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The action of the primitive Steenrod—Milnor
operations on the modular invariants

NGUYEN SUM

We compute the action of the primitive Steenrod—Milnor operations on generators of
algebras of invariants of subgroups of general linear group GL, = GL(n,[F,) in the
polynomial algebra with p an odd prime number.

555105 55P47, 55Q45, 55T15

1 Introduction

Let p be an odd prime number. Denote by GL, = GL(n, F,) the general linear group
over the prime field F, and 7, the Sylow p—subgroup of GL,, consisting of all upper
triangular matrices with 1 on the main diagonal. For any integer d, 1 <d < p—1,
we set

SLY ={w € GLy: (detw)? =1}.

It is easy to see that SLZ' is a subgroup of GL, and SLZ 1= GL,. Each subgroup
of GL, actson Py = E(xy,...,x4) ®Fp(y1,..., yn) in the usual manner. Here and
in what follows, E(.,...,.) and F,(.,...,.) are the exterior and polynomial algebras
over [, generated by the indicated variables. We grade P, by assigning dimx; = 1
and dim y; = 2.

Dickson [1] showed that the invariant algebra F,(y1, . .., y,)“%" is a polynomial alge-
bra generated by the Dickson invariants O, s, 0 <s <n. Huynh Mui [6; 7] computed
the invariant algebras Pl and P,f L for d = I,p—1,(p —1)/2. He proved that
P,,T" is generated by Vi, 1 <m <n, My 5,5, 0 =51 <... <5 <m =<n and
that P,sz is generated by Lg, Ons, 1 <s<n, Myg, . .s,0=s1<...<s<n.
Here V,,, M,,f?l,n_,sk are Mui invariants and L;’,l, Qn,s are Dickson invariants (see
Section 2). Note that Mn(,ls)l,...,sk = Myuys,,...5 -

Let A(p) be the mod p Steenrod algebra and let 7y, &; be the Milnor elements of
dimensions 2p* —1, 2p' — 2 respectively in the dual algebra A(p)* of A(p). In [5],
Milnor showed that as an algebra,

A(p)* = E(w. 71,...) ® Fp61.62,..).
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Then A(p)™* has a basis consisting of all monomials

R
TsEN = T . T bt 6,
with S = (s1,...,8), 0<s1<...<s8r, R=(r1,....m), rizo.LetStS’ReA(p)

denote the dual of tg&® with respect to that basis. Then .A(p) has a basis consisting
of all operations St5R. For S = o, R = (r), StZ (") g nothing but the Steenrod
operation P . So, we call St5*% the Steenrod—Milnor operation of type (S, R).

We have the Cartan formula

StSRuvy = Y (—)WmuHtESDES) (g1 gy 5) st8R (1) s8R (v),

S1USL>=S8
R{+R>=R

where Ry = (r1;), Ry =(r2;), Ri+Ry=(r1;+r2i),S1NS2 =3, u,v € Py, £(S;)
is the length of S; and

. S1 ... Sp S . S
(5351752)=Slgn( ! b oht k),
S11 .-+ S1p S21 ... S2r

with §; = (511,...,S1h),S11 <...<S81p, Sy = (521,...,S2r),521 <...< Sy (see
Mui [7]).

We denote St = St®©@ | §¢A = §t%2i  where A; =(0,...,1,...,0) with 1 at the
i —th place. In [7], Huynh Mui proved that as a coalgebra,
A(p) = A(Sto, Sty, ... ) @ T(StA1, StA1, . .).

Here, A(Stg,Sty,...) (resp. F(StAl ,Sth2 .)) denotes the exterior (resp. polyno-
mial) Hopf algebra with divided powers generated by the primitive Steenrod—Milnor
operations Stg, Sty, ... (resp. StA1, Sth2 . ).

The Steenrod algebra A(p) acts on P, by means of the Cartan formula together with
the relations

Xk, S =9, R=(0),
(i) StSRxe =y, S =), R=(0),
0, otherwise,

Yk, S=9, R=(0),
(ii) SRy =157 s=0, R=a,

0, otherwise,

for k =1, 2,...,n (see Steenrod and Epstein [10] and Sum [13]). Since this agtion
commutes with the action of GL,, it induces actions of A(p) on P/ and P,f ba
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The action of St5*% on the modular invariants of subgroups of general linear group has

been studied by many authors. This action for S = &, R = (r) was explicitly deter-
mined by Hung and Minh [2], Kechagias [3], Madsen and Milgram [4] and Sum [13].
Smith and Switzer [9], Wilkerson [14] and Neusel [8] have studied the action of StAi
on the Dickson invariants.

The purpose of the paper is to compute tl}e action of the primitive Steenrod—Milnor
operations on generators of Pl and P,f b

The rest of the paper contains three sections. In Section 2, we recall some needed
information on the invariant theory and compute the action of the primitive Steenrod—
Milnor operations on the determinant invariants. In Section 3, we compute the action
of the primitive Steenrod—Milnor operations on Dickson and Mui invariants. Finally,
we give in Section 4 some formulae from which we can describe our results in terms
of Dickson and Mui invariants.

Acknowledgements The author is grateful to the referee for his valuable comments
on the first manuscript of this paper.

2 Preliminaries

Definition 2.1 Let (ex41,...,em), 0 <k <m < n, be a sequence of nonnegative
integers. Following Dickson [1] and Mui [6], we define

xl DY xm
[k ] 1| X1 = Xm
F€k+1s---sCm| = 77| ptk+1 plk+1|.
k! |y " Yim
pem pem
b Ym

The precise meaning of the right hand side is given in [6]. For k = 0, we write

0:cr.....em]=[e1.....cm] = det(y?”).
In particular, we set
Lps=1[0,1,....5,....m,0=<s <m=<n,
Lypy=Lmum=I[01,...,m—1],
Mpsi s =k;0,.... 81, ... Skoo.,m—1],
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352 Nguyén Sum

for 0 < 51 <...<sp <m=n. Each [k;eg41,...,en] is an invariant of SL,ln and
leq, ..., em] is divisible by L, . Then, Dickson invariants Q, s and Mui invariants
and V}, are defined by

weesSk

Qn,s = Ln,s/Ln» M(d) = Mn,sl,...,skLZ’_l and V, = Lm/Lm—l-

N,S1 50058k
Here, by convention, Ly = [2] = 1.

Now we prepare some data in order to prove our main results.

Lemma 2.2 Suppose ey # ej for { # j, u > 0. Then we have

(=D "k —1u,eppq.....en], k>0,

Stulk:ertq,...,en]=
u[ k+1 n] {0’ k=0

Proof Let I be a subset of {1,...,n} and let I’ be its complement in {1,2,...,n}.
Writing I = {iy,ip,...,ig} and I' = {ig 41, ik+2,---,in} With iy <ip <...<i; and
ik_|_1 < ik+2 <...<liy. Weset

X[ = Xi; Xiy ... Xip

[Cht1s€kt2,---senlr = [ek+1’€k+2’""en](yik+1’yik+2’“"yin)

1 2 ...
O—I:(~ . T/l)ezrl’
1 12 ... Iy

where X, is the symmetric group on n letters. Using the Laplace development, we
have

[k: ek y1,€ht2r .- enl = Y sign orxrlext1, o, enlr-
I
From the relation (ii), we see that St,[ef41,€x+2,....ex]lf = 0. Then, using the

Cartan formula, we get

(1) Stu[k; Ch415€Ck+25--- ,en] = Z sign or Stu(X[)[€k+1,€k+2, ey en][.
1

In [7, 5.2], Mui showed that

St,(x7) = (—l)k_l[k— Liu](Xiy s Xigs oo os Xigs Vigs Vins -+ Vig)-

Hence, using (1) and the Laplace development we obtain the lemma. O
Lemma 2.3 Suppose ey # ej for { # j, ey <ej for j >k + 1. Then we have

k;i,exs2,.-. enl, erst1 =0,

StAi k;e ... enl=
[ k+1 n] {0’ ers1 > 0.
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Proof Suppose ej; > 0. From the relations (i) and (ii) and the Cartan formula, we
easily obtain
pej +pi_1 _ 0

Sthi xp =0, StAi pP” = peiyf :
for{=1,2,...,nand j =k +1,k+2,...,n. From this, we get
St [k;egqs....en] =0.
If ef41 = 0 then StAi yéﬁ =0,for{=1,2,...,nand j =k +2,...,n,and
Sthi yé)EkH = StA7 yp = yfi.
Hence, using the Laplace development and the Cartan formula, we obtain
Sk eprtsehqns. . en) =lkii,exsa. ..., enl. O

To make the paper self-contained, we give here a proof for the following theorem,
which will be needed in the next section.

Theorem 2.4 (Sum [12]) Let (ey,e3,...,en) be a sequence of nonnegative integers
and 0 <k <n. We have

le1,e2,... en—1,en +n—1]
n—2
en e
2 = Z(—l)n+s[e1,e2, e, Chp_1,Cn +s]Q5_1’s +ler,ez,...,en—1]V,P "
s=0

n—1
(3) [k;ek—i-l’ s Cp—1.Cn +n] = Z(_l)n+s—1[k;ek+1, e, €p—1,€p +S]Q’l;’es”.

s=0
Proof We recall Mui’s formula in [6],

k;ers1s.-. en]l=
(_l)k(k—l)/Z Z (_1)S1+...+San’s1

0<s| <...<Sk

,,,,, silS1s -+ Sk k41, -+, €nl/Ln.

Hence, it suffices to prove the theorem for k£ = 0.

The proof of the theorem proceeds by induction on 7. It is easy to see that the theorem
holds for n = 1. Suppose n > 2 and the theorem holds for n — 1.
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Using the Laplace development and the inductive hypothesis, we have

le1,....en—1,en+n—1]

~ et en+n—1
= Z(—l)”+t[el, cesCrye ey en+n—1yF" +ley, ... enq)yf
=1

_Z( 1)n+t(Z( 1)”+S ...,e ,€n—1,€n +S]Qn ls) ,‘fet
=1

en+n—1
+[el7"'7el’l—1]yr€ "

_Z( 1)n+s(Z( )" tey,....¢ ..,en_l,en—i—s]yn )Qn Ls

=1
pen—i-n—]

+ler. ... en1lyi

n—2
= Z(—l)n—H[el, e, €p—1,6n +S]Q5_1’s

en en+s
+ler i enm Z( nrreTtoy v

s=0
Since V,, = Z;’;(l) (=1)nts—1 Q,,_l,sy,f’s, the relation (2) holds for 7.

Now we prove the relation (3) for n. By a direct calculation using (2) and the relation
Qn,s Pls 1+Qn ls _1,Weget

[elveZ""’en—lvel’l +n]

p€n+1 en+1

n—1
= Z(—l)n+s_l[el’ coslp—1,en+ 5] —1,5—1 + e, .. .,en_l]Vnp

s=1

. e
= Z(_U"“ ler,....en—1.en+s]QL

s=1

—le1,....en—1.en+n— 1]Vn(1’_1)"e"

+(Z(—1)"+S[e1,.. Len_1,en+ 5107 1s+[e1,...,e,,_l]V,,Pe”)V,fP—”Pe”.

s=1
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The action of the primitive Steenrod—Milnor operations 355

Combining this equality and the relation (2) we obtain

n—1

- e

[e1.ea,....en_1.en+n]= E (—=1)nts l[el,...,en_l,en—i—s]Qﬁ’Sn
s=1

_(_l)n[el seees€p—1, en]Ql‘It)—nl,O Vn(p—l)pel‘l .

Since On.0 = On-1,0 V,{”_1 , the relation (3) holds for n.

This completes the proof of Theorem 2.4. O

3 Main results

Observe that using the Cartan formula and the relations (i) and (ii), we obtain St, x =0

for either x = O, or x = V,. So, in this section we only compute St?i x for
d d

X = Qn,s» Va, Mn(,sl,...,sk and St, Mn(,s)l,...,sk-

Theorem 3.1 For any integers i, n, s with 0 <s <n andi > 1, we have

St Qps = (=1"0,1,....5,....n—1,i]LE72.

Proof Since L; s = L,Qpn,s, using the Cartan formula, we get
(4) St Lys =Ly St™ Qpg+ Qns St L.
According to Lemma 2.3, we have

i, 1,2,....5,...,n], s>0,
SeAi Lns = [i S n], s
0, s =0.

In particular, St L, = [(,1,2,...,n—1].
If s =0 then St% L, ; =0 and
StA L, =[i,1,2,....,n—1]
==D"1,2,...,n—1,0].
Combining (4) and the above equalities, we get

StAi Qn’o = —(StAl Ln)Qn,O/L”
=(—D"1.2,....n=1,i]Qn.0/Ln.

Since Qp0 = L,’,’_1 , the theorem holds.
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356 Nguyén Sum

If s >0 then St L, =[i,1,2,....,n— 1] and St* L, = [i,1,2,....5.....n].
Hence, using Theorem 2.4, we get

n—1
St Ly = (=D""[i,1.2,....5.....n—1.1]Qns
t=0

= (D", 1,2,...,5,....,n—1,0]1Qpn.0
+(=D)"ISG,2, 0,5, n—1,5] O
=[,1,2,....n—=1]0pns—[i,0,1,....5,....n—1]OQp.0.
Combining (4), the above equalities and the relation Q¢ = L? 1 we get
StAi Qn,s = (StAi Ln,s - Qn,s StAi Ln)/Ln
=—[,0,1,2,....5,....n=1]0pno/Ln
=(-=D"0,1,2,...,5,...,n—1,i]LE2 o

The following was proved in Smith and Switzer [9] by another method.

Corollary 3.2 (Smith—Switzer [9]) For any integers i, n, s with 0 < s < n and
1 <i <n, we have

(_l)s_lQn,Oa i =s5>0,
StAi Qn,s = (_1)n Qn,OQn,s» i =n,
0, otherwise.

Proof Suppose i =s. According to Theorem 3.1, we have
St Qs = (=1)"0.1,....5.....n—1,5]L2 >
= (Do, 1,...,n—1]LE2
= (DL = (=D Qno.
Ifi <nandi#sthen[0,1,....5,...,n—1,i]=0. Hence, St* Q5 = 0.
If i = n then StAn Qs = (=D"0.1,....5,....n—1,n]LP™?
= (—1)"Lys LD
= (=1)"Ly™ Qns
= (=1)"0n,00n,s-

The corollary follows. |
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Now, we show that our formula in Theorem 3.1 implies Wilkerson’s formula in [14].
To do this, we need the following.

Proposition 3.3 (Sum [12]) Let (éx+1,€k+2,---,€n) be a sequence of nonnegative
integers with 0 < k <n and e; # ej for £ # j. Then

(ks ert1 + k+1, k42 + Ekt2s - s €n+ Enl,
Pllk;exst, ki, - en]= if r=73"7_y & p withe; €{0,1},
0, otherwise.

This proposition can easily be proved by using the Laplace development, the Cartan
formula and the relations (i) and (ii).

From the formula in Theorem 3.1, one gets Wilkerson’s formula as follows.

Theorem 3.4 (Wilkerson [14]) For any integers 0 < s < n <1, we have

. i .
Sthit1 0, s = PP SR Q.

Proof Applying Theorem 3.1, the Cartan formula and Proposition 3.3, we get
PP StA Q= (—1)"PP (0. 1,....5.....n—1,i]LP72)

=(=D"Y Pr(0.1,....5.....n— Li) PP (LE72),
r

where the sum runs over all

s+l+---+8n—1pn_l+8ipi

r=eop’ +eip' +.. ke p T Fesrip
with ¢; € {0, 1} for any j and r <p.
If g =0then r < p+ p' +...+ p" ! and

2" =r)>2(p = (P’ + pt +...+ p"Y))
=200 = p"+1+(p-2)(p°+p' +...+p" N
>2(p=2)(p°+p' +.. .+ p" ) =dimLP72

This implies P?' ~"(L2™%) = 0.
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Since r < p’, if &; = 1 then gj=0for j#i and r = p'. Hence, using the above
equalities and Proposition 3.3, we obtain

PP St Q= (—1)"PP'([0.1,....5.....n—1,i)LP72
= (=D"0,1,...,5,....n—1,i +1]LP2

=StAi+1 0, 5. O
Next, we compute the action of St on Mui invariants.

Theorem 3.5 For any positive integers i, n, we have

St Y, = ()"0, 1,....n—2.i]LP72.

Proof Since L, = L,_;V},, applying the Cartan formula, we get
(5) StA L, = L,_1St% Vy + V, St L,_;.
Using Lemma 2.3 and Theorem 2.4, we have
StY L,y =[i,1,2,....,n=2],
StY L, =[i,1,2,....n—2,n—1]
n—2
= (D"l 12, n=2.5]0n 1+ 1.2, ..n=2]V,,

s=0
=(=D"i,1,2,....n=2,0]Qn_1,0 +[i.1,2,...,.n=2]Vy.

Combining (5), the above equalities and the relation Q,_1,0 = L’f__ll , we get

StA V, = (St Ly — Vu St Ly_1)/ Ly
= (—l)n[i, 1,2,...,I’I—Z,O]Qn_lyo/Ln_l
_ -1 17 P2
=(=D"'0,1,2,...,n—2,i]LP"2. O

Corollary 3.6 For any integers 0 <i < n, we have

0, i<n—1,
St V, = D" 0u—1,0Vn. i=n—1,
(_l)n_l Qn—l,O(Q,IlJ_l,n_ZVn + Vnp)s i =n.
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Proof Ifi <n—1then[0,1,...,n—2,i]=0. Hence, St* V, = 0.

For i = n—1, we have [0,1,2,...,n—2,n—1] = L, = L,_{V,. Hence, from
Theorem 3.5, we get

St V= (=1 LA Ve = (1) Q1,0 Vi
Let i = n. A direct computation shows
[0,1,....n=2,n=Lpp—1=LnOpnn-
= Lo Va(Qp_y 2 + VP,
From the above equalities, Theorem 3.5 and the relation LS__II = Qy—1,0, We obtain

StA” Vi = (—1)n_1 Qn—l,O(Q,f_lsn_ZVn + Vnp)'

The corollary follows. |
_ A; ()
Theorem 3.7 Set so = 0. Then St™' My, . . equals
(—I)S’_’M,f‘? s : s1>0,i =s;,1<t<k,
380 seeesStgeens Sk
(=D)""Nd —DMyys,,..5 (1,2, ... ,n—1,i]LE72, i>ns =0,
(=D N ((=DKk: 1,051 Sk on— L]LE !
+(d — )My, 5 [1,2,...,n—1,i]LE72), i>n,s >0,
0, otherwise.
Proof Applying Lemma 2.2, we have
. [k;i,1,...,§1,...,§k,...,l’l—1], Sl>0,
StAl Mn,sl,...,sk =
0, S1 = 0.

If i =s; then [k;i,1,....51,....5,....n—1]=(=1)""M,

SOseeesStaeeesSi "

If i = n then
kii 1, . 81 Sk oon—1]=(=D""* k1, ..., 51, .. Sk on—1,].
Thus the theorem is proved for d = 1.
For d > 1, using Lemma 2.2 and the Cartan formula, we have
St LA = (d —1)LI72Sth Ly,
StA L, = (=1D)""1,2,....n—1,i],
St MA@ = StA (M,

NyS1seeesSfe 77 NS5 8 T B ETRE0  5eees

s L972StA Ly,
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Combining the above equalities we obtain the theorem. |

Theorem 3.8 For 1 <d < p—1, we have

(_l)k—i-st—tM(d)

d n’sl,~--,§t,...,sk’ u= st’
Sty MDD == k=10, .81 S on— L LT =,
) otherwise.

Proof Since M, s,
get

si =[k;0,...,51,....5,...,n—1], applying Lemma 2.2, we

Sty My, ...se = (=D Nk —1;0,0,....5,,....5,....n—1].
If 0<u<n-—1 then

(_l)st_t—HMn,sl ..... Strensir U =S8t

k—1:u,0,...,51,....8¢,....n—1]=
| ! k ] {0, otherwise.

If u > n—1 then we have
[k—1;u,0,....51,....8,....,n—1]
=(=1)"*k—-1:0,....51,....5%,....n—1,ul.
The theorem is proved for d = 1.
Since St, L, = 0, using the Cartan formula, we get
Su(MA%).....0) = Stu(Misy s ) Ly "

The theorem now follows from the above equalities. |

By the analogous argument as given in the proof of Theorem 3.4, we can show that
the Wilkerson formula also holds for Mui invariants.

Theorem 3.9 For any integers i,u > n, we have

StA V, = PP sthin1 Y,

S M) s = PP S M s
d “ d
Stu+1 Mn(,s)la'..,sk = Pp Stu Mf'g,s)l,...,Sk :
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Remark 3.10 Using Theorem 2.4 and the above results, we can compute the action
of the primitive Steenrod—Milnor operations on the modular invariants in terms of
Dickson and Mui invariants for i,u > n. For example, by a direct calculation, we
easily obtain

St i Qns =(- 1)nQn O(an 1Qn,s_ 111)s—1)’
+ 2
StA42 0y = (<1)" Qo (O 77 Qs — OF L, Ons+ Q0 _,—0F 07 ).

Here, by convention, Q,; =0 for 7 < 0.

_ 2
Stin+1 Va=(=1" lQn—IO((Q;I;—Tf:—z_ n—1,n— 3)V”+Qn 1,n— 2VP+VP)

M @D _ n—1+k—t s (d)
Sty M, N,S1 5058k Z( 1) nsl, 8teensS Q”’S”
t=1

d
St M, ’%)l = (D" I(Z( D’ rfsz, 815 Q”’S’—i_dMn({lY)l, aslch’())’

=1

where so = 0 and 51 > 0. If s5; = 0 then

sthr MDD =)A= D)MD O

n,si,.

Furthermore, the computation of the action of the primitive Steenrod—Milnor op-
erations on the modular invariants in terms of Dickson and Mui invariants by the
use of our results in this section is more convenient than that by using Wilkerson’s
formula. For example to compute StAn+2 QOn,s by using Wilkerson’s formula, we
need to compute prt (Q,, 0(0F i 1 On.s - QF Hos— 1)) in terms of Dickson invari-
ants. But computmg pr't (Qn O(Q,, n_19n.s Qn 1)) is more difficult than that
of [0,1,...,5,...,n—1,n+2].

4 On the description of the determinant invariants in terms
of Dickson and Mui invariants

In this section, we study the problem of description of the determinant invariants in
terms of Dickson and Mui invariants. The explicit formulae for the determinant invari-
ants in terms of Dickson and Mui invariants are useful tools for computing the action
of the cohomology operations on the modular invariants.

In general, it is difficult to give explicit formulae for this problem. In particular,
for n = 2,3, we can explicitly compute [u, v],[u, v, w] in terms of Mui invariants
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362 Nguyén Sum

and [u, v], [u, v, v + 1] in terms of Dickson invariants, where u, v, w are nonnegative
integers.

Note that the problem of description of [u, v, w] in terms of Dickson invariants is
complicated. It is still open.

Proposition 4.1 For 0 <u < v < w, we have

v—1
v__ s+l+ u Ky
©  [wo]=> VTP TryE
S=u
vol s+1 K w1 s+1 K
7 [u,v,w]= Z[u,s + 1w, wlL,? vV + Z[u, s + LwlLy” v
S=u §=v

Proof The relation (6) is proved by induction on v. We prove (7) by induction on
v, w. Applying Theorem 2.4, we can easily prove the following by induction on v

v—1

(8) oo+ 1= [us+1LL 7

S=u

s+1 Ky
14
Vi

Since Lgv = [v, v + 1], the relation (7) holds for w = v + 1.
Let w = v + 2. By a direct computation using Theorem 2.4 and (8), we have
[u,v,v+2] =[u,v,v+ I]ng1 + [u, v]V3pv
v—1

V__ p5+1 s v v
:Z[u,s+1]L§ Py o8 vy

S=Uu

v v+
We observe that (L203.1)? =[v,v+2], Lg g [v+ 1, v+ 2]. Hence, the relation
(7) holds for w = v+ 2. Suppose that (7) holds for w and w+ 1. It is easy to see that

pu) . pw—i-l
[w+1, w]QZ,0 =-L;

Hence, using Theorem 2.4 and the inductive hypothesis, we get
[, v,w+2]=[u,v,w+ l]Qé’:‘II —[u, v, w]Qé’:f) + [u, v]V3pw

v—1

_ a5+1 K
— (Z[u,s v, w+11L7 T vE

S=u

w
s +1 s w
+Z[u,v][s+ Lw+ L7 vf )Qé”l

S=v
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A

Zu s+ v, w]L, p+le

w—1
+ Z[u, s + 1, w]L;ps |44 ) g:g +[u, v]Vfw
S=v
1 w w
= [u,s+1]([v,w+1] 5,1 —[v, w] g,O)L;p

N

S
|

s+1 Ky
14
Vi

u

w
w O | Ky
Zu v(ls + 1, w-l—l]Q21 [s+1,w]Q§’0)L2p v

This equality and Theorem 2.4 imply the relation (7) for w + 2, completing the proof.
O
Now, we compute [u, v] in terms of L, and Q3 ;.

Let a;(a) denote the i —th coefficient in p—adic expansion of a nonnegative integer a.
That means

a=ag(a)p’ +ai(@)p' +ar@p®+...,
for 0 <wj(a) < p,i =0. Weset oj(a) =0 for i <0.

Denote by I(u, v) the set of all integers a satisfying

ai(a) +aj41(a) <1, forany i,
ai(a) =0, for either i <wu ori > v—2.

The following was proved in Sum [11] for p = 2.

Proposition 4.2 Under the above notation, we have

—1_u )
Ll U] Z ( l)aLP Y+ p(p— l)an lp T —(p+ )a'

acl(u,v)

Proof The proof is by induction on v. Obviously, I(u,u + 1) = I(u,u 4+ 2) = {0}
and [u,u + 1] = Lg , uu+2] = Lé’ Qé”l. Hence, the proposition follows with
v=u-+1 and v = u + 2. From the definition of the set /(u, v), we obtain

9) Tw,v+2) =T, v+ 1)U (P’ + I(u,v)),

where p*~! + T(u,v) ={p* ' 4+a; ae I(u,v)}.
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Combining Theorem 2.4, the inductive hypothesis and the relation Q; ¢ = Lé’ 1 we
get

[u,v+2]=[u,v+ I]Qé”l —[u, v] 5,0

pV—pit
U4 -1 =L _(p+1)a v
=< E: ( 1)aL§ Plp=e 2,1; l ) 5,1

acl(u,v+1)
— ( Z (_l)aLé)”—Fp(p—l)aQ;;jl_,,l_T”u—(p+1)a) Qﬁ’,vo
ael(u,v)
= Z (—l)aLgu'H’(p_l)" Q;’?F,I_T””—(pﬂ)a
acl(u,v+1)

v+1_,u _
4 Z (_l)pv_l+aLPu+P(P—1)(PU_1+a)Qp p_lp —(p+D (V" +a)
2 2,1 .
acl(u,v)

From this equality and (9), we see that the proposition is true for v 4 2, so the proof
is completed. o
Now, we compute [u, v, v 4+ 1] in terms of L3, 03,1, 032.

Denote by J(u, v) the set of all integers a satisfying

aj(a) =1 and o;(a)+ait+1(a) +ai42(a) =2, forany i,
ai(a) =0, for either i <wu ori > v—2.

It is easy to see that for any a € J(u, v), there exists uniquely an expansion
a=ag+pt+p" T day .+ plh 4 pi Tt gy

with ig =u—3<i; <...<iy <igy1=v—1,ij41—ij =3 and a; € I(ij +3,ij41)
for0<j<k.
We define the functions by y, ¢y,p: J(u, v) — Z by setting
v—1 _ ,u
bu,v(a):u
p—1
cupl@a) =ao+a; +... +ag.

—(p+Da+pp" +...+p").

Proposition 4.3 Under the above notation, we have

“ - bu.v u,v
wovv+1l= Y (-DLY +p(p—1)a b (a) , @

acJ (u,v)
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The proof of the proposition is based on some lemmas.

Lemmad44 For0<u<wv,

Jw,v+3) =
Here, for x € Z and A C 7, we write x + A =
bu,v+3(a) =
Cu,v+3(a) =

bu,v+3(pv +a)=
Cu,v+3(pv +a)=
bu,v+3(pv + pv—l +a)=
Cu,v+3(pv + pv—l +a)=

Ju, v+2)U(p 4+ Ju, v+ 1D))U(p® + p* ' + J(u,v)).

{x4+a;aecA}.

pv—H + bu,v+2(a)s

Cup+2(a), fora € J(u,v+2),
bu,v—i—l(a)»

p¥ 4 cup+1(a), forae J(u,v+1),
bu,v(a),

cup(a), fora € J(u,v).

365

This lemma can easily be proved by computing directly from the definitions of J(u, v),

by, and ¢y y.

Lemma 4.5 For any 0 < u < v, we have

[u,v+3,v+4]=

pv—l-l
—[u,v+1,v —|-2]Q3’0

[u,v+2, v+3]Q

pvtl

Proof A direct calculation using Theorem 2.4 gives

[, v+3,v+4]=

_ pH!
=[u,v+2,v+ 3](Q3’1
+ (u. v +2027

=[u,v+2,v+3]0%,
—(u.v+ 10207
v +2105 VY
=[u,v+2, v—|—3]Q
—[u.v+1,0+2]0% Hy ot
+ (u,v+1,v+2]—[u, U+I]Vp )QPUHV(p 1)(Pv+l+pv)‘

v+2
[u.v+2,v+3]07

+ [u, v+3]Vp e

v+l
- 21

—[u,v+ l]Q )V3P
= Qz,() + Q2,1 V3p_1)

V(p l)p”+1)

p v+1 v+2

(since Q03,1
pt!

v+2 v+2

v+1
—[u,v+ ]on Vp
pvT!

1 v+1 —1)p?
(le V(P )P)
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366 Nguyén Sum

Using Theorem 2.4 and the relations Q3 = QF  + V™', 030 =020V7 ", we
obtain the lemma. O

Proof of Proposition 4.3 The proof is by inductionon v. Forv=u+1,u+2,u+3
the proposition is obvious. Suppose that it is true for v, v + 1, v + 2. Using Lemma
4.5, the inductive hypothesis and the relation Q3 ¢ = L_f - , we get

“+p(p—1 U by y42(a) HCuvt2(a)
ov+3vrd= Y (~peLgtremDagl w2l gluviate
acJ(u,v+2)
v “+p(p—1)(p¥+a) Hbu,v+1(@) HP'+cuv41(@)
+ Z (=1)? +"L§’ p(p—1)(p a)Q3’1 +1(a 13!”2 Cuvt1(a
acJ (u,v+1)
v pv=lhqy pY+p(p—1)(pV+p " +a) Abu.v(@) Heuv(@)
+ Z (=D~ r “Lj 31 3,2
acJ (u,v)
Combining this equality and Lemma 4.4, we see that the proposition holds for v 4 3.
Hence, the proposition is proved. a
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