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Evens norm, transfers and characteristic classes for
extraspecial p–groups

PHA. M ANH MINH

Let P be the extraspecial p–group of order p2nC1 , of p–rank nC1 , and of exponent
p if p > 2 . Let Z be the center of P and let �n;r be the characteristic classes of
degree 2n�2r (resp. 2.pn�pr /) for pD 2 (resp. p> 2), 0� r � n�1 , of a degree
pn faithful irreducible representation of P . It is known that, modulo nilradical, the
�th powers of the �n;r ’s belong to T D Im

�
H�.P=Z;Fp/=

p
0

Inf
!H�.P;Fp/=

p
0
�
,

with �D 1 if pD 2 , �D p if p > 2 . We obtain formulae in H�.P;Fp/=
p

0 relating
the ��n;r terms to the ones of fewer variables. For p > 2 and for a given sequence
r0; : : : ; rn�1 of non-negative integers, we also prove that, modulo-nilradical, the
element

Q
ri
�

ri
n;i belongs to T if and only if either r0 � 2 , or all the ri are multiple

of p . This gives the determination of the subring of invariants of the symplectic
group Sp2n.Fp/ in T .

20J06; 55S10

1 Introduction

Let p be a prime number. For a given group P , denote by H�.P / the mod–p coho-
mology algebra of P . We are interested in the case where P D Pn , the extraspecial
group p–group of order p2nC1 , of p–rank nC 1, and of exponent p if p > 2. It is
known (see the work of Green–Leary [4] or Quillen[12]) that, for p> 2 (resp. pD 2),
there are exactly n Chern (resp. Stiefel–Wihitney) classes �n;r of degree 2.pn�pr /

(resp. 2n � 2r ), 0 � r � n� 1, of a degree pn faithful irreducible representation of
P ; these classes restrict to maximal elementary abelian subgroups of P as Dickson
invariants.

Set E D En D P=Z , with Z the center P , E is then a vector space of dimension
2n over Fp . Set h�.P /DH�.P /=

p
0 (so h�.P /DH�.P / for p D 2, by [12] and

denote by T D Tn the subring of h�.P / equal to the image of the inflation InfE
P ,

modulo nilradical. For p D 2, it follows from [12] that all the �n;r terms belong to
T . For p > 2, this fact does not hold, as shown by Green and Minh [3; 5]; however,
in [5], it is also proved that all p th powers of the �n;r terms, are in turn, belonging to
T .
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For convenience, set � D 1 for p D 2, and � D p for p > 2. It follows that, for
0� r � n�1, there exists fn;r 2H�.E/ such that Inf.fn;r /+ ��n;r . Here and in what
follows a + b means aD b modulo

p
0. Via the inflation map, as elements of h�.P /,

fn;r can be identified with ��n;r , 0� r � n�1. The first aim of this paper is to get an
alternating formula expressing fn;r by means of fn�1;r�1 and fn�1;r . This work is
motivated from the elegant formula, for p > 2 (resp. p D 2), expressing Chern (resp.
Stiefel–Whitney) classes of the regular representation rA of the elementary abelian
p–group A via such classes of fewer variables. It is known that, if A is of rank m and
p> 2 (resp. pD 2), then the 2.pm�pr /th Chern (resp. .2m�2r /th Stiefel–Whitney)
class of rA is the Dickson invariant Qm;r of the same degree with variables in a basis
x1; : : : ;xm of ˇH 1.A/ (resp. H 1.A//, with the Bockstein homomorphism. These
invariants are related by

Qm;r DQm�1;r V p�1
m CQ

p
m�1;r�1

;

where

Vm D

Y
�i2Fp

.�1x1C � � �C�m�1xm�1Cxm/D .�1/m�1
m�1X
sD0

.�1/sQm�1;sxps

m ;

is the Mùi invariant.

In so doing, we need to use the Evens norm and transfers from maximal subgroups of
P . Some basic properties of the Evens norm, in the relation with modular invariants,
are recalled in Section 2. In Section 3, we show how to obtain characteristic classes of
P by means of the Evens norm (Theorem 3.7). Theorem 3.8 describes the image of
such classes via the Evens norm. From this, we obtain formulae relating characteristic
classes with such classes of fewer variables (Corollary 3.9).

Let r0; : : : ; rn�1 be a sequence of non-negative integers. In Section 4, we prove that,
for p > 2, modulo nilradical, the product

Q
i�0 �

ri

n;i belongs to T if and only if either
r0 � 2, or all the ri are multiple of p Theorem 4.1. This generalizes a result, given
by Green and Leary [3; 4], proving that �s

n;0
belongs to T provided either s � 2n , or

s � 2 and n� 2. As a consequence, we obtain in the last section the determination of
the subring of invariants of the symplectic group in T Theorem 5.1.

For convenience, given a subgroup K of a group G , any element of H�.G/ is also
considered as an element of H�.K/ via the restriction map ResG

K
. Also, if K is

normal in G , then any element of H�.G=K/ can be considered as an element of
H�.G/ via the inflation map InfG=K

K
.
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Characteristic classes for extraspecial p–groups 181

2 Evens norm and Mùi invariants

Given a polynomial algebra F D Fp Œt1; : : : ; tk � and 1 � m � k � 1, define the Mùi
invariant [10]

(1) VmC1 D VmC1.t1; : : : ; tmC1/D
Y
�i2Fp

.�1t1C � � �C�mtmC tmC1/:

It follows from the work of L E Dickson [1] that

VmC1 D .�1/m
mX

sD0

.�1/sQm;st
ps

mC1

with Qm;s DQm;s.t1; : : : ; tm/ the Dickson invariants defined inductively as follows
(we shall omit the variables, if no confusion can arise).

Qm;m D 1

Qm;0 D

Y
�j2Fp

�j not all equal 0

.�1t1C � � �C�mtm/

Qm;s DQm�1;sV p�1
m CQ

p
m�1;s�1

:

By (1) the Qm;s are independent of the choice of generators t1; : : : ; tm of Fp Œt1; : : : ; tm�.
Hence, if .t1; : : : ; tm/ is a basis of H 1.W / (resp. ˇH 1.W /) with W an elementary
abelian 2–group (resp. p–group with p > 2) of rank m, we may write

Qm;s.t1; : : : ; tm/DQs.W /

VmC1.t1; : : : ; tk ;X /D V .W;X /:

The Mùi invariants can be obtained by means of Evens norm map NU!W with U

a subgroup of W (see Corollary 2.2 below). Let us recall that, for every maximal
subgroup K of a p–group G , and for � 2 H r .K/, we may define the Evens norm
map

NK!G.�/ 2H pr .G/:

Here are some properties of NK!G . For details of the proof, the reader can refer to
the work of Evens [2], Minh [9] or Mùi [10].

Proposition 2.1 Let G , G0 be p–groups and let K be a subgroup of G .

(i) If N is a subgroup of K , then

NN!G DNK!G ıNN!K :
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(ii) If H is a subgroup of G and G D
`

x2D KxH , then, for � 2H r .G/,

ResG
HNK!G.�/D

Y
x2D

NH\xK!H Res
xK
H\xK .

x�/:

(iii) If K is a subgroup of G0 and f W G0!G is a homomorphism such that f .K0/�
K and f induces a bijection G0=K0 Š G=K of coset spaces, then, for � 2
H r .K/,

NK 0!G0.fjK 0/
�.�/D f � .NK!G.�// :

In particular, if N is a normal subgroup of G and N � K , then, for � 2
H r .K=N /,

NK!GInfK=N
K

.�/D InfG=N
G

NK=N!G=N .�/:

(iv) If �; � 0 2H n.K/, then

NK!G.�C �
0/DNK!G.�/CNK!G.�

0/

modulo a sum of transfers from proper subgroups of G containing the intersection
of the conjugates of K . Hence, the norm map is in general non-additive, although
NK!G ıResG

K
is.

(v) If � 2H r .K/, � 0 2H s.K/, and ŒG WK�D n, then

NK!G.�:�
0/D .�1/

n.n�1/
2

rsNK!G.�/NK!G.�
0/:

(vi) Assume that G D K �E , with E D .Fp/
m . Consider E as the group of all

translations on a vector space S of dimension m over Fp and let W .m/ be an
E–free acyclic complex with augmentation �W W .m/!Fp . Let C be a cochain
complex of which the cohomology is H�.K/ and set C S D˝c2SCc , Cc D C .
Then

NK!K�E D d�mPm;

where PmW H
r .C /! H

pmr
E

�
W .m/˝C S

�
is the Steenrod power map, and

d�mW H
pmr
E

�
W .m/˝C S

�
!H�.E/˝H�.C / is induced by the diagonal C!

C S and the Künneth formula.

In the rest of this section, suppose that W is an elementary abelian p–group of rank
nC 1 and U a subgroup of W of index pm .

By Proposition 2.1(vi), NU!W D d�mPm . The first part of the following corollary is
then originally due to Mùi [10] and reproved by Okuyama and Sasaki [11]; the second
one was given by Hưng and Minh [6, Proof of Theorem B].
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Characteristic classes for extraspecial p–groups 183

Corollary 2.2 For p D 2 (resp. p > 2) and for every x 2 H 1.W / (resp. x 2

ˇH 1.W /),

(i) NU!W

�
ResW

U
.x/
�
D V .W =U;x/

(ii) with T the maximal subgroup of W satisfying ResW
T
.x/D 0 then

.�1/rNT!W .Qr .T //D

nX
iDr

.�1/iQ
p
i .T /x

piC1�prC1

�

� nX
iDrC1

.�1/iQi.T /x
pi�prC1

�� nX
iD0

.�1/iQi.T /x
pi

�p�1

:

In the following corollary, G is supposed to be a p–group given by a central extension
and

f0g �! Z=p �!G
j
�!W �! f0g

and K D j�1.U /. Set

H ev.U /D

(
H�.U / p D 2;P

n�0 H 2n.U / p > 2:

The following is straightforward from Proposition 2.1.

Corollary 2.3 The composition map

H ev.U /
InfU

K
�!H�.K/

NK!G
�! H�.G/

is a ring homomorphism.

In [9] we proved the following proposition.

Proposition 2.4 Let � 2H q.G/. Set �.q/D .�1/hqh! with hD .p�1/=2 for p> 2.
If K D ker.u/ with u 2H 1.G/, u 6D 0, then, by setting v D ˇ.u/, we have

NK!G.ResG
K .�//D

8̂̂<̂
:̂
P

i Sqi.�/uq�i p=2

�.q/
X
�D0;1

0�2i�q��

.�1/�Ciˇ�P i.�/v.q�2i/h��u� p>2:

where Sqi (resp. P i ) denotes the Steenrod operation for p D 2 (resp. p > 2).
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3 Characteristic classes for extraspecial p–groups

Let E DEn , n� 1, be the elementary abelian p–group of rank 2n. Let x1; : : : ;x2n

be a basis of H 1.E/D Hom.E;Fp/ and define

yi D

(
xi p D 2

ˇ.xi/ p > 2:

1� i � 2n, with ˇ the Bockstein homomorphism. We have

H�.E/D

(
Fp Œy1; : : : ;y2n� p D 2

ƒŒx1; : : : ;x2n�˝Fp Œy1; : : : ;y2n� p > 2;

with ƒŒs; t; : : :� (resp. Fp Œs; t; : : :�) the exterior (resp. polynomial) algebra with gener-
ators s; t; : : : over Fp . Let P D Pn be the extraspecial p–group given by the central
extension

f1g �!Z=p
i
�! Pn �!E �! f1g

classified by the cohomology class x1x2C � � �C x2n�1x2n 2H 2.E/. The following
notation will be used. Set Z D i.Z=p/, the center of P . For every elementary
subgroup A of P containing Z , write A=Z D Z0 , so A D A0 �Z , and A0 is of
rank n if A maximal elementary abelian in P . Fix a generator 
 of H 1.Z/ (resp.
ˇH 1.Z/) for p D 2 (resp. p > 2). This element, and also every element of H�.A0/,
are then considered as elements of H�.A/ via the inflation maps.

Denote by A the set of maximal elementary abelian subgroups of P . Set h�.P / D

H�.P /=
p

0. By the work of Quillen [12], the map induced by the restrictions

h�.P /
Res
�!

Y
A2A

h�.A/

is injective. Therefore the maps

h�.E/
InfE

P
�! h�.P / and h�.E/

Res
�!

Y
A2A

h�.A0/

have the same kernel. Let T D Tn be the subring of h�.P / equal to the image of the
inflation InfE

P . For elements � , � of h�.E/, it follows that InfE
P .�/D InfE

P .�/ if and
only if ResE

A0
.�/D ResE

A0
P .�/, for every A 2A.

We are now interested in Chern (resp. Stiefel–Whitney) classes, for p > 2 (resp p D

2), of a degree pn faithful irreducible representation of P . Fix a nontrivial linear
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character � of Z . We have then an irreducible character O� of P given by

O�.g/D

(
pn�.g/ g 2Z

0 otherwise:

Let � be a representation affording the character O� and set

� D �n D

(
cpn.�/ p > 2

w2n.�/ p D 2;

�n;r D

(
.�1/n�r cpn�pr .�/ p > 2

w2n�2r .�/ p D 2;

0� r � n. We have the following theorem.

Theorem 3.1 (Green–Leary [4], Quillen [12])

(i) In h�.P /,

1� �n;n�1C � � �C .�1/n�n;0C �n D

(
c.�/ p>2

w.�/ p=2;

the subring of h�.P / generated by non-nilpotent Chern classes is generated by

�n;0; : : : ; �n;n�1;y1; : : : ;y2n; �n:

(ii) For every 0� i � n� 1 and for every A 2A

ResP
A .�/D V .A0; 
 /

ResP
A .�n;i/DQi.A

0/:

In the article [5] by Green and Minh, Chern classes of P are also obtained by means
of the inflation InfE

P and transfer maps trK
P

with K maximal in P . Similar results
for the case p D 2 can also be obtained by using the same argument. The result can
be stated as follows. Let x be a non-zero element of H 1.P / and set Hx D ker.x/.
Pick a rank one subgroup U 6DZ of the center of Hx . So Hx D Pn�1 �U . By the
Künneth formula, we can consider any element of H�.Pn�1/ (and of H�.U /) as an
element of H�.Hx/. For 0� r � n� 1, set

�r;x D

(
trHx

P
.�n�1;r�

p�1
n�1

/ n� 2

trHx

P
.�

p�1
n�1

/ nD 1:
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For r � 0, define

z.r/n D

(
†iDn

iD1
y2iy2i�1 p D 2; r D 0

†iDn
iD1

.y
�pr

2i�1
y2i �y2i�1y

�pr

2i
/ otherwise;

with �D 1 for pD 2, and �D p for p > 2. Let A0 be an element of A. We have the
following theorem.

Theorem 3.2 (Green–Minh [5])

(i) In H�.P / for 0� r � n� 1,

�n;r DQr .P=A0/�
X

x2PH 1.P=A0/

�r;x :

(ii) There exist fn;0; : : : ; fn;n�1 2H�.E/, viewed as elements of H�.P / via the
inflation map, such that

z.n/n C

n�1X
iD0

.�1/n�iz.i/n fn;i D 0;

and, for every A 2A, ResP
A
.��n;r /D ResP

A
.fn;r /, 0� r � n� 1.

(iii) There exist hi , 0� i � n� 1, and a unique � of H�.E/ such that

z.n�1/
n D y2n�C

n�2X
iD0

hiz
.i/
n ;

and in h�.P /, ��
n�1;x2n

D�Inf.�p�1/. Furthermore, for all 0� r � n� 1 and

all � 2 PH 1.E/, ��
r;�
2 Im.InfE

P /, as elements of h�.P /.

By Quillen [12] it is known that, for p D 2, all the �n;r and �r;� belong to T . For
p > 2, it follows that the above theorem that all pth –powers of the �n;r and �r;�

belong to T . In fact, by setting

' D

(
y

p
2n�1

�y2n�1y
p�1
2n

p > 2

y2n�1 p D 2;

we have the following corollary.

Corollary 3.3 In h�.P /,

(i) ��n;r D fn;r , 0� r � n� 1
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(ii)

�D .�1/n�1

"
'fn�1;0C

n�1X
iD1

.�1/i
�
y
�pi

2n�1
�y2n�1y

�pi�1
2n

�
fn�1;i

#

(iii) with K D ker.x2n/,

�D

8<:trK
P
.�n�1/ p D 2

.�1/n�1trK
P

h
�

p�1
n�1

Pn�1
iD0.�1/iy

pi

2n�1
�n�1;i

i
p > 2I

(iv) for 0� r � n� 1,

��r;x2n
D�fn�1;r

"
'fn�1;0C

n�1X
iD1

.�1/i
�
y
�pi

2n�1
�y2n�1y

�pi�1
2n

�
fn�1;i

#p�1

:

Proof Part (i) follows from Theorem 3.2 (ii), by noting that the restriction map from
h�.P / to

Q
A2A H�A is injective.

We have, by Theorem 3.2,

z.n�1/
n D z

.n�1/
n�1

C

�
y
�pn�1

2n�1
y2n�y2n�1y

�pn�1

2n

�
D

�
y
�pn�1

2n�1
y2n�y2n�1y

�pn�1

2n

�
C .�1/n

n�2X
iD0

.�1/iz
.i/
n�1

fn�1;i

D

�
y
�pn�1

2n�1
y2n�y2n�1y

�pn�1

2n

�
C .�1/n

�n�2X
iD0

.�1/iz.i/n fn�1;i �y2n'fn�1;0

�

n�2X
iD1

.�1/i
�
y
�pi

2n�1
y2n�y2n�1y

�pi

2n

�
fn�1;i

�

D .�1/n

"
n�2X
iD0

.�1/iz.i/n fn�1;i �y2nX

#
;

with

X D 'fn�1;0C

n�1X
iD1

.�1/i.y
�pi

2n�1
�y2n�1y

�pi�1
2n

/fn�1;i :

So �D .�1/nC1X ; (ii) and (iv) are proved.
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Pick an element A 2A. By [5, Lemma 7.1] and its proof, we have

ResP
A�D

(
�V .B0;y2n�1/

� A�K

0 otherwise:

Set

Y D

(
trK

P
.�n�1/ p D 2

.�1/n�1trK
P
Œ�

p�1
n�1

Pn�1
iD0 y

pi

2n�1
�n�1;i � p > 2:

If A 6� K , then ResP
A
.Y / D 0, by the Mackey formula. Suppose A � K . Set B D

A\Pn�1 . For p > 2, we have

ResP
A .Y /D .�1/n�1

X
g2P=K

g
n�1X
iD0

ResK
A ..�1/iy

pi

2n�1
�n�1;i�

p�1
n�1

/

D .�1/n�1
X

g2P=K

g
n�1X
iD0

.�1/iy
pi

2n�1
Qi.B

0/�
p�1
n�1

D .�1/n�1
n�1X
iD0

.�1/iy
pi

2n�1
Qi.B

0/
X

g2P=K

g�
p�1
n�1

since the y2n�1 and the Qi.B
0/ are invariant under the action of P=K . Thus

ResP
A .Y /D

(
ResP

A
.trK

P
.�n�1// p D 2

V .B0;y2n�1/ResP
K
.trK

P
.�

p�1
n�1

// p > 2:

Following [5, Proposition 4.4] we have

ResP
A .tr

K
P .�

p�1
n�1

//D�V .B0;y2n�1/
p�1:

So ResP
A
.Y /D�V .B0;y2n�1/

� .

Since ��Y restricts trivially to every element of A, it follows that �+ Y .

Proposition 3.4 For 0� r � n� 1,

�n;r + �
X

x2PH 1.P/

�r;x :

Proof Let A be an element of A. There exist exactly pn�1
p�1

elements of PH 1.P / of
which the kernel contains A. The subset of those elements is nothing but PH 1.P=A/.

Let x be an element of PH 1.P /. It is clear that ResP
A
.�r;x/D 0 if x 62PH 1.P=A/.
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Hence
ResP

A

� X
x2PH 1.P/

�r;x

�
D ResP

A

� X
x2PH 1.P=A/

�r;x

�
:

Therefore, by [5, Theorem 5.2]

ResP
A

� X
x2PH 1.P/

�r;x

�
D ResP

A

�
Qr .P=A/� �n;r

�
D�Qr .A

0/;

since ResP
A
.Qr .P=A//D 0 and ResP

A
.�n;r /DQr .A

0/. The proposition follows.

We are now going to obtain characteristic classes of P by using the Evens norm map.
We first need the following lemma.

Lemma 3.5 Fix a generator e of Z . Let H D A \ B with A;B 2 A and let
.h1; : : : ; hk ; e/ be a basis of H . Then there exist elements g1; : : : ;gk of P satisfying

(i) Œg;gi �D 1, Œgi ; hj �D

(
1 i ¤ j

e i D j
and 1� i; j � k .

(ii) P D
`

g2G AgB is a double coset decomposition of P with G D hg1; : : : ;gki.

Proof The existence of the gj satisfying (i) follows from [8]. Assume that agb D

a0g0b0 with a; a0 2 A, b; b0 2 B , g;g0 2 G . It follows that Œg; hi � D Œg0; hi � and
1� i � k , hence g D g0 . As jGj D pk , (ii) is obtained.

The following notation will be used. Let C be the cyclic group of order p and fix a
generator u of H 1.C / (resp. H 2.C /) for p D 2 (resp. p > 2). Set � D P �C . If
H is a subgroup of P , every element of H�.H / (resp. H�.C /) can be considered as
an element of H�.H �C /. We have the following lemma.

Lemma 3.6 Let A, B be elements of A and let v 2H 1.A�C / (resp. H 2.A�C /)
for p D 2 (resp. p > 2). Assume that ResA�C

Z�C
.v/D �
 C�u with �; � 2 Fp , then

Res�B�CNA�C!�.v/D �V .B0; 
 /C�V .B0;u/:

Proof Let P D[g2GAgB be the double coset decomposition of P given in Lemma
3.5. Set H D B \A. We have
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Res�B�CNA�C!�.v/D
Y
g2G

N.B\Ag/�C!B�C ResAg�C
.B\Ag/�C .

gv/

D

Y
g2G

NH�C!B�C ıResA�C
H�C .

gv/ (A is normal)

DNH�C!B�C

�Y
g2G

ResA�C
H�C .

gv/

�
(Corollary 2.3)

DNH�C�!B�C

�Y
g2G

.�g
 C�u/

�
DNH�C�!B�C

�
V .H 0; �
 C�u/

�
(Lemma 3.5)

DNZ�C�!B�C .��C�u/ (Corollary 2.2)

D �V .B0; 
 /C�V .B0;u/ (Corollary 2.3)

as required.

The following shows that characteristic classes of P can be obtained by means of the
Evens norm map.

Theorem 3.7 Let A be an element of A and let v be an. element of H 1.A/ (resp.
ˇH 1.A/) for p D 2 (resp. p > 2) satisfying ResA

Z
.v/D 
 . Set

�A;v DNA�C�!�.vCu/�NA�C�!�.v/:

As elements of h�.P / then

�A;v D .�1/n
nX

sD0

.�1/s�n;sups

:

Proof For every B 2A, by Lemma 3.6 we have

Res�B�Z .�A;v/D Res�B�ZNA�Z�!�.vCu/�ResB�ZNA�Z�!�.v/

D V .B0; 
 Cu/�V .B0; 
 /

D V .B0;u/;

since V .B0;X /, as a function on X , is additive. By Theorem 3.1 (ii),

Res�B�Z .�A;v/D Res�B�Z Œ.�1/n
nX

sD0

.�1/s�n;sups

�:

So �A;v + .�1/n
Pn

sD0.�1/s�n;sups

.
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Remark Write NA�C�!� DN . It follows from the above theorem and from Corol-
lary 2.2 that

N .vCu/�N .v/�N .u/+ .�1/n
nX

sD0

.�1/s Œ�n;s �Qs.P=A/�u
ps

:

According to Proposition 2.1(iv), the �n;s can be expressed as sums of transfers from
maximal subgroups of P �C . Such formulae are the ones given in Theorem 3.2.

Let a1; a2; : : : ; a2n�1; a2n be elements of P satisfying xi.aj / D ıij with ıij the
Kronecker symbol, 1 � i; j � 2n. Suppose that K is a maximal subgroup of P

given by K D ker.x2n/. So K Š Pn�1 � ha2n�1i Š Pn�1 � Z=p . Write y2n D y ,
NK�C�!� DN , and, for 0� r � n� 1, �r;x2n

D �r . Define

�n�1;r D ResP
K .�r / 2H�.K/;

and

�n�1 D upn

C

n�1X
rD0

h
.�1/n�r upr

.��n�1;r C �
p
n�1;r�1

/
i
2H�.K �C /

with the convention that �n�1;�1 D 0.

Theorem 3.8 As elements of h�.P /,

.�1/nN .�n�1/D

nX
sD0

.�1/s�p
n;supsC1

.�1/rN .��n�1;r /D

n�1X
iDr

.�1/i�
�p
n�1;i

y�.p
iC1�prC1/

�

� n�1X
iDrC1

.�1/i��n�1;iy
�.pi�prC1/

��n�1X
iD0

.�1/i��n�1;iy
�pi

�p�1

;

for 0� r � n� 2.

Proof For convenience, write �n�1;r D �r for 0 � r � n� 1. Let A be an element
of A and set X DN .�n�1/ and Yr DN .��n�1;r

/. Let

ZrD

n�1X
iDr

.�1/i�
�p
i y�.p

iC1�prC1/
�

� n�1X
iDrC1

.�1/i��iy
�.pi�prC1/

��n�1X
iD0

.�1/i��iy
�pi

�p�1

for 0� r � n� 2. Consider the following cases:
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Case 1 A�K By setting B DA\Pn�1 , we have AD B � ha2n�1i. So

Res�K�C .X /D
Y

x2ha2ni

x�n�1:

As the �n�1 belong to Im.ResP
K
/, they are invariant under the action of a2n . Hence

Res�A�C .X /D
Y

x2ha2ni

ResK�C
A�C .

x�n�1/

D ResK�C
A�C .�

p
n�1

/

D upnC1

C

�n�1X
rD0

.�1/n�r upr

�
Qr .B

0/V .B0;y2n�1/
p�1
CQ

p
r�1

.B0/

��p

D V .A0;u/p

D Res�A�C

�
.�1/n

nX
sD0

.�1/s�p
n;supsC1

�
:

Also, for 0� r � n� 2,

Res�
A�C

.Yr /D
Q

x2ha2ni
ResK�C

A�C

�
x��

n�1;r

�
D

h
ResK�C

A�C .�n�1;r /
�
ip
DQ�p

r .B
0/D .�1/r Res�A�C .Zr /:

Case 2 A 6�K By setting H DK\A, we have

Res�A�C .X /DNH�C!A�C ResK�C
H�C .X /

DNH�C!A�C .V .H
0;u/p/

D V .A0;u/p

D Res�A�C

�
.�1/n

nX
sD0

.�1/s�p
n;supsC1

�
:

and

Res�A�C .Yr /DNH�C!A�C ResK�C
H�C .Yr /

DNH�C!A�C .Q
�
r .H=Z//

D .�1/r Res�A�C .Zr /:

This completes the proof.
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Formulae relating the ��n;r to such classes of fewer variables are given by the following
corollary.

Corollary 3.9 For 0� r � n� 1, as elements of h�.P /,

��n;r D �
�p
n�1;r�1

C ��n�1;r

�n�1X
iD0

.�1/i��n�1;iy
�pi

�p�1

C

�
��n�1;0'C

n�1X
iD1

.�1/i��n�1;i.y
�pi

2n�1
�y2n�1y�p

i�1/

�p�1

:

Proof By Corollary 2.3 we have

N .�n�1/DN .upn

/C

n�1X
rD0

N
h�
�1/n�r upr

.��n�1;r C �
p
n�1;r�1

�i
D V .y;u/p

n

C

n�1X
rD0

.�1/n�r V .y;u/p
r
h
N .��n�1;r /CN .�p

n�1;r�1
/
i

D .up
�uyp�1/p

n

C

n�1X
rD0

.�1/n�r .up
�uyp�1/p

r
h
N .��n�1;r /CN .�p

n�1;r�1
/
i

D upnC1

C

n�1X
rD0

.�1/n�r uprC1

�
N .��n�1;r /CN .�p

n�1;r�1
/

Cy.p�1/prC1
�
N .��n�1;rC1/CN .�p

n�1;r
/
��

C .�1/nuyp�1N .��n�1;0/:

By the Frobenius formula, the cup-product of �r with each of x2n , y2n vanishes.
As the transfer commutes with Steenrod operations, we have, by Proposition 2.4 and
Theorem 3.8,

upnC1

C

n�1X
rD0

.�1/n�r�p
n;r uprC1

DN .�n�1/

D upnC1

C

n�1X
rD0

.�1/n�r uprC1

�
��p

r CN .�
p
n�1;r�1

/

Cy.p�1/prC1
�
��

p
rC1
CN .�p

n�1;r
/
��

D upnC1

C

n�1X
rD0

.�1/n�r uprC1
h
��p

r CN .�
p
n�1;r�1

/Cy.p�1/prC1N .�p
n�1;r

/
i
:

Geometry & Topology Monographs, Volume 11 (2007)



194 Pha. m Anh Minh

Therefore

n�1X
rD0

.�1/n�r��n;r u�p
r

D

n�1X
rD0

.�1/n�r u�p
r

�
���rCN .��n�1;r�1/Cy�.p�1/prN .��n�1;r /

�
:

Hence
��n;r D��

�
r CN .��n�1;r�1/Cy.p�1/�prN .��n�1;r /:

Since

N .��n�1;r�1/Cy.p�1/�prN .��n�1;r /+�
�p
n�1;r�1

C��n�1;r

"
n�1X
iD0

.�1/i��n�1;iy
�pi

#p�1

;

by Theorem 3.8, we obtain

��n;r + ���r C �
�p
n�1;r�1

C ��n�1;r

"
n�1X
iD0

.�1/i��n�1;iy
�pi

#p�1

:

The corollary follows from Corollary 3.3.

4 The subring FpŒ�n;0; : : : ; �n;n�1�\T

In this section, p is supposed to be an odd prime. It was proved by Green and Leary
[3; 4] that �s

n;0
2 T , provided that s � 2n , or s � 2 and n � 2. This result can be

sharpened as follows. Let Rn be the set consisting of sequences RD .r0; r1; : : : ; rn�1/

of non-negative integers. For RD .r0; : : : ; rn�1/ 2 Rn and for m> 0, set

sR D

X
i�0

ri ;

�R
m D

(
…iDm�1

iD0
�

ri

m;i m� n

…iDn�1
iD0

�
ri

m;i m> n:

The main purpose of this section is to prove the following theorem.

Theorem 4.1 Let R D .r0; : : : ; rn�1/ be an element of Rn . As an element of
h�.P /, �R

n belongs to T if and only if one of the following conditions is satisfied:
.R1/ r0 � 2;
.R2/ r0 D 0 and all the ri terms with i > 0, are multiples of p.

The rest of the section is devoted to the proof of the theorem.
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Proof By Corollary 3.3, �R
n 2 T if R satisfies .R2/. We shall prove the following

proposition.

Proposition 4.2 If R 2 Rn satisfies .R1/, then �R
n 2 T .

By [4; 7], the proposition holds for n D 1. Suppose inductively that it holds for
n� 1. Set K D ker.x2n/ D Pn�1 � Z=p and T 0 D Im.InfK=Z

K
/C
p

0. Write w D
ResP

K
.y2n�1/ and  D .�1/n�1

Pn�1
jD0.�1/j�n�1;jw

pj

. We have

ResP
K .�n;j /+ �

p
n�1;j�1

C �n�1;j 
p�1; 0� j � n:

So, for every element R 2 Rn , as elements of h�.K/,

ResP
K .�

R
n /D

n�1Y
jD0

h
�

p
n�1;j�1

C �n�1;j 
p�1

irj

D �
r0

n�1;0
 r0.p�1/

n�1Y
jD1

h
�

p
n�1;j�1

C �n�1;j 
p�1

irj

D �R
n�1 

.p�1/sR C

X
r0�t<sR

�t 
.p�1/t(2)

with �t 2 h�.Pn�1/.

Lemma 4.3 Let S D .s0; : : : ; sn�1/ be an element of Rn with s0 � 1, and let x be a
non-zero element of H 1.P /. Then

�S
n �0;x 2 T :

Proof Without loss of generality, we may assume that x D x2n . So K D ker.x/.
Since s0 � 1, by (2), we have

(3) ResP
K .�

S
n /+

X
U2U

�U
n�1w

tU 

with U a subset of
fRD .r0; : : : ; rn�2/ 2 Rn�1jr0 � 1g:

Let U D .u0; : : : ;un�2/ be an element of U . Since

�U
n�1�n�1;0 D �

u0C1
n�1;0

n�2Y
iD1

�
ui

n�1;i
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and u0C 1 � 2, it follows from the inductive hypothesis that �U
n�1

�n�1;0 , and hence
�U

n�1
�n�1;0w

tU belong to T 0 . So, via the inflation map, �U
n�1

�n�1;0w
tU belongs to

T .

We then have as elements of h�.P /,

�S
n �0;x D �

S
n trK

P .�n�1;0�
p�1
n�1

/

D trK
P .ResP

K .�
S
K /:�n�1;0�

p�1
n�1

/ by Frobenius formula

D

X
U2U

trK
P .�

U
n�1�n�1;0w

tU �
p�1
n�1

/ by .3/

D

X
U2U

�U
n�1�n�1;0w

tU :trK
P . �

p�1
n�1

/;

which implies �S
n �0;x 2 T , by Corollary 3.3 (iii).

Proof of Proposition 4.2 Let RD .r0; : : : ; rn�1/ be an element of Rn . By Corollary
3.3(i), �R

n 2T if R satisfies .R2/. Suppose that r0�2. Set SD .r0�1; r1; : : : ; rn�1/.
We then have

�R
n D �

S
n �n;0 D�

X
x2PH 1.P/

�S
n �0;x;

by Proposition 3.4. Since r0 � 1 � 1 by Lemma 4.4 �S
n �0;x 2 T , for every x 2

PH 1.P /; so �R
n 2 T . The proposition is proved.

Consider  , and also the right hand side of (2), as polynomials with variable w and
with coefficients in h�.Pn�1/. We have the following lemma.

Lemma 4.4 Let RD .r0; : : : ; rn�1/ be an element of Rn with sR 6D 0 mod p . Then
for 0� i � n� 2,

(i) ResP
K
.�R

n /+ sR.�1/iCn�R
n�1

�n�1;iw
pn�1Œ.p�1/sR�1�Cpi

C other terms;

(ii) �R
n�1

�n�1;i 2 T if �R
n 2 T .

Proof For t < sR , deg. .p�1/t /� pn�1.p� 1/sR �pnCpn�1 ; hence

deg. .p�1/t / <min.pn�1.p� 1/sR � 1;pn�1Œ.p� 1/sR � 2�Cpi/:
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So (i) follows from (2) and the fact that

 .p�1/sR D Œ

n�1X
iD0

.�1/i�n�1;iw
pi

�.p�1/sR

D�sR

n�2X
iD0

.�1/iCn�1�n�1;iw
pn�1Œ.p�1/sR�1�Cpi

C other terms.

Write
ResP

K .�
R
n /D

X
i�0

�iw
i

with �i 2 h�.Pn�1/. If �R
n 2 T , then ResP

K
.�R

n / belongs to T 0 , so all the �i lie in
T 0 ; (ii) is then a direct consequence of (i).

The proof of the theorem is completed by Proposition 4.2 and the following.

Lemma 4.5 If �R
n 2 T with RD .r0; : : : ; rn�1/2Rn , then R satisfies .R1/ or .R2/.

Proof By Leary [7], the lemma holds for nD 1. Assume that it holds for n� 1.

Suppose that �R
n 2 T with R D .r0; : : : ; rn�1/ and r0 < 2. It follows that � D

ResP
K
.�R

n / 2 T 0 . Consider � as a polynomial with variable w and with coefficients in
h�.Pn�1/. By (2), we have

� D �R
n�1 

.p�1/sR C

X
0�t<sR

�t 
.p�1/t

D �R
n�1w

pn�1.p�1/sR C other terms; by (3)

which implies �R
n�1
2 T 0 . By the induction hypothesis, r0 D 0 and r1; : : : ; rn�2 are

multiples of p . So sR D rn�1 mod p . If sR 6D 0 mod p , it follows from Lemma 4.5
that

�
r1

n�1;1
: : : �

rn�3

n�1;n�3
�

rn�2C1
n�1;n�2

D �n�1;n�2�
R
n�1 2 T

0

which contradicts the induction hypothesis, since rn�2D0 mod p implies rn�2C1 6D0

mod p . So sR D 0 mod p , hence rn�1 D 0 mod p . The lemma follows.

This completes the proof of Theorem 4.1.

Let x be a non-zero element of H 1.P /. By Theorem 3.2(iii), there exists a unique
�x 2H�.E/ such that, as elements of H�.E/=.z

.1/
n ; : : : ; z

.n�2/
n /,

(4) z.n�1/
n D

(
�xˇ.x/ p odd,

�xx p D 2.
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Note that Hx D ker.x/ can be identified with Pn�1 �Z=p . Pick a non-zero element
ux of H 1.P / satisfying

0 6D ResP
Hx
.ux/ 2 ker.ResHx

Pn�1
/ set vx D

(
ux p D 2

ˇ.ux/ p odd;

and define  x D .�1/n�1
Pn�1

jD0.�1/j�n�1;jv
pj

x .

Let R be an element of Rn satisfying .R1/ or .R2/. By Theorem 4.1, �R
n and �R

n�1

both belong to T . It is then interesting to find out a formulae relating �R
n and �R

n�1
.

If R satisfies .R2/, the formula can be derived from Corollary 3.9. In the case where
R satisfies .R1/ the formula follows from the next corollary.

Corollary 4.6 Let R D .r0; : : : ; rn�1/ be an element of Rn with r0 � 2. Then, as
elements of T ,

�R
n D��

r0

n�1

X
x2PH 1.P/

�x 
.r0�1/.p�1/�1
x

n�1Y
jD1

Œ�
p
n�1;j�1

C �n�1;j 
p�1
x �rj :

Proof Set S D .r0�1; r2; : : : ; rn�1/ and U D .r0�2; r1; : : : ; rn�1/. It follows from
the proof of Proposition 4.2 that

�R
n D�

X
x2PH 1.P/

�S
n �0;x

D�

X
x2PH 1.P/

�S
n trHx

P
.�n�1;0�

p�1
n�1

/

D�

X
x2PH 1.P/

trHx

P

h
ResP

Hx
.�S

n /�n�1;0�
p�1
n�1

i
D�

X
x2PH 1.P/

trHx

P

h
ResP

Hx
.�U

n /�
2
n�1;0�

p�1
n�1

i

D�

X
x2PH 1.P/

trHx

P

�
 �

p�1
n�1

�
r0

n�1;0
 .r0�1/.p�1/�1

x

n�1Y
jD1

Œ�
p
n�1;j�1

C�n�1;j 
p�1
x �rj

�
:

Since r0 � 2, it follows from Theorem 4.1 that

�x D �
r0

n�1;0
 .r0�1/.p�1/�1

x

n�1Y
jD1

h
�

p
n�1;j�1

C �n�1;j 
p�1
x

irj
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belongs to T , for any x 2 PH 1.P /. Hence

�R
n D�

X
x2PH 1.P/

�xtrHx

P
. x�

p�1
n�1

/

D�

X
x2PH 1.P/

�x�x by (4):

This completes the proof.

5 Symplectic invariants

Recall that the symplectic group Sp2n D Sp2n.Fp/ is the group consisting of E

which preserve the nondegenerate symplectic form x1x2C: : :Cx2n�1x2n of H 2.E/.
Clearly z

.0/
n ; : : : ;z

.n�1/
n belong to the subring of invariants of Sp2n in Fp Œy1; : : : ;y2n�.

According to a result of Quillen [12] for pD 2, and of Tezuka–Yagita [13] for p > 2,

T D Fp Œy1; : : : ;y2n�=.z
.0/
n ; : : : ; z.n�1/

n /:

There is then an induced action of Sp2n on T . Set

R0 D fR 2 RjR satisfies .R1/ or .R2/g;

and let R00 be the subset of Rn consisting of elements R D .r0; r1; : : : ; rn�1/ of Rn

satisfying the following two conditions:

� 0� ri � p� 1 for i > 0

� r0 D 3, or r0 D 2 and r1; : : : ; rn�1 are not all equal to 0.

Let T Sp2n be the ring of invariants of Sp2n in T . The following is then straightfor-
ward from Theorem 4.1 and [3, Proposition 21].

Theorem 5.1 T Sp2n is the subring of Fp Œ�n;1; : : : ; �n;n�1� given by:

(i) for p D 2, T Sp2n D Fp Œ�n;0; : : : ; �n;n�1�;

(ii) for p > s2,

(a) as a vector space over Fp , T Sp2n has a basis f�R
n jR 2 R0g;

(b) as a module over polynomial algebra Fp Œ�
2
n;0
; �

p
n;1
; : : : ; �

p
n;n�1

�, T Sp2n is
freely generated by f1; �R

n jR 2 R00g.

Geometry & Topology Monographs, Volume 11 (2007)



200 Pha. m Anh Minh

References
[1] L E Dickson, A fundamental system of invariants of the general modular linear group

with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911) 75–98
MR1500882

[2] L Evens, The cohomology of groups, Oxford Mathematical Monographs, The Claren-
don Press, Oxford University Press, New York (1991) MR1144017

[3] D J Green, Chern classes and the extraspecial p–group of order p5 and exponent p ,
Comm. Algebra 26 (1998) 181–196 MR1600710

[4] D J Green, I J Leary, Chern classes and extraspecial groups, Manuscripta Math. 88
(1995) 73–84 MR1348791

[5] D J Green, P A Minh, Transfer and Chern classes for extraspecial p–groups, from:
“Group representations: cohomology, group actions and topology (Seattle, WA,
1996)”, Proc. Sympos. Pure Math. 63, Amer. Math. Soc., Providence, RI (1998) 245–
255 MR1603167

[6] N H V Hưng, P A Minh, The action of the mod p Steenrod operations on the modular
invariants of linear groups, Vietnam J. Math. 23 (1995) 39–56 MR1367491

[7] I J Leary, The mod–p cohomology rings of some p–groups, Math. Proc. Cambridge
Philos. Soc. 112 (1992) 63–75 MR1162933

[8] P A Minh, Modular invariant theory and cohomology algebras of extra-special p–
groups, Pacific J. Math. 124 (1986) 345–363 MR856168

[9] P A Minh, Evens norm and restriction maps in mod–p cohomology of p–groups,
Math. Proc. Cambridge Philos. Soc. 129 (2000) 253–262 MR1765913

[10] H Mùi, Modular invariant theory and cohomology algebras of symmetric groups, J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975) 319–369 MR0422451

[11] T Okuyama, H Sasaki, Evens’ norm map and Serre’s theorem on the cohomology
algebra of a p -group, Arch. Math. .Basel/ 54 (1990) 331–339 MR1042125

[12] D Quillen, The mod 2 cohomology rings of extra-special 2–groups and the spinor
groups, Math. Ann. 194 (1971) 197–212 MR0290401

[13] M Tezuka, N Yagita, The varieties of the mod p cohomology rings of extra special
p–groups for an odd prime p , Math. Proc. Cambridge Philos. Soc. 94 (1983) 449–459
MR720796

Department of Mathematics, College of Science, University of Hue
Dai hoc Khoa hoc, 77 Nguyen Hue, Hue, Vietnam

Received: 30 November 2004

Geometry & Topology Monographs, Volume 11 (2007)

http://links.jstor.org/sici?sici=0002-9947(191101)12:1%3C75:AFSOIO%3E2.0.CO%3B2-%23
http://links.jstor.org/sici?sici=0002-9947(191101)12:1%3C75:AFSOIO%3E2.0.CO%3B2-%23
http://www.ams.org/mathscinet-getitem?mr=1500882
http://www.ams.org/mathscinet-getitem?mr=1144017
http://www.ams.org/mathscinet-getitem?mr=1600710
http://www.ams.org/mathscinet-getitem?mr=1348791
http://www.ams.org/mathscinet-getitem?mr=1603167
http://www.ams.org/mathscinet-getitem?mr=1367491
http://www.ams.org/mathscinet-getitem?mr=1162933
http://projecteuclid.org/getRecord?id=euclid.pjm/1102700486
http://projecteuclid.org/getRecord?id=euclid.pjm/1102700486
http://www.ams.org/mathscinet-getitem?mr=856168
http://dx.doi.org/10.1017/S0305004100004564
http://www.ams.org/mathscinet-getitem?mr=1765913
http://www.ams.org/mathscinet-getitem?mr=0422451
http://dx.doi.org/10.1007/BF01189579
http://dx.doi.org/10.1007/BF01189579
http://www.ams.org/mathscinet-getitem?mr=1042125
http://dx.doi.org/10.1007/BF01350050
http://dx.doi.org/10.1007/BF01350050
http://www.ams.org/mathscinet-getitem?mr=0290401
http://www.ams.org/mathscinet-getitem?mr=720796

	1. Introduction
	2. Evens norm and Mùi invariants
	3. Characteristic classes
	4. The subring
	5. Symplectic invariants
	References

