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On the construction of permutation complexes for profinite
groups

PETER SYMONDS

Goerss, Henn, Mahowald and Rezk construct a complex of permutation modules for
the Morava stabilizer group G2 at the prime 3. We describe how this can be done
using techniques from homological algebra.

20J06; 55P60

1 Introduction

In [5], Goerss, Henn, Mahowald and Rezk consider the special extended Morava
stabilizer group G1

2
D S1

2
Ì Gal at the prime 3 and construct an exact sequence of

compact modules

0! Ind
G1

2

G24

yZ3! Ind
G1

2

SD16

yZ3.�/! Ind
G1

2

SD16

yZ3.�/! Ind
G1

2

G24

yZ3!
yZ3! 0;

where G24 is a subgroup of order 24 etc, and yZ3.�/ is a copy of yZ3 on which SD16

acts via a character �W SD16! f˙1g. They then use this to construct a certain tower
of spectra.

The aim of this note is to show how methods from the homological algebra and
representation theory of these groups can help in the algebraic part of this construction.

2 Background

Let G be a profinite group and let R be a complete noetherian local ring with finite
residue class field k of characteristic p . For example, R could be the p–adic integers.

We work in the category of compact RJGK–modules, CR.G/, (see Symonds [10] for
definitions, properties and more references).

The next result is basic, but does not seem to have appeared in the literature.
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370 Peter Symonds

Proposition 2.1 If G is a virtual pro–p–group then the Krull–Schmidt property holds
for (topologically) finitely generated modules in CR.G/, ie every such module can
be expressed as a finite sum of indecomposable modules and this decomposition is
essentially unique in the sense that the multiplicity of each isomorphism type is the
same in any such decomposition.

Proof Let H Eo G be an open normal pro–p subgroup. If M is a finitely generated
RJGK–module then k˝RJH K M is finite dimensional and we can decompose M as a
finite sum of indecomposable modules using induction on dimk k˝RJH K M .

For this to work we need to know that our induction starts, that is that if M ¤ 0 then
k ˝RJH K M ¤ 0. Let M 0 be a finite quotient of M as an H –module; there is a
surjection k˝RJH K M ! k˝RJH K M 0 . The action of H on M 0 factors through that
of a finite p–group P , and in this case it is well known that k˝RŒP �M

0 ¤ 0.

All we need to do now is to show that the endomorphism ring of a finitely generated
indecomposable module is local, because then the uniqueness of decomposition follows
formally (see, for example, Benson [1, 1.4.3]).

The proof is just a variant of the one for finite groups (see [1, 1.9]). Let J be the
Jacobson radical of RJGK. For any open normal subgroup N of G let IN denote
the augmentation ideal of RJN K. Given an endomorphism f of M 2 CR.G/ we
set Im.f1/ D \1

nD1
Im.f n/ and Ker.f1/ D fx 2 M j8N Eo G 8n � 0 9m �

0 such that f m.x/ 2 J nM C IN M g.

For each open normal subgroup N Eo G define MN DR˝RJN K M ŠM=IN M 2

CR.G=N /. Then M Š lim
 �

MN . Since M is finitely generated, MN is too. Now
f induces an endomorphism fN of MN . Define Im.f1

N
/ D \1

nD1
Im.f n

N
/ and

Ker.f1
N
/ D fx 2MN j8n � 0 9m � 0 such that f m.x/ 2 J nMN g. From the finite

group case of Fitting’s Lemma we know that MN D Im.f1
N
/˚Ker.f1

N
/.

But Im.f1/Š lim
 �

Im.f1
N
/ and Ker.f1/Š lim

 �
Ker.f1

N
/. Hence M D Im.f1/˚

Ker.f1/.

Suppose that M is indecomposable and let I be a maximal left ideal in EndCR.G/.M /

and let a be an endomorphism not in I . Then 1D baCf for some b 2EndCR.G/.M /

and f 2 I . But f is not an isomorphism, so M D Ker.f1/ and Im.f1/D 0.

Now .1Cf C� � �Cf n�1/baD 1�f n . Let N Eo G be some arbitrary open normal
pro-p subgroup. Since M is finitely generated, for sufficiently large n we have
f n.M / � JM C IN M � JM . Thus 1 � f n is onto, by the profinite version of
Nakayama’s Lemma [4, 1.4]. Also if .1� f n/.x/ D 0 then x 2 Im.f1/ D 0, so
1�f n is injective. Thus 1�f n is an isomorphism and a has a left inverse, c say.
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On the construction of permutation complexes for profinite groups 371

But cN must also be a right inverse to aN on each MN , so c is also a right inverse
and a is an isomorphism, as required.

Projective covers exist in CR.G/ (Symonds [9]), thus so do minimal projective resolu-
tions.

If S is a simple module, let PS denote the projective cover of S . The PS are precisely
the indecomposable projective modules, and any other projective is a product of them.

If there is an open normal pro–p subgroup H Eo G , then any simple module for
RJGK is the inflation of one for kŒG=H � so, in particular, there are only finitely many
simple modules up to isomorphism.

The next result is well known for finite groups.

Proposition 2.2 Suppose that M 2 CR.G/ is projective over R and let

� � � ! Pr ! � � � ! P1! P0!M

be the minimal projective resolution of M . If S is a simple module then the multiplicity
of PS in Pr is equal to dimEnd.S/ ExtrRJGK.M;S/DdimEnd.S/H r .G; .k˝R M /�˝R

S/.

Here S� denotes the dual over k , or rather the contragredient.

(If k is a splitting field for G=H , where H < G is open, normal and pro-p , then
End.S/Š k .)

Proof (cf Symonds–Weigel [11]) The multiplicity of PS in Pr is

dimEnd.S/ HomRJGK.Pr ;S/:

The fact that the projective resolution is minimal implies that the differentials in the
complex HomRJGK.P�;S/ are zero.

Combining these facts, we find that the multiplicity is dimEnd.S/ ExtrRJGK.M;S/: But
ExtrRJGK.M;S/ŠExtrRJGK.R;HomR.M;S// (see eg [1, 3.1.8]) and HomR.M;S/Š

.k˝R M /�˝R S:

From now on we assume that G is of finite virtual cohomological dimension over
R. The definition of Tate–Farrell cohomology appears in Scheiderer [8] for discrete
coefficients and in Symonds [10] for compact ones, as does the next result. (See Brown
[3] for its basic properties in the case of an abstract group.)
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372 Peter Symonds

Proposition 2.3 For M in CR.G/ or DR.G/, the Tate–Farrell cohomology yH�.G;M/

is isomorphic to the equivariant Tate–Farrell cohomology of the Quillen complex of G

with coefficients in M .

Corollary 2.4 If G has p–rank 1 (ie no subgroups isomorphic to Z=p �Z=p ) and
only finitely many conjugacy classes of subgroups isomorphic to Z=p with representa-
tives C1; : : : ;Cn then yH�.G;M /Š˚n

iD1
yH�.NG.Ci/;M / for any M in CR.G/ or

DR.G/.

A similar result for M D k also appears in Henn [7].

For M;N 2 CR.G/ we can also define Tate–Farrell Ext groups cExt�
G
.M;N /. This

allows us to define the stable category StR.G/ to have the same objects as CR.G/ but
morphism groups cExt0

G
.M;N /. We write ' for isomorphism in the stable category.

There is another description. We define the Heller translate � on CR.G/ by the
short exact sequence �M ! PM ! M , where PM denotes the projective cover
of M . We also define HomG.M;N / to be the quotient of HomCR.G/.M;N / by
the submodule of all homomorphisms that factor through a projective module. ThencExtr

G
.M;N /Š lim

�!i
HomG.�

rCiM; �iN /. In fact we only need to take i � vcd G .

For the basic properties of the stable category see Benson [1] for finite groups and [2]
for infinite abstract groups. In particular, it is a triangulated category with the inverse of
� as translation and the exact triangles coming from short exact sequences in CR.G/.

The next statement is basic to our approach, although it is just a corollary of Yoneda’s
Lemma.

Lemma 2.5 If the homomorphism f W A! B induces an isomorphism

f �W cExt0G.B;M /! cExt0G.A;M /

for all M 2 CR.G/ then f is an isomorphism in the stable category.

Definition 2.6 A module M 2 CR.G/ is cofibrant if it is projective on restriction to
some open subgroup of G .

In fact, if M is cofibrant then it is projective on restriction to any p–torsion free
subgroup.

Notice that �iM is always cofibrant if i � vcd G . If M and N are cofibrant thencExt0
G
.M;N /Š HomG.M;N /.

The definition is taken from [2], as is the next lemma. As the terminology suggests,
this is part of a the structure of a closed model category, but we do not need that here.
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Lemma 2.7 If M ' N in StR.G/ and M and N are cofibrant then there exist
projective modules P and Q such that M ˚P ŠN ˚Q in CR.G/. If M and N are
finitely generated then P and Q can be chosen to be finitely generated.

Proof Let H Eo G be open normal of finite cohomological dimension. The inclusion
of the fixed points induces a map R!RŒG=H �, which is split over H . This induces
a map M !RŒG=H �˝M Š IndG

H M , which is also split over H and where QD

IndG
H M is projective, and finitely generated if M is.

Consider the map M !Q˚N , where the first component is the map constructed
above and the second is a stable isomorphism. This map is split over H , so the cokernel,
call it P , is cofibrant, and finitely generated if M and N are.

The long exact sequence for cExt�
G
.P;�/ tells us that 0DcExt0

G
.P;P /ŠHomG.P;P /,

so P is projective and the short exact sequence splits.

3 The calculation

We set R D yZ3 , k D F3 . The Morava stabilizer group S2 at the prime 3 can be
split as a product S1

2
� yZ3 , where S1

2
is the kernel of the reduced norm. There is a

natural action of the Galois group GalDGal.F9=F3/, and we will consider the special
extended Morava stabilizer group G1

2
D S1

2
Ì Gal.

Let S1
2

be the Sylow 3–subgroup of S1
2

. It is normal in G1
2

and G1
2
D S1

2
Ì SD16 ,

where SD16 is a subgroup isomorphic to the special dihedral group of order 16. In
fact, if � denotes the generator of Gal (of order 2) there is an element ! 2 S1

2
of

order 8 such that SD16 is generated by � and ! . There is just one finite 3-subgroup,
up to conjugation. It is cyclic of order 3 and we denote it by C3 . It is contained in
a subgroup G24 of order 24, but there is no subgroup of order 48. We can, however,
choose conjugacy class representatives so that SD16\G24 DQ8 , a quaternion group
of order 8 generated by !� , which commutes with C3 , and !2 , which does not. We
refer to [5] for the details.

As a consequence, the simple modules in CyZ3
.G/ correspond to the simple modules

for SD16 over F3 . In particular there is a character � corresponding to the map
SD16! SD16=Q8 Š f˙1g, so �.�/D �.!/D�1. Define a module N1 by

0!N1! Ind
G1

2

G24

yZ3!
yZ3! 0;

where the right hand arrow is the natural augmentation.
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374 Peter Symonds

Let S be a simple module and apply Ext�
G1

2

.�;S/. We obtain the long exact sequence

� � � ! Ext�
G1

2

.yZ3;S/! Ext�
G1

2

.Ind
G1

2

G24

yZ3;S/! Ext�
G1

2

.N1;S/! � � � :

The arrow on the left is just H�.G1
2
;S/

res
�!H�.G24;S/, which is equivalent to

H�.S1
2 ;S/

SD16
res
�!H�.C3;S/

C8 or .H�.S1
2 /˝S/SD16

res
�! .H�.C3/˝S/C8

or, more naturally,

.H�.S1
2 /˝S/SD16

res
�! ..H�.C3/˚H�.C 03//˝S/SD16 ;

where C 0
3

is the conjugate of C3 by ! . (Where no coefficients for the cohomology are
indicated they are just F3 .)

Now, for any finite F3SD16 –module A, the number

dimEnd.S/.A˝S/SD16 Š dimEnd.S�/ HomSD16
.S�;A/

is just the multiplicity of the dual S� as a summand of A (A is completely re-
ducible). So we are just decomposing the F3SD16 –modules and identifying the map
�W H�.S1

2
/

res
!H�.C3/˚H�.C 0

3
/. But this factors as

H�.S1
2 /

res
!H�.CS1

2
.C3//˚H�.CS1

2
.C 03//

res
!H�.C3/˚H�.C 03/:

A standard calculation [5; 7; 9] shows that CS1
2
.C3/Š yZ3�C3 . Its cohomology is just

H�.CS1
2
.C3//ŠH�.Z3/˝H�.C3/ŠE.a1/˝.F3Œy1�˝E.x1//ŠF3Œy1�˝E.x1; a1/;

where E denotes an exterior algebra, a1;x1 are in degree 1 and y1 is in degree 2.
The restriction to C3 just kills a1 . For CS1

2
.C 0

3
/ the result is similar, but we use the

subscript 2 for the generators, which we take to be the images of those in the first case
under conjugation by ! .

Henn [7] shows that the first of the maps above is injective. Its image is generated
as an algebra by x1;x2;y1;y2; .x1a1�x2a2/;y1a1;y2a2 . The action of SD16 can
now be calculated and is given in [5]:

!�.xi/D�.�1/ixiC1; !�.yi/D�.�1/iyiC1; !�.ai/D�.�1/iaiC1;

��.xi/D�xiC1; ��.yi/D�yiC1; ��.ai/D�aiC1;

(where the subscripts are taken modulo 2).

The map � is also explicitly calculated in Gorbounov–Siegel–Symonds [6].
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From this we can read off that � is surjective, except in degree 0, where the cokernel
is F3.�/ as an SD16 –module. It is also injective in degrees 0 and 1. In degree 2 the
kernel is generated by x1a1 � x2a2 , which gives a copy of F3.�/ again. In degree
3 the kernel is generated by y1a1 and y2a2 , so consists of two simples: one trivial
generated by y1a1Cy2a2 and a copy of F3.�/ generated by y1a1�y2a2 .

Thus the minimal projective resolution of N1 starts

� � � ! PF3
˚PF3.�/! PF3.�/! PF3.�/!N1! 0:

Now PF3.�/ Š IndG
SD16

yZ3.�/, because the latter is projective and, for any simple S ,

HomG.IndG
SD16

yZ3.�/;S/Š HomSD16
.yZ3.�/;S/;

which is non-zero only for S Š F3.�/ and then it has dimension 1. So if we define
N3 D�

2N1 we have an exact sequence

0!N3! IndG
SD16

yZ3.�/! IndG
SD16

yZ3.�/!N1! 0;

where N3 has projective cover PF3
˚PF3.�/ .

If we work stably we can obtain �2N1 another way. Recall that C3 is the only
cyclic subgroup of order 3 in G1

2
up to conjugacy. Write N DN

G1
2
.C3/; because Q8

normalizes C3 it also normalizes CS1
2
.C3/, and since the centralizer can be of index

at most 2 in the normalizer we see that N Š C3 �
yZ3 Ì Q8 .

From Corollary 2.4 we see that

resW yH�.G1
2;M /! yH�.N;M /

is an isomorphism, or equivalently that the augmentation map �W Ind
G1

2

N
yZ3!

yZ3 in-
duces an isomorphism cExt

�

G1
2
.yZ3;M /! cExt

�

G1
2
.Ind

G1
2

N
yZ3;M /, for any M 2 CyZ3

.G/.
It follows from Lemma 2.5 that � is a stable isomorphism.

So stably our complex starts

Ind
G1

2

G24

yZ3! Ind
G1

2

N
yZ3;

which is Ind
G1

2

N
applied to the natural augmentation map IndN

G24

yZ3!
yZ3 over N .

But the subgroup D <G24 generated by C3 and !� is normal in N , so N acts on
IndN

G24

yZ3 via its image N=D Š yZ3 Ì C2 , the infinite virtually 3-adic dihedral group,
so we can resolve to obtain

(1) 0! IndN
G24

yZ3.�/! IndN
G24

yZ3!
yZ3! 0;
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where � W Q8! f˙1g is the character with �.!�/D 1 and �.!2/D�1.

This can be seen systematically using cohomology, as before. More explicitly, the
non-zero map on the left is determined by 1˝ � 7! .g � g�1/˝ 1, where g is a
generator of the group yZ3 and � is considered as a basis element of yZ3.�/. The
sequence is exact because on restriction to yZ3 it is just a variation on the standard
projective resolution for yZ3 .

Similarly, since G24 has a quotient G24=h!�i ŠD6 , the dihedral group of order 6,
we also have an exact sequence

0! yZ3! IndG24

Q8

yZ3! IndG24

Q8

yZ3.�/! yZ3.�/! 0;

with middle map determined by 1˝ 1 7! .c � c�1/˝ � where c is a generator of C3 .

Inducing this to N gives

(2) 0! IndN
G24

yZ3! IndN
Q8

yZ3! IndN
Q8

yZ3.�/! IndN
G24

yZ3.�/! 0:

Now splice (1) and (2) together at IndN
G24

yZ3.�/ and induce up to G1
2

to obtain

0! Ind
G1

2

G24

yZ3! Ind
G1

2

Q8

yZ3! Ind
G1

2

Q8

yZ3.�/! Ind
G1

2

G24

yZ3! Ind
G1

2

N
yZ3! 0:

The second and third non-zero terms are projective, so stably Ind
G1

2

G24

yZ3 'N3 . But
Ind

G1
2

G24

yZ3 is cofibrant by construction and, on restriction to an open torsion free
subgroup, N3 is a third syzygy hence also cofibrant, so by Lemma 2.7 there are finitely
generated projective modules P and Q such that Ind

G1
2

G24

yZ3˚P ŠN3˚Q.

Let S be a simple yZ3JG1
2
K–module (recall that these correspond to simple SD16 –

modules). Then Hom
G1

2
.Ind

G1
2

G24

yZ3;S/Š HomG24
.yZ3;S/. For this to be non-zero we

need Res
G1

2

G24
S Š F3 , so S must be either F3 or F3.�/; in both cases the dimension of

the Hom group is 1.

It follows that the projective cover of Ind
G1

2

G24

yZ3 is PF3
˚PF3.�/ . Now, taking projective

covers in Ind
G1

2

G24

yZ3˚P ŠN3˚Q, we obtain

PF3
˚PF3.�/˚P Š PF3

˚PF3.�/˚Q;

so P ŠQ and thus Ind
G1

2

G24

yZ3 ŠN3 , by Proposition 2.1.

Remark This construction generalizes to G1
p�1

for larger primes p . It is simpler to
discuss if we restrict to the Sylow p subgroup. We now have N D Cp � yZ

p�2
p . Since

yZ
p�2
p has cohomological dimension p� 2, we could take its projective resolution to

the penultimate term and inflate to N . We then splice on a part induced from a partial
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On the construction of permutation complexes for profinite groups 377

projective resolution of yZ3 over Cp that is long enough to make the last term cofibrant.
It is not clear whether this has any significance in homotopy theory.

Remark The Tate–Farrell cohomology of G1
p�1

is easy to compute (see Symonds
[9]). It is the low-dimensional cohomology that is difficult to calculate, but that is
precisely what is needed to identify the projective modules in the complex. If we are
satisfied with a complex with unknown projectives then the construction is much easier
and only depends on the structure of N .
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