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Modular invariants detecting the cohomology of BF4 at the
prime 3

CARLES BROTO

Attributed to J F Adams is the conjecture that, at odd primes, the mod–p cohomology
ring of the classifying space of a connected compact Lie group is detected by its
elementary abelian p–subgroups. In this note we rely on Toda’s calculation of
H�.BF4I F3/ in order to show that the conjecture holds in case of the exceptional
Lie group F4 . To this aim we use invariant theory in order to identify parts of
H�.BF4I F3/ with invariant subrings in the cohomology of elementary abelian 3–
subgroups of F4 . These subgroups themselves are identified via the Steenrod algebra
action on H�.BF4I F3/ .

55R40; 55S10, 13A50

1 Introduction

It has been known since the work of Borel [3; 2] that the rational cohomology of
the classifying space of a compact and connected Lie group G is detected on its
maximal torus TG , and can actually be identified with the subalgebra of elements in
the cohomology of the classifying space of TG that are fixed by the natural action of
the Weyl group WG ; that is, we can identify H�.BGIQ/ŠH�.BTG IQ/

WG . Similar
identifications hold for cohomology with coefficients in fields of prime charateristic as
soon as this charateristic does not divide the order of the Weyl group.

A quick look at the mod p cohomology of classifying spaces of compact connected
Lie groups at torsion primes (cf Mimura and Toda [12]) shows that restrictions to
maximal tori usually have big kernels. In particular all odd degree elements can only be
mapped trivially by the restriction to the maximal torus. We are then led to consider the
restriction to elementary abelian subgroups. At odd primes, there is always a maximal
one that consists of all elements of p–power order in the maximal torus, but in presence
of torsion there are also elementary abelian subgroups which are non-toral; that is, not
conjugate to a subgroup of the maximal torus. If Ep.G/ is a set of representatives of
all conjugacy classes of maximal elementary abelian p–subgroups, then the kernel of
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the restriction map

qG WH
�.BGI Fp/ �!

Y
E2Ep.G/

H�.BEI Fp/

is nilpotent, according to Quillen [14], for any compact Lie group G and any prime p .
Adams conjectured that qG is actually a monomorphism if G is compact and connected
and p is an odd prime.

In this note we rely on Toda’s calculation [20] of H�.BF4I F3/ to show that qG is a
monomorphism in this case. Kono and Yagita [10] proved that qG is a monomorphism
for G D PU.3/ at the prime 3. This has been recently generalized by Vavpetič and
Viruel [21] to G D PU.p/ at the prime p , for p odd. Mimura, Sambe, Tezuka, and
Toda [11] have also obtained that the conjecture is true for G DE6 at p D 3.

If WG.E/ denotes the group of automorphisms of the elementary abelian subgroup
E of G which are induced by conjugation in G , the restriction map has image in
the invariant subring H�.BEI Fp/

WG.E/ . In section two we present the relevant
invariant theory in order to have a description as algebras over the Steenrod algebra of
these invariant rings for the elementary abelian 3–subgroups of F4 that are involved
in our calculations. These subgroups were identified by Rector [15, Section 7] by
arguments based on work of Toda, and confirmed by Adams using geometric argu-
ments. Taking Rector’s calculations as starting point and comparing the Steenrod
algebra action on H�.BF4I F3/ and on the invariant subrings H�.BTF4

I F3/
WF4 and

H�.BEI F3/
WF4

.E/ , we obtain a precise description of qF4
at the prime 3 in section

three, and, in particular, that it is injective.

Part of the results presented here were announced in [6] but details remained unpublished
at that time. Now, during the Conference in Algebraic Topology held in Hanoi in honor
of Huỳnh Mui’s 60th birthday, in August, 2004, I saw a renewed interest in the subject
by M Kameko, M Mimura, and A Viruel, among others, which prompted me to submit
this note to the conference proceedings.

The author is partially supported by FEDER/MEC grant MTM2004–06686.

2 Modular invariants in P.V / ˝ E.V /

Let Fp be the field of p elements, for an odd prime p , and V a Fp –vector space of
dimension n. We denote by P .V �/ the symmetric algebra on the dual vector space
V � . If d WV � ! dV � is an isomorphism of Fp –vector spaces and E.dV �/ is the
exterior algebra on dV � , d extends uniquely to a derivation of the algebra

K.V �/D P .V �/˝E.dV �/D P Œx1; : : : ;xn�˝EŒdx1; : : : ; dxn�:
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Let G be a finite subgroup of GL.V /, so that G acts on P .V �/ via the transpose
representation. This action can be extended to a differential algebra action on K.V �/

in a unique way. We are interested in cases in which the fixed subalgebra is again a
polynomial algebra on n generators

P .V �/G D P Œ�1; : : : ; �n� :

In this case, according to a theorem of Serre, G is a pseudoreflection group, i.e., G is
generated by elements that fix a codimension one subspace of V (see Bourbaki [4],
Benson [1] and Smith [17]). If the order of G is not divisible by p , then P .V �/G is a
polynomial algebra if and only if G is a pseudoreflection group and in this case the
ring of invariants of K.V �/ is

K.V �/G D P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�;

(see Solomon [18], Benson [1] and Smith [17]).

In this section we will discuss the case in which P .V �/G is a polynomial algebra but
p divides the order of G . First, we will show a necessary and sufficient condition under
which the above formula holds. In the case that this condition is not satisfied we show
how to construct new invariants in K.V �/. In the cases that we have checked, these
new invariants provide a complete system of generators for K.V �/G . For GDGL.V /

or G D SL.V / they can be compared with the system obtained by Mui [13].

The modules of relative invariants will play a fundamental role in our discussion.
Recall that for a linear character of G , �WG ! F�p , with �.gh/ D �.g/�.h/, the
P .V �/G –module of �–relative invariants is defined

P .V �/G� D
˚

q 2 P .V �/
ˇ̌
g � q D �.g/q; 8g 2G

	
:

If G is a pseudoreflection group, it turns out that this is a free P .V �/G –module of
rank one, P .V �/G� D f�P .V �/G , for an element f� 2 P .V �/ that can be written in
a unique way, up to scalar multiplication, as a product of forms in V � (see Stanley
[19] and Broto–Smith–Stong [7]).

If we write d�i D
Pn

iD1 aij dxj , the jacobian, J D det.aij /i;j is a non-trivial element
of P .V �/ (see Wilkerson [23]). Moreover, it is a det�1 –relative invariant:

J 2 P .V �/G
det�1 D fdet�1 �P .V �/G :

It follows that fdet�1 always divides J .

Theorem 2.1 (Broto [5]) Let Fp be the field of p elements, where p is an odd
prime, and V a Fp –vector space of dimension n. Assume that G is a finite subgroup
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of GL.V / such that P .V �/G D P Œ�1; : : : ; �n�, then

K.V �/G D P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�

if and only if J D fdet�1 (up to an invertible of Fp ).

Proof As in the characteristic zero case, the fact J ¤ 0, implies that the morphism

P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�!K.V �/

is always injective. We need to determine the cases in which all elements of K.V �/G

belong to the image; in other words, are expressible as algebraic combination of
�1; : : : ; �n; d�1; : : : ; d�n .

If I D .i1; : : : ; ik/ is an ordered sequence of integers: 0< i1 < � � �< ik � n, we denote
d�I D d�i1

d�i2
� � � d�ik

or dxI D dxi1
dxi2
� � � dxik

. With this notation, K.V �/ is a
free P .V �/–module generated by fdxI gI , and so, if FP .V �/ is the field of fractions
of P .V �/ and

FK.V �/D FP .V �/˝P.V �/K.V �/;

then FK.V �/ is a FP .V �/–vector space with base fdxI gI , and fd�I gI form a base,
too.

Assume first that J Dfdet�1 up to an scalar. Choose an arbitrary element w 2K.V �/G .
It may be written as a linear combination w D

P
I wI d�I , with wI 2 FP .V �/G . We

will show that each wI lies in P .V /G so that w 2 P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�.

Choose a sequence I0 of minimal length such that wI0
¤ 0 and let I 0

0
be the comple-

mentary sequence, so that the expression

wd�I 0
0
D wI0

d�I0
d�I 0

0
D˙wI0

d�1 � � � d�n D˙wI0
Jdx1 � � � dxn

is still an element of K.V �/G . But dx1 � � � dxn is invariant relative to det , hence
wI0

J 2P .V �/G
det�1 D fdet�1P .V �/G , and so therefore wI0

2P .V �/G . We repeat the

process with w�wI0
d�I0

and we obtain inductively that all coefficients wI 2P .V �/G .

Assume now that J D � fdet�1 for a positive degree polynomial � 2 P .V �/G , then

w D
d�1 � � � d�n

�
D fdet�1 dx1 � � � dxn

is an element in K.V /G but it does not belong to the subalgebra P Œ�1; : : : ; �n�˝

EŒd�1; : : : ; d�n�.
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We have seen that whenever the jacobian J is different from fdet�1 in an essential way,
we obtain a new invariant that does not belong to P Œ�1; : : : ; �n�˝EŒd�1; : : : ; d�n�, by
dividing d�1 � � � d�n by an invariant factor of P .V �/. A similar argument applies to any
d�I ; that is, we can divide each d�I by its maximal invariant factor, BI 2 P .V �/G ,
in order to obtain a new invariant: MI D

1
BI

d�I 2K.V /G .

More precisely, fix a sequence I , and write

d�I D

X
J

aJ .I/dxJ ; aJ 2 P .V �/

where all sequences J have the same length as I . We define AI D gcd .aJ .I// so
that d�I DAI

P
J bJ .I/dxJ and the coefficients bJ .I/ 2 P .V �/ have no common

factor.

It turns out that AI is relative invariant to a certain linear character �I of G . In fact,
for any g 2GX

J

aJ .I/dxJ D d�I D g.d�I /D g
�
AI

X
J

bJ .I/dxJ

�
D g.AI /

X
J

b0J .I/dxJ

hence g.AI / divides each aJ .I/ and so therefore, g.AI /D�I .g/AI for some element
�I .g/ 2 F�p . This defines the character �I , and shows that AI 2 P .V �/G�I

.

Since P .V �/G�I
D f�I

P .V �/G for certain class f�I
2 P .V �/G�I

, we can define ele-
ments BI 2P .V �/G by the equation AI DBI �f�I

, and then MIDf�I

P
J bJ .I/dxJ

2K.V �/G gives the factorization

d�I D BI �MI

with MI 2K.V �/G and BI 2 P .V �/G . Notice also that by construction we obtain
relations

MI MJ D

(
qI;J MI[J for some qI;J 2 P .V �/G ; if J \ I D∅;
0 if J \ I ¤∅:

It seems reasonable to ask whether or not we have obtained a complete system of
generators and relations for K.V �/G .

Question 2.2 Is K.V �/G a free P .V �/G –module generated by fMI gI , for every
group G �GL.V / for which P .V �/G is a polynomial algebra?

We have a positive answer in the cases which are involved in the mod 3 cohomology
of BF4 .
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Example 2.3 Let Fp be the field of p elements, p an odd prime, and assume
K.V �/D P Œx1;x2�˝EŒdx1; dx2�, and G D GL2.Fp/. The Dickson invariants are
described, in terms of determinants of two by two matrices as

L2 D

ˇ̌̌̌
x1 x2

x
p
1

x
p
2

ˇ̌̌̌
; Q2;1 D

ˇ̌̌̌
x1 x2

x
p
1

x
p
2

ˇ̌̌̌�1

�

ˇ̌̌̌
x1 x2

x
p2

1
x

p2

2

ˇ̌̌̌
and we have P Œx1;x2�

GL2.Fp/ D P ŒL
p�1
2

;Q2;1� (see Dickson [9]). One then obtains

dL
p�1
2
D�L

p�2
2

.x
p
2

dx1�x
p
1

dx2/ and dQ2;1 D�L
p�2
2

.x2dx1�x1dx2/:

Since L
p�2
2
D fdet�1 , we have

M1 D dL
p�1
2

and M2 D dQ2;1

with B1 D B2 D 1. On the other hand, dL
p�1
1

dQ2;1 D�L
2p�3
2

dx1dx2 , hence

M1;2 D�L
p�2
2

dx1dx2

with M1M2 DL
p�1
2

M1;2 . According to Mui [13], we know that˚
L

p�1
2

;Q2;1;M1;M2;M1;2

	
is a full system of generators for .P Œx1;x2�˝EŒdx1; dx2�/

GL2.Fp/ .

Example 2.4 We describe the invariants of

H�..Z=p/3I Fp/D P Œu1;u2;u3�˝EŒv1; v2; v3�;

deg vi D 1, ui D ˇvi by the action of SL3.Fp/, for an odd prime p .

The Dickson invariants are the determinants

L3 D

ˇ̌̌̌
ˇ̌̌ u1 u2 u3

u
p
1

u
p
2

u
p
3

u
p2

1
u

p2

2
u

p2

3

ˇ̌̌̌
ˇ̌̌ ; deg L3 D 2

p3� 1

p� 1

Q3;2 D
1

L3

ˇ̌̌̌
ˇ̌̌ u1 u2 u3

u
p
1

u
p
2

u
p
3

u
p3

1
u

p3

2
u

p3

3

ˇ̌̌̌
ˇ̌̌ ; deg Q3;2 D 2.p3

�p2/

Q3;1 D
1

L3

ˇ̌̌̌
ˇ̌̌ u1 u2 u3

u
p2

1
u

p2

2
u

p2

3

u
p3

1
u

p3

2
u

p3

3

ˇ̌̌̌
ˇ̌̌ ; deg Q3;1 D 2.p3

�p/
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The action of the Steenrod algebra on these elements is determined by

P1L3 D 0 P1Q3;2 D 0 PQ3;1 DL2
3

PpL3 D 0 PpQ3;2 DQ3;1 PpQ3;1 D 0

Pp2

L3 DQ3;2L3 Pp2

Q3;2 D�Q2
3;2 Pp2

D�Q3;2Q3;1

(see Dickson [9] and Wilkerson [22]). Since det is trivial on SL3.Fp/, M1;2;3Dv1v2v3

is invariant. Steenrod operations can be used to find new invariants:

M2;3 D ˇM1;2;3 D u1v2v3�u2v1v3Cu3v1v2;

M1;3 D�P1M2;3 D�u
p
1
v2v3�u

p
2
v1v3Cu

p
3
v1v2;

M1;2 D PpM1;3 D�u
p2

1
v2v3Cu

p2

2
v1v3�u

p2

3
v1v2;

M3 D ˇM1;3 D

ˇ̌̌̌
u2 u3

u
p
2

u
p
3

ˇ̌̌̌
v1�

ˇ̌̌̌
ˇu1 u3

u
p
1

u
p
3

ˇ̌̌̌
ˇ v2C

ˇ̌̌̌
ˇu1 u2

u
p
1

u
p
2

ˇ̌̌̌
ˇ v3;

M2 D PpM3 D

ˇ̌̌̌
u2 u3

u
p2

2
u

p2

3

ˇ̌̌̌
v1�

ˇ̌̌̌
u1 u3

u
p2

1
u

p2

3

ˇ̌̌̌
v2C

ˇ̌̌̌
u1 u2

u
p2

1
u

p2

2

ˇ̌̌̌
v3;

M1 D P1M2 D

ˇ̌̌̌
u

p
2

u
p
3

u
p2

2
u

p2

3

ˇ̌̌̌
v1�

ˇ̌̌̌
u

p
1

u
p
3

u
p2

1
u

p2

3

ˇ̌̌̌
v2C

ˇ̌̌̌
u

p
1

u
p
2

u
p2

1
u

p2

2

ˇ̌̌̌
v3;

and finally ˇM1 D L3 . One can check that these are precisely the set of invariants
described above:

M1 D dL3; M2 D
1

L3

dQ3;2; M3 D
1

L3

dQ3;1;

M1;2 D
1

L3
2

dL3 dQ3;2; M1;3 D
1

L3
2

dL3 dQ3;1; M2;3 D
1

L3
2

dQ3;2 dQ3;1;

and M1;2;3 D�
1

L3
4

dL3 dQ3;2 dQ3;1:

Again in this case, according to Mui [13],

fL3;Q3;1;Q3;2;M1;M2;M3;M1;2;M1;3;M2;3;M1;2;3g

forms a full system of generators for H�..Z=p/3I Fp/
SL3.Fp/ .

3 On the cohomology of BF4 at prime 3

In this section we will show how starting with the computation of H�.BF4I F3/ by
Toda [20], one can obtain that this cohomology ring is detected on elementary abelian
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3–subgroups. The argument goes through the description of H�.BF4I F3/=
p

0 by
Rector [15].

For the convenience of the reader we present here Toda’s description of the cohomology
of the classifying space of the exceptional Lie group F4 at p D 3. The Weyl group of
F4 contains the Weyl group of Spin9 , so that we have:

H�.BT I F3/
WF4 �H�.BT I F3/

WSpin9 D P Œp1;p2;p3;p4� ;

where pi are Pontrjagin classes. Toda first computed the invariant ring

H�.BT I F3/
WF4 D P Œp1; xp2; xp5; xp9; xp12�=.r15/

where

xp2 D p2�p2
1 ;

xp5 D p4p1Cp3 xp2;

xp9 D p3
3 �p4p3p2

1 Cp2
3 xp2p1�p4 xp2p3

1 ;

xp12 D p3
4 Cp2

4 xp
2
2 Cp4 xp

4
2 ;

r15 D xp
3
5 C xp

2
5 xp

2
2p1� xp12p3

1 � xp9 xp
3
2 ;

and obtained elements x4 , x8 , x20 , x36 , x48 in H�.BF4I F3/ that restrict to p1 , xp2 ,
xp5 , xp9 , and xp12 , respectively in H�.BT I F3/

W .F4/ .

Theorem 3.1 (Toda [20]) H�.BF4I F3/ is an algebra generated by

x4; x8; x20; x36; x48;

x9 D ˇx8; x21 D ˇx20; x25 D P1x21; x26 D ˇx25;

with the relations

x9x4 D x9x8 D x2
9 D x21x4 D x25x8

D x21x20 D x2
21 D x25x20 D x2

25 D 0;

x21x8 D x25x4 D�x20x9;

x26x4 D�x21x9;

x26x8 D x25x9;

x25x21 D x26x20;

x3
20 D x48x3

4 Cx36x3
8 �x2

20x2
8x4:

Furthermore, the Steenrod algebra action on H�.BF4I F3/ is completely determined
by the following relations:
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ˇ P1 P3 P9

x4 �x8Cx2
4

x8 x9 x8x4 x20�x2
8

x4

x9 x21

x20 x21 x20

�
�x8Cx2

4

� �
x48Cx2

20
x8

��
�x8Cx2

4

�
Cx36

�
x20Cx2

8
x4

�
Cx26x21x9

x21 x25 �x48x9Cx36x21

x25 x26 x36x25�x2
26

x9

x26 x36x26

x36 �x2
20

x48 � x36

�
x8 C x2

4

�
x4

Cx2
20

�
x8Cx2

4

� �x48x20x4 C x48

�
x2

8
C x4

4

�
x2

4
� x2

36

Cx36x20

�
x8Cx2

4

�
x2

4
�x36

�
x2

8
Cx4

4

�2
x4

Cx2
20

x8

�
x3

8
C
�
x8Cx2

4

�2
x2

4

�
x48 x2

26
�x48

�
x8Cx2

4

�
x4

�x48x36 C x48x20

�
�x2

8
� x8x2

4
C x4

4

�
�x48

�
x2

8
Cx4

4

�2
x4

The important observation of Rector concerning the cohomology of BF4 at the prime
3, is that the quotient of H�.BF4I F3/ by its radical

p
0, the ideal of all nilpotent

elements, can be better understood that H�.BF4I F3/ itself and carries most of its
information.

Recall that the radical of an algebra K , is defined as
p

0D
˚

x 2K
ˇ̌
xr
D 0 for some integer r

	
:

It follows from Theorem 3.1 that the radical of H�.BF4I F3/ is the ideal generated by
x9 , x21 , x25 and then H�.BF4I F3/=

p
0 is generated by classes

x4;x8;x20;x26;x36;x48

with the relations

x4x26 D x8x26 D x20x26 D 0;

x3
20 D x48x3

4 Cx36x3
8 �x2

20x2
8x4:

Furthermore,

(1) The restriction map

resT WH
�.BF4I F3/ �!H�.BT I F3/

W .F4/

factors through

resT WH
�.BF4I F3/=

p
0 �!H�.BT I F3/

W .F4/;
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mapping the classes x4 , x8 , x20 , x36 , and x48 to p1 , xp2 , xp5 , xp9 , and xp12 ,
respectively.

(2) The ideal generated by x4 , x8 , x20 is closed under the action of the Steenrod
reduced power operations, hence, dividing out by this ideal we are left with a
polynomial algebra F3Œx26;x36;x48� with the following Steenrod algebra action:

P1x26 D 0 P1x36 D 0 P1x48 D x2
26

P3x26 D 0 P3x36 D x48 P3x48 D 0

P9x26 D x36x26 P9x36 D�x2
36 P9x48 D�x48x36

It turns out that this polynomial algebra is isomorphic, as algebras over the Steen-
rod algebra, to P Œu1;u2;u3�

SL3.F3/ (see Example 2.4). Call ' the projection

'WH�.BF4I F3/=
p

0 �! P Œu1;u2;u3�
SL3.F3/:

It is a homomorphism of algebras over the Steenrod algebra of reduced powers
with '.x26/ D L3 , '.x36/ D Q3;2 , '.x48/ D Q3;1 , using the notation of
Example 2.4.

(3) Similarly, if we further divide out by x26 , the quotient P Œx36;x48� can be
identified, as algebras over the Steenrod algebra with the subalgebra of

P Œx1;x2�
GL2.F3/ D P ŒQ2;1;Q2;2�

generated by Q3
2;1

and Q3
2;2

(see Example 2.3). We can then check that

(3–1) H�.BF4I F3/=
p

0Š

P Œx26;x36;x48�
Y

P Œx36;x48�

P Œx4;x8;x20;x36;x48�

.x3
20
D x48x3

4
Cx36x3

8
�x2

20
x2

8
x4/

or, in other words, it fits in the pull-back diagram of algebras over the Steenrod
algebra of reduced powers:

(3–2) H�.BF4I F3/=
p

0
' //

resT

��

P Œu1;u2;u3�
SL3.F3/

&

��

H�.BT I F3/
W .F4/

% // P Œx1;x2�
GL2.F3/,

where

% ı resT .x36/D %. xp9/DQ3
2;1 % ı resT .x48/D %. xp12/DQ3

2;2

&.Q3;2/DQ3
2;1 &.Q3;1/DQ3

2;2;

while other generators are mapped trivially.
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Our aim now is to extend the above diagram to one that captures the whole structure
of H�.BF4I F3/. The main theoretical tool is the nil-localization functor for algebras
over the Steenrod algebra (see Broto and Zarati [8] and Schwartz [16]).

Let U be the category of unstable modules over the Steenrod algebra and let K be the
category of unstable algebras over the Steenrod algebra. A morphism f WR!S of U or
K is called a nil-equivalence if the induced map HomU .S;H

�V /!HomU .R;H
�V /

is a bijection for any elementary abelian p–group V , and H�V DH�.BV; Fp/. Given
an object K of U , its nil-localization is another object N�1

U .K/ of U together with a
nil-equivalence �K WK!N�1

U .K/ which is final among nil-equivalences with source
K . If K is an object of K , then so is N�1

K .K/DN�1
U .K/ and the universal map �K

is a morphism of K . We will say that K is reduced if �K is injective and nil-closed
if �K is an isomorphism.

The Quillen map for a compact Lie group G , expressed as restriction from H�.BG;Fp/

to the inverse limit of cohomologies of elementary abelian p–subgroups E of G and
morphisms induced by conjugation in G ,

qG WH
�.BGI Fp/ �! lim

E2Ep.G/
H�.BEI Fp/

turns out to be the nil-localization of H�.BG; Fp/. Thus, the Adams conjecture can be
rephrased by saying that for a compact and connected Lie group G and an odd prime
p , H�.BGI Fp/ is a reduced object of K .

By applying the nil-localization functor to Rector’s diagram (3–2) we obtain our main
result, that proves the conjecture of Adams for G D F4 and p D 3.

Theorem 3.2 There is a pull-back diagram:

(3–3) N�1
K
�
H�.BF4I F3/

�
//

��

H�.BV3I F3/
SL3.F3/

��

H�.BV4I F3/
W .F4/ // H�.BV2I F3/

GL2.F3/

and the nil-localization �WH�.BF4I F3/!N�1
K
�
H�.BF4I F3/

�
is injective.

The extension of diagram (3–2) to (3–3) requires the fact that the nil-localization of
an object K of K coincides with that of K=

p
0. Notice, though, that the natural

projection K ! K=
p

0 is not in general a morphism of K . It might not commute
with the action of the Bockstein operator. Indeed, in our case, x25 is in the radical of
H�.BF4I F3/ but ˇx25 D x26 is not nilpotent. In order to overcome this difficulty we
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introduce K0 , the full subcategory of objects of K concentrated in even degrees and the
right adjoint functor zOWK!K0 of the inclusion functor, described for any K of K as
the subalgebra of even degree elements anihilated by the right ideal of the Steenrod
algebra generated by the Bockstein operator (see Broto and Zarati [8] and Schwartz
[16]). This adjoint pair provides a natural map j W zOK!K , and the composition

�K W
zOK!K!K=

p
0

is clearly a morphism of K0 . Moreover, it is a nil-equivalence. In fact, j W zOK!K is
always injective and a nil-equivalence, so the kernel of �K is the radical of zOK . An
element in the cokernel of �K is represented by an element of K , but the p th power
of any element of K belongs to zOK , hence this cokernel is also nilpotent, so what we
obtain is a diagram of nil-equivalences

K=
p

0 N�1
K K

�
K=
p

0

//

zOK

K=
p

0

�K

��

zOK K
j // K

N�1
K K

�K

��

Notice that a nil-equivalence between objects of K0 is precisely an (F)–isomorphism
in the sense of Quillen [14]. If K is a nil-closed object, then �K is an isomorphim and
j WK=

p
0Š zOK!K is the nil-localization.

Proof of Theorem 3.2 For an elementary abelian p–group V and G a subgroup of
GL.V /, H�.BV; Fp/ is nil-closed and then

S.V �/ŠH�.BV; Fp/=
p

0Š zOH�.BV; Fp/:

Since zO commutes with inverse limits and the inverse limit of nil-closed objects is nil-
closed, we also have that S.V �/G Š zOH�.BV; Fp/

G and the inclusion S.V �/G !

H�.BV; Fp/
G is the nil-localization of S.V �/G .

Similarly, the inverse limit of a functor c 2 C 7! H�.Vc I Fp/
Gc 2 K is nil-closed

and zO limc2C H�.Vc I Fp/
Gc D limc2C S.V �c /

Gc , hence if LD limc2C S.V �c /
Gc , then

N�1
K LD limc2C H�.Vc I Fp/

Gc . This applies to the pull-back diagram (3–2) and proves
that (3–3) in the statement of the theorem is again a pull-back diagram.

We will identify the composition of �WH�.BF4I F3/!N�1
K
�
H�.BF4I F3/

�
with each

of the maps in diagram (3–3) to the cohomology of an elementary abelian 3–subgroup.

(1) H�.BF4I F3/!H�.BV4I F3/
W .F4/ . This map clearly factors as

H�.BF4I F3/
resT
! H�.BT I F3/

W .F4/!H�.BV4I F3/
W .F4/
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and the kernel is the ideal of H�.BF4I F3/ generated by x9 , x21 , x25 , x26 .
(2) b' WH�.BF4I F3/!H�.BV3I F3/

SL3.F3/ is defined as the composition

H�.BF4I F3/!N�1
K .H�.BF4I F3//!H�.BV3I F3/

SL3.F3/

obtained by applying the nil-localization functor to ' :

zOH�.BF4I F3/
//

��

H�.BV3I F3/=
p

0
' //

��

S.V �
3
/SL3.F3/

��
H�.BF4I F3/ // N�1

K H�.BF4I F3/
// H�.BV3I F3/

SL3.F3/

Notice that p th powers of even diamensional elements in an object K of K
belong to zO.K/. In particular, x3

26
;x3

36
;x3

48
belong to zOH�.BF4I F3/, thus

they are mapped to L3
3
;Q3

3;2
;Q3

3;1
2H�.BV3I F3/

SL3.F3/ , respectively by b' .
Now, the other generators of H�.BF4I F3/, x25;x21;x20;x9;x8;x4 are linked
by Steenrod operations to x26 (see Theorem 3.1), hence they can not be in the
kernel of b' .
The invariant ring H�.BV3I Fp/

SL3.Fp/ is described in Example 2.4. If p D 3,
besides the polynomial generators L3 , Q3;2 and Q3;1 , we have m3 DM1;2;3 ,
m4 D ˇm3 DM2;3 , m8 D �P1m4 DM1;3 , m20 D Ppm8 DM1;2 , m9 D

ˇm8 DM3 , m21 D Ppm9 DM2 , and m25 D P1m21 DM1 . Recall also that
ˇm25 D L3 . Here the subindices of the lowercase m’s indicate the degree in
which they appear.
It follows that b'.x4/ can only be ˙m4 and since b'.x3

26
/D L3

3
, it has to be

Cm4 , and

b' WH�.BF4I F23/ �!H�.BV3I F3/
SL3.F3/

maps

x4 7!m4 x8 7!m8 x9 7!m9

x20 7!m20 x21 7!m21 x25 7!m25

x26 7!L3 x36 7!Q3;2 x48 7!Q3;1

It is now routine to check that

ker b' D .x2
4 ;x

2
8 ;x

2
20;x20x8;x20x4;x8x4/

and that this ideal is contained in the subalgebra of H�.BF4I F3/ generated by x4;x8;

x20;x36;x48 which is detected in H�.BT I F3/
W .F4/ , hence the composition

H�.BF4I F3/�!N�1
K
�
H�.BF4I F3/

�
�!H�.BT I F3/

W .F4/�H�.BV3I F3/
SL3.F3/
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14 Carles Broto

given by resT and b' is injective.

The map b& WH�.BV3I F3/
SL3.F3/!H�.BV2I F3/

GL2.F3/ , obtained as extension of
& in diagram (3–2), maps m3 trivially (by degree reasons) and therefore m4;m8;

m9;m29;m21;m25;L3 are mapped trivially, too, and the image of b& is P Œx36;x48�,
which coincides with the image of & . We can therefore express the mod 3 cohomology
of BF4 as the pull-back diagram

H�.BF4I F3/

resT

��

b'
// Imb'b& ˇ̌

Imb'
��

�H�.BV3I F3/
SL3.F3/

H�.BT I F3/
W .F4/

% // P Œx36;x48�

where Im b' is the subalgebra of H�.BV3I F3/
SL3.F3/ generated by m4 , m8 , m9 ,

m29 , m21 , m25 , L3 , Q3;2 , Q3;1 , thus leaving in the cokernel only Coker b' Š
m3P ŒQ3;2;Q3;1�, or, in other words,

H�.BF4I F3/Š Im b' Y
P Œx36;x48�

H�.BT I F3/
W .F4/ ;

which we think is the correct way to understand this cohomology ring as algebra over
the Steenrod algebra.
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[21] A Vavpetič, A Viruel, On the mod p cohomology of BPU.p/ , Trans. Amer. Math.
Soc. 357 (2005) 4517–4532 MR2156719

[22] C W Wilkerson, A primer on the Dickson invariants, from: “Proceedings of the
Northwestern Homotopy Theory Conference (Evanston, Ill., 1982)”, Contemp. Math.
19, Amer. Math. Soc., Providence, RI (1983) 421–434 MR711066

Geometry & Topology Monographs, Volume 11 (2007)

http://dx.doi.org/10.1016/0022-4049(89)90104-7
http://www.ams.org/mathscinet-getitem?mr=1014604
http://dx.doi.org/10.1007/BF01161641
http://www.ams.org/mathscinet-getitem?mr=968318
http://www.ams.org/mathscinet-getitem?mr=1500882
http://links.jstor.org/sici?sici=0002-9947(199310)339:2%3C781:BAOCTO%3E2.0.CO%3B2-%23
http://links.jstor.org/sici?sici=0002-9947(199310)339:2%3C781:BAOCTO%3E2.0.CO%3B2-%23
http://www.ams.org/mathscinet-getitem?mr=1139493
http://www.ams.org/mathscinet-getitem?mr=1122592
http://www.ams.org/mathscinet-getitem?mr=0422451
http://links.jstor.org/sici?sici=0003-486X(197111)2:94:3%3C549:TSOAEC%3E2.0.CO%3B2-W
http://www.ams.org/mathscinet-getitem?mr=0298694
http://dx.doi.org/10.1016/0022-4049(84)90051-3
http://www.ams.org/mathscinet-getitem?mr=741965
http://www.ams.org/mathscinet-getitem?mr=1282727
http://www.ams.org/mathscinet-getitem?mr=1328644
http://projecteuclid.org/getRecord?id=euclid.nmj/1118801157
http://www.ams.org/mathscinet-getitem?mr=0154929
http://www.ams.org/mathscinet-getitem?mr=0460484
http://www.ams.org/mathscinet-getitem?mr=0321086
http://dx.doi.org/10.1090/S0002-9947-05-03983-8
http://www.ams.org/mathscinet-getitem?mr=2156719
http://www.ams.org/mathscinet-getitem?mr=711066


16 Carles Broto

[23] C W Wilkerson, Rings of invariants and inseparable forms of algebras over the Steen-
rod algebra, from: “Recent progress in homotopy theory (Baltimore, MD, 2000)”,
Contemp. Math. 293, Amer. Math. Soc., Providence, RI (2002) 381–396 MR1890745

Departament de Matemàtiques, Universitat Autònoma de Barcelona
08193 Bellaterra, Spain

broto@mat.uab.es

Received: 22 April 2005

Geometry & Topology Monographs, Volume 11 (2007)

http://www.ams.org/mathscinet-getitem?mr=1890745
mailto:broto@mat.uab.es

	1. Introduction
	2. Modular invariants in P(V)E(V)
	3. On the cohomology of BF_4 at prime 3
	References

