.14) which are known to hold for the case of the Steenrod
algebra. To give an example of a filtered Hopf algebra other than the Steenrod algebra,
we consider the group scheme defined from the unipotent matrix groups in Section
4. We embed the group scheme represented by the dual Steenrod algebra as a closed
subscheme of infinite dimensional unipotent group scheme represented by a certain
Hopf algebra A(,), which has a filtration satisfying the dual of first six conditions
given in Section 3. We observe that this filtration induces the filtration on the mod p
dual Steenrod algebra A, 4 which is the dual of the excess filtration. In Appendix A
we show that the affine group scheme represented by A, + is naturally equivalent to a
[ —group functor which assigns to an F,—algebra R* a certain subgroup of the strict
isomorphisms of the additive formal group law over R*[¢]/(¢2) in Section 4.
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424 Atsushi Yamaguchi

1 Basic properties of excess filtration

We denote by A, the mod p Steenrod algebra and by A, its dual. Let Seq be the set
of all infinite sequences (i1, i2,...,I,,...) of non-negative integers such that i, =0
for all but finite number of n. Let Seq’ be a subset of Seq consisting of sequences
(i1,i2,...,0y,...) such that iy = 0,1 if k is odd. If i, = 0 for n > N, we denote

(i17l.27---’in7'~‘)by (ilaiZ’---yiN)‘

Definition 1.1 (Steenrod—Epstein [7]) For I = (g¢,i1,€1,...,in,&n) € Seq’ and an
odd prime p, we put

n n n n
dpy(I)=2(p—1)) is+ D> &5  ep()=Y es+2) (is— piss1—¢s).
s=1 s=0 s=0 s=1
For J = (j1, ja,..-, jn) € Seq, we put

dy(J) =" s, ea(J) =D (s —2Jst1).
s=1

s=1
Then
691 = ,380.59’.1,3'81@"2,38.2 ---pi"ﬂg” c A;lp(l)
and SqJ = Sqllsquu.san c Agz(”.

We call d, (1) the degree of I and e, (I) the excess of I.

Proposition 1.2 Suppose I = (g9,i1,&1,...,in,&n,...) € Seq’ and

J=U1.J2,- Jns-..) €85eq.

(1) ep(I)=2piy +2e0—dp(l) if p is an odd prime,
e2(J) =2j1 —da(J).

(2) ep(I) < 2i; + & and the equality holds if and only if I = (g¢,i;) for an odd
prime p.
e2(J) =< j1 and the equality holds if and only if J = (j;).

(3) dp(I)=(p—1)ep(I)—eo(p—2) and the equality holds if and only if I = (g¢,i1)
for an odd prime p.
d,(J) > e(J) and the equality holds if and only it J = (j1).
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Proof (1) These are direct consequences of the definitions of d, (/) and e,([).

(2) For an odd prime p, e,(I) =2i1+e90—2(p—1) Z?:z iS—Z?ZI s =2i1+e&op.
If p=2,ex(J)=j1— 2 52 s = J1-

(3) If p is an odd prime, e,(/) < 2i; + &g is equivalent to e, (/) —2pi; —2gg <
—(p—1)ep(I) 4+ go(p —2). Then the assertion follows from (1).

The proof of the case p = 2 is similar. |

Corollary 1.3 Let j be a fixed non-negative integer, ¢ = 0, 1 and I € Seq’, J € Seq.

(1) Suppose that p is an odd prime. If e,(1) >2j +¢, then d,(I) > 2j(p—1)+¢
and the equality holds if and only if I = (¢, j).

(2) Ifey(J) > j, then dy(J) > j and the equality holds if and only if J = ().

Proof (1) Assume that e,(/) >2j and d,(I) <2j(p—1)—1. By Proposition 1.2,
2iy+e0—2pi1—e9 = ep(l)—2pi; —go = —dp(l) >=2j(p—1)+1.
Hence 2j(p—1) = 2i;(p—1) + 1, which implies j >i; 4+ 1.

Then 2i; + &9 > ep(f) > 2j > 2i; + 2 but this contradicts &g < 1. Therefore
dp(I)=2j(p—1).

Suppose e,(/) > 2j and d,(I) =2j(p—1). Since dp(I) > 2i;(p — 1), we have
J = i1. On the other hand, since 2j < e,(I) < 2i; + &9, we have j <i;. Hence
j =11 and this implies iy = 0 for s > 2 and g5 = 0 for s > 0.

Assume e, (1) > 2j + 1. By Proposition 1.2,
dp(I) Z (p—Dep(I) —eo(p—2) Z (p—DQ2j+ D —p+2=2j(p—D+1.
Suppose that e,(/) >2j +1 and d,(I) =2j(p—1)+ 1. We have
dp(I) 2 (p—Dep(I) —eo(p—2) 2 2j(p— D+ 1=dp(I).

Hence I is of the form (gg,i;) by Proposition 1.2. Then d,(I) = 2i;(p —1) + &9
which equals to 2j(p — 1) 4+ 1. Therefore I = (1, j).

(2) The proof is similar as above. O

Definition 1.4 (Steenrod—Epstein [7]) We say I = (g9, i1,&1,....0n,En,...) €Seq’
is (p—)admissible if p is an odd prime and i5 > pigy; + &5 for s =1,2,.... For
p =2, wesay that I = (iy,ia,...,in,...) € Seq is (2-)admissible if ig > 2i541
for s =1,2,.... We denote by Seq,, the subset of Seq consisting of p—admissible
sequences.
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426 Atsushi Yamaguchi

We quote the following fundamental results for later use.

Theorem 1.5 (Steenrod—Epstein [7])

(1) IfI e€Seq’, p! = mel cxx for some ¢y € Fp and Iy € Seq,, such that
ep(Ix) = ep(I) forallk =1,2,...,1.
Similarly, if I € Seq, Sql = ch=1 ckSqlk for some ¢y € F, and I} € Seq,
such that e;(Iy) > ex(I) forallk =1,2,...,1.

Q) {pl|Ie Seq,} is a basis of Ap if p is an odd prime and {Sq’ |1 e Seq,} is a
basis of A,.

Let 7, € (Ap*)zl’n_l ,&n € (Ap*)Zp”—Z and &, € (A25)?" ! be the elements given
by Milnor [5]. Recall that Apx = E(70,71,...) @ Fplé1,&2,...]if p # 2, and
Arw =Fo[81, 82, .

Let Seqb be a subset of Seq consisting of all sequences (gg, €1, ..., &y, ...) such that
en=0,1foralln=0,1,....

ForE:(so,el,...,em)ESeqb and R = (ry,r2,...,1y) € Seq, we put
I(E):Tgorlgl...rzm’ £(R) = 1’1 ;2 ’;n and ¢(R) = ;1 ;2 'rln

as in [5]. Then, the Milnor basis is defined as follows.

Definition 1.6 (Milnor [5]) We denote by g(S) the dual of £(S) with respect to
the basis {t(E)E(R)|E € Seqb, R € Seq} is of Apx if p # 2 and by Sq(S) the
dual of (S) with respect to the basis {{(R)| R € Seq} of Aj,. If p is odd, let O,
be the dual of 7, with respect to the basis {t(E)&(R)| E € Seqb, R € Seq}. Put
Q(E) = 0305 -+ 03" for E = (g9.¢1.....6n) € Seq?.

Definition 1.7 Let F; A, be the subspace of A, spanned by

(' |1 €Seqy.ep(I) =i} if p#2.{Sq"| I € Seq,,es(I) =i} if p=2.

Thus we have an decreasing filtration §, = (F;Ap)iez on Aj,. We call §), the excess
filtration.

Clearly, § satisfies the following.
(1) (E1) F;Ap=A,ifi <0.
(2) (E2) N FiAp ={0}.

iez

The next result is a direct consequence of Theorem 1.5.
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Proposition 1.8 For I € Seq’, p! € F; A, if p is an odd prime and e,(I) > i . For
I €Seq, Sql € FiA, ifey(1) > i

The following properties of the excess filtration are a sort of “folklore”.

Proposition 1.9 Let u: Ay, ® Ay — A, and §: Ap — Ap ® Ay be the product and
the coproduct of A, . Then §, satisfies the following conditions.

(1) (E3) F; A, are left ideals of A, fori € Z.
) (E4) w(FiA, ® A)) C Fi_j A, fori,j €.
(3) (ES) 8(FiAp) C Y pni FjAp ® FiAp fori e 7.

Proof Let I = (e9,i1,¢1,---,in,€n) be a sequence belonging to Seq, such that
ep(I)=iand i, >1if n>1.

If ¢g = 1, then ﬁpl = 0. If &g = 0, the excess of (1,iy,&1,...,in,&n) is bigger
than e, (/). Hence /3591 € FiAp. If j > pii+eo,then (0, j,&0.i1,€1,....0in,€n) is
admissible and its excess is not less than e, (/). Hence plpl e F; A, in this case.
Suppose 1 < j < piy + €¢. Then, by Theorem 1.5, o/ ! is a linear combination of
e’ ’s such that ep(J) = ep(I) and J € Seq,,. Thus § satisfies (E3).

If g, =1, then p!p=0.1If g, =0, then ep(eo,i1,€1,...,in, 1) =ep(I)—1. Hence
501,3 € F;_1 A, by Proposition 1.8. If n > 1, then e,(go,i1,€1,...,1In,6n,j) =
2piy + 260 —dp(I) = 2j(p—1) = ep(I) —2j(p—1) =i —2j(p—1). Hence
plpl e F;_5(p—1)Ap by Proposition 1.8. It is clear that plpl e Fi5jp-1)Ap if
n = 0. Thus §, satisfies (E4).

By the Cartan formula, §(p?) = DoJaL=I el @ pL. Put J = (ag, j1,...), L =
(Bo.l1,...). Then, ep(J) +ep(L) =2p(j1 + 1) + 2(o + Po) —dp(J) —dp(L) =
2piy +2e90—dp(I) = ep(I). Hence (E5) follows from Proposition 1.8. m|

Consider the dual filtration 3; = (FiAps)iez on Apx, thatis, (F;Aps)" is the kernel
of
Ky (Apx)" = Hom(Aj, Fp) — Hom((F;11.4p)", Fp),

where k;: F; Ap — A, is the inclusion map. The following is the dual of (ES) of
Proposition 1.9.
Proposition 1.10 Let §*: Ay« ® Apx — Aps be the product of Apx. Then Fp«

satisfies the following.

(1) (E5*)8*(FjApx ® FrAps) C Fiy g Aps for jk €Z.

Geometry & Topology Monographs, Volume 10 (2007)



428 Atsushi Yamaguchi

We set J, = (0, p"~1,0, p"2,...,0,1,0) and J,, = (0, p"~1,0, p"2,...,0,1,1)
for an odd prime p, K, = (2""1,2"72,...,2,1,). Then, J,’s and J/’s are admissible
and dp(Jy) =2p" =2, dyp(J,;) =2p" — 1, ep(Jn) =2, ep(J,) =1 if p is an odd
prime, d,(Ky) =2"—1, ex(Ky) = 1.

For R = (r,r2,...,7n,...) €Seq, weput [R| =) ;5 7.

Proposition 1.11 7(E)§(R) € F|g|42r|Apx — FiE|+2|E|-1Apx for R € Seq and
E €Seq?, if p is an odd prime. ¢(R) € FiR| A2« — F|R|—1 A2« for R € Seq.

Proof Since e,(J;) =1 and e,(J,) = 2, it follows from Milnor [5, Lemma 8] that
7; € F1Aps and & € Fr Aps. Similarly, since e;(Ky) = 1, we have §; € Fi Az
Hence, by Proposition 1.10, we have t(E)&(R) € Fig|42(r|Apx if p #2, {(R) €
F R|A2*. On the other hand, it follows from Lemma 1.13 and [5, Lemma 8] that
T(E)E(R) & FiE|+2/E|-1Apx and {(R) & Fg—1 A2 O

We define the maps op: Seq’ — Seq, and 0,: Seq — Seq, as follows. For J =
(€05 J1,€15---» Jn,€n) € Seq’, put

n
iy = Z(ek—l—jk)pk_s (s=1,2,...,n)
k=s

and QP(J) = (807i1981’ . ~’in78n)’

If p=2,for J=(j1,j2,...,Jn) €Seq, put

n
is=Y k2" (s=12....n)
k=s

and 0,(J) = (i1,i2,...,0n).

The following Lemmas are straightforward.

Lemma 1.12 o, is bijective and its inverse Q;l is given as follows. If p is an odd

. _1 . . _ . . . . .
ane, Q (80’l1781’---’ln58n)_(805]15813---a]n’8n)’ Where ]s—ls_pls+1_8s
p . .
(fors=1,2,....n—1),and j, =ip—é¢p.

Similarly, Qzl(il,iz,...,in) = (j1, j2,..-» jn), Where js = iy — 2igy; (for s =
1,2,....n—1),and j, =ip.

Lemma 1.13 If p # 2, for J = (g9, j1,€1+---» Jn,€n) € Seq®, we have

dp(0p(J) =Y 2ji(p* =1+ ex2p*—1) and ep(0p(J) =2 ji+ Y _ &x.

k=1 k=0 k=1 k=0
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It p=2,J = (j1,J2,...,jn) €Seq, we have

dy(02()) = Y jk(@* —1) and e2(02(J) = Y _ ji.

Proposition 1.14 {t(E)¢(R)|E € Seqb, R eSeq, |E|+2|R|<i} is abasis of F; Apx
and {{(R)|R € Seq, |R| <i} is a basis of F; Ayx.
Proof Since (F;Ap«)" is isomorphic to Hom*((Ap/ Fi+1.4p)", Fp), we have

Suppose p is odd. By Theorem 1.5 (2), Lemma 1.12 and Lemma 1.13, dim A7 is the
number of elements of a subset S, of Seq’ defined by

doepF—De+ ) 2% - i = n}

k>0 k=1

Sn = {(807]1981”jn,8n,)686q0

and dim(F;41.Ap)" is the number of elements of

28k+22jk2i+1}.

k>0 k>1

{(809j19817"'7jn78n7---)ESn

Hence dim(F;.Ap+)" is the number of elements of

Z8k+z2jk§i},

k=0 k>1

{(80,j1,81,..-,jn,Sn,...)ES,,

which coincides with the number of elements of
{t(E)(R)| E € Seq®, R € Seq, |E| + 2| R| < i}.
Therefore the assertion follows from Proposition 1.11. The proof for the case p =2 is

similar. O

The following is shown by Kraines [1] but is also a direct consequence of Milnor [5,
Theorem 4a], Proposition 1.11 and Proposition 1.14.

Proposition 1.15 (Kraines [1])

(1) Q(E)9(R) € Fig|+2R1Ap — FiE|+2|R|+1Ap for R € Seq and E € Seq” if p
is an odd prime. Sq(R) € F|g| Ay — F|g|+1A2 for R € Seq.

2) {Q(E)p(R)| E € Seqb, R € 8Seq, |E|+2|R| >1i} is a basis of F; A, for an odd
prime p. {Sq(R)| R € Seq, |R| > i} is a basis of F; A,.
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430 Atsushi Yamaguchi
We set E{ A, = (FiAp)! /(Fiy1.Ap) .

Proposition 1.16 Let i be a non-negative integer and ¢ =0 or 1.

(1) (Faitedp)* =1{0} fork <2i(p—1)+e.

(2) If p is an odd prime, (Fy;1¢Ap)2P~D+¢ is a one dimensional vector space
spanned by Bp'. (F;A,)! is a one dimensional vector space spanned by Sq* .

(3) E/A,=1{0}ifi+ j#0,2 modulo2p.

Proof (1) and (2) are direct consequences of Corollary 1.3.

Suppose that E = (g9, €1, - - - ) eSeqb, and R=(ry,ra,...) €Seq satisfy |E|+2|R| =
i and Q(E)p(R) € Aj. Then

i+j= Z2gsps +22r,pt = 2¢9 modulo 2 p.

5§20 =1

Thus (3) follows from Proposition 1.15. O

2 More on excess filtration

For R=(r{,r3,...,Fn,...) €Seq, put s(R) = (0,7r1,72,....p,...).

If some entry of R is not a non-negative integer, we put gp(R) = 0. We regard Seq as
a monoid with componentwise addition, then 0 = (0,0, ...,0,...) is the unit of Seq.
Let E, be an element of Seqb such that the nth entry is 1 and other entries are all 0.
(Weput Eg =0.)

Lemma 2.1
(1) Ife=0,1, |E|+2|R|<2i—j+1 and O(E)p(R) € AL,
B9’ Q(E)p(R) = Q(¢E1 + s(E)p((i —3(El+ j) — |R|)E1 + 5(R))
modulo Fy;_j¢y1.Ap for an odd prime p.
(2) If|R|<i—j and Sq(R) € AZ,

Sq'Sq(R) = Sq((i — j —|R))E1 + s(R)) modulo F;_j1.A;.
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Proof Let E = (gp,&1,82,...) € Seqb and R=(ry,7r2,...)€Seq. Weput Q(E) =
01 Ony - On; (0=ny <ny <---<nyg). By Milnor [5, Theorem 4a, 4b], we have

. - .,
ﬂE@linan"'an = Z ,36in+€1 an—i—ez"'ﬂEan—i-ek@l Liziep"t

@[:0,1

and

s —ds +dg—
PR = Y H(s T 1)60(V1—611-l-ﬁlo,rz—«’lz-1-611,'--)-

dg_
Y s=o0aspf=m s=1 s—1

Thus B¢’ 0, 1Ons -+ On, (R) is a linear combination of the Milnor basis

Qf)Qn1+e1 Onstes** Onpter(r1 —ay +ag, 1y —az +ay,...)

for e, e;,...,e, = 0,1 and non-negative integers ag, dq,ds, ... satisfying
k
aozi—Zetp”‘—Zasps andag <rgfors=1,2,....
t=1 s>1

Suppose that sequences of non-negative integers ep,es,...,e; and ag,aq,ds, ...
satisfy e; =0 or 1, ag <ry and ag =i — th;l e p"t =) ¢>1asp®. We note that

k
(1) agzi—y p" =) '
t=1

s=>1

Let F be a sequence of integers such that 0F = 06 Oni+e1 Onytes * Ony+ey. and
put S =(ri —ay +ag,12—ax+ay,...).

Assume that |E|+2|R| <2i—j+ 1 and Q(E)p(R) € A;;. Since

J=) &s@pt =D+ 2r(p' =1)=2) ep’+2) rep'—|E|-2R],

§=0 =1 s=>0 t>1
we have
k
Yop Y rp' =) ep + Y rp' =F(E|+2R+ ) <i+ 1.
t=1 t>1 §s=0 =1

Hence the right hand side of (1) is non-negative and a takes the minimum value

k
i=> p"=> rsp'=i—3(E|+/)-|R|
t=1

s>1
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if and only if ag = rg for s =1,2,... and e; = e, = --- = ¢, = 1. In this case,
F = (¢,89,€1,82,...) and S = (i—%(|E|—I—j)—|R|,r1,r2,...). Therefore

[FI+2IS| = |E|+2|R| +e+2 (i = 3(E|+ /)~ |Rl) =2i — j +e
and the result follows. Proof for the case p = 2 is similar. O

Put EfAp =3 ;s E ZJ A, . Since the excess filtration §, satisfies (E3) and (E4) of
Proposition 1.9, E} A is a left A,-module and the product map u: A, ® Ay — Ay
induces the following maps.

ki _ Py

it Ap® Ef Ay — Ef Ay, i;: EF A, ® (Ap/Fioj 1 Ap)) — E; 7 A,.
Theorem 2.2 For non-negative integer i, j and ¢ = 0, 1, the following map is an
isomorphism.

~2i(p—1)+e,j. 2i(p—1)+e¢ j 2i(p—1)+j+e¢
Maite CEyive | A ® A/ Faicjreri Ap) = By Ap.

Proof Suppose QF p(S) e Af,i(p_l)+j+£ and |F|+2|S|=2i —j +¢& for F =
(Ao, A1,A2,...) and S = (51,52....). Then,

2) Dok +2) sp=2i—j+te
k>0 k=1
3) Y o@D +2) s(pF-D=2(p-D+j+e
k>0 k>1
Hence
“) Y ohep* ) spf =ip+e.
k>0 k>1

and this implies Ag = ¢. We put £ = (A(,A3,...) and R = (57,53....). By (2)
above, we have s; =i — %(lEl + j)—|R|. Therefore, ﬂgpiQ(E)gg(R) = 0F p(9)
modulo F;_j4¢41Ap by Lemma 2.1. This shows that ﬁ;;gfs_l)ﬂd is surjective. It
ﬁ;;ffs_ng’J is injective. The proof for the case p =2

18 similar. O

is clear from Lemma 2.1 that

For R = (r1,7r2,...,7s,...) € Seq and a non-zero integer p, we say that p divides
R if pl|r; for all i > 1 and denote this by p|R and by p /R otherwise. Put %R =
(.22, L) if pIR,

Lemma 2.3 Let p be an odd prime. For E € Seqb, R e Seq and j > 0, the following
congruences hold.
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(1) If|R| < pj and p|R,
PR’ = ((j — LIRI)E1 + (L R)) modulo Fyj11.A,.
IFE #0or |R| > pj or pfR, Q(E)p(R)p! € Fyj11Ay.
(2) If|R| =< pj+1 and p|R,
PR’ = Bo((j — SIRI)E1 +5(5 R)) modulo Faj12Ap.
If|R| < pj+1and p|R— E, for somen > 1,
J = i1 1
P(R)Bp’ = Onp((/ — 5(IRI= D) E1 +5(5 (R~ En))) modulo Fpj4>Ap.
IfE#0or|R|>pj+1orp/R—E, forany n >0, Q(E)p(R)Bp’

Frjt2Ap.

Proof (1) By Milnor [5, Theorem 4b], we have

Ryl — Vk—pxk+xk—1)
el = ¥ T

xo+x1+=j k=0
o(r1 — px1+x0.r2 — pxa+x1,...),

for R = (r1,72,...). Since (rk_p;:jx’(_l) =0 if rp < pxy, the summation of the

right hand side of the above is taken over non-negative integers xg, X1, ... satisfying
xo+x1+---=7j and pxp <rg forall k =1,2,....

Hence p(j —x¢) = p(x1+x2+---) <|R| and p(j —xo) = |R| holds if and only if
pxip=ri forall k =1,2,....

Put
S=(r1—px1+X0,....7k — PXk +Xk—1,...),

then |S|=|R|— p(j —x¢)+ j = j and |S| = j hold if and only if p|R, |R| < pj
and S = (j — 5|RI)E1 +5(; R).

Therefore Q(E)p(R)p’ € Fyj11Ap unless E =0, |R| < pj and p|R.

(2) Since p(R)p = ano Onp(R — E,) by Milnor [5, Theorem 4a], the result
follows from (1). O

In the case p = 2, a similar result holds.
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Lemma 2.4 For R € Seq and j > 0, the following congruences hold.
If|R| < j and 2|R,

Sq(R)Sq’ = Sq((j — 2IRI)E1 + (3 R)) modulo Fj 11 As.
If [R| > j or 2fR, Sq(R)Sq’ € Fj 11 A;.

Lemma 2.5 Let p be an odd prime, R € Seq and j > 0. If p(R) € A’;. then, the
following congruences hold.

(1) If|R| < pj and p|R,
PR’ = p”z%go(%R) modulo Fsj41Ap.
(2) If|R|<pj+1and p|R,
9(R)Bp’ =P’ 3 o(L R) modulo Fyj12Ap.
if |[R| < pj+1 and p|R— E, forsomen > 1,

; iy k+2
P(R)Bp’ =9’ 20 Qp_19(3 (R — En)) modulo FajirAp.

Proof The first congruence and is a direct consequence of Lemma 2.1 and Lemma
2.3. Suppose p|R— E, and |R| < pj + 1. By Milnor [5, Theorem 4a], Lemma 2.1
and Lemma 2.3,

915 0 ip(L(R - Ep))
= Qi p(L(R-En) + Qup?t 5 7" o (L(R— En))
= 0u((/ — 5(RI= 1) E1 + (% R)) modulo Fpj 124,
= o(R)Bp’ modulo Frji2Ap.

We also obtain p(R)Bgp’ = ﬁpj+2k7p(%R) if |IR| < pj +1 and p|R from Lemma
2.1 and Lemma 2.3. |

Lemma 2.6 For R e Seqand j >0, if |[R| < j, 2|R and Sq(R) € A%,
Sq¢(R)Sq’ = qu+%Sq(%R) modulo Fj 1 A;.

For non-negative integers i, j and e =0,1,put k = ¢ if j isevenand x =1—¢ if
is odd. Let y;,j ¢ be the composition of maps
[oi et Agj—(p—Z)(s—K) ®E§?:~{;8—K)(p_l)+xv4p N E;;:E];_IE)HHAP
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and

~2i(p—1)+ 2i(p—1)+j+ 2i(p—1)+ j
(12 Zﬁf&‘ ) “HLE le(lj—l-s) g “Ap _>E2:S£ ) *Ap ® (Ap/ Faivjrer14p) .

Let us denote by p: .Af,’j — AIJ; the pth root map, that is, the dual of pth power map
A},* — A},’i, x + x?. By Milnor [5, Lemma 9], we have

1Ry E=0, p|R
p(Q(E)p(R))z{f(P ) 7

otherwise.

Let 7;: Ay, — A,/ F; Ap be the quotient map. Put gy;4e = m2i1e+1(B%¢"), then,

2i(p—1)+e¢
gri+e generates E2i+s

2.3 and Lemma 2.5.

Ap . The next result is a direct consequence of Lemma

Proposition 2.7 Leti, j, k be non-negative integers, ¢ = 0,1 and p an odd prime.

2 2=+ 23i+7)(p—1+ j
() Yirjares AP7 @ EYETVT Ay > EXENOTD4 4, @ (Ap/ Faiv1 Ap)

2jp g p2i(p—1+
maps 6 ®g2i+g e AP @ ESIPTYE A, 10 82142 4e ® Mg 10(0).

2jp+2g 2 1 23i4+j)(p—1)+1 j
@ YigjoireA? (P A— BT O T A @(Ay ) Fair Ap)
is a trivial map.

2jp=2g p2i(p—1)+1 23i+/)(p—1 i
B3) Vitjoj-1,6 477 7® zfipl o Ap%Ezf;Iﬁ(p JAp@ (Ap/ Faiga Ap) !

maps (ka_,_zAp)zJp ’® E;;Sfl_l)HAp into

Yot N
Ezfﬁiﬁ(” ) Ap ® (Fi1Ap/ Faip2 Ap) 1.

For p = 2, we have the following Proposition.
Proposition 2.8 Leti, j be non-negative integers.
y i ,
Vije: Ay ® Ez,{_ﬁri«‘lz — EJITe Ay ® (A2/ Faizjyeg1A2)’

2j ;
maps 0 ® g2i—j4+s € Ay ® E51 T2 A5 10 €146 ® Mai—jyet10(6).

3 Filtered Hopf algebra

We denote by £* the category of graded vector spaces over a field K and linear maps
preserving degrees. We also denote by £ the category of (ungraded) vector spaces over
K. For n € Z, define functors X": £* — £*, ¢,: £* — € and 1,: € — E* as follows.

(Env*)l — Vi—n’ (Enf)l — fi—n’ Gn(V*) — Vn’ Gn(f) — fn’
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for an object V* and morphism f of £*.

kW k=n k)& k=n
tn(W) —{0 ktn® tn(g) _{0 k%,

for an object W and morphism g of £.
Proposition 3.1 ¢, is a right and left adjoint of €,,.

Proof Define natural transformations u: idg+ — ty€y,, Un: €xty — idg, ¢yt idg —
€ntn and ¢y ty€, — idg+ as follows. For V* € Ob £*,

x xev?

, cay+(x)=x (xe V™).
0 xeVk k#n nve () ( )

Upy*(x) = {

For Ue€Ob &, upy(y) =y (y € (entn(U))" =U), cuu(y) =y (y € U). Clearly,
Chy*: tn€y(V*) — V* is an inclusion map and i1, y: €,4t,(U) — U and ¢, y: U —
€ntn(U) can be regarded as identity maps. Then, u, and u,, are the unit and the counit
of the adjunction €, F ¢, respectively, and ¢, and ¢, are the unit and the counit of the
adjunction ¢, - €, respectively. |

Let A* be a graded Hopf algebra over K with an decreasing filtration § = (F; A*)iez
of subspaces of A*. The notion of unstable 4*-module is defined as follows.

Definition 3.2 A left A*—module M * with structure map a: A* Q@ M* — M™* is
called an unstable 4*-module with respect to § if a(F,+14*Q@ M")={0} forneZ.
We denote by UM (A*) the full subcategory of the category of left 4*-modules
consisting of unstable A*-modules.

We are going to give conditions on § which suffices to develop a theory of unstable
A*-modules. The following is the first one.
Condition 3.3

(1) (El) F;A*=A*ifi <0.

(2) (E2) (;ey FiA™ ={0}.

Note that if § satisfies (E1) and V* is an unstable 4*-module, V" = {0} for n < 0.
The next one comes from Proposition 1.9.

Condition 3.4 Letusdenoteby p: A*®A* — A* and §: A* — A*® A* the product
and the coproduct of 4*, respectively. For an decreasing filtration § = (F; A*);jez of
subspaces of A*, we consider the following conditions.
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(1) (E3) F;A*’s are left ideals of A* for i € Z.
(2) (B4) n(F;A*® A)) C Fi—jA* fori, j eZ.
(3) (B5) 8(FiA*) C Y i pmy FjA*® FiA* fori € 7.

We remark that if § satisfies (E3) of Condition 3.4 and 3" (A*/ F,4+1 A™) is an unstable
A*-module, then §F satisfies (E4) of Condition 3.4. It is easy to verify the following
fact.

Proposition 3.5 Let A* be a graded Hopf algebra over K with decreasing filtration
§. Suppose that § satisfies the condition (E5) in Condition 3.4. If V* and W* are
unstable A* —modules with respect to §, then sois V* @ W*.

Let us denote by O: UM (A*) — E* the forgetful functor. Suppose that § satisfies
(E3) and (E4) of Condition 3.4. Define a functor F: £* — UM (A*) by

FV* =Y A*/F1A*@V"  and  F(f)=) idge/p, a4+ @S
nez nez
For an object M* of UM(A*), let ay: A*/Fpi1A* @ M" — M™* (n € Z) be
the maps induced by the structure map «a: A* ® M* — M ™. These maps induce

epmr: FOM™) — M*.

Let 1, be the class of 1 € A® in A*/F,; A*. For an object V* of £*, define a map
ny=: V¥ — OF(V*) by ny«(x) =) ez ln @ upyy=(x) for x € V*.

Proposition 3.6 F is a left adjoint of O.

Proof It can be easily verified that : idg — OF (resp. &: FO — idypq(a*)) is the
unit (resp. counit) of the adjunction F - O. |

Remark 3.7

(1) As a special case of the above result, we see that F(X"K) = X" A%/ F, .1 A*
represents a functor €,0 : UM (A*) — E£. Thus we can verify the fact that a
functor G: UM (A*)°P — £ is representable if G is right exact and preserves
direct sums (Lannes—Zarati [2]).

(2) The above result implies that L/ M(A*) has enough projectives and we can
construct the bar resolutions (MacLane [4]) in UM (A*) and that, if F also
satisfies (E5) and L* is an unstable A*-module of finite type, the left adjoint
to the functor M * > M™* ® L* exists.
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Put E{ A* = (F;A*) /(Fi41A*)) and Ef A* = Y, ; E] A* 1f ¥ satisfies (E3) of
Condition 3.4, E]A* is a left A*-module. If § satisfies (E4) of Condition 3.4, the
product map pu: A* ® A* — A* induces ﬁf’j: E;‘A* ® A/ — ElkjjjA*. Consider
a bigraded vector space E{A* =) ., EFA*. Then E{A* has a structure of a
right A*-module given by ﬁf’j ’s. Suppose § satisfies both (E3) and (E4), then ﬁf’j
induces [Zf.c’j: E{‘A* ® (A*/Fi—j1+14%) — Ef_JrjjA*. We can regard [Zf’j as a map
EFA* @ uj€j(A*/Fimj414%) > Ef ;A* in £*.

Proposition 1.16 and Theorem 2.2 suggests the following conditions.

Condition 3.8 Let A™ be an algebra over a field K of characteristic p with an
decreasing filtration § = (F; A*);ez.

(1) (E6) E%X_  A* ={0} (i,k €Z, & = 0,1) holds if k < 2i(p—1)+ & or

2i +e+k #%0,2 modulo 2p.
2) E7) dimES P A =1 fori >0, e=0,1.
(3) (E8) For non-negative integers i, j and ¢ =0, 1, the map

i(p1)tej . w2i(p—1)t ; 2i(p—1)+j+
ol te, g2l gA*®(A*/F2i—j+8+1A*)J_>E2;£I}+s) A

is an isomorphism.

Remark 3.9 Since E'”"U°4* = {0} if j > 2i + & by (E6), we have
dim(Fy; 4, A*)2P~D+e = | for j > 0 and ¢ = 0,1 by (E2) and (E7). We also
have (Faj1eA*)K = {0} if k <2i(p—1)+¢.

We assume that § satisfies (E1), (E2), (E3), (E4), (E6), (E7) and (E8) for the rest of
this section.

Proposition 3.10 A left A* —module M* with structure map o: A* @ M* — M* is
unstable if and only if o((Faj4eA*)2(P~D+e @ M*) = {0} forany i €7, e =0, 1
such that k <2i +¢.

Proof Suppose a((FajpeA*)2(P=D+e @ Mk) = {0} forany i € Z, e =0, 1 and
k < 2i +¢. Since (E8) implies

U ((Fpipe A*)HP™DHE @ 4T) 4 (Foijyop AF)H P DHIFe

— (F2i—j+eA*)2i(p_l)+j+8’
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we have

A(Faivjroq1A*)ODTIHe @ M ymg(Fpij e A*)H P7DTIHE @ MK
if k<2i+e Byputtingn=k—j,s=2i—j4+eandt=2i(p—1)+j+¢, we
see that

S a((Fy114%) @ M") = a((FsA™)' @ M")

holds if s > n and s +¢ = 0,2 modulo 2p. Since (Fyy1A4*)" = (FsA4*)" by (E6),
It follows from (5) that a((Fy+14%)' @ M") = a((FpA*)' @ M™) for any m > n.
Since a((F A*)! @ M™) = {0} for sufficiently large m by (E6) and (E2), we have
a((Fpy14%)" @ M™) = {0}.

The converse follows from

Q((Fajp e A¥)HP=DFe @ MKy c o(Frq A% @ M*) = {0} o

For non-negative integers i, j and e =0, 1, put k =¢ if j isevenand k =1 —¢ if j
is odd. Let y;, j . be the composition of maps

H2i—j+e: Apj_(p—Z)(e—K) ®E§§i—jj_':;s—lc)(p—l)+ch* N E;;:(_1}113+j+814*

and

~2i(p—1D+e,j\—1. 2i(p—1D+j+ 2i(p—1)+ i
(Aot o) T B AT BTV AT @ (AT Faic e A7),

Condition 3.11 For a real number r, let us denote by [r] the minimum integer among
integers which are not less than 7.

(1) (E9) yi,j.c maps (FA*)PI= (=20 @ pRI-itemdmDHe 4« jngg

2i(p—1)+ j
EY PV A% @ (Flayp) ™/ Faicjrerr A7)

It follows from Proposition 2.7 and Proposition 2.8 that the excess filtration §, on A4,
satisfies the above condition.

We can construct the functor ®: Y M (A*) — UM(A*) as in Li [3]. For an unstable
A*-module M*, define an A*-module ®M * as follows. Put

q)M* — Z E;;—(}i_l)‘l‘sA* ®M2i+€.

i€Z,e=0,1

In other words,
EXP=DTE g o pp2ite | —2ipt2e ieZ, £=0,1
(DM*)k =] "2ite ® =ziptle 1ef, =0,
{0} k #£ 0,2 modulo 2 p.
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We denote by u;: A* ® EfA* — EA* the map induced by the product p of
A*. Note that u;: A/ ® ElkA* — Eij+kA* is trivial if i + j + k # 0,2 mod-
ulo 2p. Let ap+: A* @ M* — M™ be the A*—module structure map of M™*.
Since M* is unstable, aps+ induces @ps+ ;: A*/Fi—1 A* ® M' — M*. We define
aprp+: QPM™* — OM* by the following compositions:

42ip ® Egzl:fi-ljs_l)+8’4* ®M2i+a

yi+j,2j,£®1 2047 —1+ . .
> Ez((;+;))5£s A Q (A Faiges1 A)Y @ M2

1@+ 2ite  2(i+j)(p—1)+¢ 4 2(i+j)+e.
— Eyiii)te AmeM ;

A2ir+2 g E;{'(p—l)A* ® M2

Yi+i2j+1101 564 iy (p—1)+1 . .
E28+;))§rp1 A Q (A7) Faig A @ M

1@+ 2i 2 (i j)(p—1)+1 4% 2(i+j)+1.
> L4t )41 A" M ;

and
42ip—2 ®E§l{ipl—1)+1A* ®M2i+1
T 2108, G200 4 @ (47 ) Fyy A7) @ M
1®Ups* 2j41 E;gif))(p_l)A* ® M2+,
Since u(Faip+2e+1A4* @ (Faj1eA*)2 P~ D+ C Fpii o1 A* fore=0,1and i €Z
by (E4), we deduce that ®M * is an unstable 4* —module.

For a homomorphism f: M* — N* between unstable A*-modules, let ®f: ®M* —
®N* be the map induced by id p2ip—1)+e A* ® f.
2i+e¢

Then ®f is a homomorphism of left 4A*—modules and ® is an endofunctor of
UM(A*). Let

)\‘]2\}.’;4‘28: (q)M*)Zl'p-i‘ZS — E;:S—PS_I)‘}'SA* ®M2i+8 N M2i17+2a (l c Z,8 — 0’ 1)

be the restriction of &ps+ pj4e: A%/ Faiyer14* ® M2'T€ — M*. Thus we have a
map Apr+: ®M™* — M*. It is easy to verify that Aps+ is a homomorphism of left
A*-modules and we have a natural transformation A: ® — idy/rq(4*)-
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For an object V* of £*, let py+: F(V*) — TF(X~1V*) be the map induced by
the quotient map A*/F, 1 A* — A*/F,A* and the identity maps V" — V" =
(E_l V*)n—l .

Proposition 3.12 The following is a short exact sequence.

0 —— oF (v 25 Fovry 25 sEETIVY —— 0

Proof By (E6) and (E8), A z(p+) is an injection onto ), o, FA*/Fp i1 A* @ V",
which is the kernel of pp«. O

Lemma 3.13 Let M™ be an unstable A* —-module.

(1) X! CokerAps+ is an unstable A* —module.

(2) If § satisfies (E9) in Condition 3.11, ¥~ Ker Aps+ is an unstable A* —module.

Proof (1) Since (ImApgs+)2Pte = (Fy;y,A*)2(P=D+epr2ite e have
(FaiteA")?P7DF(Coker ) *** = {0}.
If k < 2i + ¢, instability of M* and Proposition 3.10 imply
(Faitre A%)2P=D+e(Coker A ps+)* = {0}.
Thus the assertion follows from Proposition 3.10.

(2) Put N2F¢ = {x € M2¥e|(Fy1,A*)¥P~D+ex = (0}}. Then we have
(KerkM*)zip+28 _ E;;ipg—l)ﬂA* ® N2+ and (F2i+8Aﬂ<)2i(p—1)+sN2i+8 = {0}.
By Proposition 3.10, it suffices to show

(F2j+8/A*)2j(p_1)+8/(Eill:g_l;_l)_'_gA* ® N2i+8) — {0}

for non-negative integers i, j and &,& = 0, 1 satisfying 2j + &' > 2ip + 2¢. We may
assume 2j(p—1)+¢& =0,+2 modulo 2p, thatis, & =0 and j =0, =1 modulo p
for dimensional reason. If j = kp, then k > i + ¢ and it follows from Condition 3.11
that

(szpA*)ZkP(P_l)(ngipe_l)'i‘SA* ® N2i+8)

_ p20+k(p—1))(p—1+e 2k (p—1) N 2iten
= By ite AT ® (Fa AM)PPTUNHE) = o).
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If j =kp—1,then k >i + 1 and we only have to consider the case ¢ = 0 for
dimensional reason. Since (Fpy A*)2(P=D=1 — {0} by (E6) and (E2), we have

(szp_zA*)Zp(kp—k—l)-i-Z(ng(p_l)A* ® NZi)

i +kp—k—1)(p— I
:Ej((;j:kﬁ—k—ll))sfl DH A% @ (Fyy 42K =D 2 = (03,

If j =kp+1,then k >i and we only have to consider the case € = 1 for dimensional
reason. Again, using Condition 3.11 and the instability of M™*, we see
(szpHA*)zp(kp—k+1)—2(E§I{Srpl—l)+lA* ®N2i+1)

2(i+kp—k+1 —1 1 — i
=E281k5—k11))£f1 A @ (Fapqy AMPPDHI N2 — 0y,

This completes the proof. |

Define functors Q, Q': UM(A*) — UM(A*) by Q(M*) = 7! Coker A+ and
QU (M*) = X1 KerAps«. Let us denote by 7jas+: M* — Coker Aps+ = TQM* the
quotient map and by (p7+: ZQIM* — ®M* the inclusion map. For a morphism
f: M* — N* of unstable modules, let Qf: QM* — QN* and Q! f: Q' M* —
Q!N* be the unique maps that make the following diagram commute.

* gk Mg *
0 — > SQUM* M oy MY e+ ™M somr — 0

[satr e s [zas

* }» * 7N *
0 —— meiny X oy Y Nx Y soN* — 0
Proposition 3.14 Q is the left adjoint of the suspension functor ¥. Q! is the first left
derived functor of 2 and all the higher derived functors are trivial.

Proof We first note that Axpr+: @XM ™ — XM * is trivial by the instability of M ™*.
Hence Ngpr+: TM™* — QX M* is an isomorphism. Define gpy+: QEM™* — M*
by prx = E_lﬁg}w*. Obviously, Xeps+ N pr+ = idy pr+ . By the naturality of A and

the definition of €, we have
S (Eanm= Qv iiv+ = SEanr+(SQAM)Tm+ = Tgoar-Toam+Tme = T
Hence gqpr+ Qipr+ = idgar+ and € is the left adjoint of X.
Let
a On On+1

—1
Pl B, | < By «——

EM* 31
M* & B *
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be the bar resolution of M *. Consider chain complexes
B.= (B, ,0n)nez, PB.=(PB,,®(0y))nez and TQLB. = (XQB,;, TQ(n))nez-

We denote by A.: ®B. — B. and n.: B. — X QB. the chain maps given by the A g
and 7 p=, respectively. Since

B e .
0— ®B, — B, —> XQB, -0

is exact by Proposition 3.12. we have a short exact sequence of complexes

0= ®B. 25 B. 1 $QB. 0.

Consider the long exact sequence associated with this short exact sequence. Clearly, ®
is an exact functor. We deduce that X H"(2B.) = H"(XQB.) is trivial and that there
is an exact sequence
1 1 Anrx x TIM* *
0->XH (QB)=H (XQB)—> My —> M* — ZQM™ — 0.

Thus Q"M* = H"(QB.) is trivial if n > 1 and Q! defined above is the first left
derived functor of €2. O

4 Unipotent group scheme

For a commutative ring k, we denote by Alg,’: the category of graded k—algebras
and by h4+ the functor represented by an object A* of Alg, . We denote by Gr the
category of groups.

For a Hopf algebra A*, let us denote by A4 the dual Hopf algebra, that is, A, is the
dual vector space Homg (A", K) and Ay =) ,c, An. We assume that A* is finite
type and that A" = 0 for n < 0.

For a filtration § = (F; A*)jez of A*, define the dual filtration §* = (F; Ax)iez on
Ay by

F; A, = Ker (K,-+1: A, = Homg (A", K) — Homg (Fj1+1 A", K))

Here, «;: F; A" — A" denotes the inclusion map. Note that the dual of the dual
filtration F* is identified with §.

We list conditions on the dual filtration.

Condition 4.1 Let u*: Ax — Ax ® A« (resp. §* : Ax ® Ax — Ax) be the coproduct
(resp. product) of Ax.
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(1) (E1*) F;jAx = {0} if i <0.

) (E2%) Usep Fidy = As.

(3) (E3*) F;Ay’s are left coideals of A, (thatis, u*(F;Ax) C Ax ® F; Ay) for
ie€”/.

4) (E4*) u*(F;jAy) C ZjeZ FjtiA_j® Aj fori, jeZ.

(5) (ES*) 8*(Fj As ® FyAyx) C Fypx Ay for j.k €Z.

6) (E6™) E’2‘i+8A* ={0} (i,k € Z, e =0,1) holds if kK <2i(p—1)+¢& or
2i +e+k #%£0,2 modulo 2p.

(1) E7*) dim EZP" DT 45 =1 for i 20, e =0, 1.

It is easy to verify the following fact.

Proposition 4.2 (Yamaguchi [8]) For!/ =1,2,3,4,5,6,7, § satisfies the condition
(El) if and only if §* satisfies (E[*).

For a prime p, we define a graded Hopf algebra A (), over a prime field [, as follows.
As an algebra, we put

Ay = E(xin|i 22) @ Fplxijli > j = 2]if p #2, Ay =Falxijli > j = 1].

We assign the generators x;; degrees as follows.

2pi72 1 [ >2,j=1

deg x;; = p' o P=oJ if p#£2
2p772(pH T —1) i>j>2

deg x;; =272~ —1) if p=2.

Define the coproduct p* and the counit #n* of A(,)« by
i—1
W) =xi; @1+ Y X ®xpj +1®@ x5, 1% (xij) =0.
k=j+1
Then, A(p)s« is a commutative Hopf algebra and its conjugation (canonical anti-
automorphism) ¢* is given by
i—1
C(xij) =—xi— Y Xkt ().

k=j+1

Hence the affine scheme /14, represented by A ()« takes its values in the category
of groups, namely, A4, Alg?p — @r is an affine group scheme.
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Remark 4.3 For a positive integer 7 and a graded [, —algebra R*, let U,(R*) be a
set of n x n unipotent matrices A whose (7, j)th entry a;; satisfies

R i=2,j=1 .
aijG {Rzpj—Z(pi—j_l) l>122 1fp7é2
aij € R¥'@7-D if p=2
and ay; =dazy =---=ayy, =1, a;j =0if i < j. Then, U,(R*) is a group by the

multiplication of matrices. Hence we have a [, —group functor Uy: Alng — Gr. On
the other hand, let A(n)(,)« be the Hopf subalgebra of A, generated by {x;;|1 =<
J <i=<n}. Foramap f: A(n) )« — R* of graded K-algebras, we denote by A
the element of U,(R*) whose (i, j)th component is f(x;;) if i > j. Define a map
O R+ hA(,,)(p)*(R*) — Un(R*) by 0,g+(f) = Ay. Itis easy to verify that 6, g+ is
an isomorphism groups and we have a natural equivalence 6,: h4(),,,,, — Un-

If A= (aij) € Upy+1(R*),let A’ be the nxn matrix whose (i, j)th component is a;; .
Then A’ € U,(R*) and we define a morphism 7,: U,y1 — Uy by m,p«(A) = A'.
Let U be the limit of the inverse system

(U122 Uy)

n=1,2,...°

The morphism 2 hg(n+1),), —A4(n) (), induced by the inclusion map tn: A(1)(p)sx—>
A(n+1)(p)s satisfies 0,1, = 1,0,11. Since A(p)« is the colimit of the direct system

9o

it follows that the 6, induce a natural equivalence 0oo: f14,,), — Uso. Thus, A(p)«
represents the group scheme of “infinite dimensional unipotent matrices”.

In order to relate A,y with the dual Steenrod algebra A+, we consider representation
of an affine group scheme.

Definition 4.4 Let V* be a finite dimensional vector space over K. Define a functor
Fy«: Algy — £* by Fy=(R*) = V* ® R*. We regard Fy«(R*) as a right R*—
module.

We denote by V,* the graded vector space over [, such that dim Vnk =1 for k =
—1,-2,...,=2p%, ..., =2p"% and VK = {0} otherwise if p # 2, dim V¥ =1 for
k=—1,-2,...,=2",...,=2""! and V¥ = {0} otherwise if p =2. Let vy be a base
of V¥ for k such that dim VK =1.
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Define a,g+: Fpx(R*) x Uy(R*) — Fpx(R¥) by

n
g (v ® 1, (aij)) = Y vi ®ayj
i=1
so that U, (R*) acts R*-linearly on Fy«(R*). Hence Fy« is aright U,—module, in
other words, a: Fyx x Uy — Fy» is a representation of Uy on V.

Let @u: V5 — V,J ® A(n)(p)« be the map defined by

n
On(V) = U dm) 0 O L (X)) =1, @1+ Y v ®xi).
i=j+1
Here, we put x;; =1 and x;; =0 if i < j. Then, ¢, is a right comodule structure
map of V,*. Composing the map idyx ®kn: V, ® A(1)(p)x — V7 ® A(p)s induced
by the inclusion map k,: A(1)(p)x = A(p)x t0 @n, V,* is regarded as a right A p)s—
comodule.

We change the gradings of the mod p cohomology group H*(X) of a space X by re-
placing H"(X) by H~"(X) so that the Milnor coaction ¥y : H*(X) — H*(X)® Aps
preserves degrees. Recall that the Milnor coaction on the mod p cohomology group of
BZ/pZ is a homomorphisms of algebras given as follows.

YO =101-Y s @u andys) =Y s” @& if p #2,

k>0 k>0

where H*(BZ/pZ) = E(t) ® Fpls] (t € H"Y(BZ/pZ), s € H"*(BZ/ pZ)).

vy =Y ¥ @y it p=2,
k=0
where H*(BZ/pZ) = F,[t] (¢t € H"'(BZ/2Z)). We identify V,* with a subspace
of the mod p cohomology group of the (2p"~2 + 1)—skeleton (resp. 2"~ ! —skeleton)
of BZ/pZ spanned by {t,s,s?,.. .,spn_z} (resp. {.1%,.. .,tzn_l}) if p # 2 (resp.
p=2). Putvy =t and vj; = sP' 2 (j=23,...,n)if p# 2 and v; = 2
(j=1,...,n)if p =2. By the above equality, we have

n .
n S uesl @<j<n ifp#2,
W(U1)=U1®1—Zvi®n_2, lﬁ'(v])z l;]

i=2 v ® lei;l if p=2.
i=)
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. -z
Hence the map pp: A(p)x — Apx givenby pp(xi1) =—Ti—2, pp(xij) = .§f_j (j=2)
if p#2and pa(xij)=¢ lzi;l if p =2 is a map of Hopf algebras and the composition

n d® n d®
Vi 2 VE @A) (pys —— Vi ® A(pys —— V@ Aps

coincides with the Milnor coaction (See Yamaguchi [8] for details).

Remark 4.5 Since pp(X5421) = —Ts, Pp(Xs422) =& and pa(Xs411) = &5, pp 18
surjective. Hence the affine group scheme represented by A, is regarded as a closed
subgroup scheme of Uy .

j—2
The kernel of pp is the ideal generated by {x,-j —xf_]j+22‘ i>j> 3} if p # 2 and
{xij lj+11}1>]>2}1fp—2
Let F;A(p)« be the subspace of A(p)s« spanned by

n
jl,]'z,---,jn22,m+22pj’_2§i},
=1

{xkl 1 Xka1 """ Xk 1 X0 j1 Xin jo " " Xip jin

if p# 2 and FjA()s be the subspace of A(y)s« spanned by

n
szl‘l 51‘}.
=1

By this definition and Proposition 1.14, it is easy to verify the following assertions.

{xiljlxizjz  Xipjn

Proposition 4.6
(1) The filtration (FiA(P)*)ieZ
@) pp (Fid(pyx) = FiAps.

on A(p)« satisfies the conditions (E1* )~ (E6*).

It follows from Proposition 4.2 that the dual filtration (F i Az‘ )) on the dual Hopf
algebra AZ"p) of A(p)« satisfies the conditions (E1)~(E6). Note that the Steenrod
algebra A, is a Hopf subalgebra of A?p).

However, (F i A( P)*)i <7 does not satisfy the condition (E7*). In fact, the following
fact can be shown.

Proposition 4.7 If p is an odd prime, then for s =0,1,2,... and e =0, 1,

{le 1_[ j+11 ijpj_z =S}

j=2 j=2
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is a basis of E;sssrl; 1)"'EA’("p) Fors=0,1,2,...,
i—1
([Tt | St =)
j=1 j=2

AV ES
is a basis of E A(z)

Appendix A

Here we make an observation on the group scheme represented by the dual Steenrod
algebra Apx.

Let Ap* be the polynomial part of Aps (hence Ass = Ayy). G Nishida observed that
Ap* represents the functor I': .Alg[F — Gr defined by

FRY={/(XN) e R* IX] | f(X+Y) = f(X)+ f(Y), f(O0)=0, f'(0)=1},

that is, I” (R*) is the group of strict automorphisms of the additive formal group law
G4 over R*. (We regard R*[X] as a graded ring with deg X = —2.)

In fact, for a morphism ¢: VZP* — R* of graded rings, put

Jo(X) =) "oE) X" (£ =1).
i=0
Then, it follows from Milnor [5, Theorem 3] that the correspondence ¢ — f,(X) gives
a natural equivalence / g I.

This fact also has a geometric explanation as follows. Let a: MUy — [F, be the
map that classifies the additive formal group law over [,. Then, the pull-back of
the groupoid scheme represented by the Hopf algebroid (M Uy, MU M U) along
ha: hg, — hpy, is the stabilizer group scheme of the additive formal group law
and it is represented by F, @y, MUMU Qpy, Fp (Yamaguchi [9]). Since o
factors through the canonical map M Ux — BPy, Fp Quu, MU MU Qpmu, Fp is
isomorphic to F, ®pp, BP+BP ®pp, Fp = Aps.

We assume that p is an odd prime below. Define a functor I": .Alg;p — Gr as follows.
For R* € Ob Algr , we consider an object R*[g]/(e?) (deg € = —1) of Algy . Let

I (R*) be the set of automorphisms f: G, — G, over R*[¢]/(¢?) such that f/(0)—1¢
(&). The group structure of I"(R*) is given by the composition of automorphisms. If
@: R* — §* is a homomorphism of graded algebras, I'(¢): I'(R*) — I'(S*) maps
J(X) = Eizolai +bie) XP' 10 3 (p(ai) +@(b)e) X 7'
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Proposition A.1 The affine group scheme h 4, represented by Apx is isomorphic to
r.

Proof We define a natural transformation 6: /4, — I' as follows. For R*€ Ob Algf gF,

and ¢ € hg,, (R*), weset 0% () =) ;50(0(&:) +o(1)e) X P' . 1t follows from Mllnor
[S, Theorem 3] that 6 is a natural transformation. We can verify easily that 6 is a
natural equivalence. a

Thus I" is regarded as a closed subscheme of Uy .
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