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Stable splitting and cohomology of p–local finite groups over
the extraspecial p–group of order p3 and exponent p

NOBUAKI YAGITA

Let p be an odd prime. Let G be a p–local finite group over the extraspecial p–
group p1C2

C . In this paper we study the cohomology and the stable splitting of their
p–complete classifying space BG .

55P35, 57T25; 55R35, 57T05

1 Introduction

Let us write by E the extraspecial p–group p1C2
C of order p and exponent p for

an odd prime p . Let G be a finite group having E as a p–Sylow subgroup, and
BG (D BG^p ) the p–completed classifying space of G . In papers by Tezuka and
Yagita [11] and Yagita [13; 14], the cohomology and stable splitting for such groups are
studied. In many cases non isomorphic groups have homotopy equivalent p–completed
classifying spaces, showing that there are not too many homotopy types of BG , as
was first suggested by C B Thomas [12] and D Green [3].

Recently, Ruiz and Viruel [9] classified all p–local finite groups for the p–group
E . Their results show that each classifying space BG is homotopic to one of the
classifying spaces which were studied in [11] or classifying spaces of three exotic
7–local finite groups. (While descriptions in [11] of H�.2F4.2/

0/.3/ H�.Fi 0
24
/.7/

and H�.M/.13/ contained some errors.)

In Section 2, we recall the results of Ruiz and Viruel. In Section 3, we also recall the
cohomology H�.BEIZ/=.p;

p
0/. In this paper, we simply write

H�.BG/DH�.BGIZ/=.p;
p

0/

and study them mainly. The cohomology H odd.BGIZ.p// and the nilpotents parts
in H even.BGIZ.p// are given in Section 11. Section 4 is devoted to the explanations
of stable splitting of BG according to Dietz, Martino and Priddy. In Section 5, and
Section 6, we study cohomology and stable splitting of BG for a finite group G having
a 3–Sylow group .Z=3/2 or E D 31C2

C respectively. In Section 7 and Section 8, we
study cohomology of BG for groups G having a 7–Sylow subgroup E D 71C2

C , and

Published: 14 November 2007 DOI: 10.2140/gtm.2007.11.399



400 Nobuaki Yagita

the three exotic 7–local finite groups. In Section 9, we study their stable splitting. In
Section 10 we study the cohomology and stable splitting of the Monster group M for
p D 13.

2 p–local finite groups over E

Recall that the extraspecial p–group p1C2
C has a presentation as

p1C2
C D ha; b; cjap

D bp
D cp

D 1; Œa; b�D c; c 2 Centeri

and denote it simply by E in this paper. We consider p–local finite groups over E ,
which are generalization of groups whose p–Sylow subgroups are isomorphic to E .

The concept of the p–local finite groups arose in the work of Broto, Levi and Oliver [1]
as a generalization of a classical concept of finite groups. The p–local finite group is
stated as a triple hS;F;Li where S is a p–group, F is a saturated fusion system over
a centric linking system L over S (for a detailed definition, see [1]). Given a p–local
finite group, we can construct its classifying space BhS;F;Li by the realization jLj^p .
Of course if hS;F;Li is induced from a finite group G having S as a p–Sylow
subgroup, then BhS;F;Li Š BG . However note that in general, there exist p–local
finite groups which are not induced from finite groups (exotic cases).

Ruiz and Viruel recently determined hp1C2
C ;F;Li for all odd primes p . We can check

the possibility of existence of finite groups only for simple groups and their extensions.
Thus they find new exotic 7–local finite groups.

The p–local finite groups hE;F;Li are classified by OutF .E/, number of F ec –
radical p–subgroup A (where AŠ .Z=p/2 ), and AutF .A/ (for details see [9]). When
a p–local finite group is induced from a finite group G , then we see easily that
OutF .E/ŠWG.E/.DNG.E/=E:CG.E// and AutF .A/ŠWG.A/. Moreover A is
F ec –radical if and only if AutF .A/ � SL2.Fp/ by [9, Lemma 4.1]. When G is a
sporadic simple group, F ec –radical follows p–pure.

Theorem 2.1 (Ruiz and Viruel [9]) If p 6D 3; 7; 5; 13, then a p–local finite group
hE;F;Li is isomorphic to one of the following types.

(1) EWW for W � Out.E/ and .jW j;p/D 1,

(2) p2WSL2.Fp/:r for r j.p� 1/,

(3) SL3.Fp/WH for H Š Z=2;Z=3 or S3:

When p D 3; 5; 7 or 13, it is either of one of the previous types or of the following
types.
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(5) 2F4.2/
0;J4 , for p=3,

(6) T h for p=5,

(7) He;HeW 2;Fi 024;Fi24;O
0N;O 0N W 2, and three exotic 7–local finite groups

for p=7,

(8) M for p=13.

For case (1), we know that H�.EWW /ŠH�.E/W . Except for these extensions and
exotic cases, all H even.GIZ/.p/ are studied by Tezuka and Yagita [11]. In [13], the au-
thor studied ways to distinguish H odd.GIZ/.p/ and H�.GIZ=p/ from H even.GIZ/.p/.
The stable splittings for such BG are studied in [14]. However there were some errors
in the cohomology of 2F4.2/

0;Fi 024;M. In this paper, we study cohomology and
stable splitting of BG for p D 3,7 and 13 mainly.

3 Cohomology

In this paper we mainly consider the cohomology H�.BGIZ/=.p;
p

0/ where
p

0 is
the ideal generated by nilpotent elements. So we write it simply

H�.BG/DH�.BGIZ/=.p;
p

0/:

Hence we have

H�.BZ=p/Š Z=pŒy�; H�.B.Z=p/2/Š Z=pŒy1;y2� with jyj D jyi j D 2:

Let us write .Z=p/2 as A and let an A–subgroup of G mean a subgroup isomorphic
to .Z=p/2 .

The cohomology of the extraspecial p group E D p1C2
C is well known. In particular

recall (Leary [6] and Tezuka–Yagita [11])

(3–1) H�.BE/Š
�
Z=pŒy1;y2�=.y

p
1

y2�y1y
p
2
/˚Z=pfC g

�
˝Z=pŒv�;

where jyi j D 2; jvj D 2p; jC j D 2p � 2 and Cyi D y
p
i , C 2 D y

2p�2
1

C y
2p�2
2

�

y
p�1
1

y
p�1
2

. In this paper we write y
p�1
i by Yi , and vp�1 by V , eg C 2D Y 2

1
CY 2

2
�

Y1Y2 . The Poincare series of the subalgebra generated by yi and C are computed

1� tpC1

.1� t/.1� t/
C tp�1

D
.1C � � �C tp�1/C tp�1

.1� t/
D
.1C � � �C tp�1/2� t2p�2

.1� tp�1/
:

From this Poincare series and (3–1), we get the another expression of H�.BE/

(3–2) H�.BE/Š Z=pŒC; v�
n
yi

1y
j
2
j0� i; j � p� 1; .i; j / 6D .p� 1;p� 1/

o
:
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The E conjugacy classes of A–subgroups are written by

Ai D hc; abi
i for 0� i � p� 1

A1 D hc; bi:

Letting H�.BAi/ŠZ=pŒy;u� and writing i�
Ai
.x/DxjAi for the inclusion iAi

WAi�E ,
the restriction images are given by

y1jAi D y for i 2 Fp;y1jA1 D 0; y2jAi D iy for i 2 Fp;y2jA1 D y;(3–3)

C jAi D yp�1; vjAi D up
�yp�1u for all i:

For an element g D
� ˛ ˇ
 ı

�
2GL2.Fp/, we can identify GL2.Fp/Š Out.E/ by

g.a/D a˛b ;g.b/D aˇbı; g.c/D cdet.g/:

Then the action of g on the cohomology is given (see Leary [6] and Tezuka–Yagita
[11, page 491]) by

(3–4) g�C D C; g�y1 D ˛y1Cˇy2; g�y2 D y1C ıy2; g�v D .det.g//v:

Recall that A is F ec –radical if and only if SL2.Fp/ �WG.A/ (see Ruiz–Viruel [9,
Lemma 4.1]).

Theorem 3.1 (Tezuka–Yagita [11, Theorem 4.3], Broto–Levi–Oliver [1]) Let G

have the p–Sylow subgroup E , then we have the isomorphism

H�.BG/ŠH�.BE/WG.E/\AWF ec�radical i��1
A H�.BA/WG.A/:

In [1] and [11], proofs of the above theorem are given only for H�.BGIZ.p//. A
proof for H�.BG/ is explained in Section 11.

4 Stable splitting

Martino–Priddy prove the following theorem of complete stable splitting.

Theorem 4.1 (Martino–Priddy [7]) Let G be a finite group with a p–Sylow subgroup
P . The complete stable splitting of BG is given by

BG �_ rank A.Q;M /XM

where indecomposable summands XM range over isomorphic classes of simple
Fp ŒOut.Q/�–modules M and over isomorphism classes of subgroups Q� P .
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Remark This theorem also holds for p–local finite groups over P , because all
arguments for the proofs are done about the induced maps from some fusion systems
of P on stable homotopy types of related classifying spaces.

For the definition of rank A.Q;M / see Martino and Priddy [7]. In particular, when Q

is not a subretract (that is not a proper retract of a subgroup) of P (see [7, Definition
2]) and when WG.Q/� Out.Q/ŠGLn.Fp/ (see [7, Corollary 4.4 and the proof of
Corollary 4.6]), the rank of A.Q;M / is computed by

rank A.Q;M /D
X

dimFp
. xWG.Qi/M /;

where xWG.Qi/D
P

x2WG.Qi /
x in Fp ŒGLn.Fp/� and Qi ranges over representatives

of G –conjugacy classes of subgroups isomorphic to Q.

Recall that Out.E/ŠOut.A/ŠGL2.Fp/. The simple modules of G DGL2.Fp/ are
well known. Let us think of A as the natural two-dimensional representation, and det
the determinant representation of G . Then there are p.p� 1/ simple Fp ŒG�–modules
given by Mq;k D S.A/q˝ .det/k for 0� q � p� 1; 0� k � p� 2. Harris and Kuhn
[4] determined the stable splitting of abelian p–groups. In particular, they showed

Theorem 4.2 (Harris–Kuhn [4]) Let QXq;k D XMq;k
(resp. L.1; k/) identifying

Mq;k as an Fp ŒOut.A/�–module (resp. M0;k as an Fp ŒOut.Z=p/�–module). There is
the complete stable splitting

BA�_q;k.qC 1/ QXq;k _q 6D0 .qC 1/L.1; q/;

where 0� q � p� 1, 0� k � p� 2.

The summand L.1;p� 1/ is usually written by L.1; 0/.

It is also known HC.L.1; q//Š Z=pŒyp�1�fyqg: Since we have the isomorphism

H 2q.BA/Š .Z=p/qC1
ŠH 2q..qC 1/L.1; q//; for 1� q � p� 1;

we get H�. QXq;k/Š 0 for � � 2.p� 1/.

Lemma 4.3 Let H be a finite solvable group with .p; jH j/D 1 and M be an Fp ŒH �–
module. Then we have xH .M /D .

P
x2H x/M ŠM H ŠH 0.H IM /.

Proof First assume H D Z=s and x 2 Z=s its generator. Then

xH .M /D .1CxC � � �Cxs�1/H:
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Since .1�xs/D0, we see Ker.1�x/� Image. xH /. The facts that M is a Z=p–module
and .jH j;p/D 1 imply H�.H IM /D 0 for �> 0. Hence

Ker.1�x/=Image.1C � � �Cxs�1/ŠH 1.H IM /D 0:

Thus we have xH .M /D Ker.1�x/DM H .

Suppose that H is a group such that

0!H 0!H
�
!H 00! 0

and that xH 0.M 0/D .M 0/H
0

(resp. xH 00.M 00/D .M 00/H
00

) for each Z=pŒH 0�–module
M 0 (resp. Z=pŒH 00�–module M 00 ). Let � be a (set theoretical) section of � and
denote �. xH 00/D

P
x2H 00 �.x/ 2 Fp ŒH �. Then

xH .M /D �. xH 00/ xH 0.M /D �. xH 00/.M H 0/D xH 00.M H 0/D .M H 0/H
00

DM H

here the third equation follows from that we can identify M H 0 as an Fp ŒH
00�–module.

Thus the lemma is proved.

It is known from a result of Suzuki [10, Chapter 3 Theorem 6.17] that any subgroup
of SL2.Fpn/, whose order is prime to p is isomorphic to a subgroup of Z=s , 4S4 ,
SL2.F3/, SL2.F5/ or

Q4n D hx;yjx
n
D y2;y�1xy D x�1

i:

Corollary 4.4 Let H � GL2.Fp/ with .jH j;p/ D 1 and H do not have a sub-
group isomorphic to SL2.F3/ nor SL2.F5/. Let G D AWH and let us write BG �

_q;k Qn.H /q;k QXq;k _q0 Qm.H /q0L.1; q
0/: Then

Qn.H /q;k D rankp H 0.H IMq;k/;

Qm.H /q0 D rankp H 2q0.BG/:

In particular Qn.H /q;0 D rankp H 2q.BG/.

Proof Since H�. QXq;k/ Š 0 for � � 2.p � 1/, it is immediate that Qm.H /q0 D

rankp H 2q0.G/. Since GL2.Fp/Š SL2.Fp/:F
�
p and F�p Š Z=.p� 1/, each subgroup

H in the above satisfies the condition in Lemma 4.3. The first equation is immediate
from the lemma.

Next consider the stable splitting for the extraspecial p–group E . Dietz and Priddy
prove the following theorem.
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Theorem 4.5 (Dietz–Priddy [2]) Let Xq;k DXMq;k
(resp. L.2; k/, L.1; k/) iden-

tifying Mq;k as an Fp ŒOut.E/�–module (resp. Mp�1;k as an Fp ŒOut.A/�–module,
Fp ŒOut.Z=p/�–module). There is the complete stable splitting

BE �_q;k.qC 1/Xq;k _k .pC 1/L.2; k/_q 6D0 .qC 1/L.1; q/_L.1;p� 1/

where 0� q � p� 1, 0� k � p� 2.

Remark Of course QXq;k is different from Xq;k but QXp�1;k DL.2; k/.

The number of L.1; q/ for 1� q<p�1 is given by the following. Let us consider the
decomposition E=hci Š xAi ˚

xA�i where xAi D habii and xA�0 D
xA1 . We consider

the projection pri W E!
xAi : Let x 2H 1.B xAi IZ=p/DHom. xAi ;Z=p/ be the dual of

abi . Then

pr�i x.a/D x.pri.a//D x.pri.abiab�i/1=2/D x..abi/1=2/D 1=2;

pr�i x.b/D x.pri.abi.ab�i/�1/1=.2i//D 1=.2i/:

Hence for ˇ.x/ D y , we have pr�i .y/ D 1=2y1 C 1=.2i/y2 . Therefore the k C 1

elements .1=2y1 C 1=.2i/y2/
k ; i D 0; : : : ; k form a base of H 2k.E=hciIZ=p/ Š

.Z=p/kC1 for k<p�1. Thus we know the number of L.1; k/ is kC1 for 0<k<p�1.

Recall that

H 2q.BE/Š

(
.Z=p/qC1 ŠH 2q..qC 1/L.1; q// for 0� 2� p� 2

.Z=p/qC2 ŠH 2p�2..pC 1/L.1; 0// for q D p� 1:

This shows H�.Xq;k/Š 0 for � � 2p� 2 since so is L.2; k/. The number n.G/q;k
of Xq;k is only depend on WG.E/DH . Hence we have the following corollary.

Corollary 4.6 Let G have the p–Sylow subgroup E and WG.E/DH . Let

BG �_n.G/q;kXq;k _m.G; 2/kL.2; k/_m.G; 1/kL.1; k/:

Then n.G/q;k D Qn.H /q;k and m.G; 1/k D rankp H 2k.G/.

Let WG.E/ D H . We also compute the dominant summand by the cohomology
H�.BE/H ŠH�.B.EWH //. Let us write the Z=p–module

Xq;k.H /DS.A/q˝vk
\H�.B.EWH // wi th S.A/qDZ=pfy

q
1
;y

q�1
1

y2; : : : ;y
q
2
g:

Since the module Z=pfvkg is isomorphic to the H –module detk , we have the following
lemma.
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Lemma 4.7 The number nq;k.G/ of Xq;k in BG is given by rankp.Xq;k.WG.E///.

Next problem is to seek m.G; 2/k . The number pC1 for the summand L.2; k/ in BE

is given as follows. For each E–conjugacy class of A–subgroup Ai D hc; abii; i 2

Fp [1, we see

WE.Ai/DNE.Ai/=Ai DE=Ai Š Z=pfbg b�W abi
7! abic:

Let uD
�

1 1
0 1

�
in GL2.Fp/ and U D hui the maximal unipotent subgroup. Then we

can identify WE.Ai/ Š U by b 7! u. For ys
1
yl

2
2 Mq;k (identifying H�.BA/ Š

S�.A/D Z=pŒy1;y2�), we can compute

xWE.A/y
s
1yl

2 D.1CuC � � �Cup�1/ys
1
yl

2
D

p�1X
iD0

.y1C iy2/
syl

2

D
P

i

P
t

�
s
t

�
i tys�t

1
yt

2
yl

2
D

X
t

�
s
t

�X
i

i tys�t
1 ytCl

2
:

Here
Pp�1

iD0
i t D 0 for 1� t � p� 2, and D�1 for t D p� 1. Hence we know

dimp
xWG.Ai/Mq;k D

(
0 for 1� q � p� 2

1 for q D p� 1:

Thus we know that BE has just one L.2; k/ for each E–conjugacy A–subgroup Ai .

Lemma 4.8 Let A be an F ec –radical subgroup, ie WG.A/ � SL2.Fp/. Then
xWG.A/.Mq;k/D 0 for all k and 1� q � p� 1.

Proof The group SL2.Fp/ is generated by u D
�

1 1
0 1

�
and u0 D

�
1 0
1 1

�
. We know

Ker.1�u/ŠZ=pŒy
p
1
�y

p�1
2

y1;y2� and Ker.1�u0/ŠZ=pŒy
p
2
�y

p�1
1

y2;y1�. Hence
we get .Ker.1�u/\Ker.1�u0//� Š 0 for 0<� � p� 1.

Proposition 4.9 Let G have the p–Sylow subgroup E . The number of L.2; 0/ in
BG is given by

m.G; 2/0 D ]G.A/� ]G.F
ecA/

where ]G.A/(resp.]G.F
ecA/) is the number of G –conjugacy classes of A–subgroups

(resp. F ec –radical subgroups).

Proof Let us write KDEWWG.E/ and H�.BE/WG.E/DH�.BK/. From Theorem
3.1, we have

(4–1) H�.BG/ŠH�.BK/\AWF ec�radical i��1
A H�.BA/WG.A/:
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Let A be an A–subgroup of K and x 2 WK .A/. Recall A D hc; abii for some i .
Identifying x as an element of NG.A/�EW Out.E/ We see xhci D hci from (3–4)
and since hci is the center of E . Hence

WK .A/� B D U W .F�p/
2 the Borel subgroup:

So we easily see that xWK .y
p�1
1

/D �y
p�1
2

for some � 6D 0 follows from b�y
p�1
i D

y
p�1
i for b D diagonal 2 .Fp/

�2 and the arguments just before Lemma 4.8. We also
see xWK .y

p�1�i
1

yi
2
/ D 0 for i>0. Hence we have m.K; 2/0 D ]K .A/. From the

isomorphism (4–1), we have m.G; 2/0 D ]K .A/� ]G.F
ecA/.

On the other hand m.G; 2/0 � ]G.A/ � ]G.F
ecA/ from the above lemma. Since

]K .A/� ]G.A/, we see that ]K .A/D ]G.A/ and get the proposition.

Corollary 4.10 Let G have the p–Sylow subgroup E . The number of L.1; 0/ in
BG is given by

m.G; 1/p�1 D rankp H 2.p�1/.G/D ]G.A/� ]G.F
ecA/:

Proof Since L.1; 0/ D L.1;p � 1/ is linked to L.2; 0/, we know m.G; 1/p�1 D

m.G; 2/0 .

Lemma 4.11 Let � 2 F�p be a primitive .p� 1/th root of 1 and G �EWh diag.�; �/i.
If �3k 6D 1, then BG does not contain the summand L.2; k/, ie m.G; 2/k D 0.

Proof It is sufficient to prove the case G DEWh diag.�; �/i. Let G DEWh diag.�; �/i.
Recall Ai D hc; abii and

diag.�; �/W abi
7! .abi/� ; c 7! c�

2

:

So the Weyl group is WG.Ai/D U W h diag.�2; �/i. For v D �y
p�1
1
C � � � 2Mq;k , we

have

xWG.Ai/v D

p�2X
iD0

.�3i/k diag.�2i ; �i/.1C � � �Cup�1/v D

p�2X
iD0

�3ik�y
p�1
2

:

Thus we get the lemma from
Pp�2

iD0
�3ik D 0 for 3k 6D 0 mod .p � 1/ and D �1

otherwise.
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5 Cohomology and splitting of B.Z=3/2

In this section, we study the cohomology and stable splitting of BG for G having a
3–Sylow subgroup .Z=3/2 DA. In this and next sections, p always means 3. Recall
Out.A/ŠGL2.F3/ and Out.A/0 consists the semidihedral group

SD16 D hx;yjx
8
D y2

D 1;yxy�1
D x3

i:

Every 3–local finite group G over A is of type AWW; W � SD16 . There is the
SD16 –conjugacy classes of subgroups(here B � C means B � C )

SD16

8̂<̂
:
 �Q8 � Z=4

 � Z=8 � Z=4 � Z=2 � 0

 �D8 � Z=2˚Z=2 � Z=2

We can take generators of subgroups in GL2.F3/ by the matrices

Z=8D hli;Q8 D hw; ki;D8 D hw
0; ki;Z=4D hwi;

Z=4D hki;Z=2˚Z=2D hw0;mi;Z=2D hmi;Z=2D hw0i;

where l D
�

0 1
1 �1

�
, w D

�
0 1
�1 0

�
, k D l2 D

�
1 �1
�1 �1

�
, w0 D wl D

�
1 �1
0 �1

�
and m D

w2 D k2 D
�
�1 0
0 �1

�
. Here we note that k and w are GL2.F3/–conjugate, in fact

uku�1 D w . Hence we note that

H�.B.AW hki//ŠH�.B.AW hwi//:

The cohomology of A is given H�.BA/Š Z=3Œy1;y2�, and the following are imme-
diately

H�.BA/hmi Š Z=3Œy2
1 ;y

2
2 �f1;y1y2g H�.BA/hw

0i
Š Z=3Œy1Cy2;y

2
2 �:

Let us write Yi D y2
i and t D y1y2 . The k –action is given Y1 7! Y1 C Y2 C t ,

Y2 7! Y1CY2� t; t 7! �Y1CY2: So the following are invariant

aD�Y1CY2C t; a1 D Y1.Y1CY2C t/; a2 D Y2.Y1CY2� t/; b D t.Y1�Y2/:

Here we note that a2 D a1C a2 and b2 D a1a2: We can prove the invariant ring is

H�.BA/hki Š Z=3Œa1; a2�f1; a; b; abg:

Next consider the invariant under Q8 D hw; ki. The action for w is a 7! �a; a1$

a2; b 7! b . Hence we get

H�.BA/Q8 Š Z=3Œa1C a2; a1a2�f1; bgf1; .a1� a2/ag:
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Let us write S D Z=3Œa1C a2; a1a2� and a0 D .a1� a2/a. The action for l is given
l W Y1 7!Y2 7!Y1CY2C t 7!Y1CY2� t 7!Y1: Hence l W a 7!�a; a1$ a2; b 7!�b .
Therefore we get H�.BA/hli Š Sf1; a0; ab; .a1� a2/bg:

The action for w0W Y1 7!Y1CY2C t; Y2 7!Y2 , implies that w0W a 7! a; ai 7! ai ; b 7!

�b . Then we can see

H�.BA/D8 DH�.BA/hk;w
0i
Š Z=3Œa1; a2�f1; ag Š Sf1; a; a1; a

0
g:

We also have

H�.BA/SD16 ŠH�.BA/Q8 \H�.BA/Z=8 Š Sf1; a0g:

Recall the Dickson algebra DA D Z=3Œ QD1; QD2� Š H�.BA/GL2.F3/ where QD1 D

Y 3
1
C Y 2

1
Y2 C Y1Y 2

2
C Y 3

2
D .a2 � a1/a D a0 and QD2 D .y

3
1
y2 � y1y3

2
/2 D a1a2 .

Using a2 D .a1C a2/ and QD2
1
D a6� a1a2a2 , we can write

H�.BA/SD16 Š Z=3Œa2; QD2�f1; QD1g ŠDAf1; a2; a4
g:

Theorem 5.1 Let G D .Z=3/2WH for H � SD16 . Then BG has the stable splitting
given by

QX0;0
 SD16

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

QX0;1
 � Q8

QX2;1
 � Z=8

QX2;0_
QX0;1_L.1;0/
 � Z=4

2 QX2;0_2 QX2;1_2L.1;0/
 � Z=2

2 QX1;0_2 QX1;1_2L.1;1/
 � 0

QX2;0_L.1;0/
 � D8

QX2;0_
QX2;1_L.1;0/
 � Z=2˚Z=2

QX1;0_
QX1;1_L.1;1/
 � Z=2

where
QX1
 � � �

QXs
 H means B..Z=3/2WH /� QX1 _ � � � _

QXs .

For example

B.EWSD16/� QX0;0; B.EWQ8/� QX0;0 _
QX0;1; B.EWZ=8/� QX0;0 _

QX2;1:

Main parts of the above splittings are given by the author in [14, (6)] by direct com-
putations of xWG.A/ (see [14, page 149]). However we get the theorem more easily
by using cohomology here. For example, let us consider the case G D AW hki. The
cohomology

H 0.BG/Š Z=3; H 2.BG/Š 0;H 4.BG/Š Z=3

implies that BG contains just one QX0;0; QX2;0;L.1; 0/ but does not QX1;0;L.1; 1/.
Since det.k/D 1, we also know that QX0;1; QX2;1 are contained. So we can see

B.AWZ=4/� QX0;0 _
QX0;1 _

QX2;0 _
QX2;1 _L.1; 0/:
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Next consider the case G0 D AW hli. The fact H 4.G/ Š 0 implies that BG0 does
not contain QX2;0;L.1; 0/. The determinant det.l/D�1, and l W a 7! �a shows that
BG0 contains QX2;1 but does not contain QX0;1 . Hence we know BG0 � QX0;0 _

QX2;1 .
Moreover we know BAWSD16 �

QX0;0 since wW a!�a but det.w/ D 1. Thus we
have the graph

QX0;0

 SD16

QX2;1

 � Z=8
QX2;0_ QX0;1_L.1;0/

 � Z=4:

Similarly we get the other parts of the above graph.

Corollary 5.2 Let S D Z=3Œa1C a2; a1a2�. Then we have the isomorphisms

H�. QX0;0/Š Sf1; QD1g

H�. QX0;1/Š Sfb; QD1bg

H�. QX2;1/Š Sfab; .a1� a2/bg

H�. QX2;0 _L.1; 0//Š Sfa; a1� a2g ŠDAfa; a2; a3
g:

Here we write down the decomposition of cohomology for a typical case

H�.BA/hki Š Sf1; a1� a2gf1; agf1; bg

Š Sf1; a.a1� a2/; b; ba.a1� a2/; ab; .a1� a2/b; a; .a1� a2/g

ŠH�. QX0;0/˚H�. QX0;1/˚H�. QX2;1/˚H�. QX2;0 _L.1; 0//:

6 Cohomology and splitting of B31C2
C

.

In this section we study the cohomology and stable splitting of BG for G having a
3–Sylow subgroup E D 31C2

C . In the splitting for BE , the summands Xq;k are called
dominant summands. Moreover the summands L.2; 0/_L.1; 0/ is usually written by
M.2/.

Lemma 6.1 If G � EW h diag.�1;�1/i identifying Out.E/ Š GL2.F3/ and G has
E as a 3–Sylow subgroup, then

BG � .dominant summands/_ .]G.A/� ]G.F
ecA/.M.2//:

Proof From Lemma 4.11, we know m.G; 2/1 D 0 ie L.2; 1/ is not contained. The
summand L.1; 1/ is also not contained, since H 2.BE/h diag.�1;�1/i Š 0. The lemma
is almost immediately from Proposition 4.9 and Corollary 4.10.
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Theorem 6.2 If G has a 3–Sylow subgroup E , then BG is homotopic to the clas-
sifying space of one of the following groups. Moreover the stable splitting is given

by the graph so that
X1
 � � �

Xs
 G means BG � X1 _ � � � _Xi and EH D EWH for

H � SD16

X0;0
 J4

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

M.2/
 ESD16

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

X0;1
 EQ8

X2;1
 EZ=8

X2;0_X0;1
_ M.2/
 EZ=4

2X2;0_2X2;1

_2M.2/
 EZ=2

2X1;0_2X1;1_

4L.2;1/_2L.1;1/
 E

X2;0_M.2/
 ED8

X2;0_X2;1_M.2/
 E.Z=2/2

X1;0_X1;1_

2L.2;1/_L.1;1/
 EZ=2

X2;0
 2F4.2/

0
M.2/
 M24

X2;0_X2;1
 M12

M.2/
 F2

3
WGL2.F3/

X1;0_X1;1_

L.2;1/_L.1;1/
 F2

3
WSL2.F3/

Proof All groups except for E ,EW hw0i and F2
3
WSL2.F3/ contain EW h diag.�1;�1/i.

Hence we get the theorem from Corollary 4.4, Theorem 5.1 and Lemma 6.1, except for
the place for H�.BEW hw0i/ and H�.F2

3
WSL2.F3//.

Let G D EW hw0i. Note w0Wy1 7! y1 � y2;y2 7! �y2; v 7! �v . Hence H 2.G/ Š

Z=3fy1C y2g. So BG contains one L.1; 1/. Next consider the number of L.2; 0/,
L.2; 1/. The G –conjugacy classes of A–subgroups are A0;A2;A1 �A1 . The Weyl
groups are

WG.A1/Š U; WG.A2/Š U Wh diag.�1;�1/i; WG.A0/Š U Wh diag.�1; 1/i;

eg NG.A0/=A0 is generated by b; w0 which is represented by u; diag.�1; 1/ respec-
tively. By the arguments similar to the proof of Lemma 4.11, we have that(

dim. xWG.Ai/M2;0/D 1 for all i

dim. xWG.Ai/M2;1/D 1; 1; 0 for i D1; 2; 0 respectively:

Thus we show BG � 3L.2; 0/_ 2L.2; 1/ and we get the graph for G DEWhw0i.

For the place G D F2
3
WSL2.F3/, we see WG.A1/Š SL2.F3/. We also have(

dim. xWG.Ai/M2;0/D 0; 1; 1 for i D1; 2; 0 respectively

dim. xWG.Ai/M2;1/D 0; 1; 0 for i D1; 2; 0 respectively:

Thus we can see the graph for the place H�.F2
3
WSL2.F3//.

Remark From Tezuka–Yagita [11], Yagita [13] and Theorem 2.1, we have the fol-
lowing homotopy equivalences (localized at 3).

BJ4 Š BRu; BM24 Š BHe; BM12 Š BGL3.F3/
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B.EWSD16/Š BG2.2/Š BG2.4/; B.EWD8/Š BHJ Š BU3.3/:

We write down the cohomologies explicitly (see also Tezuka–Yagita [11] and Yagita
[14]). First we compute H�.B.EWH //. The following cohomologies are easily
computed

H�.BE/hmi Š Z=3ŒC; v�f1;y1y2;Y1;Y2g; H�.BE/hwi Š Z=3ŒC; v�f1;Y1CY2g:

H�.BE/hki Š Z=3ŒC; v�f1; ag where aD�Y1CY2Cy1y2; C 2
D a2:

Recall that V D vp�1 and C multiplicatively generate H�.BE/Out.E/ . Let us write

CAD Z=pŒC;V �ŠH�.BE/Out.E/:

Then we have

H�.BE/hw
0i
Š CAf1;y01;Y

0
1;Y2;Y2y01;y2v;y

0
1y2v;Y

0
1y2vg with y01 D y1Cy2

H�.BE/hw
0;mi
Š CAf1; a; a0;Y2g where a0 D .t CY2/v D y01y2v:

We can compute

H�.BE/Q8 ŠH�.BE/hki\H�.BE/hwi Š Z=3ŒC; v�Š CAf1; vg;

H�.BE/D8 Š CAf1; ag; H�.BE/hli Š CAf1; avg:

Hence we have H�.BE/SD16 Š CA:

Let D1 D C pCV and D2 D C V . Then it is known that

D1jAi D
QD1; D2jAi D

QD2 for all i 2 Fp [1:

So we also write DA Š Z=pŒD1;D2�. Since CD1 � D2 D C pC1 , we can write
CAŠDAf1;C;C 2; : : : ;C pg:

Now return to the case p D 3 and we get (see [11])

H�.BJ4/ŠH�.BE/SD16 \ i��1
0 H�.BA0/

GL2.F3/ ŠDA:

Proposition 6.3 There are isomorphisms for ja00j D 4,

H�.2F4.2/
0/ŠDAf1; .D1�C 3/a00g; H�.M24/ŠDA˚CAfa00g:

Proof Let G DM24 . Then G has just two G –conjugacy classes of A–subgroups

fA0;A2g; fA1;A1g:
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It is known that one is F ec –radical and the other is not. Suppose that A0 is F ec –radical.
Then WG.A0/ŠGL2.F3/. Let a00 D aCC . Then

a00jA0 D .�Y1CY2Cy1y2CC /jA0 D 0; a00jA1 D�Y:

By Theorem 3.1

H�.BM24/ŠH�.BE/D8 \ i��1
A0

H�.BA0/
WG.A0/;

we get the isomorphism for M24 . When A1 is a F ec –radical, we take a00 D a� c .
Then we get the same result.

For G D2 F4.2/
0 , the both conjugacy classes are F ec –subgroups and WG.A1/ Š

GL2.F3/. Hence (for case a00 D aCC )

H�.B2F4.2/
0/ŠH�.BM24/\ i��1

A1
H�.BA1/

GL2.F3/:

We know

.D1�C 3/a00jA0 D 0; .D1�C 3/a00jA1 D�V Y D� QD2:

Thus we get the cohomology of 2F4.2/
0 .

Remark In [11; 14], we take

.Z=2/2 D h diag.˙1;˙1/i; D8 D h diag.˙1;˙1/; wi:

For this case, the M24 –conjugacy classes of A–subgroups are A0 �A1; A1 �A2 ,
and we can take a00 D C �Y1�Y2 . The expressions of H�.M12/, H�.AWGL2.F3//

become more simple (see [11; 14]), in fact,

H�.B2F4.2/
0/ŠDAf1; .Y1CY2/V g:

Remark [11, Corollary 6.3] and [14, Corollary 3.7] were not correct. This followed
from an error in [11, Theorem 6.1]. This theorem is only correct with adding the
assumption that there are exactly two G conjugacy classes of A–subgroups such that
one is p–pure and the other is not. This assumption is always satisfied for sporadic
simple groups but not for 2F4.2/

0 .

Corollary 6.4 There are isomorphisms of cohomologies

H�.X2;0/ŠDAfD2g; H�.X2;1/Š CAfavg where .av/2 D CD2

H�.X0;1/Š CAfvg; H�.M.2//ŠDAfC;C 2;C 3
g where C 4

D CD1�D2:
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Here we write down typical examples. First recall

CAŠDAf1;C;C 2;C 3
g ŠH�.X0;0/˚H�.M.2//

CAfC g ŠDAfC;C 2;C 3; D2g ŠH�.M.2//˚H�.X2;0/:

Thus the decomposition for H�.BE/D8 gives the isomorphisms

CAf1; a00g Š CAf1;C g ŠH�.X0;0/˚H�.M.2//˚H�.X2;0/˚H�.M.2//:

Similarly the decomposition for H�.BE/hki gives the isomorphism

CAf1; a; v; avg ŠH�.BE/D8 ˚H�.X0;1/˚H�.X2;1/:

We recall here Lemma 4.7 and the module

Xq;k.hki/D S.V /q˝ vk
\H�.B.EW hki/:

Then it is easily seen that

X0;0.hki/D f1g;X2;0.hki/D fag;X0;1.hki/D fvg;X2;1.hki/D favg:

Hence we also see B.EW hki/ has the dominant summands X0;0 _ X2;0 _ X0;1 _

X2;1: Moreover it has non dominant summands 2M.2/ since H 4.B.EW hki// Š

Z=3fC; ag. Thus we can give an another proof of Theorem 6.2 from Lemma 4.7 and
the cohomologies H�.BG/.

7 Cohomology for B71C2
C

I.

In this section, we assume p D 7 and E D 71C2
C . We are interested in groups

O 0N;O 0N W 2;He;HeW 2;Fi 0
24
;Fi24 and three exotic 7–local groups. Denote them

by RV1;RV2;RV3 according the numbering in [9]. We have the diagram from Ruiz
and Viruel8̂̂̂<̂

ˆ̂:
3SD32
 �

SL2.F7/W2

RV3

3SD16
 �

SL2.F7/W2;SL2.F7/W2

RV2

3SD16
 �

SL2.F7/W2

O 0N W2
3D8
 �

SL2.F7/W2;Sl2.F7/W2

O 0N

62W2
 �

SL2.F7/W2;GL2.F7/

RV1
62W2
 �

SL2.F7/W2

Fi24

6S3
 �

SL2.F7/W2;SL2.F7/W2

Fi 0
24

6S3
 �

SL2.F7/W2

HeW2
3S3
 �

SL2.F7/

He

Here
H
 �

W1;:::;W2

G means WG.E/ŠH;Wi DWG.Ai/ for G–conjugacy classes of
F ecA� subgroups Ai .

In this section, we study the cohomology of O 0N;RV2;RV3 . First we study the
cohomology of G D O 0N . The multiplicative generators of H�.BE/3D8 are still
studied in [11, Lemma 7.10]. We will study more detailed cohomology structures here.
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Lemma 7.1 There is the CA–module isomorphism

H�.BE/3D8 Š CAf1; a; a2; a3=V; a4=V; a5=V; b; ab=V; a2b=V; d; ad; a2dg;

where aD .y2
1
Cy2

2
/v2 ,b D y2

1
y2

2
v4 and d D .y1y3

2
�y3

1
y2/v .

Proof The group 3D8�GL2.F7/ is generated by diag.�1; 1/; .2; 2/ and wD
�

0 1
�1 0

�
.

If yi
1
y

j
2
vk is invariant under diag.�1; 1/; diag.1;�1/ and diag.2; 2/, then i D j D

k mod.2/ and i C j C 2k D 0 mod.3/. When i; j � 6; k � 5 but .i; j / 6D .6; 6/, the
invariant monomials have the following terms, y2

1
v2 , y4

1
v4 , y6

1
, y2

1
y2

2
v4 , y4

1
y4

2
v2 ,

y1y2v
5 , y3

1
y3

2
v3 , y5

1
y5

2
v , y2

1
y4

2
, y2

1
y6

2
v2 , y4

1
y6

2
v4 , y1y3

2
v , y1y5

2
v3 , y3

1
y5

2
v5 and

terms obtained by exchanging y1 and y2 . Recall that wW y1 7! y2;y2 7! �y1 and
v! v . From the expression of (3–2), we have

H�.BE/3D8 Š CAf1; a; a2; a0; b; b0; c; c0; c00; d; ad; bdg

where aD .y2
1
Cy2

2
/v2 ,a0Dy6

1
Cy6

2
,bDy2

1
y2

2
v4 , b0Dy4

1
y4

2
v2 , cD .y2

1
y4

2
Cy4

1
y2

2
/,

c0 D .y2
1
y6

2
C y6

1
y2

2
/v2 , c00 D .y4

1
y6

2
C y6

1
y4

2
/v4 , d D .y1y3

2
� y3

1
y2/v , ad D

.y1y5
2
�y5

1
y2/v

3 and bdD .y3
1
y5

2
�y5

1
y3

2
/v5 . Here a2dDbd from .y6

1
�y6

2
/y1y2D0

in H�.BE/. It is easily seen that b0V D b2 , cV D ab , c0V D .a2 � 2b/b and
c00V D ab2 . Moreover we get

a3=V D .y2
1 Cy2

2/
3
D .y6

1 Cy6
2/C 3y2

1y2
2.y

2
1 Cy2

2/D a0C 3ab

a4=V D .y2
1 Cy2

2/
4v2
D ..y8

1 Cy8
2/C 4y2

1y2
2.y

4
1 Cy4

2/C 6y1y4
2/v

2

D aC C 4c0C 6b0

a5=V D ..y10
1 Cy10

2 /C 5y2
1y2

2.y
6
1 Cy6

2/C 10y4
1y4

2.y
2
1 Cy2

2//v
4

D c0C C 10bC C 10c00:

Hence, we can take generators a4=V; a5=V; ab=V; a2b=V for b0; c00; c; c0 respectively,
and get the lemma.

Note that the computations shows

a6
D .y2

1 Cy2
2/

6v12
D .y12

1 �y10
1 y2

2 Cy8
1y4

2 �y6
1y6

2 Cy4
1y8

2 �y2
1y10

2 Cy12
2 /V 2

D .y12
1 �y6

1y6
2 Cy12

2 /V 2
D C 2V 2

DD2
2 ;

where we use the fact y7
1
y2�y1y7

2
D 0.

Lemma 7.2 H�.BE/3SD16 Š CAf1; a; a2; a3=V; a4=V; a5=V g:
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Proof Take the matrix k 0 D
�
�1 1
�1 �1

�
such that h3D8; k

0i Š 3SD16 . Then we have

k 0
�
W aD .y2

1 Cy2
2/v

2
7! ..�y1Cy2/

2
C .�y1�y2/

2/.2v/2 D a;

b D y2
1y2

2v
4
7! .y2

1 �y2
2/

2.2v/4 D 2.a2
� 4b/D 2a2

� b:

(If we take Qb D b � a2 , then k 0
�
W Qb 7! � Qb .) Similarly we can compute k 0W d 7! �d .

Then the lemma is almost immediate from the preceding lemma.

Lemma 7.3 H�.BE/3SD32 Š CAf1; a2; a4=V g.

Proof Take the matrix l 0 D
�
�1 3
�3 �1

�
so that l 0

2
D k 0 and h3SD8; l

0i Š 3SD32 . We
see that

l 0
�
WaD .y2

1 Cy2
2/v

2
7! ..�y1C 3y2/

2
C .�3y1�y2/

2/.3v/2 D�a;

which shows the lemma.

Theorem 7.4 There is the isomorphism with C 0 D C � a3=V

H�.BO 0N /ŠDAf1; a; a2; b; ab; a2bg˚CAfd; ad; a2d;C 0;C 0a;C 0a2
g

Proof Let G DO 0N . The orbits of NG.E/–action of A–subgroups in E are given
by fA0;A1g,fA1;A6g and fA2;A3;A4;A5g. From Ruiz and Viruel [9], A0 , A1 ,
A1 and A6 are F ec –radical subgroups. Hence we know that

H�.O 0N /ŠH�.BE/3D8 \ i��1
A0

H�.BA0/
SL2.F7/W2\ i��1

A1
H�.BA1/

SL2.F7/W2:

For element x D d or x D C 0 , the restrictions are xjA0 D xjA1 D 0. Hence we see
that CAfxg are contained in H�.BG/. We can take C 0;C 0a;C 0a2 instead of a3=V ,
a4=V and a5=V as the CA–module generators since a3=V D .C �C 0/: Moreover
we know CAfC 0;C 0a;C 0a2g �H�.BG/.

It is known that Z=pŒy;u�SLp.Fp/ Š Z=pŒ QD1; QD
0
2
� where QD0

2
D y1up � y

p
1

u and
. QD0

2
/p�1 D QD2 . Hence we know Z=7Œy;u�SL2.F7/W2 Š Z=7Œ QD1; . QD2/

2�:

Since y1vjA D QD0
2

we see ajA0 D . QD0
2
/2; ajA1 D 2. QD0

2
/2 . Hence a; a2 are in

H�.BG/. The fact bjA0 D 0 and bjA1 D . QD
0
2
/4 , implies that b 2H�.BG/. Hence

all aibj are also in H�.BG/.

Next we consider the group G D O 0N W 2. Its Weyl group WG.E/ is isomorphic to
3SD16 . So we have H�.B.O 0N W2//ŠH�.BO 0N /\H�.BE/3SD16 :

Corollary 7.5 H�.B.O 0N W2//Š .DAf1; a; a2g˚CAfC 0;C 0a;C 0a2g/:
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Corollary 7.6 H�.BRV2/ŠDAf1; a; a2; a3; a4; a5g:

Proof Let G D RV2 . Since A2 is also F ec –radical and WG.A2/ D SL2.F7/W 2.
Hence we have

H�.BG/ŠH�.BE/3SD16 \ i��1
A2

H�.BA2/
SL2.F7/W2:

Hence we have the corollary of the theorem.

Since H�.BRV3/ŠH�.BE/3SD32 \H�.BRV2/, we have the following corollary.

Corollary 7.7 H�.BRV3/ŠDAf1; a2; a4g:

Corollary 7.7 can also be proved in the following way.

Proof Let G DRV3 . Since there is just one G –conjugacy class of A–subgroups, by
Quillen’s theorem [8], we know

H�.BRV3/�H�.BA0/
SL2.F7/W2 ŠDAf1; . QD02/

2; . QD02/
4
g with . QD02/

6
D QD2:

Note that a2jA0D . QD
0
2
/4; a4jA0D . QD

0
2
/2 QD2 and D2jA0D

QD2 . The fact k 0
�
W a 7!�a

implies that DAfa2; a4g �H�.BG/ but DAfa; a3; a5g\H�.BG/D 0.

Corollary 7.6 can also be proved in the following way.

Proof Let G DRV2 . Since there is just two G –conjugacy classes of A–subgroups,
by Quillen’s theorem [8], we know

H�.BRV2/�H�.BA0/
SL2.F7/W2 �H�.BA2/

SL2.F7/W2

Since a2H�.BRV2/, the map i�
0
WH�.BRV2/!H�.BA0/

SL2.F7/W2 is epimorphism.
Take b0 D b2� 2a2b so that b0jA0 D b0jA1 D 0. Hence

Ker i�A0
�DAfb0; b0a;C 0V g:

Moreover b0jA2D . xD
0
2
/2 xD2; b

0ajA2D . xD
0
2
/4 xD2; c

0V jA2D . xD2/: Since . xD0
2
/2 itself

is not in the image of i�
A2

, we get the isomorphism

H�.BRV2/ŠDAf1; a; a2
g˚DAfc0V; b0; b0ag:
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8 Cohomology for B71C2
C

II

In this section, we study cohomology of He;Fi24;RV1 .

First we consider the group G DHe . The multiplicative generators of H�.He/ are
still computed by Leary [5]. We will study more detailed cohomology structures here.
The Weyl group is WG.He/Š 3S3 .

Lemma 8.1 The invariant H�.BE/3S3 is isomorphic to

CA˝fZ=7f1; xb; xb2
gf1; xa; xb3=V g˚Z=7f xdgf1; xa; xb; xb2=V; xb3=V g˚Z=7fxa2

g/;

where xaD .y3
1
Cy3

2
/, xb D y1y2v

2 and xd D .y3
1
�y3

2
/v3 .

Proof The group 3S3 � GL2.F7/ is generated by T 0 D fdiag.�; �/j�3 D �3 D 1/

and w0 D
�

0 1
1 0

�
. If yi

1
y

j
2
vk is invariant under T 0 , then i D j D�k mod.3/. When

i; j � 6; k � 5 but .i; j / 6D .6; 6/, the invariant monomials have the following terms

f1; xc D xb3=V D y3
1y3

2gf1; v
3
gf1; xb D y1y2v

2; xb0 D y2
1y2

2vg

f1; v3
gfy3

1 ;y
6
1 ;y1y4

2v
2;y2

1y5
2v;y

3
1y6

2g;

and terms obtained by exchanging y1 and y2 . Recall that w0W y1 7! y2;y2 7! y1 and
v!�v . The following elements are invariant

xaxb D .y1y4
2
Cy4

1
y2/v

2; xaxb2 D .y2
1
y5

2
Cy5

1
y2

2
/v4; xaxc D .y3

1
y6

2
Cy6

1
y3

2
/;

xb xd D .y1y4
2
�y4

1
y2/v

5; xb2 xd=V D .y2
1
y5

2
�y5

2
y2

2
/v; xc xd D .y3

1
y6

2
�y6

1
y3

2
/v3

xaxd D .y6
1
�y6

2
/v3; xaxb3=V D y3

1
y6

2
Cy6

1
y3

2
:

Thus we get the lemma from (3–2).

Lemma 8.2 H�.BE/6S3 Š CA˝ .Z=7f1; xb; xb2gf1; xb3=V g˚Z=7f xdxa; xa2g/:

Proof We can think 6S3 D hS3; diag.�1;�1/i. The action diag.�1;�1/ are given
by xa 7! �xa,xb 7! xb , and xd 7! �xd . From Lemma 8.1, we have the lemma.

Lemma 8.3 H�.BE/6
2W2 Š CAf1; xb2; xc00; xb4=V g where xc00 D xa2� 2xb3=V � 2C:

Proof We can think 62W 2 D h3S6; diag.3; 1/i. The action diag.3; 1/ are given by
xa2 7! xa2 � 4xc; xb 7! �xb; xc 7! �xc; xdxa 7! �xdxa. For example xb D y1y2v

2 7!

.3y1/y2.3v/
2 D�xb . Moreover we have xc00 D Y1CY2� 2C 7! xc00 . Thus we have the

lemma.
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Theorem 8.4 Let xc0 D C Cxa3=V:Then there is the isomorphism

H�.BHe/ŠDAf1; xb; xb2; xd ; xdxb; xdxb2
g˚CAffxa; xc0gf1; xb; xb2; xdg; xa2; xa2

xc0g:

Proof Let G DHe . The orbits of NG.E/–action of A–subgroups in E are given by

fA0;A1g; fA1;A2;A4g; fA3;A5;A6g:

Since A6 is the F ec –radical (see Leary [6]), we have

H�.BHe/ŠH�.BE/3S3 \ i��1
A6

H�.BA6/
SL2.F7/:

For element x D xa or x D C C xc D C C y3
1
y3

2
, the restrictions are xjA6 D 0, eg

xajA6 D .y
3C .�y/3/D 0: Hence we see that CAfxg are contained in H�.BG/.

Since xb D y1y2v
2 , we see xbjA0 D �y2v2 D �. QD0

2
/2 . Similarly xd jA6 D 2. QD0

2
/3 .

Thus we can compute H�.BHe/.

Corollary 8.5 H�.B.HeW 2//ŠDAf1; xb; xb2g˚CAfxc0; xc0xb; xc0xb2; xa2; xaxdg:

Theorem 8.6 There is the isomorphism

H�.BFi 024/ŠDAf1; xb; xb2; xa2V; xc0xbV; xc0xb2V g˚CAfxc00; xaxdg where xc00 D xa2
� 2xc0:

Proof Let G D Fi 0
24

. Since A1 is also F ec –radical and WG.A1/ D SL2.F7/W 2.
Hence we have

H�.BG/ŠH�.B.HeW 2//\ i��1
A1

H�.BA1/
SL2.F7/W2:

For the elements x D xaxd ; xc00.D Y1C Y2 � 2C /, we see xjA1 D xjA6 D 0. Hence
these elements are in H�.BG/. Note that xbjA1 D . QD

0
2
/2 and xb 2H�.BG/. We also

know xa2V jA1 D
QD2 .

Since H�.BFi24/ŠH�.BFi 0
24
/\H�.BE/6

2W2 and xb4D 1=2.xa2�2C �xc00/V , we
have the following corollary.

Corollary 8.7 H�.BFi24/Š .DAf1; xb2; xb4g˚CAfxc00g/:

For G DRV1 , The subgroup A0 is also F ec –radical, we see

H�.BRV1/ŠH�.BFi24/\ i�1�
0 H�.BA0/

GL2.F7/

Hence we have the following corollary.

Corollary 8.8 H�.BRV1/ŠDAf1; xb2; xb4;D00
2
g with xb6 DD2

2
CD00

2
D2 .
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Proof Let D00
2
D xc00V D xc00.D1�C 6xc00/. Then we have

xb6
D Y1Y2V 2

D .Y1CY2�C /C V 2
D .C C .Y1CY2�2C /C V 2

DD2
2C .xc

00V /D2:

Thus the corollary is proved.

9 Stable splitting for B71C2
C

Let G be groups considered in the preceding two sections, eg O 0N ,O 0N W 2,. . . ,RV1 .
First consider the dominant summands Xq;k . From Corollary 4.6, the dominant
summands are only related to H DWG.E/. Recall the notation Xq;k.H / in Lemma
4.7. The module Xq;k.H / is still given in the preceding sections.

From Lemma 7.1, Lemma 7.2, Lemma 7.3, Lemma 8.1, Lemma 8.2 and Lemma 8.3
we have

H D 3D8IX6;0 D fa
3=V; a2b=V g;X4;4 D fa

2; bg;X2;2 D fag;

X4;1 D fdg;X6;3 D fadg

H D 3SD16IX6;0 D fa
3=V g;X4;4 D fa

2
g;X2;2 D fag

H D 3SD32IX4;4 D fa
2
g

H D 3S3IX6;0 D f
xb3=V; xa2

g;X4;4 D f
xb2
g;X2;2 D f

xbg;

X6;3 D fxaxdg;X3;0 D fxag;X5;2 D fxaxbg;X3;3 D f
xdg;X5;5 D f

xdxbg

H D 6S3IX6;0 D f
xb3=V; xa2

g;X2;2 D f
xbg;X4;4 D f

xb2
g;X6;3 D fxaxdg

H D 62
W2IX6;0 D fxa

2
� 2xb3=V g;X4;4 D f

xb2
g:

For example, ignoring nondominant summands, we have the following diagram

X0;0_X4;4

 � B.EW 3SD32/
X6;0_X2;2

 � B.EW 3SD16/
X6;0_X4;4_X4;1_X6;3

 � B.EW 3D8/:

From Corollary 4.4, the number m.G; 1/k is given by rankp H 2k.BG/ for khp� 1

and rankp H 2p�2.G/ for k D 0. For example when G DEW 3S3 ,

m.G; 1/0 D 3;m.G; 1/3 D 1; m.G; 1/k D 0 for k 6D 0; 6D 3:
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Lemma 9.1 Let G be one of the O 0N;O 0N; : : : ;Fi 0
24
;RV1 . Then the number

m.G; 1/k for L.1; k/ is given by

m.G; 1/0 D

(
2 for G DHe;HeW2

1 for G DO 0N;O 0N W2;Fi24;Fi 0
24

m.G; 1/3 D

(
1 for G DHe;

m.G; 1/k D 0 otherwise:

Now we consider the number m.G; 2/k of the non dominant summand L.2; k/.

Lemma 9.2 The classifying spaces BG for GDO 0N;O 0N W 2 have the non dominant
summands M.2/_L.2; 2/_L.2; 4/.

Proof We only consider the case G DO 0N , and the case O 0N W 2 is almost the same.
The non F ec –radical groups are fA2;A3;A4;A5g (recall the proof of Theorem 7.4).
The group WG.E/D 3D8Šh diag.2; 2/; diag.1;�1/; wi. Hence the normalizer group
is

NG.A2/DEW h diag.2; 2/; diag.�1;�1/i:

Here note that w; diag.1;�1/ are not in the normalizer, eg wW hc; ab2i! hc; a2b�2iD

hc; ab6i. Since diag.2; 2/W ab2 7! .ab2/2 , c 7! c4 and diag.�1;�1/W ab2 7! .ab2/�1 ,
c 7! c; the Weyl groups are

WG.A2/Š U W h diag.4; 2/; diag.1;�1/i:

Let W1 D U W diag h4; 2i. For v D �y
p�1
1
2Mp�1;k , we have xW1v D �y

p�1
2

since
23 D 1, from the argument in the proof of Lemma 4.11. Moreover

h diag.1;�1/iy
p�1
2
D .1C .�1/k/y

p�1
2

;

implies that the BG contains L.2; k/ if and only if k even.

Lemma 9.3 The classifying space BHe (resp. B.HeW 2/,Fi 0
24

,Fi24 ) contains the
non dominant summands

2M.2/_L.2; 2/_L.2; 4/_L.2; 3/_L.1; 3/

.resp. 2M.2/_L.2; 2/_L.2; 4/; M.2/; M.2//:

Proof First consider the case G DHe . The non F ec –radical group are

fA0;A1g; fA1;A2;A4g:
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The group WG.E/Š 3S3 D h diag.2; 1/; w0i. So we see NG.A0/DEWh diag.2; 1/i,
and this implies WG.A0/ Š U W h diag.2; 2/i. The fact 4k D 0 mod.7/ implies k D

3 mod.6/. Hence BG contains the summand

M.2/_L.2; 3/_L.1; 3/

which is induced from BA0 .

Next consider the summands induced from BA1 . The normalizer and Weyl group are
NG.A1/DEW hw0i and WG.A1/D U Wh diag.�1; 1/i since w0Wab 7! ab; c 7! �c . So
we get

M.2/_L.2; 2/_L.2; 4/

which is induced from BA1 .

For G D HeW2, we see diag.�1;�1/ 2 WG.E/, this implies that diag.�1;�1/ 2

NG.A/ and diag.1;�1/ 2 WG.A0/. This means that the non dominant summand
induced from BA0 is M.2/ but is not L.2; 3/. We also know U W diag.1;�1/ 2

WG.A1/ but the summand induced from BA1 are not changed.

For groups Fi 0
24

,Fi24 , the non F ec –radical groups make just one G –conjugacy class
fA0;A1g. So BG dose not contain the summands induced from BA1 .

Theorem 9.4 When p D 7, we have the following stable decompositions of BG so

that
X1
 � � �

Xs
 G means that BG �X1 _ � � � _Xs

X0;0

 �

8̂̂̂̂
<̂
ˆ̂̂:

X4;4

 �RV3

X6;0_X2;2

 � RV2

M.2/_L.2;2/_L.2;4/
 � O 0N W 2

X6;0_X4;4

_X4;1_X6;3

 � O 0N

X6;0_X4;4

 � RV1

M.2/
 � Fi24

X6;0_X6;3_X2;2

 � Fi 0
24

M.2/_L.2;2/_L.2;4/
 � HeW 2

X3;0_X5;2_X3;3_X5;5_L.2;3/_L.1;3/
 � He:

We write down the cohomology of stable summands. At first we see that H�.X0;0/Š

H�.BRV3/\H�.BRV1/ŠDA: Here note that elements a2�.y1y2/
2v4 in Section 7

and xb2D y2
1
y2

2
v4 in Section 8 are not equivalent under the action in GL7.F7/ because

y2
1
Cy2

2
is indecomposable in Z=7Œy1;y2�.

From the cohomologies, H�.BRV3/ and H�.BRV2/, then H�.X4;4/ŠDAfa2; a4g

and H�.X6;0 _X2;2/ŠDAfa; a3; a5g.

On the other hand, we know H�.X6;0/ from the cohomology H�.BRV1/. Thus we
get the following lemma.
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Lemma 9.5 There are isomorphisms of cohomologies

H�.X0;0/ŠDA;H�.X4;4/ŠDAfa2; a4
g

H�.X6;0/ŠDAfD2g ŠDAfa3
g;H�.X2;2/ŠDAfa; a5

g:

Let us write M fag DDAf1;C; : : : ;C p�1gfag. From the facts that D2D C V , D1D

C pCV and D2 D C.D1�C p/D CD1�C pC1 , we have two decompositions

CAfag ŠDAf1;C; : : : ;C p
gfag ŠDAfag˚M fCag ŠM fag˚DAfVag:

From the cohomology of H�.Fi24/, we know the following lemma.

Lemma 9.6 H�.M.2//ŠM fC g:

Comparing the cohomology H�.B.HeW 2// Š H�.BFi 0
24
/˚M fxa2; xc0xb; xc0xb2g; we

have the isomorphisms

H�.M.2//ŠM fxa2
g;H�.L.2; 2/_L.2; 4//ŠM fxc0xb; xc0xb2

g:

From H�.BFi 0
24
/ŠH�.BFi24/˚DAfxa2V; xc0xbV; xc0xb2V g˚CAfxaxdg, we also know

that

H�.X6;3/Š CAfxaxdg;H�.X6;0 _X2;2/ŠDAfxa2V; xc0xbV; xc0xb2V g:

We still get H�.BFi24/ŠH�.BRV1/˚M fxc00g and H�.M.2//ŠM fxc00g:

Next consider the cohomology of groups studied in Section 7 eg O 0N . There is the
isomorphism

H�.BO 0N /ŠH�.BO 0N W 2/˚DAfb; b2; ab2
g˚CAfd; da; da2

g:

Indeed, we have

H�.X6;0 _X4;4/ŠDAfb; b2; ab2
g ŠDAfa2; a3; a4

g

H�.X6;3/Š CAfdag

H�.X4;1/Š CAfd; da2
g:

We also have the isomorphism H�.BO 0N W2/ŠH�.BRV2/˚M fC 0;C 0a;C 0a2g and
H�.M.2/_L.2; 2/_L.2; 4//ŠM fC 0;C 0a;C 0a2g.

Recall that

H�.BE/3SD32 Š CAf1; a2; a4=V g ŠDAf1; a2; a4
g˚M fC; a2C; a4=V g;

in fact H�.M.2/_L.2; 2/_L.2; 4//ŠM fC; a2C; a4=V g.
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10 The cohomology of M for p D 13

In this section, we consider the case p D 13 and G DM the Fisher–Griess Monster
group. It is know that WG.E/Š 3� 4S4 . The G –conjugacy classes of A–subgroups
are divided two classes ; one is F ec –radical and the other is not. The class of F ec –
radical groups contains 6 E–conjugacy classes (see Ruiz–Viruel [9]). (The description
of [11, (4.1)] was not correct, and the description of H�.BM/ in [11, Theorem 6.6] was
not correct.) The Weyl group WG.A/Š SL2.F13/:4 for each F ec –radical subgroup
A.

Since S4 Š PGL2.F3/ [S], we have the presentation of

S4 D hx;y; zjx
3
D y3

D z2
D .xy/2 D 1; zxz�1

D yi:

(Take x D u;y D u0 in Lemma 4.8, and z D w in Section 5.) By arguments in the
proof of Suzuki [10, Chapter 3 (6.24)], we can take elements x;y; z in GL2.F13/ by

(10–1) x D
�

3 0
0 9

�
; y D

�
5 �4
�2 7

�
; z D

�
2 2
1 �2

�
;

so that we have

x3
D y3

D 1; zxz�1
D y; .xy/2 D�1; z2

D diag.6; 6/:

Hence we can identify

(10–2) 3� 4S4 Š hx;y; zi �GL2.F13/:

It is almost immediate that H�.BE/hxi (resp. H�.BE/h�1i ) is multiplicatively gener-
ated by y1y2;y

3
1
;y3

2
(resp. y1y2;y

2
1
;y2

2
) as a Z=.13/ŒC; v�–algebra. Hence we can

write

H�.BE/hx;�1i
Š Z=.13/ŒC; v�

˚
f1;y1y2; : : : ; .y1y2/

5
gf.y1y2/

6;y6
1 ;y

6
2g;(10–3)

y12
1 ;y12

2 ;y12
1 y6

2 ;y
6
1y12

2

	
:

For the invariant H�.BE/hy;�1i , we get the similar result exchanging yi to .z�1/�yi

since zxz�1 D y . Indeed .z�1/�WH�.BE/hx;�1i ŠH�.BE/hy;�1i .

To seek invariants, we recall the relation between the A–subgroups and elements in
H 2.BEIZ=p/. For 0 6D y D ˛y1Cˇy2 2H 2.BEIZ=p/, let Ay DA�.˛=ˇ/ so that
yjAy D 0. This induces the 1� 1 correspondence,

.H 2.BEIZ=p/�f0g/=F�p $ fAi ji 2 Fp [f1gg; y$Ay :

Considering the map g�1Ai

g
!Ai �E

ˇ�1y
! Z=p; we easily see Ag�y D g�1Ay .
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For example, the order 3 element x induces the maps

x�Wy1�y2 7! 3y1� 9y2 7! 9y1� 3y2 7! y1�y2

x�1
WAy1�y2

D hc; abi ! hc; a9b3
i ! hc; a3b9

i ! hc; abi:

In particular A1;A9;A3 are in the same x–orbit of A–subgroups. Similarly the
hxi–conjugacy classes of A is given

fA0g; fA1g; fA1;A3;A9g; fA2;A5;A6g; fA4;A10;A12g; fA7;A8;A11g:

The hyi–conjugacy classes are just fzAig for hxi–conjugacy classes fAig.

fA7 D zA0g; fA12g; fA3;A1;A5g; fA6;A9;A2g; fA11;A8;A1g; fA0;A10;A4g:

Hence we have the hx;yi–conjugacy classes

C1DfA1;A2;A3;A5;A6;A9g;C2DfA0;A4;A10;A12g;C3DfA1;A7;A8;A11g:

At last we note hx;y; zi–conjugacy classes are two classes C1;C2[C3:

Let us write the hxi–invariant

u6 D…Ai2C1
.y2� iy1/D .y2�y1/.y2� 2y1/ � � � .y2� 9y1/(10–4)

D y6
2 � 9y3

1y3
2 C 8y6

1 :

Then u6 is also invariant under y� because the hx;yi–conjugacy class C1 divides
two hyi–conjugacy classes

C1 D fA1;A3;A5g[ fA2;A6;A9g

and the element u6 is rewritten as

u6 D �.…
2
iD0yi�.y2�y1//:.…

2
iD0yi�.y2� 2y1// for � 6D 0 2 Z=.13/:

We also note that u6jAi D 0 if and only if i 2 C1 . Similarly the following elements
are hx;yi–invariant,

u8 D…Ai2C2[C3
.y2� iy1/D y1y2.y

6
2 C 9y3

1y3
2 C 8y6

1/(10–5)

u12 D…Ai2C2
.y2� iy1/

3
D .y4

2 Cy3
1y2/

3

D �.…2
iD0xi�y2/.…

2
iD0xi�.y2� 4y1//

3

D �0.…2
iD0yi�.y2� 12y1//.…

2
iD0yi�y2/

3v

u012 D…Ai2C3
.y2� iy1/

3
D .y1y3

2 C 8y4
1/

3:

Of course .u12u0
12
/1=3 D u8 and u6u8 D 0. Moreover direct computation shows

u2
6
D u12C 5u0

12
.
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Lemma 10.1 H�.BE/hx;yi Š Z=.13/ŒC; v�f1;u6;u
2
6
;u3

6
;u8;u

2
8
;u12g:

Proof Recall (10–3) to compute

H�.BE/hx;yi ŠH�.BE/hx;�1i
\H�.BE/hy;�1i:

Since .z�1/�.y1y2/
i 6D .y1y2/

i for 1 � i � p� 2, from (10–3) we know invariants
of the lowest positive degree are of the form

uD y6
2 C˛y3

2y3
1 Cˇy6

1 :

Then u0D u�u6 is also invariant with u0jA1D 0. Hence u0jAi D 0 for all Ai 2C3 .
Thus we know u0 D �y2

1
.u0

12
/1=3: But this is not hyi–invariant for � 6D 0, because

.u0/3 D �3y6
1
u0

12
is invariant, while y6

1
is not hyi–invariant. Thus we know u0 D 0.

Any 16–dimensional invariant is form of

uD y1y2.y6
2 C˛y3

2y3
1 Cˇy6

1/:

Since ujA0 D ujA1 D 0, we know ujAi D 0 for all Ai 2 C2[C3 . Hence we know

uD u
1=3
12
.u012/

1=3
D u8:

By the similar arguments, we can prove the lemma for degree � 24.

For 24 <degree< 48, we only need consider the elements u0 D 0 mod.y1y2/. For
example, H 18.BEIZ=13/hx;�1i is generated by

f.y1y2/
9; .y1y2/

3C;y6
1C;y6

2C;y6
1y12

2 ;y12
1 y6

2g:

But we can take off y6
1
CDy18

1
, y6

2
CDy18

2
by �u3

6
C�C u6 so that u0D0 mod.y1y2/.

Hence we can take u0 so that u8 divides u0 from the arguments similar to the case of
degree=16. Let us write u0 D u00u8 . Then we can write

u00 D yk
1 yk

2 .�1y6
1 C�2y3

1y3
2/C�3.y1y2/

k�3C;

taking off �yk
1

yk
2

u6 if necessary since u6u8D 0. (Of course, for k<3, �3D 0.) Since
u8jAi 6D 0 and u6jAi D 0 for i 2 C1 , we have

.u00�y�u00/jAi D 0 for i 2 C1:

Since y�y1 D 5y1� 4y2 and y�y2 D�2y1C 7y2 , we have

.u00�y�u00/jAi D �1.i
k
� .5� 4i/6Ck.�2C 7i/k/

C�2.i
kC3
� .5� 4i/kC3.�2C 7i/kC3/

C�3.i
k�3
� .5� 4i/k�3.�2C 7i/k�3/:
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We will prove that we can take all �i D 0. Let us write U D u00�y�u00 . We then have
the following cases.

(1) The case k D 0, ie degree=14. If we take i D 1,

U jA1 D �1.1� 1/C�2.1� 1353/D 0:

So we have �2 D 0. We also see �1 D 0 since U jA3 D �1.1� .5� 12/6/ D

2�1 D 0:

(2) The case k D 1. Since y1y2u6�u8D�18y4
1
y4

2
, we can assume �2D 0 taking

off �u2
8

if necessary. We have also �1 D 0 from U jA1 D �1.1
1� 1751/D 0:

(3) The case k D 2. We get the the result U jA1 D 2�1C4�2 , U jA3 D 5�1C5�2 .

(4) The case k D 3. First considering C u8 , we may take �3 D 0. The result is
given by U jA1 D 6�1C 2�2 and U jA2 D 7�1C 9�2 .

(5) The case k D 4. The result follows from

U jA1 D 6�2C 9�3;U jA3 D 6�1C 6�2C 6�3;U jA5 D 2�1� 4�2C 6�3:

Hence the lemma is proved.

Next consider the invariant under hx;y; diag.6; 6/i. The action for diag.6; 6/ is given
by yi

1
y

j
2
vk 7! 6iCjC2kyi

1
y

j
2
vk . Hence the invariant property implies i C j C 2k D

0 mod.12/. Thus H�.BE/hx;y;diag.6;6/i is generated as a CA–algebra by

f1;u6v
3;u8v

2;u12;u
0
12; v

6
g:

Lemma 10.2 The invariant H�.BE/3�4S4 ŠH�.BE/hx;y;zi is isomorphic to

CAf1;u6v
3; .u6v

3/2; .u6v
3/3;u8v

8; .u8v
8/2=V; .u12� 5u012/g:

Proof We only need compute z�–action. Since

3� 4S4 Š hx;y; diag.6; 6/iWhzi;

the z�–action on H�.BE/hx;y;diag.6;6/i is an involution. Let u6v
3 D u6.y1;y2/v

3 .
First note u6jA1 D u6.0;y/D y6: On the other hand, its z�–action is

z�u6v
3
jA1 D u6.2y1C 2y2;y1� 2y2/.�6v/3jA1 D u6.2y;�2y/.�6v/3

D ..�2/6� 9.�2/3.2/3C 8.2/6/.�6/3y6v3

D .1C 9C 8/8y6v3
D y6v3:

Hence we know u6v
3 is invariant, while u6v

9 is not.
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Similarly we know

u8v
2
jA1 D u8.y;y/v

2
D 5y8v2; z�u8v

2
jA1 D�5y8v2:

Hence u8v
8 and u2

8
v4 are invariant but u8v

2 is not.

For the action u12 , we have

u12jA0 D 0; u12jA1 D y12; u0
12
jA0 D 5y12; u0

12
jA1 D 0;

z�u12jA0 D y12; z�u12jA1 D 0; z�u0
12
jA0 D 0; z�u0

12
jA1 D 5y12:

Thus we get z�u12D .1=5/u
0
12
; k�u0

12
D 5u12: Hence we know u12C .1=5/u

0
12

and
.u3

4
� .1=5/u0

12
/v6 D .u6v

3/2 are invariants. Thus we can prove the lemma.

Theorem 10.3 For p D 13, the cohomology H�.BM/ is isomorphic to

DAf1;u8v
8; .u8v

8/2g˚CAfu6v
3; .u6v

3/2; .u6v
3/3; .u12� 5u012� 3C /g:

Proof Direct computation shows

u12� 5u012 D y12
2 � 2y9

2y3
1 C 3y3

2y9
1 Cy12

1 ;

and hence u12� 5u0
12
� 3C jA1 D 0, indeed, the restriction is zero for each Ai 2 C1 .

The isomorphism

H�.BM/ŠH�.BE/3�4S4 \ i��A1
.H�.BA1/

SL4.F13/:4;

completes the proof.

The stable splitting is given by the following theorem.

Theorem 10.4 We have the stable splitting

BM�X0;0 _X12;0 _X12;6 _X6;3 _X8;8 _M.2/;

B.EW 3� 4S4/� BM_M.2/_L.2; 4/_L.2; 8/:

Proof Let H DEW 3� 4S4: Recall that

Xq;k.H /D .S.A/q˝ vk/\H�.BH / 0� q � 12; 0� k � 11:

We already know

X�;�.H /D Z=.13/f1;u8v
8;u6v

3;u2
6v

6;u12� 5u012g:

Hence BH has the dominant summands in the theorem.
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The normalizer groups of A0;A1 are given

NH .A0/DEW hx; diag.6; 6/i;NH .A1/DEW h diag.6; 6/i:

Hence the Weyl groups are

WH .A0/D U W h diag.1; 3/; diag.62; 6/i;WH .A1/D U W h diag.62; 6/i:

From the arguments of Lemma 4.11, the non-dominant summands induced from BA1

are M.2/_L.2; 4/_L.2; 8/: We also know the non-dominant summands from BA0

are M.2/. This follows from

h diag.1; 3/iyp�1
2
D

2X
iD0

.3i/ky
p�1
2

for y
p�1
2
2Mp�1;k

and this is nonzero mod(13) if and only if k D 0 mod.3/.

Remark It is known H�.T h/ Š DA for p D 5 in [11]. Hence all cohomology
H�.BG/ for groups G in Theorem 2.1 (4)–(7) are explicitly known. For (1)–(3), see
also Tezuka–Yagita [11].

11 Nilpotent parts of H �.BG IZ.p//

It is known that p2H�.BEIZ/D 0 (see Tezuka–Yagita [11] and Leary [6]) and

pH�>0.BEIZ/Š Z=pfpv;pv2; : : :g:

In particular H odd.BEIZ/ is all just p–torsion. There is a decomposition

H even.BEIZ/=p ŠH�.BE/˚N with N D Z=pŒV �fb1; : : : ; bp�3g

where bi D CorE
A0
.uiC1/; jbi j D 2i C 2. (Note for p D 3,N D 0.) The restriction

images bi jAj D 0 for all j 2 Fp [1. For g 2GL2.Fp/, the induced action is given
by g�.bi/D det.g/iC1bi by the definition of bi .

Note that
2D jyi j<jbj j D 2.j C 1/<jC j D 2p� 2<jvj D 2p:

So g�.yi/ is given by (3–4) also in H�.BEIZ/ and g�.v/D det.g/v mod.p/. Hence
we can identify that

H�.BE/H D .H even.BEIZ/=.p;N //H �H even.BEIZ=p/H :

Let us write the reduction map by qWH�.BEIZ/!H�.BEIZ=p/:
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Lemma 11.1 Let H �GL2.Fp/ and .jH j;p/D 1. If x 2H�.BE/H , then there is
x0 2H�.BEIZ/H such that q.x0/D x .

Proof Let x2H�.BE/H and GDEWH . Then we can think x2H�.BEIZ=p/H Š

H�.BGIZ=p/ and ˇ.x/D 0. By the exact sequence

H even.BGIZ.p//
q
!H even.BGIZ=p//

ı
!H odd.BGIZ.p//;

we easily see that x 2 Image.q/ since qı.x/ D ˇ.x/ D 0 and qjH odd.BGIZ.p//

is injective. Since H�.BGIR/ Š H�.BEIR/H for R D Z.p/ or Z=p , we get the
lemma.

Proof of Theorem 3.1 From Tezuka–Yagita [11, Theorem 4.3] and Broto–Levi–Oliver
[1], we have the isomorphism

H�.BGIZ/.p/ ŠH�.BEIZ/WG.E/\AWF ec�radical i��1
A H�.BAIZ/WG.A/:

The theorem is immediate from the above lemma and the fact that H even>0.BAIZ/Š

H�>0.BA/.

Let us write N.G/DH�.BGIZ/\N . Then

H even.BGIZ/=p ŠH�.BG/˚N.G/:

The nilpotent parts N.G/ depends only on the group Det.G/Dfdet.g/jg2WG.E/g�

F�p , in fact, N.G/DN WG.E/ DN Det.G/ .

Lemma 11.2 If Det.G/Š F�p (eg G DO 0N;He; : : : ;RV3 for pD 7, or G DM for
p D 13), then

N.G/Š Z=pŒV �fbiv
p�2�i

j1� i � p� 3g:

Lemma 11.3 Let G have a 7–Sylow subgroup E . Then, we have

N.G/D

8̂̂̂̂
<̂
ˆ̂̂:

Z=7ŒV �fb1v
4; b2v

3; b3v
2; b4vg if Det.G/D F�

7

Z=7Œv3�fb1v; b2; b3v
2; b4vg if Det.G/Š Z=3

Z=7Œv2�fb1; b2v; b3; b4vg if Det.G/Š Z=2

Z=7Œv�fb1; b2; b3; b4g if Det.G/Š f1g:

Now we consider the odd dimensional elements. Recall that

H odd.BAIZ/Š Z=pŒy1;y2�f˛g;
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where ˛ D ˇ.x1x2/ 2 H�.BAIZ=p/ Š Z=pŒy1;y2�˝ƒ.x1;x2/ with ˇ.xi/ D yi .
Of course g�.˛/ D det.g/˛ for g 2 Out.A/. For example H odd.B.AWQ8// Š

H�.B.AWQ8//f˛g since Det.AWQ8/D f1g.

Recall the Milnor operation QiC1 D ŒP
pn

Qi �QiP
pn

�;Q0 D ˇ . It is known that

Q1.˛/D y
p
1

y2�y1y
p
2
D QD02 with . QD02/

p�1
D QD2:

The submodule of H�.X IZ.p// generated by (just) p–torsion additive generators can
be identified with Q0H�.X IZ=p/. Since QiQ0 D�Q0Qi , we can extend the map
[13, page 377]

Qi WQ0H�.X IZ=p/
Qi
!Q0H�.X IZ=p/�H�.X IZ.p//:

Since all elements in H odd.BAIZ/ are (just) p–torsion, we can define the map

Q1WH
odd.BAIZ/!H even.BAIZ/DH even.BA/:

Moreover this map is injective.

Lemma 11.4 (Yagita [13]) Let G have the p–Sylow subgroup AD .Z=p/2 . Then

Q1 W H odd.BGIZ.p//Š .H
even.BG/\J.G//;

with J.G/D Ideal.yp
1

y2�y1y
p
2
/�H even.BA/:

Corollary 11.5 For p D 3, there are isomorphisms

H odd.BAIZ/Z=8 Š Sfb; a0b; a; .a1� a2/gf˛g

H odd.BAIZ/D8 Š Sf1; a; a1; a
0
gfb˛g

H odd.BAIZ/SD16 Š Sf1; a0gfb˛g:

Proof We only prove the case G D AWZ=8 since the proof of the other cases are
similar. Note in ~5 the element Q1.˛/ is written by b and b2 D a1a2 . Recall
S D Z=3Œa1C a2; a1a2�. Hence we get

H�.BA/hli\J.G/Š Sf1; a0; ab; .a1� a2/bg\ Ideal.b/

D Sfb2; b2a0; ab; .a1� a2/bg

D Sfb; ba0; a; .a1� a2/gfQ1.˛/g:

The corollary follows.
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By Lewis, we can write [6; 11]

H odd.BEIZ/Š Z=pŒy1;y2�=.y1˛2�y2˛1;y
p
1
˛2�y

p
2
˛1/f˛1; ˛2g;

where j˛i j D 3. It is also known that Q1.˛i/ D yiv and Q1WH
odd.BEIZ.p// !

H even.BE/�H even.BEIZ/=p is injective [13]. Using this we can prove the following
lemma.

Lemma 11.6 (Yagita [13]) Let G have the p–Sylow subgroup E . Then

Q1W H odd.BG/Š .H even.BG/\J.G//

with J.G/D Ideal.yiv/�H even.BE/:

From the above lemma we easily compute the odd dimensional elements. Note that

D2 D C V 62 J.E/ but D2
2 D C 2V 2

D .Y 2
1 CY 2

2 �Y1Y2/V
2
2 J.E/:

Let us write ˛D .Y1y
p�2
1

˛1CY2y
p�2
2

˛2�Y1y
p�2
2

˛2/V v
p�2 so that Q1.˛/DD2

2
.

Corollary 11.7 H odd.B2F4.2/
0IZ.3//ŠDAf˛; ˛0g with ˛0 D .y1˛1Cy2˛2/v:

Proof Recall that H�.B2F4.2/
0/ŠDAf1; .Y1CY2/V g from the remark of Propo-

sition 6.3. The result is easily obtained from Q1.˛/DD2
2
;Q1.˛

0/D .Y1CY2/V .

Corollary 11.8 There are isomorphisms

H odd.BRV3IZ.7//ŠDAfa; a3; a5
gf˛0g

H odd.BRV2IZ.7//ŠDAf1; a; : : : ; a5
gf˛0g;

with ˛0 D .y1˛1Cy2˛2/v .

Proof We can easily compute

Q1.˛
0/DQ1..y1˛1Cy2˛2/v/D .y1Q1.˛1/Cy2Q1.˛2//v D .y

2
1 Cy2

2/v
2
D a:

Recall that H�.BRV3/ŠDAf1; a2; a4g. We get

H�.BRV3/\ Ideal.yiv/DDAfD2
2 ; a

2; a4
g DDAfa5; a; a3

g.Q1˛
0/;

and the corollary follows.

Corollary 11.9 H odd.BRV1IZ.7// Š DAfxb; xb3; xb5gf˛00g ˚ DAf˛g where ˛00 D
y1v˛2 .
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Proof Recall Corollary 8.8.We have C xc00DC.Y1CY2�2C /D�Y 2
1
�Y 2

2
C2Y1Y2:

Hence we can see Q1.˛/D�D2xc
00V .

Corollary 11.10 The cohomology H odd.BMIZ.13// is isomorphic to

DAf˛; ˛8; .u8v
8/˛8g˚CAf˛6; .u6v

3/˛6; .u6v
3/2˛6; ˛12g;

where

˛8 D y2.y
6
2 C 9y3

2y3
1 C 8y6

1/v
7˛1

˛6 D .y
5
2˛2� 9y2

2y3
1˛2C 8y5

1y˛1/v
2

˛12 D C.y11
2 ˛2� 2y8

2y3
1˛2C 3y2

2y9
1˛2Cy11

1 ˛1/v
11
� 3˛=V:

Proof It is almost immediate that

Q1.˛8/D u8v
8; Q1.˛6/D u6v

3; Q1.˛12/D .u12� 5u012� 3C /C V:

From Theorem 10.3, we get the corollary.
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