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Muii invariants and Milnor operations

MASAKI KAMEKO
MAMORU MIMURA

We describe Mui invariants in terms of Milnor operations and give a simple proof
for Mui’s theorem on rings of invariants of polynomial tensor exterior algebras with
respect to the action of finite general linear groups. Moreover, we compute some rings
of invariants of Weyl groups of maximal non-toral elementary abelian p—subgroups
of exceptional Lie groups.

55R40; 55510

1 Introduction

Let p be a fixed odd prime, ¢ the power of p and [, the finite field of ¢ elements.
Let

Py =Fy[x1, ..., x4]

be the polynomial algebra in n variables x1,...,x, over the finite field [, . Let

E] = A (dxy,...,dxy,)

be the ™ component of the exterior algebra of dxi,...,dx, over the finite field Fq
and let
n
E,=PE,
r=0
be the exterior algebra of dxy,...,dx, over F,. Let
Py ® Ey,
be the polynomial tensor exterior algebra in n variables x1, ..., x, over the finite field

F4. The general linear group GL,([F,) and the special linear group SL,(F;) act on
both the polynomial algebra P, and the polynomial tensor exterior algebra P, ® Ej,.
In [4], the ring of invariants of the polynomial algebra is determined by Dickson. In
[7], Mui determined the ring of invariants of the polynomial tensor exterior algebra
and described the invariants in terms of determinants.

Published: 14 November 2007 DOI: 10.2140/gtm.2007.11.107


http://www.ams.org/mathscinet/search/mscdoc.html?code=55R40,(55S10)
http://dx.doi.org/10.2140/gtm.2007.11.107

108 Masaki Kameko and Mamoru Mimura

In the first half of this paper, we describe the invariants in terms of Milnor operations
and give a simpler proof for Mui’s theorem. With the notation in Section 2, we may
state Mui’s theorems.

Theorem 1.1 (Mui) The ring of invariants of the polynomial tensor exterior algebra
P, ® E, with respect to the action of the special linear group SLy(Fy) is a free
P,SEnC0) _module with the basis {1, Qrdxy ...dx,}, where I ranges over A),.

Theorem 1.2 (Mui) The ring of invariants of the polynomial tensor exterior algebra
P, ® E, with respect to the action of the general linear group GL;(F,) is a free
P,%Ln®) _module with the basis {1, eZ_z Qrdxy ...dxy}, where I ranges over A),.

The invariant Q;, ... Q;,_,dx ...dx, in Theorem 1.1 and Theorem 1.2 above is, up
to sign, the same as the Mui invariant [r: iq,...,iy—] in [7]. The first half of this
paper has some overlap with M C Crabb’s work [3]. However, our point of view on
Mui invariants seems to be different from his.

The second half of this paper is a sequel to the authors’ work in [6] on the invariant
theory of Weyl groups of maximal non-toral elementary abelian p-subgroup A4 of
simply connected exceptional Lie groups. For p odd prime, up to conjugation, there
are only 6 of them, for p =3, 4 = E%4, E§E6, E;E7, E%‘;, E%l; and for p =5,
A= E%s. They and their Weyl groups are described by Andersen et al [1]. We
computed the polynomial part of the invariants of Weyl groups except for the case
p=3,A=FE %”8 as described by the authors [6]. In this paper, we compute rings of
invariants of polynomial tensor exterior algebras with respect to the action of Weyl
groups except for the case p =3, A =F %’; .

In Section 2, we set up the notation used in the above theorems. In Section 3, we
prove Theorem 1.1 and Theorem 1.2. In Section 4, we state Theorem 4.2 and using
this theorem, we compute rings of invariants of Weyl groups of maximal non-toral
elementary abelian p—subgroups of simply connected exceptional Lie groups. In
Section 5, we prepare for the proof of Theorem 4.1 and Theorem 4.2. In Section 6, we
prove Theorem 4.1. In Section 7, we prove Theorem 4.2. In Appendix A, we prove
that the invariant Q;, ... Q;,_,dx; ...dxy in Theorem 1.1 and Theorem 1.2 above is,
up to sign, equal to the Mui invariant [r: iq,...,ix—r].

We thank N Yagita for informing us that a similar description of Mui invariants to the
above form is also known to him.
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2 Preliminaries

Let K, be the field of fractions of P,. For a finite set {yy,..., yr}, we denote by
Fgivis..., yr} the Fg—vector space spanned by {yi,...,yr}. Let GL,(F,) be the
set of n xn invertible matrices with coefficients in [, . We denote by M, ,(F4) the set
of m xn matrices with coefficients in [, . In this paper, we consider the contragredient
action of the finite general linear group, that is, for g € GL,(F4), we define the action
of gon P, ® E, by

n n
gxi =Y aj(g xj. gdxi=) aij(g”")dx;.
j=1 j=1
fori =1,...,n and
gx-y)=gx)-g(y),
for x, y in P, ® En, where a; j(g7') is the entry (i, j) in the matrix g~'. For
Xi, dx; in the polynomial tensor exterior algebra P, ® E,, we define cohomological
degrees of x;, dx; by degx; = 2, degdx; =1 fori = 1,...,n and we consider
P, ® E, as a graded [, —algebra.

1

Now, we recall Milnor operations Q; for j =0, 1,.... The exterior algebra

A(Qo, 01, 02,...)

over [F4, generated by Milnor operations, acts on the polynomial tensor exterior algebra
P, ® Ey as follows; the Milnor operation Q; is a P,-linear derivation

Qj: PA®E! — P, E,™!
defined by the Cartan formula
Qj(xy) = (Qjx) -y + (=1)*E*x - (Q;y)

for x, y in P, ® E, and the unstable conditions

J
Qjdx; =x]",
Qjxi =0,
fori =1,...,n, j > 0. Thus, the action of Milnor operations (; commutes with the

action of the finite general linear group GL,(F,).

It is also clear that the action of Q; on P, trivially extends to the quotient field K,
and we may regard Q; as a Kj—linear homomorphism

Qj: Ky ®E! - K, ® EI 1.
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110 Masaki Kameko and Mamoru Mimura
We set up additional notations for handling Milnor operations.

Definition 2.1 For a positive integer n, we denote by S, the set
{0,1,...,n—1}.

Let A, be the set of subsets of S;. We denote by A, , the subset of A, consisting of
I={i,....ir}

such that
0<ij<---<ip<n.
We write O for
Qi ... 0i,.

We consider A4, as the set of empty set {J} and define Q4 to be 1. It is also
convenient for us to define A;, to be the union of A4, ,, where r ranges from 0 to
n—1.

Definition 2.2 Let 7, J be elements of 4,. We define sign(/, J) as follows. If
INJ #@,then sign(/,J)=0.If INJ =@ and TUJ ={ky,...,kr4+s5}, then
sign(/, J) is the sign of the permutation

(il, ceey ir, ]1, ceey js )

kla ---,kr, kr—i—l» ---,kr—i-s '

where I ={iy,....iy}, J ={j1,---, js}, i1 <+ <Ip, j1<---<jgand k; <--- <
kr+s.

The following proposition is immediate from the definition above.

Proposition 2.3 For I, J in A,, we have

Qr1Qy =sign(l, J)Qk = (-1)"sign(J, I) Ok,

where K =1TU J.

Finally, using Milnor operations in place of determinants, we describe Dickson in-
variants. We follow the notation of Wilkerson’s paper [9]. Let A,(X), fu(X) be
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polynomials of X over P, of homogeneous degree ¢" defined respectively by

An(X) = (=1)"Qq ... Ondxy ...dxndX

=3 (-1)"(Qo... 0; ... Ondx; ...dxy) X,

i=0

HXO=J] &+x,

x€Fg{x1,....xn}

where the cohomological degrees of dX, X are 1, 2, and Q;dX = Xqi, 0iX =0,
respectively.

Proposition 2.4 The polynomial A, (X) is divisible by the polynomial f,(X) and

en(X1,. ... Xn) fu(X) = Ap(X),
where en(x1,...,x5) = Q¢ ... Qy—1dxy...dx, #0.

Proof On the one hand, both A, (X) and f,(X) haveall x € Fy{xy,...,x,} asroots.
On the other hand, the coefficient of X7" in A,(X) is

en(X1,...,Xn)=Qp...0p_1dx1...dx,

and f,(X) is monic. Since both A,(X) and f,(X) have the same homogeneous
degree ¢" as polynomials of X, we have the required equality. O

Thus, we have the following proposition.
Proposition 2.5 We may express f,(X) as follows:
n . )
fn(X) = Z(_l)n_lcn,i(xlv e ,xn)Xq s
i=0

where

Oop... Qi...Qndxl coodxy =ep(x1, ... Xp)Cni(X1, ..., Xn)

and ¢y p(xy,...,xy) = 1.

The above proposition defines Dickson invariants ¢, ; (x1,...,x,) fori =0,...,n—1.
When it is convenient and if there is no risk of confusion, we write ey, cp,; for
en(X1,....Xn), cni(X1,...,Xxn), respectively.
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112 Masaki Kameko and Mamoru Mimura

Proposition 2.6 There holds

Cn,0(X1, - 2Xn) = en(x1, . )77

Proof It is clear that

(Q,‘l ce Qindxl .. .dxn)q = Qi1+1 ce Qin—i-ldxl .. .dxn

and so
en(x1,...,xn)? =en(xy,.. o Xn)Cn0 (X150, Xn). O

From the above definitions of ¢, ;(x1,...,X,) and e,(x, ..., x,) and from the fact
that, for g € GL,(Fy),

gdxy ...dx, =det(g”dx, ... dxp,

it follows that

-1
gen(x1,...,xy) =det(g” en(x1,...,Xn)
and that
gCni(X1, .., Xn) =Cni(X1,...,Xn).
Thus, it is clear that PnSL"([F‘f) contains e, and ¢y 1, ...,y p—1 and that P,,GL”(F‘I)
contains ¢y, ..., Cn n—1- Indeed, the following results are well-known. For proofs,

we refer the reader to Benson [2], Smith [8] and Wilkerson [9].

Theorem 2.7 (Dickson) The ring of invariants Py, SLa(Fa) g g polynomial algebra
generated by ¢, 1,...,¢pp—1 and ey.

Theorem 2.8 (Dickson) The ring of invariants Py GLa(®a) jg 4 polynomial algebra
generated by ¢, 0, ....Cpp—1.

In addition, we need the following proposition.

Proposition 2.9 Let
e Fglxy. ..o xn] = Fglxr, .o xp—1]
be the obvious projection. Then, we have
w(en(x1,...,x5)) =0
and, fori =1,...,n—1,

”(Cn,i(xl, e ,xn)) = Cn—l,i—l(xl’ e ’xn—l)q-
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Proof It is clear that e, (x1, ..., Xy) is divisible by x,, so we have

w(en(x1,...,xn)) =0.

On the one hand, we have

LX) =T] [] &+oxa+x)

acly  xeFg{x1,...xn_1}

=[] fis1 (X +ax)

o€l

- 1‘[ (fu=1(X) + afny—1(xn))

a€ly
= fu—1 (X)q — fu—1(X) fn—1 (xn)q_l-

On the other hand, since f;(x) is divisible by x;,, we have

7(fu(X)) = fa—1(X)1.
Comparing the coefficients of X q' ,wehave, fori =1,...,n—1,

m(eni(X1, ..., Xn)) = Cp—t,im1 (X1, ..., Xp—1) 7. O

3 Proof of Theorem 1.1 and Theorem 1.2

In the case n = 1, the invariants are obvious. In the case r = 0, the invariants are
calculated by Dickson. So, throughout the rest of this section, we assume n > 2 and
r > 0. To prove Theorem 1.1 and Theorem 1.2, it suffices to prove the following
theorems.

Theorem 3.1 The submodule (P, ® E;)SL"([F‘I) is a free P,St"(F4) _module with
the basis {Qydx; ...dx,}, where I ranges over Ap p—y.

Theorem 3.2 The submodule (P, ® E,Z)GL"([F‘J) is a free P, %9 _module with
the basis {e,‘{_2 Qgrdxy ...dxp}, where I ranges over Ay n—r .

To begin with, we prove the following proposition.

Proposition 3.3 The elements Qydx; ...dx, form a basis for K, ® E,, where |
ranges over Ay p—r .
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Proof Firstly, we show the linear independence of Qrdx; ...dx,. Suppose that
a= Z arQrdxy ...dxy,
IEAn.n—r

where ay € Ky, . Foreach I € Ay p—r,let J =S,\I. Itisclearthat JNI'# @ if I'#1
in Ap n—r. Hence, we have sign(J, I) # 0 and sign(J, I') =0 for I’ #1 € Ap .
By Proposition 2.3, we have

Qja=sign(J, 1ajQp... Qp_1dxy...dx, =sign(J, ayey.

Thus, if @ = 0, then a;y = 0. Therefore, the terms Qydx; ...dx, are linearly inde-
pendent in K, ® E;,.

On the other hand, since
dimg, K, ® E! = (’:)

is equal to the number of elements in 4, ,—,, we see, for dimensional reasons, that
Qrdxy ...dxy’s form a basis for K, ® EJ,. O

Lemma 3.4 Let hj be polynomials over 4 in (n—1) variables, where I ranges over
Ap n—1. Suppose that

-1
ag = Z hi(cpp—t,....cn1)en  Qrdxy...dxy
T€ed, n—

isin P, ® E}. Then hy =0 foreach I € Ay 1.

Proof of Theorem 3.1

Suppose that ¢ is an element in P, ® E; and that a is SL,(F;)—invariant. By
Proposition 3.3, the elements Qrdx; ...dx, form a basis for K, ® E},. Hence, there
exist ay in K, such that

a= Z arQrdxy ...dxy.
IGAn.n—r
For I € Ay p—r,let J = Sy\I. Then, Qja isin P,. As in the proof of Proposition
3.3, we have
Qja=sign(J, Najey.
Therefore, there are polynomials f7 x over Fg4 in (n —1) variables such that

k—1
ar = Zf],k(cn,n—ls---,cn,l)en .

k=0
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Thus, we have
k—1
a= Z Zfl,k(cn,n—l,---,cn,l)en Qrdxy ...dxy.
Iedy n—r k=0
It remains to show that fr o =0 foreach I € A, .

Let
ag=a— Z ZfI’k(c,,,n_l,...,c,,,l)e,]f_lQldxl .. dxy.

I€d, n—r k>1
Then, we have that

-1
ao = Z fI,O(Cn,n—la---aCn,l)en Qrdxy ...dxy
IGAn,nfr
and that a¢ is alsoin P, ® E}.
For J € Ay ,_1, the element Q yaq isin P, ® E,% . By Proposition 2.3, we have
Qag = > sign(J, 1) f1,0(Cnn—t. - - -+ Cn1) Ok dxy ... dxn.
Kedy n—1,1=K\J,I€Ay n—r

Hence, by Lemma 3.4, we have sign(J, I') f1,0 = 0. For each I in A, ,—,, there exists
J € Ay r—1 such that sign(J, I) # 0. Therefore, we have f7 o =0 for each /. This
completes the proof. a

Proof of Theorem 3.2 As in the proof of Theorem 3.1, if a € P, ® E}, is GL,(F4)—
invariant, the element a can be expressed in the form

a= Z Zfl,k(cn,n_l,...,cn,l)e,];_lQIdxl coodxy.
I€eA, n—r k>1
For g € GL,(Fy), we have
ga = Z Zdet(g_l)kfl,k(cn,n—la---acn,l)e;l:_lQldxl---dxn-
T€dnnr k=1

Therefore, a is GLy(F4)—invariant if and only if f7 x = 0 for k # 0 modulo ¢ — 1.
Hence, we have

a= Z Z fl,m(q_l)ﬂq_l)(cn,n_l,...,cn,l)eT(q_l)eZ_ledxl . .dxy.

I€Ad, n—r m>0

qg—1

Since e = Cp,0, WE may write

-2
a= Z fI/(cn,n—lv---,Cn,l,Cn,o)ez QIdxl...dxn,
I€eAdy n—r
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where

f]/(cn,n—ls cees Cn,O) = Z fI,m(q—l)—}—(q—l)(cn,n—la caes Cn,l)cn,Om-

m=0

This completes the proof. a
Proof of Lemma 3.4 For the sake of notational simplicity, let I; = S,\{i} and we
write /; for Ay, . Since a isin P, ® E,%, there are ¢, ..., @, in Py, such that

ap = @1dxy + -+ pndxy.

The coefficient ¢, of dx, is given by

n—1

-1
Z hi(cnpn—t,--..cn1)e, Qrdxy...dx,_y
i=0

n—1
—1
:{§ hi(cn,n—l,---,Cn,l)cn—l,i €, €n—1-
i=0

Hence, we have

n—1
Z hi(cn,n—lv cees Cn,l)Cn—l,i €n—1 = enPn.
i=0

By Proposition 2.9, the obvious projection

e Fglxy. ..o xn] = Fglxr, .o xp—1]

q

maps ey, ¢u,; to 0, Cp—1i—1> respectively. So, we have

n—1

q q —
Z h,-(cn_l,n_z, .. ’Cn—l,O)cn_l’i =0.
i=0

Since ¢p—1,; (i =0,...,n—2) are algebraically independent in Fy[xy, ..., x,—;] and
since ¢p—1,,—1 = 1, writing y; for ¢,_; ;, we have the following equation:

n—2

(1) hna (Ve YO+ G,y =0,
i=0

Applying partial derivatives d/dy;, we have

2 hi(y? ...y =0
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fori =0,...,n—2. Hence, hi(yg_z, .. .,yg) =0 fori =0,...,n—2. Substituting
these to the previous equation (1), we also have /h,_1 (yz_z, cees yg) = 0. Since we
deal with polynomials over the finite field F,, we have

fori =0,...,n—1. Therefore, we have h;(yy—>,...,9) =0fori =0,...,n—1.

Since )y, ..., yn—o are algebraically independent, we have
h; =0
as polynomials over F4 in (n —1) variables for i =0,...,n—1. |

4 Invariants of some Weyl groups

In this section, we consider the invariant theory of polynomial tensor exterior algebras.
In what follows, we assume that n» > 2. To state Theorem 4.2, which is our main
theorem on the invariant theory, we need some notation. Let

Py =Fy[xa, ..., x4]

be the subalgebra of P, generated by x»,...,x, and let £, _; be the subalgebra of
E, generated by dx,,...,dx,. Let G| be a subgroup of SL,_;(F;) which acts on
Py_y and P, ® E,_; both. Let G be a subgroup of SL,(F;) consisting of the

0 g 1 ’

where g1 € Gy and m € M; ,,_;(F4). Obviously the group G actson P, and P, ® Ej,.
Finally, let

On1C)= [ i+,

Theorem 4.1 Suppose that the ring of invariants PnG_l1 is a polynomial algebra gener-
ated by homogeneous polynomials f3,..., f in (n — 1) variables x,, ..., x,. Then,
the ring of invariants Pf is also a polynomial algebra generated by

On_l(XI), ]/27 e fn

This theorem is a particular case of a theorem of Kameko and Mimura [6, Theorem
2.5]. We use this theorem to compute the polynomial part of invariants PnG which
appear in our main theorem, Theorem 4.2. So, Theorem 4.2 below works effectively
together with Theorem 4.1.
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Theorem 4.2 Suppose that the ring of invariants Pf "', is a polynomial algebra gen-
erated by homogeneous polynomials f>, ..., f, in (n — 1) variables x,, ..., x, and
suppose that the ring of invariants (P,—; ® En—1)C is a free PnG_l1 —module with a

basis {v;}, where i =1,...,2""!. Then, the ring of invariants (P, ® E,)C is a free
PnG —module with the basis {v;, Qrdxy ...dx,}, wherei =1,...,2" ! and I ranges
over A,_1.

We prove Theorem 4.1 and Theorem 4.2 in Section 5, Section 6 and Section 7.

As an application of Theorem 4.1 and Theorem 4.2, we compute rings of invariants
of the mod- p cohomology of the classifying spaces of maximal non-toral elementary
abelian p—subgroups of simply connected exceptional Lie groups with respect to the
Weyl group action.

It is well-known that for an odd prime p, a simply connected exceptional Lie group G
does not have non-toral elementary abelian p-subgroups except for the cases p =5,
G=FEg,and p=3, G=Fy, Eg, E7, Eg (see [1] and [5]). Andersen, Grodal,
Mgller and Viruel [1] described the Weyl groups of maximal non-toral elementary
abelian p—subgroups as well as their action on the underlying elementary abelian
p—subgroup explicitly for p =3, G = E4, E7, Es. Up to conjugate, there are only
6 maximal non-toral elementary abelian p—subgroups of simply connected exceptional
Lie groups. For p =5, G = Eg and for p =3, G = F,, Eg, E7, there is one
maximal non-toral elementary abelian p—subgroup for each G. We call them E3 .
Ey,. ESg.. E3g. . following the notation in [1]. For p = 3, G = Ej, there are
two maximal non-toral elementary abelian p—subgroups, say E 155‘; and E if; , Where
the superscript indicates the rank of elementary abelian p—subgroup. For a detailed
account on non-toral elementary abelian p—subgroups, we refer the reader to Andersen
et al [1, Section 8], and its references.

Let A be an elementary abelian p—subgroup of a compact Lie group G . Suppose that A
is of rank 7. We denote by W(A) the Weyl group of A. Choosing a basis, say {a;}, for
A, we consider the Weyl group W(A) as a subgroup of the finite general linear group
GL,(Fp). We write H* BA for the mod—p cohomology of the classifying space BA.
The Hurewicz homomorphism /: A = m;(BA) — H;(BA;[F)) is an isomorphism. We
denote by {dt;} the dual basis of {(a;)}, so that d#; is the dual of &(a;) with respect
to the basis {h(a;)} of H{(BA;F,) fori =1,...,n. Let B: H' BA — H?BA be
the Bockstein homomorphism. Then, the mod-p cohomology of BA is a polynomial
tensor exterior algebra

H*BA =Tpt;,....tn) ® A(d1y, ..., dty),
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where degt; =2, degdt; =1 and t; = B(dt;) fori =1,...,n. We denote by T H* BA
the polynomial part of H*BA, that is,

FH*BA == [Fp[tl, ey tn].
The action of the Weyl group W(A4) on A = w1 (BA), given by

gai = aji(g)aj.
J

where {a;} is the fixed basis of A4, induces the action of W(A) on H* BA, which is
given by
gti = Zai,j(g_l)tj, gdt; = Zai,j(g_l)dtj,
J J

fori=1,...,n.

Now, we compute
(H* BV
E4

for A=F ]358 , E %4 , E4 2E E %‘; using Theorem 1.1, Theorem 4.1 and Theorem

3E¢°
4.2.

Proposition 4.3 For the above elementary abelian p—subgroup A, the ring of invari-
ants (H* BA)"W 4D s given as follows:

(1) For p=5,G =Eg, A= Ey_, (H*BA)W Y is given by
Fs[x62, X200, X240] ® Fs{1, Qrus},

where X6 = e3(t1.12,13), X200 = €3,2(t1.12.13), X240 = ¢3,1(t1.12.13), U3 =
dtydtydts and I ranges over A’ ;

(2) Forp=3,G=F4, A=E}, (H* BA)W D s given by
F3[x26. x36, X48] ® F3{l, Qrus},

where X265 = e3(t1,12.13), X36 = ¢32(l1,12,13), Xag = €3,1(l1,12,13), U3z =
dtydtydts and I ranges over A’ ;

(3) Forp=3,G=FEe, A= Ejp_, (H* BA)W A s given by
F3[x26, X365 Xa8, X54] ® F3{1, Qrus, O yuy},
where x36 = e3(t2,13,14), X36 = €32(l2,13,14), X438 = ¢3,1(12, 13, 14),

X554 = l_[ (tl +t),

teF3{t2,t3,14}

us = dtydtzdty, uy = dtydtydtzdty, I ranges over A and J ranges over Az ;
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4) Forp=3,G=E;, A=Ej}p | (H* BA)W A s given by
F3[x26. X365 Xa8, X108] ® F3{l, Qrusz, x54 0 jus},

where x36 = e3(l2,13,14), X36 = C3,2(l2,13,14), Xag = ¢3,1(t2,13,14), X108 =
2
X540

X54 = l_[ (Zl +t)a

teF3{ta,t3,t4}

us = dtydtzdty, uy = dtdtydtzdty, I ranges over A and J ranges over Az ;
(5) Forp=3,G=Eg, A=E}, (H*BA)WA js given by
F3[x4, X26, X36, Xa8, X324] ® F3{1, Qrus, xouy, (Qrusz)xauy, x2x162 0 yuus},
where x4 = X3, X26 = €3(12.13.14), X36 = €3 2(12, 13, 14), X453 = ¢3,1(t2. 13, 14),
X324 = X1262, X2 =15,
X162 = I1 (1 +1),
t€F3{ta,t3,04,5}

uy = dts, uy = dtrydtzdty, us = dtydtydtsdtsdts, I ranges over A and J
ranges over Ayq,

where the subscripts of u and x indicate their cohomological degrees.

Proof (1),(2) Inthecase p=5,G=Eg, A= E%g and inthe case p =3, G = Fy,
A=E %4, the Weyl group is SL3(Fp). Therefore, it is the case of Mui invariants and
it is immediate from Theorem 1.1.

(3) Inthecase p=3,G=FEg, A= E}‘Eﬁ, the Weyl group W(A) is the subgroup of
SL4(F3) consisting of the following matrices:

(5151

where m € M 3(F3), g1 € SL3(F3). The result is immediate from Theorem 1.1,
Theorem 4.1 and Theorem 4.2.

(4) Inthe case p =3, G = E7, the Weyl group W(A) is the subgroup of GL4(F3)

( )
0 gl ,
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where 1 € F§ = {1,2}, m € My 3(F3), g1 € SL3(F3). Firstly, we compute the ring
of invariants of a subgroup Wy of W(A). The subgroup Wj is the subgroup of W(A)

( )
C gl ’

where m € M 3(F3), g1 € SL3(F3). By Theorem 1.1, Theorem 4.1 and Theorem
4.2, we have

(H*BA)™ = F3[x26, 36, X485, X54] @ F3{1, Qru3, Qyuy},

where I ranges over A} and J ranges over A3. Let

R = F3[x26, X36, X48. X108]

and let
M = Fsixd,, x§, Qrus, x3, 0 yua},
where x93 = x§4, § €{0,1}, I ranges over A and J ranges over A3. Then, we
have
(H*BA)" = Re M.

Next, we calculate the ring of invariants (H* BA)" (4 as a subspace of (H*BA)"0.
Put

Then, for x € R, we have ax = x and we also have the following direct sum decom-
position:

M =M, & M,,
where M; = {x € M|ax =ix} for i =1, 2. In particular, we have

My =F3{1,Qrus,x540 yus}.

Since the Weyl group W(A) is generated by W, and «, an element x in R® M is
W(A)—invariant if and only if «x = x. Hence, we have

(H*BA)VD = R@ M.
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(5) Inthecase p=3,G=FEg, A= E%‘; the Weyl group W(A) is the subgroup of
GLs(F3) consisting of the following matrices:

&1 |mo | Ny
Olgi| 0 |,
010 0]

where €1, €y € [F;< = {1,2}, mgy € M1,3(ﬂ:3), my € Ml,l(”:3)’ g1 € SL3([F3) We
consider the subgroup Wy of W(A) consisting of the following matrices:

1 mo | My
0/g1]0 |,
0] 0] 1

where g1 € SL3(F3), mg € My 3(F3), m; € My 1(F3). By Theorem 4.1 and Theorem
4.2, we have

(H*BA)™0 = F3[x3, x26. X36. Xa8. X162 ® F3{1, Qruz, uy, (Qruz)uy, Qyus},
where I ranges over A’ and J ranges over A4. Let
R = F3[x4, X26, X365 Xa8, X324],

and let

81 62 81

8§16 816 8 8§16
M =F3{x;' X\, X5 X6, Qrus, x5' X 51, X5 X6, (Qrus)uy, x,' x5, O yus},

where 61, 8; € {0, 1}, I ranges over A’ and J ranges over A4. Consider matrices

2|10 0 0]0 110 0 0|0
0|1 00]0 0|1 00]0
a=|00100], B=]0010]|0
0/0 010 0/0 01]0
0(0 0 01 0/0 0 0|2

Then, we have ax = x and Bx = x for x € R . Furthermore, it is also clear that we
have the following direct sum decomposition:

M=M1©®M,®M; & M,,,

where
M;j={xeMlax =ix,fx = jx}.

In particular, we have

My =F3{l, xou1, Qrus, x2(Qru3z)uy, x2X1620 sUs}.
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Since W(A) is generated by W, and «, B in the above, x € (H* BA)?0 is W(A)—
invariant if and only if x = 8x = x. Hence, we have

(H*BA)W = R@ M, ;. O

Remark 4.4 Our computation of the ring of invariants of polynomial tensor exterior
algebra in Proposition 4.3 is based on the computation of the ring of invariants of
polynomial algebra and the assumption that the ring of invariants of polynomial algebra
is also a polynomial algebra. In the case 4 = E 15,51; , however, the Weyl group does not
satisfy the condition we assume in this section and the ring of invariants of polynomial
algebra is no longer a polynomial algebra. Hence, both Theorem 4.1 and Theorem 4.2
do not apply in this case.

5 O,-1(x;) and D,_,
In this section, we collect some facts, which we need in the proof of Theorem 4.1 and

Theorem 4.2.

Fori =1,...,n, the element O,_;(x;) in F4[xy,...,x,] is defined to be

On1C)= [ i+,

We also define O,_»(x;) in Fy[xy, ..., x,—1] by
On—2(xi) = [] &i+x
x€Fg{x2,....Xxn—1}

for n > 3 and by
Oo(xi) = xi

forn =2.

Using the same argument as in the proof of Proposition 2.5, we can easily obtain the
following proposition.

Proposition 5.1 Fori =1,...,n, we may express O,—1(x;) and Oy,_,(x;) in terms
of Dickson invariants as follows:
n—1 )
Onat () = ) (1" epr j(ae o oxm)i® forn =2,

j=0

n—2
Ona (i) = ) (=12 eng j (2 dum)xi? forn > 2.

j=0
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We need Proposition 5.2 and Proposition 5.3 below in the proof of Proposition 7.5.

Proposition 5.2 In Fy4[xy, ..., x,—1], we have the following equality:
en—1(X1,. .., Xp—1) = Op—a(X1)en—2(x2, ..., Xp—1)

forn > 3, and
e1(x1) = xq

forn=2.

Proof For n =2, the proposition is obvious. For n > 3, by Proposition 2.4, Proposition
2.5 and Proposition 5.1, we have

en—1(X1,..., Xp—1)
= Q() Qn—del ...dx,,_l
n—2 ) i
=Y (=D)"?7(Qo...0j... Onadxs...dxy_1)x]
j=0
n—2 .
N J
= Z(—l)" 2ep o (X2, ..o Xp—1)Cno2,j (X2, .. Xp1)XT
j=0
= ep—2(x2,..., Xp—1)Op—2(x1). O

Proposition 5.3 The obvious projection

7w Fglxy, .o xn] — Fglxp, .o, Xp—1]
maps Oy—_1(x1), en—1(x2,...,X,) to Op_>2(x1)?, 0, respectively.
Proof Since ¢,_1(x5,...,xy,) is divisible by x,, we have
m(en—1(x2,...,xn)) =0

as in the proof of Proposition 2.9. For n = 2, the equality
m(01(x1)) = Op(x1)? = x{
is obvious. For n > 3, by Proposition 2.9, we have

w(cp—1,j(X2,....Xn)) = Cn2, j—1(x2, ..., Xp—1)?
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for j =1,...,n—1. Hence, we have

n—1
=i J
A(Op-1(x1) = 7| Y (D" "oy j(x2. .. Xn)X]
j=0
n—1 )
= > (D)"""epa i1 (s xp) ]
ji=1
= On—z(xl)q- o

j

For a in P, ® E,, let
n—1
Du1(@) =Y (=" Vepy,j(x2..... x0) Qja.
j=0
Then, D,,—; induces a Py,-linear homomorphism
Dy Pa®E! —> P, ® EI 71,
which extends naturally to

Dp1: Kn®E! - K, @ EI1.

Proposition 5.4 Fori =1,...,n, we have
Dp_1(dxi) = Op_1(x;).

In particular, fori =2, ...,n, we have Dy,_1(dx;) = 0.

Proof By Proposition 5.1, we have

n—1
Dy1(dxi) = Y (=1)"""epy j(xa,. . xn) Qi
j=0
n—1 ) i
= Z(_l)n_l_jcn—l,j(xL---axn)x;]
j=0
= Op_1(xi).

On the other hand, by the definition of O,_1(x;), we have
On—1(xi) =0

fori =2,...,n. Hence, we have D, _1(dx;) =0 fori =2,...,n. O
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Let g; be an element in GL,_;(F;). We consider the following matrix

-(32)

We need Proposition 5.5 and Proposition 5.6 below in the proof of Proposition 7.8.

Proposition 5.5 For g, in GL,_;(F,;), there holds

Dp-1(g1a) = g1Dp—1(a).

Proof Suppose that

n
a= E a;dx;,

i=1

where a; € K;, fori =1,...,n. Since
g1dxy = dxy,
and since, fori =2,...,n,
g1dx;
isin E!_ , we have

gia = (g1a1)dx; + dydx, + -+ aydxy,
for some a;. € K, fori =2,...,n. Hence, by Proposition 5.4, we have

Dp-1(g1a) = (g1a1)Op—1(x1).

On the other hand, by Proposition 5.4, we have

81Dp—1(a) = g1(a10y—1(x1)) = (g1a1) Op—1(x1). o

Let P"~2 be the projective space

(F O, ..., 00}/ ~,

where € ~ ¢ if and only if there is & € Fj such that £ = af'.

Proposition 5.6 If a € P, is divisible by oy x5 +- - -+ ap X, for arbitrary (o3, ..., o)
€ P"=2, then a is divisible by e,_1 (X2, ..., Xn).
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Proof Since the number of elements in P"~2 is equal to the homogeneous degree
14+qg+-+g"2 of ey_i(xa,...,xn), it suffices to show that e,_; (x5,...,x,) isa
product of elements of the form apx5 + -+ - + a0y Xy, Where (a3, . .., oy) ranges over
P"=2 Itis clear that e,_; (X2, ..., Xy) is divisible by x,. So, we have

en—1(xX2,...,xy) =bxy

for some b € P,. It is also clear that ¢,_1(x»,...,Xy) is invariant under the action of
SLy—1(Fy). Thereis g; € SL,—1(Fg4) such that ap x5 + -+ 4+ oy x, = g1X,. Hence,
on the one hand, we have

g1en—1(X2,...,xpn) = (g1b)(2Xx2 + - + apXy)
and, on the other hand, we have
g1en—1(X2, ..., xXp) = ep_1(x2,....Xp).

Therefore, e,,—1(x3, ..., X,) is divisible by arbitrary oy x5 - - -4, x5, . This completes
the proof. O

6 Proof of Theorem 4.1

In order to prove Theorem 4.1, we recall the strategy to compute rings of invariants
given by Wilkerson in [9, Section 3]. It can be stated in the following form.

Theorem 6.1 Suppose that G is a subgroup of GL,(F4) and G acts on the polynomial
algebra Fy[xy, ..., x,] in the obvious manner. Let fi,..., f, be homogeneous G —
invariant polynomials in F4[x1,...,x,]. Let R be the subalgebra of Fy[xy, ..., xz]
generated by f1,..., fu. Then, R is a polynomial algebra F4[ f1,..., fu] and the ring
of invariants Fg[xq, ... ,xn]¢ is equal to the subalgebra R if and only if Fglxi.....Xn]
is integral over R and deg f1 ...deg f, = |G]|.

In the statement of Theorem 6.1, deg f is the homogeneous degree of f, that is, we
define the degree deg x; of indeterminate x; to be 1. For the proof of this theorem,
we refer the reader to Smith’s book [8, Corollaries 2.3.2 and 5.5.4, and Proposition
5.5.5] and Wilkerson’s paper [9, Section 3].

Proof of Theorem 4.1
As we mentioned, in order to prove Theorem 4.1, it suffices to show the following:

(1) homogeneous polynomials O,_;(x1), f2,..., fn are G—invariant;
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(2) indeterminates xq, ..., X, are integral over R;

(3) the product of homogeneous degrees of O,_;(x1), f2,..., f» is equal to the
order of G, that is,

deg Op—1(x1) deg f...deg fn = |G]|.

By definition, f3,..., f; are G—invariant, and so they are also G —invariant. It follows
from Theorem 6.1 that x, ..., x, are integral over Ry = F4[f3,..., fu], and so they
are integral over R. Itis also immediate from Theorem 6.1 that deg f5 . . .deg f, =|G].
It is clear from the definition of O,_;(x;) that deg ©,_; = 2"~!. Hence, we have

deg Oy—1(x1)deg f>...deg f = 2" G| =|G|.

So, it remains to show the following:
(1) O,_1(x1) is G—invariant and

(2) x;p isintegral over R.

First, we deal with (1). By the definition of O,_1(x;), we have that

g0,_1(x1)

is a product of

n
glxi+x)=x1+ Y a (g ")xj +gx,
j=2
where x ranges over Fg{x2,...,x,}. As x ranges over F4{xs,...,x,}, the sum

n
-1
D ay (g7 h)xj+gx
j=2
also ranges over F4{x2,...,x,}. Hence, we have

g0n—1(x1) = Op—1(x1).

Next, we deal with (2). By Proposition 5.1, we have

n—2
n—1 13 j
Ont(X) = X1 43 (=" jlxan. . x) X
j=0
Since Dickson invariants ¢,;—1 j(x2,...,X,) arein Ry = F[x,, ..., x,]C", the poly-

nomial
P(X) = Op—1(X) = Op—1(x1)

Geometry & Topology Monographs, Volume 11 (2007)



Mui invariants and Milnor operations 129

is a monic polynomial in R[X]. It is clear that

p(x1) =0.

Hence, the indeterminate x; is integral over R. This completes the proof. a

7 Proof of Theorem 4.2

Let G be the subgroup of G' consisting of the following matrices:

1| m
0 1n—l '

where m € My ,—1(Fy4), 1,—1 is the identity matrix in GL,—;(F4). Let B, be the set
of subsets of

{2,...,n}.
Let By, be the subset of B, such that J € By, if and only if

J=4{1,....jr} and 1< ji<---<j, <n.

We write dxj for
dxj, ...dx;,
and we define dxg to be 1.

The following proposition is nothing but the particular case of Theorem 4.1 and Theorem
4.2.

Proposition 7.1 The ring of invariants P,IG % is given as follows:
P70 = FglOp1(x1). X2, . Xu)
The ring of invariants (P, ® E 2)0 is a free P,,G ® _module with the basis

{Qrdxy .. .dxp, dxy},

where I ranges over A,—1 and J ranges over B, .
Now, we consider a K, —basis for K,, ® E;,.

Proposition 7.2 The elements
Q() . Qn_zdxl ce dxn, dX2, ey dx,,
form a K, —basis for K, ® E,i .
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Proof For dimensional reasons, it suffices to show that the above elements are linearly
independent in K, ® E,% . Suppose that

a1Qo...Qp—dxy...dxy,+axdxy +---+apdx, =0

in K, ® E,i, where aq,...,a; are in K;. Then, since

n

Qo...Onadxy...dxy =) (=1)""en_1(x1,.... Rir. .. x0)dx;,

i=1

we have
—1 ~
(=D"aje,—1(X1.....xn) =0,
a2 + (_l)n_zalen—l(xlyfz, LI ,xn) = O’
an + (_l)oalel’l—l('xlv LR ’xn—l’sc\n) - O
Thus, solving this linear system, we obtain a; =0,...,a, =0. O

Proposition 7.3 The elements
Qrdxy...dxy, dxy
form a K, —basis for K, ® E;, where I € Ay,_ ,—, and J € By ;.

Proof Again, for dimensional reasons, it suffices to show that the above elements are
linearly independent in K, ® E;,. Suppose that

Z arQrdxy...dx, + Z bydxy =0,
IeAn—l,n—r JEBn,r

where ay, by are in K. The linear independence of the terms dx  is clear. Hence, it
remains to show that a;y = 0 for each 7.

Fix I € Ay—y p—r and let K = S,_;\I. Then, applying Qg to the both sides of the
above equality, we have

sign(K, arQq...Qp—2dxy...dxp+a =0
in K, ® E;, where « is a linear combination of dx,,...,dx, over K,. Hence, by

Proposition 7.2, we have ay = 0 foreach I € A,_1 ;. O
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Suppose that a is in P, ® E,{ Then, on the one hand, we may express a as follows:
a=@rdx)+ -+ @udxy,

where ¢1,...,¢@, are in Py,. On the other hand, by Proposition 7.2, we may express «
as follows:

a=a1Q¢...0np—2dxq...dxy+aydx, +---+ andxy,

where ay,...,a, are in K,. Observe that terms ¢ and ¢ are unique in the above
expressions.
We need to show that aq,...,a, are in P, if a is Gy—invariant.

Proposition 7.4 There are polynomials a;; over F, in n variables such that

ajey—1(x2,...,xXp) = a;-(xl, cey Xp)

fori=1,...,n.

Proof For i =1, we apply D,,—; to a. Then, we have

Dy—1(a) = 10p—1(x1).
On the other hand, we have

Dy—1(a) = (_l)n_lalQO---Qn—ldxl .o.dxp

= (=D)"a10p—1(x1)en—1(x2. ..., Xn).
Hence, we obtain
ay = (en—1(x2.....xn)) " 1
and
dy(x1,...,x0) = @1.
Fori =2,...,n,applying Qy,..., Qn—> to a, we have a linear system

Qoa = azxy +-++apxy,

Qla:azxg—k'--—l-anx,‘{,

qn—2 qn—2
On—oa=azx, +--+apx,
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Writing this linear system in terms of matrix, we have

Qoa dz
Qia as
. - A . b
On—2a an
where
X2 . e Xn
q q
Xy .. Xp
A= .
qn—Z qn—2
X, cee Xp
It is clear that det A = e,,—1 (x5, ..., xn) # 0. It is also clear that each entry of A4 is in

Py,_1 . Therefore, for some ¢; j in P,_;, we have

n
a; =€n_1(x2,...,Xn)_1 Z(pls] Q.]a

j=1

Since Qja is in Py, by letting

n
aj(x1,. ) = Y01, 0ja,

j=1
we obtain the required results. a
Proposition 7.5 Suppose that a is Go—invariant. Then aj(xy, ..., X,) in Proposition
7.4 are also Gg—invariant fori =1,...,n.
Proof For g € Gy, we have
gldx;) = dx;

fori =2,...,n and, since Go C SL,(F4), we have
gldxy...dx,) =dxq...dxy,.

Since the action of Milnor operations Q; commutes with the action of the general
linear group GL,(F4), we have

g(Q() ce Qn_zdxl .. .dxn) = Q() ce Qn_zdxl .. .dxn.

Hence, we have

ga=1(ga1)Qo...Qn_2dxy...dxp+ (gaz)dx, + -+ (gan)dxy.
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Thus, if ga=a, wehave ga; =ay,...,ga, =ay. Itisalso clear that e;,_1 (X2, ..., Xz)
is Go—invariant. Hence, a;(x1,...,X,) are also Go—invariant for i = 1,...,n. O
Proposition 7.6 Suppose that a is Gy—invariant. Then, a/l (x1,....xpn) is divisible by
Xn .

Proof Let us consider the coefficient ¢, of dx,; we have

Onen—1(X2, ..., Xp) = ap(X1,...,Xp) —i—a’l(xl, e Xn)en—1(X1, .0, Xp—1).

Since a) (x1,...,xn) and ay(xy,...,x,) are Go—invariant, there are polynomials a7,
ag over 4 in n variables such that

a/l (X100, Xpn) = a/l/(On—l(xl)» X2, ..y Xn)s
ap(x1, ... Xn) = dy(On—1(x1), X2, . ... Xn).
Since Op—1(x1), X2, ..., Xy, are algebraically independent, it suffices to show that

a{(y1,x2,. ... Xp—1,0) =0
for algebraically independent yq, x3,...,X;—1.
Substituting x, = 0, we have the obvious projection
w: Fglxr, oo xn] = Fylxr, ..o xp—1].

It is clear from Proposition 5.2 and Proposition 5.3 that

m(en—1(X1, .- Xp—1)) = en—1(X1,...,Xp—1)
= Oy_a(x1)ep—2(x2,...,xp—1) forn >3,
w(er(x1)) = Op(xy) forn =2,
w(ep—1(x2,...,xz)) = 0,

7(Op—1(x1)) = Op_z(x1)?.

Hence, for n > 3, we have

O =a;;(yq’x27 s 7xn—190) +ya/1/(yq’x2’ .. -,xn—l’o)en—Z(XZa B sxl’l—l),

where y = O,_5(x1) and y, x5, ..., x,—1 are algebraically independent. Applying
the partial derivative d/0y, we have

/
al(y?, x2, ..., Xp—1,0)ep—2(x2, ..., Xp—1) = 0.
Hence, we have
ai{(y?,x2, ..., xp—1,0) =0.
Since y?, x5, ..., Xx,—1 are algebraically independent, we have the required result.
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For n = 2, we have
0=1d5(y?,0)+ yai(»?,0).
Applying the partial derivative d/dy, we have
a{(y7.0)=0
and the required result. a

Lemma 7.7 Suppose that g € GL,_1(F4) and that a is Go—invariant. Then, ga is
also Gy—invariant.

Proof Suppose that for each g, there is a g’ € G such that gg; = g;¢’. If it is true,
then for any Go—invariant @, we have
ggia=31g'a=ga.

Hence, g; induces a homomorphism from P,,G % to P,? 0. So, it suffices to show that
for each g in Gy, there is a g’ € G such that gg; = g1¢’, which is immediate from
the following equality:

(o) (o) = Ge) (@)
0[1y—1 )\ 0[gr /" \0]g1 J\ O[Ty )’

where m € M ,—1(F4) and 1,_; stands for the identity matrix in GL,—1(F4). O

Proposition 7.8 Suppose that a is Gy—invariant. Then, ay,...,a, arein Py.

Proof Firstly, we verify that a; is in P,. To this end, we prove that the element
a' (xy,...,xy) is divisible by e, (x2,...,x,). Let £ = apx + -+ + ap Xy, Where
o, ...,0 €[Fg and £ # 0. By Proposition 5.6, it suffices to show that @’ (x1, ..., x,)
is divisible by £. There is g in GL,—;(F4) such that g;(x,) = £. Since, by Lemma
7.1, gl_la is also in (P, ® E,I,)GO, there is an element f in P, such that

Dn—l(gl_la) = fxnOp_1(x1).
Here we have
Ou—1(x1)a@y (x1, ..., Xn) = Dp_1(a) = §1Dn—1(&7 '@) = Op_1(x1)Z1 (/).
So we have

all(xlw"?xn):(glf)z‘

Secondly, we verify that a; are in P, for i =2,...,n, which follows from the fact
that

vi=a;i+ D" arep—1(x1,. .., Xis ..., Xn). |
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Proof of Proposition 7.1

Suppose that a is in P, ® E] and Go—invariant. By Proposition 7.3, there are ay,
by € K, such that

a= Z ajQrdxy...dx, + Z bydxy.
IGAn—l,n—r JGBn,r

It suffices to show that ay, by are in P,.

Firstly, we verify that ay is in P,. Choose I and let K = S,,_1\/. Then, we have
Oka=sign(K,IayQq ... Qpn_adxy...dx,+ Z byQgdxy.
JeBy r

By Proposition 7.8, sign(K, I)ay is in P, and, by definition, sign(K, I') # 0, hence
ay is also in Py.

Secondly, we prove that by is in P,. Put
ad=a— Z arQrdxy ...dx, = Z bydxy.
I€eAp—1 n—r JEBy »

It is clear that ¢’ is also in P, ® E} . Hence, by isin P,. This completes the proof. O
Now, we complete the proof of Theorem 4.2.

Proof of Theorem 4.2

Suppose that a is an element in P, ® E, and that a is also G—invariant. It suffices
to show that « is a linear combination of {v;, Qydxy ...,dx,} over PnG. It is clear
that a is also Gg—invariant. Hence, by Proposition 7.1, there are ay, by in P,,G 0=
FqlOn—1(x1), X2 ..., Xp] such that

a=Za1Q1dx1 ...dxn—i—ZdexJ.
1 J

Thus, we have
a=Y " apOn_1(x)*Qrdxi .. dxy+Y_ Y by O (x1)*dx;.
I k>0 J k=0

where ay ., by i arein P, = Fy[xs,...,x,]. Since, by Theorem 4.1, g € G acts
trivially on O,—_1(x;), and since g € G C SL,(F4) acts trivially on Qrdx; ...dx,,
we have

ga=Y Y (gar)On—1(x1)* Qrdxy ...dxn+ Y > (gbyi)On-1(x1)* (gdx ).

k>0 I k=0 J
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It is clear that gdxy isin E,_;. As a P,_;—module, (P, ® E;)GO is a free P,_1—
module with the basis

{On1(x1)¥dxy, Op_i (x1)* Qrdxy ... dxa}.
Hence, we have
glarx) =ar.

Thus, ay x is in Pn_1G1 and so ay is in PnG. Put

a’=a—2a1Q1dx1 codxy.
1

Then, &’ is also in the ring of invariants (P, ® E,)?, and we have

a = Z (Z bJ,kdXJ) On—1(x1)F.
7

k>0

Hence, Z by xdxy is in the ring of invariants (P,—; ® En—1)%". By the assumption
J
on the ring of invariants (P,—; ® E,—1)®!, there are polynomials bijs---sban—1y

in Pf ", such that
2n—1

Zb.f,kdx./ = Z b,-,kv,-.
J

i=1
Thus, writing b; for Z bi k On—1 (xl)k, we have
k=0

2n—1

a= Z biv; +Za1Q1dx1 ...dxp,

i=1 1

where b;, ay are in PnG . This completes the proof. |

Appendix A

i i
In [7], Mii used the determinant of the k x & matrix (x] ‘) whose (£, j) entry is x! ‘
to describe the Dickson invariant [iq,...,i;]. Using these Dickson invariants, he
defined the Mui invariant [r : iy,...,i,—r]. In this appendix, we verify in Proposition

A.4 that the Mui invariant

Qil s Qin_rdXI .. .dxn
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in this paper is indeed equal to the MUui invariant [r : iy,...,iz—r], up to sign.

Firstly, we recall the definitions. See [7, Section 2] for the definition of [iy,...,i] and
and [7, Defintion 4.3] for the definition of [r :iy,...,in—r].

Definition A.1 The Dickson invariant [iy,...,ig](xq1, ..., xk) € Fglx1,...,xg] is
defined by

i i ip
Z sgn(a)xg(l) .. .xg(k) = det(qu ),
o

where o ranges over the set of permutations of {1,...,k} and sgn(o) is the sign of
the permutation o .

Definition A.2 The Mui invariant [r :iy,...,in—r] € P, ® E}, is defined by

[roite. . ciner] =Y sgn(o)dxj, ... dxjliv. .. inr)(Xjppy oo XG),
J

where
(L ..., n
GJ_(fh s ]n)
ranges over the set of permutations of {1,...,n} such that j; <--- < j, and j,4+1 <
-+« < ju. The above oy corresponds to the subset J = {jy,..., j-} of order r of
{1,...,n}.

Secondly, we prove the following proposition.

Proposition A.3 There holds

1, ik)(x1, oo xk) = Qip ... Qiydxy ... dxy
= (=DkE=D20, 0 dxy ... dxy.

Proof We prove the first equality in this proposition by induction on & . Indeed, in the
case k = 1, the proposition holds. Suppose that k¥ > 2 and that there holds the equality

iz, . ik)(x1, oo xk—1) = Qi ... Qindxy .. dxp—y.

Using the cofactor expansion (or the Laplace development) of the k& x k matrix (x;.ﬂ)
along the first row

q't g1 q'1
(X7 Xy X ),

i
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we have
k .
i, il ene . xe) = Y (=D i) (g R X)X
s=1
k .
= Z(—l)SH(Qik...Qizdxl coodxs ... dxg)x?!
s=1
k [ —_——
= Qik--~Qi2 Z(—I)S+IX?ICZX1...dxs...dxk
s=1

= Qik Qildxl ...dxk.

So, the first equality holds. The second equality is immediate from the fact that
Qik Qi1 = (_l)k(k_l)/zQil Qik' o
Finally, we state and prove the following proposition.

Proposition A.4 There holds

[Fiite. . in—yr] = (<D0, . Qi dx; .. .dx,
= (—1)("_’)’Jr(”_’)(”_’_1)/2Q,—1 e Qi dxy .. dxy.

Proof As in the definition of [r :iy,...,iy—,], let 5 be a permutation of {1,...,n}
withoy(1) <---<oy(r), o5(r+1) <--- <oy(n) and we denote by j; the value
oy(k) of oy at k. Let I(J) be the ideal of P, ® E, generated by dx;j, ,,...,dx;j,.
Let

pi: Ph®E,— P, @ En/I(J)

be the projection. It is clear that
Pn®E:z/((Pn®E;;)ﬂ[(J)) = Pn
and for f in P, ® E},, we have

[=Y"ps(Ndxj, ...dxj,.
J

So, by Proposition A.3, in order to prove the proposition, it suffices to show that

pr(Qiney - Qiydxy ... dxn) = (=) " sen(o7) Qi - .. Qiydxj,, - .- dx;,.

Suppose that
V(Qipy o Qi) =1® Qi ... Qi + ) a®d,
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where v is the coproduct of the Steenrod algebra. We may choose «’, so that ¢’ =
Qe ... Qe, and £ <n—r. Thus, a'(dxj, ., ...dx;,) belongs to I(J).

Then, there holds

Q,’n_r . Qildxl .. .dxn

sgn(0y) Qiy_, - - - Qiydxj, ... dxj,

= (=) sgn(oy)dx;j, ... dxj, Qi, ., ... Qi dxj, ., ...dx;j,
+ Z(—l)’‘jeg“/sgn(aj)(aaij1 odxj ) (d dxj, . .odxg,).

Hence, we have

pr(Qiney .. Qiydxy ... dxy) = ()" sen(o1) Qi ... Qiydxj, ., - .- dx;,

as required. |
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