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On behavior of the fifth algebraic transfer

VÕ T N QUỲNH

In this paper, we show that Singer’s fifth transfer is not an epimorphism in degree 11.
More precisely, it does not detect the element P .h2/ 2 Ext5;16

A .F2; F2/ .

55P47, 55Q45, 55S10, 55T15

1 Introduction and statement of results

Throughout the paper, the homology is taken with coefficients in F2 . Let Vk denote
a k –dimensional F2 –vector space, and PH�.BVk/ the primitive subspace consisting
of all elements in H�.BVk/, which are annihilated by every positive-degree operation
in the mod 2 Steenrod algebra, A. The general linear group GLk WD GL.Vk/ acts
regularly on Vk and therefore on the homology and cohomology of BVk . Since
the two actions of A and GLk upon H�.BVk/ commute with each other, there are
inherited actions of GLk on F2˝AH�.BVk/ and PH�.BVk/. In [6], W Singer
defined the algebraic transfer

Trk W F2˝GLk
PHd .BVk/! Extk;kCd

A .F2; F2/

as an algebraic version of the geometrical transfer trk W �
S
� ..BVk/C/! �S

� .S
0/ to

the stable homotopy groups of spheres.

It has been proved that Trk is an isomorphism for k D 1; 2 by Singer [6] and for
k D 3 by Boardman [1]. Among other things, these data together with the fact that
TrD

L
k Trk is an algebra homomorphism [6] show that Trk is highly nontrivial.

Therefore, the algebraic transfer is expected to be a useful tool in the study of the mys-
terious cohomology of the Steenrod algebra, Ext�;�A .F2; F2/. In [4], Hưng established
an attractive relationship between the algebraic transfer, the classical conjecture on
spherical classes, and the so-called “hit” problem.

Further, in [6], Singer gave computations to show that Tr4 is an isomorphism in a
range of degrees and recognized that Tr5 is not an epimorphism in degree 9. Then, he
set up the following conjecture.

Conjecture 1.1 (Singer [6]) Trk is a monomorphism for every k .
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Recently, Bruner–Ha–Hưng showed in [3] that Tr4 does not detect the family fgi j i �

0g. Furthermore, Hưng proved in [5] that for every k � 5, there are infinitely many de-
grees in which Trk is not an isomorphism. Remarkably, it has not been known whether
the algebraic transfer fails to be a monomorphism or fails to be an epimorphism for
k > 5. Therefore, Singer’s conjecture is still open.

The aim of this paper is to investigate the behavior of Tr5 in degree 11. We prove the
following theorem.

Theorem 1.2 The element P .h2/2Ext5;16
A .F2; F2/ is not in the image of the algebraic

transfer Tr5 .

Let Pk WD H�.BVk/ be the polynomial algebra of k variables, each of degree 1.
Then, the domain of Trk , F2˝GLk

PH�.BVk/, is dual to .F2˝APk/
GLk . In order

to prove Theorem 1.2, it suffices to show the following.

Proposition 1.3 .F2˝AP5/
GL5

11
D 0.

Although our result does not give an answer to Singer’s conjecture, it gives one more
degree where the fifth algebraic transfer fails to be an epimorphism.

It should be noted that, R Bruner generously informed us that by using computer, he
showed that .F2˝AP5/11 is a 315–dimensional F2 –vector space, and that its GL5 –
invariant is zero. In this paper, we prove the proposition by using some convenient
generators for .F2˝AP5/11 , which do not form a basis of the vector space.

The paper is divided into four sections. Section 2 deals with the computation of
minimal A–generators for the polynomial algebra P5 in degree 11. Then, we prove
Proposition 1.3 and Theorem 1.2 in Section 3 and Section 4 respectively.
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2 Computation of the indecomposables of P5 in degree 11.

From now on, let us write x D x1 , y D x2 , z D x3 , t D x4 , uD x5 and denote the
monomial xaybzc tdue by .a; b; c; d; e/ for abbreviation.

Lemma 2.1 The F2 –vector space .F2˝AP5/11 is generated by (the classes repre-
sented by) the following monomials and their permutations:

.7; 3; 1; 0; 0/; .7; 2; 1; 1; 0/; .7; 1; 1; 1; 1/; .5; 3; 1; 1; 1/

.5; 3; 3; 0; 0/; .5; 3; 2; 1; 0/; .3; 3; 3; 1; 1/; .4; 3; 2; 1; 1/:

Proof The monomials in the third column are spikes in the meaning of W M Singer
[7] that their exponents are all of the form 2n � 1 for some n. It is well known that
spikes do not appear in the expression of SqiY for any i positive and any monomial
Y , since the powers x2n�1 are not hit in the one variable case. Note that the elements
in the first and second columns are respectively monomials which depend only on three
and four variables. The last two column’s monomials depend on exactly five variables.

Consider the projection P5 ! F2˝AP5 . We show that under this projection, all
monomials in degree 11 not listed in the Lemma go to zero except for the following
six and permutations

.6; 3; 1; 1/ 7! .5; 3; 2; 1/C .5; 3; 1; 2/

.4; 3; 3; 1/ 7! .2; 3; 5; 1/C .2; 5; 3; 1/

.3; 3; 3; 2/ 7! .2; 3; 5; 1/C .2; 5; 3; 1/C .3; 2; 5; 1/C .5; 2; 3; 1/C .3; 5; 2; 1/

C .5; 3; 2; 1/

.5; 2; 2; 1; 1/ 7! .3; 4; 2; 1; 1/C .3; 2; 4; 1; 1/

.6; 2; 1; 1; 1/ 7! .3; 4; 2; 1; 1/C .3; 2; 4; 1; 1/C .3; 4; 1; 2; 1/C .3; 2; 1; 4; 1/

C .3; 4; 1; 1; 2/C .3; 2; 1; 1; 4/

.3; 3; 2; 2; 1/ 7! .5; 3; 1; 1; 1/C .3; 5; 1; 1; 1/C .4; 3; 1; 1; 2/C .3; 4; 1; 1; 2/:

As the action of the Steenrod algebra on P5 commutes with that of the general lin-
ear group GL5 , without loss of generality, we need only to consider monomials
.a; b; c; d; e/ in degree 11 of P5 with a � b � c � d � e . We have the following
five cases.

Case 1 The monomial .a; b; c; d; e/ depends only on one variable, .a; b; c; d; e/ D
.a; 0; 0; 0; 0/ with a ¤ 0. There is only one such a monomial in degree 11 of P5 ,
namely .11; 0; 0; 0; 0/ . It is hit because

.11; 0; 0; 0; 0/D Sq4.7; 0; 0; 0; 0/:
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Case 2 The monomial .a; b; c; d; e/ depends on exactly two variables, .a; b; c; d; e/D
.a; b; 0; 0; 0/, where a and b are nonzero. It is also hit, as we have

.10; 1; 0; 0; 0/D Sq4.6; 1; 0; 0; 0/

.9; 2; 0; 0; 0/D Sq4.5; 2; 0; 0; 0/

.8; 3; 0; 0; 0/D Sq4.4; 3; 0; 0; 0/

.7; 4; 0; 0; 0/D Sq4.5; 2; 0; 0; 0/CSq2.7; 2; 0; 0; 0/

.6; 5; 0; 0; 0/D Sq4.4; 3; 0; 0; 0/CSq2.6; 3; 0; 0; 0/:

Case 3 The monomial .a; b; c; d; e/ depends exactly on three variables .a; b; c; d; e/D
.a; b; c; 0; 0/, where a, b and c are nonzero. This should be one of the following
monomials:

.7; 3; 1; 0; 0/; .5; 3; 3; 0; 0/

.9; 1; 1; 0; 0/; .8; 2; 1; 0; 0/; .7; 2; 2; 0; 0/; .6; 4; 1; 0; 0/; .6; 3; 2; 0; 0/; .5; 4; 2; 0; 0/

.5; 5; 1; 0; 0/; .4; 4; 3; 0; 0/:

The first two monomials are listed in the lemma. The last eight monomials are killed
by the Steenrod algebra, since we have

.9; 1; 1; 0; 0/D Sq4.5; 1; 1; 0; 0/

.8; 2; 1; 0; 0/D Sq4.4; 2; 1; 0; 0/

.7; 2; 2; 0; 0/D Sq1.7; 2; 1; 0; 0/CSq4.4; 2; 1; 0; 0/

.6; 4; 1; 0; 0/D Sq2.6; 2; 1; 0; 0/CSq4.4; 2; 1; 0; 0/

.6; 3; 2; 0; 0/D Sq1.6; 3; 1; 0; 0/CSq2.6; 2; 1; 0; 0/CSq4.4; 2; 1; 0; 0/

.5; 4; 2; 0; 0/D Sq1.5; 4; 1; 0; 0/CSq2.6; 2; 1; 0; 0/CSq4.4; 2; 1; 0; 0/;

and

.5; 5; 1; 0; 0/D .6; 4; 1; 0; 0/C .6; 3; 2; 0; 0/C .5; 4; 2; 0; 0/CSq2.5; 3; 1; 0; 0/

.4; 4; 3; 0; 0/D .4; 2; 5; 0; 0/CSq2.4; 2; 3; 0; 0/:

Case 4 The monomial .a; b; c; d; e/ depends exactly on four variables, .a; b; c; d; e/D
.a; b; c; d; 0/, where a, b , c and d are non zero. This should be one of the following
monomials:

.7; 2; 1; 1; 0/; .5; 3; 2; 1; 0/

.8; 1; 1; 1; 0/; .6; 2; 2; 1; 0/; .5; 2; 2; 2; 0/; .4; 4; 2; 1; 0/; .4; 3; 2; 2; 0/; .5; 4; 1; 1; 0/

.6; 3; 1; 1; 0/; .4; 3; 3; 1; 0/; .3; 3; 3; 2; 0/:
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The first two monomials are listed in the lemma. The next six monomials are killed
by the Steenrod algebra, since we have

.8; 1; 1; 1; 0/D Sq4.4; 1; 1; 1; 0/

.6; 2; 2; 1; 0/D Sq5.3; 1; 1; 1; 0/CSq4.4; 1; 1; 1; 0/

.5; 2; 2; 2; 0/D .6; 2; 2; 1; 0/CSq1.5; 2; 2; 1; 0/

.4; 4; 2; 1; 0/D Sq4.2; 2; 2; 1; 0/CSq2.2; 2; 4; 1; 0/

.4; 3; 2; 2; 0/D .4; 4; 2; 1; 0/CSq1.4; 3; 2; 1; 0/

.5; 4; 1; 1; 0/D .4; 4; 2; 1; 0/C .4; 4; 1; 2; 0/C .3; 4; 2; 2; 0/CSq2.3; 4; 1; 1; 0/:

The last three monomials .6; 3; 1; 1; 0/; .4; 3; 3; 1; 0/; .3; 3; 3; 2; 0/ can be expressed
in terms of the monomials .7; 2; 1; 1; 0/; .5; 3; 2; 1; 0/ and their permutations. Indeed,
we get the following equalities

.6; 3; 1; 1; 0/D .5; 3; 2; 1; 0/C .5; 3; 1; 2; 0/C .5; 4; 1; 1; 0/CSq1.5; 3; 1; 1; 0/

.4; 3; 3; 1; 0/D .2; 3; 5; 1; 0/C .2; 5; 3; 1; 0/C .2; 4; 4; 1; 0/C .2; 3; 4; 2; 0/

C.2; 4; 3; 2; 0/CSq2.2; 3; 3; 1; 0/

.3; 3; 3; 2; 0/D .4; 3; 3; 1; 0/C .3; 4; 3; 1; 0/C .3; 3; 4; 1; 0/CSq1.3; 3; 3; 1; 0/:

Case 5 The monomial .a; b; c; d; e/ depends exactly on five variables, .a; b; c; d; e/D
.a; b; c; d; e/, where a, b , c , d and e are nonzero. This should be one of the following
monomials:

.7; 1; 1; 1; 1/; .5; 3; 1; 1; 1/; .3; 3; 3; 1; 1/; .4; 3; 2; 1; 1/

.4; 4; 1; 1; 1/; .4; 2; 2; 2; 1/; .3; 2; 2; 2; 2/

.5; 2; 2; 1; 1/; .6; 2; 1; 1; 1/; .3; 3; 2; 2; 1/:

The first four monomials are listed in the lemma. The next three monomials are hit by
the Steenrod algebra, since we have

.4; 4; 1; 1; 1/D Sq2.4; 2; 1; 1; 1/CSq2.2; 4; 1; 1; 1/CSq4.2; 2; 1; 1; 1/

.4; 2; 2; 2; 1/D Sq4.2; 2; 1; 1; 1/CSq2.2; 4; 1; 1; 1/CSq1.4; 2; 1; 1; 2/

.3; 2; 2; 2; 2/D .4; 2; 2; 2; 1/CSq1.3; 2; 2; 2; 1/:
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The last three monomials .5; 2; 2; 1; 1/; .6; 2; 1; 1; 1/; .3; 3; 2; 2; 1/ are expressed in
terms of the monomials .5; 3; 1; 1; 1/; .4; 3; 2; 1; 1/ and their permutations. Indeed

.5; 2; 2; 1; 1/D .3; 4; 2; 1; 1/C .3; 2; 4; 1; 1/C .4; 2; 2; 2; 1/C .4; 2; 2; 1; 2/

C.3; 2; 2; 2; 2/CSq2.3; 2; 2; 1; 1/

.6; 2; 1; 1; 1/D .5; 2; 2; 1; 1/C .5; 2; 1; 2; 1/C .5; 2; 1; 1; 2/CSq1.5; 2; 1; 1; 1/

.3; 3; 2; 2; 1/D .5; 3; 1; 1; 1/C .3; 5; 1; 1; 1/C .4; 4; 1; 1; 1/C .4; 3; 1; 1; 2/

C.3; 4; 1; 1; 2/CSq2.3; 3; 1; 1; 1/

CSq1.3; 3; 1; 1; 2/CSq1.4; 3; 1; 1; 1/CSq1.3; 4; 1; 1; 1/:

The lemma is proved.

We denote by A;B;C;D;E;F;G;H the families of all permutations of the following
monomials respectively

.7; 3; 1; 0; 0/; .5; 3; 3; 0; 0/; .7; 2; 1; 1; 0/; .5; 3; 2; 1; 0/

.7; 1; 1; 1; 1/; .3; 3; 3; 1; 1/; .5; 3; 1; 1; 1/; .4; 3; 2; 1; 1/:

For X one of the families A;B;C;D;E;F;G;H , let L.X / be the vector subspace
of .F2˝AP5/11 spanned by all the elements of the family X . Further, set L.G;H /D

L.G/CL.H /.

Lemma 2.2 Every p 2 .F2˝AP5/11 can be expressed uniquely as a sum

p D pACpBCpC CpD CpE CpF Cp.G;H /;

where pX 2 L.X / for X 2 fA;B;C;D;E;Fg and p.G;H / 2 L.G;H /:

Proof By Lemma 2.1, if p 2 .F2˝AP5/11 then p can be expressed as a sum of
elements in L.A/;L.B/;L.C /;L.D/;L.E/;L.F / and in L.G;H /. In order to prove
the uniqueness of the expression we now suppose that there is a linear relation

pACpBCpC CpD CpE CpF Cp.G;H / D 0

in .F2˝AP5/11 , where pX 2 L.X / for X 2 fA;B;C;D;E;Fg and X D .G;H /:

We need to show pA D pB D pC D pD D pE D pF D p.G;H / D 0 in .F2˝AP5/11:

First, we note that pA D pE D pF D 0, as pA;pE ;pF are expressed in terms of the
spikes, which do not appear in the expression of Sqi.Y / for any i positive and any
monomial Y . Hence

pBCpC CpD Cp.G;H / D 0:

Consider the homomorphism �tuW F2˝AP5 ! F2˝AP3 induced by the projection
P5 ! P5=.t;u/ Š P3: Under this homomorphism, the image of the above linear
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relation is �tu.pB/ D 0: Using all the projections from P5 to its quotients by the
ideals generated by any pairs of the five variables x;y; z; t;u, we get pB D 0: Hence

pC CpD Cp.G;H / D 0:

Next, we consider the homomorphism �uW F2˝AP5! F2˝AP4 induced by the pro-
jection P5! P5=.u/Š P4: Let �u act on both sides of the above equality, we get

�u.pC /C�u.pD/D 0;

where �u.pC / is a linear combination of permutations of element .7; 2; 1; 1/: As 7

and 1 are of the form 2n � 1, the monomial .7; 2; 1; 1/ appears only as a term in
Sqi.a; b; c; d/ for i D 1 and .a; b; c; d/D .7; 1; 1; 1/ as follows

Sq1.7; 1; 1; 1/D .8; 1; 1; 1/C .7; 2; 1; 1/C .7; 1; 2; 1/C .7; 1; 1; 2/:

So, �u.pC / contains .7; 2; 1; 1/ as a term if and only if it also contains .7; 1; 2; 1/C
.7; 1; 1; 2/. A consequence of the above expression of Sq1.7; 1; 1; 1/ is

.7; 2; 1; 1/C .7; 1; 2; 1/C .7; 1; 1; 2/D 0;

since .8; 1; 1; 1/D Sq4.4; 1; 1; 1/. Thus, �u.pC /D 0, and therefore �u.pD/D 0:

In the above argument, replacing the homomorphism �u by any of �x; �y ; �z; �t , and
we get

pC D pD D p.G;H / D 0:

The following Lemma is a consequence of Lemma 2.1 and Lemma 2.2.

Lemma 2.3 There is a decomposition of F2 –vector spaces

.F2˝AP5/11 D L.A/˚L.B/˚L.C /˚L.D/˚L.E/˚L.F /˚L.G;H /:

3 GL5–invariants of the indecomposables of P5 in degree 11

The goal of this section is to prove the following proposition, which is also numbered
as Proposition 1.3 in the introduction.

Proposition 3.1 .F2˝AP5/
GL5

11
D 0:

Let S5 be the symmetric group on 5 letters x;y; z; t;u. It is easy to see that L.A/,
L.B/, L.C /, L.D/, L.E/, L.F / and L.G;H / are all S5 –submodules. So the
equality in Lemma 2.3

.F2˝AP5/11 D L.A/˚L.B/˚L.C /˚L.D/˚L.E/˚L.F /˚L.G;H /
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is a decomposition of S5 –modules.

By Lemma 2.2, every p 2 .F2˝AP5/11 can be expressed uniquely as a sum

p D pACpBCpC CpD CpE CpF Cp.G;H /;

where pX 2L.X / for X 2 fA;B;C;D;E;Fg and p.G;H / 2L.G;H /: So, each term
of the sum is an S5 –invariant.

For X one of the letters A;B;C;D;E;F , let xi be the coefficient in the above
expression of p of the i th monomial in the family X ordered lexicographically. Note
that all monomials of families A;E and F are spikes. It is well known that spikes do
not appear in the expression of SqiY for any i positive and any monomial Y . Hence,
the coefficient of any spike is zero in every linear relation in F2˝AP5 . It implies that,
in the expression of p , the coefficients of monomials in each of the families A;E;F

are equal to each other.

Proposition 3.1 is proved by combining the following five lemmas.

Lemma 3.2 If pD pACpBCpC CpDCpECpF Cp.G;H / is the decomposition
of p 2 .F2˝AP5/

GL5

11
as in Lemma 2.2, then pA D pB D 0:

Proof With �tu defined as in the proof of Lemma 2.2, we have

�tu.p/D �tu.pA/C�tu.pB/:

We have
�tu.pB/D b1.5; 3; 3/C b2.3; 5; 3/C b3.3; 3; 5/:

According to the argument given above, the coefficients ai are equal each other. Set
aD ai and we have

�tu.pA/D aŒ.7; 3; 1/C .7; 1; 3/C .3; 7; 1/C .3; 1; 7/C .1; 7; 3/C .1; 3; 7/�:

We will show that b1D b2D b3 and aD 0: Associated to the two variables x and y ,
let �xy be the transposition of x and y that keeps the other variables fixed.

As p is a GL5 –invariant in F2˝AP5 , we have

�tu.�xy.p/Cp/D �tu.0/D 0 in F2˝AP3;

equivalently
�xy.�tu.p//C�tu.p/D 0 in F2˝AP3:
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Combining �tu.pA/ D aŒ.7; 3; 1/ C symmetrized� with the fact that the monomial
.7; 3; 1/ is spike, we have

�xy.�tu.pA//C�tu.pA/D 0:

From this, it follows that

�xy.�tu.pB//C�tu.pB/D 0;

or equivalently
.b1C b2/..5; 3; 3/C .3; 5; 3//D 0:

However,

.5; 3; 3/C .3; 5; 3/C .3; 3; 5/D Sq2.3; 3; 3/CSq1.4; 3; 3/CSq4.4; 2; 1/

CSq2.6; 2; 1/CSq1.5; 4; 1/CSq2.3; 4; 2/:

So, we get
.b1C b2/.3; 3; 5/D 0:

On the other hand, the linear transformation x 7! xC z;y 7! y; z 7! z sends .3; 3; 5/
to .3; 3; 5/C .2; 3; 6/C .1; 3; 7/C .0; 3; 8/ � .3; 3; 5/C .1; 3; 7/: As the action of
the Steenrod algebra commutes with linear maps, if .3; 3; 5/ is hit then so is .1; 3; 7/:
This is impossible, because .1; 3; 7/ is a spike. Thus, .3; 3; 5/ ¤ 0 in F2˝AP5 and
therefore b1Cb2 D 0; or b1 D b2: By similarity, using all transpositions of any pairs
of the three variables x;y; z; we get b1 D b2 D b3: Hence

�tu.pB/D b1Œ.5; 3; 3/C .3; 5; 3/C .3; 3; 5/�D b1:0D 0:

By the symmetry of the variables, we also obtain �ij .pB/ D 0, where .i; j / is any
pair of the five variables x;y; z; t;u: Thus pB D 0:

In order to prove aD 0; we consider the linear transformation, !xy , that sends x to
xC y and keeps the other variables fixed. As pB D 0; we have �tu.p/D �tu.pA/:

From !xy.p/Cp D 0, it follows that

!xy.�tu.pA//C�tu.pA/D 0;

or equivalently

aŒ.5; 3; 3/C .3; 5; 3/C .1; 7; 3/C .3; 7; 1/C .1; 3; 7/�D 0:

Combining this with the fact that .1; 7; 3/ is a spike, we get aD 0:

Lemma 3.3 If pD pACpBCpC CpDCpECpF Cp.G;H / is the decomposition
of p 2 .F2˝AP5/

GL5

11
as in Lemma 2.2, then pC D pD D 0:
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Proof By Lemma 3.2, pA D pB D 0: As a consequence, p D pC C pD C pE C

pF C p.G;H /: Let �uW F2˝AP5 ! F2˝AP4 be the homomorphism induced by the
projection P5! P5=.u/Š P4 as in the proof of Lemma 2.2. We have

�u.p/D �u.pC /C�u.pD/;

where �.u/.pC / and �.u/.pD/ are respectively certain linear combinations of permu-
tations of the elements .7; 2; 1; 1/ and .5; 3; 2; 1/.

In the families �u.C /; �u.D/, there are exactly three monomials .x;y; z; t/ with t D

7, namely

.2; 1; 1; 7/; .1; 2; 1; 7/; .1; 1; 2; 7/:

We have Sq1.1; 1; 1; 7/D .2; 1; 1; 7/C .1; 2; 1; 7/C .1; 1; 2; 7/; and hence

.2; 1; 1; 7/D .1; 2; 1; 7/C .1; 1; 2; 7/ in F2˝AP4:

So we get

�u.p/D c1.1; 2; 1; 7/C c2.1; 1; 2; 7/C terms of the form .x;y; z; t/ with t ¤ 7:

Let !xy be the transposition of x and y as defined in the proof of Lemma 3.2. It is
easily seen that

!xy.c1.1; 2; 1; 7/C c2.1; 1; 2; 7//D c1.1; 2; 1; 7/C c2.1; 1; 2; 7/C c1.0; 3; 1; 7/

C c2.0; 2; 2; 7/:

Combining this with the fact that !xy.�u.p//C �u.p/ D 0, we obtain c1 D 0, as
.0; 3; 1; 7/ is a spike.

By a similar argument using !xz , we get c2 D 0: Hence �u.pC /D 0:

By the symmetry of the variables, we have

�x.pC /D �y.pC /D �z.pC /D �t .pC /D �u.pC /D 0:

As a consequence, we get pC D 0:

Similarly, in order to prove pD D 0 we need only to show that �u.pD/ D 0: The
family �u.D/, which consists of all the permutations of the monomials .5; 3; 2; 1/;
has twenty-four elements. A direct calculation shows the following table.
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monomial !xy.monomial/Cmonomial monomial !xy.monomial/Cmonomial
(5,3,2,1) (1,7,2,1) (5,3,1,2) (1,7,1,2)
(5,2,3,1) (4,3,3,1)+(1,6,3,1)+(0,7,3,1) (5,2,1,3) (4,3,1,3)+(1,6,1,3)+(0,7,1,3)
(5,1,3,2) (1,5,3,2) (5,1,2,3) (1,5,2,3)
(3,5,2,1) (1,7,2,1) (3,5,1,2) (1,7,1,2)
(3,2,5,1) (2,3,5,1) (3,2,1,5) (2,3,1,5)
(3,1,5,2) (1,3,5,2) (3,1,2,5) (1,3,2,5)
(2,5,3,1) (0,7,3,1) (2,5,1,3) (0,7,1,3)
(2,3,5,1) 0 (2,3,1,5) 0
(2,1,5,3) (0,3,5,3) (2,1,3,5) (0,3,3,5)
(1,5,3,2) 0 (1,5,2,3) 0
(1,3,5,2) 0 (1,3,2,5) 0
(1,2,5,3) (0,3,5,3) (1,2,3,5) (0,3,3,5).

Let d.a;b;c;d/ be the coefficient of the monomial .a; b; c; d/ in the expression of
�u.pD/. Since �u.pD/ is a GL4 –invariant, we have !xy.�u.pD// C �u.pD/ D

0 in F2˝AP4: Combining this and the above table we obtain

Œd.5;3;2;1/C d.3;5;2;1/�.1; 7; 2; 1/C Œd.5;3;1;2/C d.3;5;1;2/�.1; 7; 1; 2/D 0

Œd.5;2;3;1/C d.2;5;3;1/�.0; 7; 3; 1/C Œd.5;2;1;3/C d.2;5;1;3/�.0; 7; 1; 3/D 0

Œd.2;1;5;3/C d.1;2;5;3/�.0; 3; 5; 3/C Œd.2;1;3;5/C d.1;2;3;5/�.0; 3; 3; 5/D 0:

As .0; 7; 3; 1/ and .0; 7; 1; 3/ are spikes, we get

d.5;2;3;1/ D d.2;5;3;1/ and d.5;2;1;3/ D d.2;5;1;3/:

Let !xz be the linear transformation which sends x to x C z and keeps the other
variables fixed. Applying !xz to the above first equality, we get

Œd.5;3;2;1/C d.3;5;2;1/�.0; 7; 3; 1/C Œd.5;3;1;2/C d.3;5;1;2/�.0; 7; 2; 2/D 0:

It implies d.5;3;2;1/ D d.3;5;2;1/ and similarly d.5;3;1;2/ D d.3;5;1;2/ .

Similarly, it follows from the third equality that

d.2;1;5;3/ D d.1;2;5;3/ and d.2;1;3;5/ D d.1;2;3;5/:

It is easy to see that the symmetric group on the four letters f5; 3; 2; 1g is generated
by the transpositions .5; 3/; .5; 2/; .2; 1/: Combining this with the above equalities,
it implies that all coefficients d.a;b;c;d/ are the same. Let us denote this common
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coefficient by d . We have

!xy.�u.pD//C�u.pD/D d Œ.4; 3; 3; 1/C .1; 6; 3; 1/C .4; 3; 1; 3/C .1; 6; 1; 3/

C.1; 5; 3; 2/C .1; 5; 2; 3/C .2; 3; 5; 1/C .2; 3; 1; 5/

C.1; 3; 5; 2/C .1; 3; 2; 5/�:

As shown in the proof of Lemma 2.1, we get

.4; 3; 3; 1/D .2; 3; 5; 1/C .2; 5; 3; 1/

.1; 6; 3; 1/D .2; 5; 3; 1/C .1; 5; 3; 2/

.4; 3; 1; 3/D .2; 3; 1; 5/C .2; 5; 1; 3/

.1; 6; 1; 3/D .2; 5; 1; 3/C .1; 5; 2; 3/:

Hence, the above equality is reduced to

d Œ.1; 3; 5; 2/C .1; 3; 2; 5/�D 0:

Applying !xt to this relation, we get d Œ.0; 3; 5; 3/� D 0: It implies d D 0, since we
have shown that .0; 3; 5; 3/ is nonzero.

So �u.pD/D 0 and therefore pD D 0.

Lemma 3.4 If pD pACpBCpC CpDCpECpF Cp.G;H / is the decomposition
of p 2 .F2˝AP5/

GL5

11
as in Lemma 2.2, then pE D 0:

Proof According to the above two lemmas, p D pE CpF Cp.G;H /:

As .7; 1; 1; 1; 1/ is a spike, the coefficients of its all permutations in the expression of
p 2 .F2˝AP5/

GL5

11
are equal to each other. We denote this common coefficient by e .

So, pE can be written in the form

pE D eŒ.7; 1; 1; 1; 1/C .1; 7; 1; 1; 1/C .1; 1; 7; 1; 1/C .1; 1; 1; 7; 1/C .1; 1; 1; 1; 7/�;

where e 2 F2:

In the families E , F , G , H there is exactly one monomial with uD7, namely
.1;1;1;1;7/. Let � be the linear transformation that sends x to x C z , y to y C z

and keeps the other variables fixed.

An easy computation shows

�.1; 1; 1; 1; 7/D .1; 1; 1; 1; 7/C .1; 0; 2; 1; 7/C .0; 1; 2; 1; 7/C .0; 0; 3; 1; 7/:

Note that the images under � of the other monomials of the families E;F;G;H in
the expression of p do not contain the spike .0; 0; 3; 1; 7/.
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So, �.p/ C p contains e.0; 0; 3; 1; 7/ as a term. It implies ˛ D 0, and therefore
pE D 0:

Lemma 3.5 If pD pACpBCpC CpDCpECpF Cp.G;H / is the decomposition
of p 2 .F2˝AP5/

GL5

11
as in Lemma 2.2, then pF D 0:

Proof According to the above three lemmas, we have p D pF Cp.G;H /:

By the same argument given in the previous lemma, as .3; 3; 3; 1; 1/ is a spike, the
coefficients of its all permutations in the expression of p 2 .F2˝AP5/

GL5

11
are equal

each other. We denote this common coefficient by f .

In the family F;G;H , there are exactly two monomials with z D 3; t D 3;u D 1,
namely

.3; 1; 3; 3; 1/; .1; 3; 3; 3; 1/:

As p is a GL5 –invariant in F2˝AP5 , we have particularly

!xy.p/Cp D 0:

A routine computation shows

!xy.3; 1; 3; 3; 1/C .3; 1; 3; 3; 1/D .2; 2; 3; 3; 1/C .1; 3; 3; 3; 1/C .0; 4; 3; 3; 1/

!xy.1; 3; 3; 3; 1/C .1; 3; 3; 3; 1/D .0; 4; 3; 3; 1/:

Note that the images under !xy of the other monomials of the families F;G;H in
the expression of p do not contain the spike .1; 3; 3; 3; 1/:

Thus, !xy.p/Cp contains f .1; 3; 3; 3; 1/ as a term. This implies f D0 and therefore
pF D 0:

Lemma 3.6 If pD pACpBCpC CpDCpECpF Cp.G;H / is the decomposition
of p 2 .F2˝AP5/

GL5

11
as in Lemma 2.2, then p.G;H / D 0:

Proof According to the above four lemma, we have pD p.G;H /: Recall that p.G;H /

is expressed in terms of the elements of the families G and H:

The proof is divided into 2 steps.

Step 1 Let K be the family of all variable permutations of monomial .3; 3; 2; 2; 1/:
We will show that p can be expressed in terms of the elements of the family K:

The elements in family G are divided into pairs by twisting the variables whose ex-
ponents are 5 and 3.
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Consider two monomials .5; 3; 1; 1; 1/; .3; 5; 1; 1; 1/ in one of the pairs. With !xy as
defined in the proof of Lemma 3.2, we have

!xy.5; 3; 1; 1; 1/D .5; 3; 1; 1; 1/C .4; 4; 1; 1; 1/C .1; 7; 1; 1; 1/C .0; 8; 1; 1; 1/

!xy.3; 5; 1; 1; 1/D .3; 5; 1; 1; 1/C .2; 6; 1; 1; 1/C .1; 7; 1; 1; 1/C .0; 8; 1; 1; 1/:

Further, .1; 7; 1; 1; 1/ does not appear in the expressions of the images under !xy of
any other elements in G;H . As p is a GL5 –invariant, it satisfies

!xy.p/Cp D 0 in W F2˝AP5:

However, .1; 7; 1; 1; 1/ is a spike, which does not appear in the expression of SqiY for
any i positive and any monomial Y . So, the coefficients of the monomials .5;3;1;1;1/
and .3; 5; 1; 1; 1/ in the expression of p are equal each other.

On the other hand, by using by Sq2.3; 3; 1; 1; 1/CSq1.4; 3; 1; 1; 1/CSq1.3; 4; 1; 1; 1/

we get

.5; 3; 1; 1; 1/C .3; 5; 1; 1; 1/D .3; 3; 2; 2; 1/C .3; 3; 1; 2; 2/C .3; 3; 2; 1; 2/:

Then, in the expression of p , the sum of monomials in family G can be written as a
sum of monomials in family K:

Next, we consider in the expression of p the sum of monomials in the family H .

First, we consider the set of monomials of the forms .4; 3; c; d; e/ and .3; 4; c; d; e/
in the family H . Then, .c; d; e/ is a permutation of .2; 1; 1/: We will show that the
sum of the monomials in this set occurring in the expression of p equals to the sum
of some monomials in the family K:

We have

.3; 4; 2; 1; 1/D .4; 3; 2; 1; 1/C .3; 3; 2; 2; 1/C .3; 3; 2; 1; 2/

as .3; 4; 2; 1; 1/D .4; 3; 2; 1; 1/C .3; 3; 2; 2; 1/C .3; 3; 2; 1; 2/CSq1.3; 3; 2; 1; 1/:

Similarly,

.3; 4; 1; 2; 1/D .4; 3; 1; 2; 1/C .3; 3; 2; 2; 1/C .3; 3; 1; 2; 2/

.3; 4; 1; 1; 2/D .4; 3; 1; 1; 2/C .3; 3; 1; 2; 2/C .3; 3; 2; 1; 2/:

We also have
.4; 3; 1; 1; 2/D .4; 3; 2; 1; 1/C .4; 3; 1; 2; 1/;

because .4; 3; 1; 1; 2/D.4; 3; 2; 1; 1/C.4; 3; 1; 2; 1/C.4; 4; 1; 1; 1/CSq1.4; 3; 1; 1; 1/:
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Let h1 and h2 be the coefficients respectively of the monomials .4; 3; 2; 1; 1/ and
.4; 3; 1; 2; 1/ in an expression of p . Then

p D h1.4; 3; 2; 1; 1/C h2.4; 3; 1; 2; 1/C other terms:

On the other hand, p is a GL5 –invariant, so

!xy.p/Cp D 0:

We have

!xy.4; 3; 2; 1; 1/D .4; 3; 2; 1; 1/C .0; 7; 2; 1; 1/

!xy.4; 3; 1; 2; 1/D .4; 3; 1; 2; 1/C .0; 7; 1; 2; 1/;

and the images under !xy of any other monomials in the expression of p do not
contain the monomials .0; 7; 2; 1; 1/; .0; 7; 1; 2; 1/; .0; 7; 1; 1; 2/ as terms. Thus,

!xy.p/Cp D h1.0; 7; 2; 1; 1/C h2.0; 7; 1; 2; 1/C other terms not in C:

So, we get
h1.0; 7; 2; 1; 1/C h2.0; 7; 1; 2; 1/D 0:

Applying !ut , which sends t to t C u and keeps the other variables fixed, to this
equality, we obtain

h1.0; 7; 2; 2; 0/C h2.0; 7; 1; 3; 0/D 0:

This implies h2 D 0, as .0; 7; 1; 3; 0/ is a spike. Similarly, we have h1 D 0:

We have shown that in the expression of p , the sum of monomials of the forms
.4; 3; c; d; e/ and .3; 4; c; d; e/ in H can be written in terms of monomials in the
family K:

Because of the symmetry of the variables, the above argument also works for the sum
of monomials in H in the expression of p

Step 2 We will show that if p 2 L.K/ is a ’ GL5 –invariant, then p equals zero.

Note that if p 2 L.K/; then it is expressed in the terms of the variables permutations
of the monomial .3; 3; 2; 2; 1/: Let k.a;b;c;d;e/ be the coefficient of the monomial
.a; b; c; d; e/ in an expression of p . Because of the symmetry of the variables, in
order to prove p D 0 we need only to prove k.2;2;3;3;1/ D 0:

There are exactly three monomials of the form .a; b; c; 3; 1/ in K , namely

.3; 2; 2; 3; 1/; .2; 3; 2; 3; 1/; .2; 2; 3; 3; 1/:
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Let � be the transformation defined in the proof of Lemma 3.4, which sends x to
xC z , y to yC z and fixes the other variables.

A routine computation shows

�.3; 2; 2; 3; 1/D .3; 2; 2; 3; 1/C .3; 0; 4; 3; 1/C .2; 2; 3; 3; 1/C .2; 0; 5; 3; 1/

C.1; 2; 4; 3; 1/C .1; 0; 6; 3; 1/C .0; 2; 5; 3; 1/C .0; 0; 7; 3; 1/

�.2; 3; 2; 3; 1/D .2; 3; 2; 3; 1/C .0; 3; 4; 3; 1/C .2; 2; 3; 3; 1/C .0; 2; 5; 3; 1/

C.2; 1; 4; 3; 1/C .0; 1; 6; 3; 1/C .2; 0; 5; 3; 1/C .0; 0; 7; 3; 1/

�.2; 2; 3; 3; 1/D .2; 2; 3; 3; 1/C .0; 2; 5; 3; 1/C .2; 0; 5; 3; 1/C .0; 0; 7; 3; 1/:

Further, the images under � of the other terms in the expression of p do not con-
tain .0; 0; 7; 3; 1/ as a term, because the exponents of t and u in these monomials
are not respectively 3 and 1. So, �.p/C p contains .k.3;2;2;3;1/ C k.2;3;2;3;1/ C

k.2;2;3;3;1//.0; 0; 7; 3; 1/ as a term. Moreover, as p is a GL5 –invariant, �.p/CpD0.
It implies

k.3;2;2;3;1/C k.2;3;2;3;1/C k.2;2;3;3;1/ D 0:

On the other hand, consider the set of monomials of the form .a; b; 2; d; 1/ and
.a; b; 1; d; 2/ in the family K . Then, .a; b; d/ is a permutation of .3; 3; 2/: We have

!xy.3; 3; 2; 2; 1/C .3; 3; 2; 2; 1/D .2; 4; 2; 2; 1/C .1; 5; 2; 2; 1/C .0; 6; 2; 2; 1/

!xy.3; 2; 2; 3; 1/C .3; 2; 2; 3; 1/D .2; 3; 2; 3; 1/C .1; 4; 2; 3; 1/C .0; 5; 2; 3; 1/

!xy.2; 3; 2; 3; 1/C .2; 3; 2; 3; 1/D .0; 5; 2; 3; 1/:

Let !yt be the transformation that sends y to y C t and keeps the other variables
fixed. Apply !yt to !xy.p/Cp; we have

!yt .0; 5; 2; 3; 1/D .0; 5; 2; 3; 1/C .0; 4; 2; 4; 1/C .0; 1; 2; 7; 1/C .0; 0; 2; 8; 1/:

It is easy to see that the actions of !xy and !yt on the monomial do not change the
exponents of z and u. Combining this with the fact that the exponents of z and u in
the other monomials are not respectively 2 and 1; it implies !yt .!xy.p/Cp/ contains
.k.3;2;2;3;1/C k.2;3;2;3;1//.0; 1; 2; 7; 1/ as a term.

Similarly, !yt .!xy.p/Cp/ contains .k.3;2;1;3;2/Ck.2;3;1;3;2//.0; 1; 1; 7; 2/ as a term.

Further, both the exponents of z and u in the other monomials are not equal to 1. So,
their image under the action !yt ; !xy does not contain the monomial .0; 2; 1; 7; 1/:
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Hence

!yt .!xy.p/Cp/D .k.3;2;2;3;1/C k.2;3;2;3;1//.0; 1; 2; 7; 1/

C.k.3;2;1;3;2/C k.2;3;1;3;2//.0; 1; 1; 7; 2/

C other term is not in �x.C /:

As !xy.p/Cp D 0; we have

.k.3;2;2;3;1/Ck.2;3;2;3;1//.0; 1; 2; 7; 1/C .k.3;2;1;3;2/Ck.2;3;1;3;2//.0; 1; 1; 7; 2/D 0:

As shown in the proof of Lemma 3.3, this implies

k.3;2;2;3;1/C k.2;3;2;3;1/ D 0:

As a consequence

k.2;2;3;3;1/ D 0:

4 The fifth algebraic transfer is not an epimorphism

The target of this section is to prove the following theorem, which is also numbered as
Theorem 1.2 in the introduction.

Theorem 4.1 The element P .h2/2Ext5;16
A .F2; F2/ is not in the image of the algebraic

transfer Tr5W F2˝GL5
PH11.BV5/! Ext5;16

A .F2; F2/.

Proof According to Proposition 3.1, we have

.F2˝AP5/
GL5

11
D 0:

As F2˝GL5
PH�.BV5/ is dual to .F2˝AP5/

GL5 , we get

F2˝GL5
PH11.BV5/D 0:

It is well known (see, for example, M C Tangora [8] and R R Bruner [2]) that the
element P .h2/ is nonzero in Ext5;16

A .F2; F2/. So, the fifth algebraic transfer

Tr5W F2˝GL5
PH11.BV5/! Ext5;16

A .F2; F2/

does not detect the nonzero element P .h2/:
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