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Incompressible surfaces and .1; 2/–knots

MARIO EUDAVE-MUÑOZ

We give a description of all .1; 2/–knots in S3 which admit a closed meridionally
incompressible surface of genus 2 in their complement. That is, we give several
constructions of .1; 2/–knots having a meridionally incompressible surface of genus
2, and then show that any such surface for a .1; 2/–knot must come from one of the
constructions. As an application, we show explicit examples of tunnel number one
knots which are not .1; 2/–knots.

57M25; 57N10

1 Introduction

An important problem in knot theory is that of determining all incompressible surfaces
in a given knot complement. The main purpose of this paper is to give a description
of all .1; 2/–knots in S3 which admit a closed meridionally incompressible surface
of genus 2 in their complement. Another purpose is to construct explicit examples of
tunnel number one knots that are not .1; 2/–knots. These are obtained by combining
the constructions of the author [4] with the results of this paper.

Let F be a closed surface of genus g standardly embedded in S3 , that is, it bounds
a handlebody on each of its sides. Following Doll [2], we say that a knot K has a
.g; b/–presentation or that it is in a .g; b/–position, if K has been isotoped to intersect
F transversely in 2b points that divide K into 2b arcs, so that the b arcs in each side
can be isotoped, keeping the endpoints fixed, to disjoint arcs on F . The genus–g–bridge
number of K , bg.K/, is the smallest integer n for which K has a .g; n/–presentation.
The genus–0–bridge number b0.K/ is then the usual bridge number; we say that a
knot is an n–bridge knot if b0.K/ � n. Here we will consider only the case g D 1.
We say that a knot is a .1; n/–knot if b1.K/ � n. It is not difficult to see that if
K has a .g; b/–presentation, then the tunnel number of K , denoted tn.K/, satisfies
tn.K/� gC b� 1.

Let K be a knot in S3 , and S a closed surface in its complement. We say that S is
meridionally compressible if there is an embedded disk D in S3 , with S \D D @D a
nontrivial curve in S , and so that K intersects D at most in one point. Otherwise S is
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called meridionally incompressible. In particular, if S is meridionally incompressible
then it is incompressible in S3�K .

Incompressible surfaces in the complement of knots with a given bridge number
have been studied in several cases. Schubert [23] studied incompressible tori in the
complement of knots and found a relation between the bridge numbers of a satellite
knot K and its companion K0 . Hatcher and Thurston [13] proved that there are no
closed incompressible surfaces in the complement of 2–bridge knots; this also follows
from Gordon and Litherland [11]. On the other hand, Finkelstein and Moriah [10] and
Wu [25] proved that the complement of a generic n–bridge knot, n � 3, contains a
closed incompressible surface (but in general the surface is meridionally compress-
ible). More recently Ozawa [19] has given a description of all 3–bridge knots whose
complement contain a closed incompressible surface of genus 2. It may be difficult
to do something similar for 3–bridge knots and surfaces of higher genus. In Eudave-
Muñoz and Neumann-Coto [7], some examples are given of 3–bridge knots whose
complement contain meridionally incompressible surface of arbitrarily high genus, ie
examples of a single 3–bridge knot which contains infinitely many closed meridionally
incompressible surfaces in its complement.

Incompressible surfaces in the complement of .1; 1/–knots have also been studied.
.1; 1/–knots whose complement contain an incompressible torus, ie satellite .1; 1/–
knots, have been classified by Morimoto and Sakuma [17]; see also Eudave-Muñoz [3].
Well, in those papers satellite tunnel number one knots are classified but these turn out
to be .1; 1/–knots, as it is shown in [3]. In [4] a construction is given of .1; 1/–knots
whose complement contain a closed meridionally incompressible surface of genus
g , and in [6] it is proved that any .1; 1/–knot whose complement contains a closed
meridionally incompressible surface must come from that construction. It is shown
by Saito [22] that the complement of a satellite tunnel number one knot does not
contain any meridionally incompressible surface other than the satellite torus; this
implies that the knots constructed in [4] are hyperbolic. It follows from work of Gordon
and Reid [12] that the complement of a .1; 1/–knot cannot contain an incompressible
planar meridional surface, ie a meridional surface of genus 0 (a meridional surface is a
properly embedded surface in a knot exterior whose boundary consists of meridians of
the knot). On the other hand, in Eudave-Muñoz and Ramı́rez-Losada [8] a description
is given of all .1; 1/–knots whose complement contain a meridional and meridionally
incompressible surface of genus g � 1. The complement of any of these knots also
contains a closed incompressible surface (but perhaps meridionally compressible) by
Culler, Gordon, Luecke and Shalen [1].

Not much is known about incompressible surfaces in the complement of .1; 2/–knots.
In [7], a construction is given of hyperbolic .1; 2/–knots whose complement contain an
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acylindrical surface of genus g , g � 2, ie an incompressible surface which divides the
exterior of the knot into manifolds that do not contain essential annuli. The example
given in [7] of a 3–bridge knot whose complement contains meridionally incompressible
surfaces of arbitrarily high genus can be adapted to produce an example of a .1; 2/–knot
whose complement contains meridionally incompressible surfaces of arbitrarily high
genus. To do that just embed the branched surface given in [7, Figure 14] as a surface
of type 6, defined in Section 2.6 of this paper. This example shows that it may be
difficult to give a description of all .1; 2/–knots whose complement contain a closed
meridionally incompressible surface. However, in this paper we do this for surfaces
of genus 2. In Section 2 we give several constructions which produce .1; 2/–knots
whose complement contain a closed meridionally incompressible surface of genus
2. In Section 3 we show that if the complement of a .1; 2/–knot contains a closed
meridionally incompressible surface of genus 2, then the knot and the surface come
from one of the given constructions. Contained in that proof is also a description of
all .1; 2/–knots whose complement contain a meridionally incompressible torus; these
are some satellites of .1; 1/–knots. It also follows from the construction that there are
.1; 2/–knots whose complement contains both a closed meridionally incompressible
surface of genus 2 and of genus 1.

If K is a .1; 1/–knot, then it is easy to see that K has tunnel number one. On the other
hand, if K has tunnel number one, it seems to be very difficult to determine b1.K/. A
priori there should be tunnel number one knots with arbitrarily large b1 , but this has
been difficult to prove. Moriah and Rubinstein [16] showed the existence of tunnel
number one knots K with b1.K/ � 2. Morimoto, Sakuma and Yokota also showed
this, and gave explicit examples of knots K with tunnel number one and b1.K/D 2

[18]. It was shown in [6] that many of the tunnel number one knots K constructed
in [4] are not .1; 1/–knots. We refine the proof here, and show in Section 4 that
some of the knots constructed in [4] are not .1; 2/–knots. The argument is as follows:
the complement of the tunnel number one knots constructed in [4] contains a closed
meridionally incompressible surface. We then pick some of them whose complement
contain a meridionally incompressible surface of genus 2, and show that the surface
comes from none of the constructions of Section 2. This implies that b1.K/� 3 for
any such knot K . These knots can be explicitly constructed; an example is given in
Figure 13. However, our examples seem to satisfy b1.K/� 4, and we do not know if
one of these knots satisfies b1.K/D 3.

Recently, Johnson and Thompson [14], and independently Minsky, Moriah and Schlei-
mer [15] have shown that for any given n, there exist tunnel number one knots which
are not .1; n/–knots. In [15] it is in fact shown that for given t and n, there exist
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tunnel number t knots K so that bt .K/ > n. The two papers use similar techniques
and prove the existence of such knots, but do not give explicit examples.

Finally, we add that Valdez-Sánchez and Ramı́rez-Losada [20] have also shown exam-
ples of tunnel number one knots K with b1.K/D2. These knots bound punctured Klein
bottles but are not contained in the .1; 1/–knots bounding Klein bottles determined by
the same authors [21]. In Eudave-Muñoz [5] a construction is given of tunnel number
one knots which admit a meridional incompressible surface. Using [8], we can show
that among these knots there are ones with b1.K/D 2 [9], and expect to prove that
there are others with b1.k/D 3.

2 Construction of meridionally incompressible surfaces

Let F be a closed surface of genus g standardly embedded in S3 , and let I D Œ0; 1�.
Consider a product neighborhood F � I of F . To say that a knot K has a .g; b/–
presentation is equivalent to say that K has been isotoped to lie in F � I , so that
K\ .F � f0g/ and K\ .F � f1g/ consists each of b arcs (or b tangent points), and
the rest of the knot consists of 2b vertical arcs in F � I , that is, arcs which intersect
each leave F �ftg, 0< t < 1, in the product exactly in one point. Or simply, K is in a
.g; b/–position if K � F � I , and the projection map pW F � I ! I when restricted
to K has exactly b local maxima and b local minima.

Let T be a standard torus in S3 , and let I D Œ0; 1�. Consider T �I �S3 . T0DT �f0g

bounds a solid torus R0 , and T1 D T � f1g bounds a solid torus R1 , such that
S3DR0[.T �I/[R1 . Think of the solid torus R1 as containing the point at infinity.
By a vertical arc in a product T � Œa; b� we mean an embedded arc which intersects
every torus T �fxg in the product in at most one point. By a level simple closed curve
we mean a curve which is contained in some level torus T � fxg.

In this section we construct knots with a .1; 2/–presentation whose complement contain
a closed meridionally incompressible surface of genus 2. We assume that all knots
constructed in this section are contained in T � I .

2.1 Surfaces of type 1

Choose a point e on I , so that 0 < e < 1. Consider the torus Te D T � feg. Let

0 , 
1 be simple closed curves embedded in the product T � .0; e/ and T � .e; 1/

respectively, so that each curve has only one local maximum and one local minimum
with respect to the projection to .0; e/ or to .e; 1/. Suppose also that 
0 (
1 ) is not
in a 3–ball contained in R0[ .T � Œ0; e�/ (resp. .T � Œe; 1�/[R1 ), that is, it is not a
trivial knot in that region.
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Let ˛ be a vertical arc in T �Œ0; 1�, joining the maximum point of 
0 with the minimum
of 
1 . Let �1 be the 1–complex consisting of the union of the curves 
0 , 
1 and the
arc ˛ . So �1 is a trivalent graph embedded in S3 .

Let N.�1/ be a regular neighborhood of �1 . This is a genus 2 handlebody. We can
assume that N.�1/ is the union of 2 solid tori, N.
0/ and N.
1/, joined by the
1–handle N.˛/. Let S D @N.�1/, we say that S is a surface of type 1. In Figure 1
we show in a schematic way a surface of type 1, and also give an explicit example,
where both curves 
i , i D 1; 0, are isotopic to level curves.

T1

T0

1


0˛ 
1


0

˛

Figure 1

There are three possibilities for the graph �1 :

(1) By isotopies of �1 , none of the curves 
0 and 
1 can be isotoped into a level
curve.

(2) By an isotopy of �1 , both curves 
0 and 
1 can be isotoped into level curves,
say 
i can be isotoped into 
 0i , which lies in Ti , i D 0; 1. In this case we assume that

 0i is not isotopic to the core of Ri , ie 
 0i does not consist of a longitude and several
meridians of Ri , and assume also that �.
 0

0
; 
 0

1
/� 2 [4].

(3) By an isotopy of �1 , only one of the curves, say 
1 , can be isotoped into a level
curve 
 0

1
contained in T1 . Assume that 
 0

1
is not isotopic to the core of R1 , ie 
 0

1

does not consist of a longitude and several meridians of R1 .

Let E DN.�1/\Te , this is a disk, which is in fact a cocore of the 1–handle N.˛/.
Embed a knot k in N.�1/ so that it intersects E in four points, k \N.
1/ consists
of two arcs each having just one local maximum, k \N.
0/ consists of two arcs each
having just one local minimum, and k \N.˛/ consists of four vertical arcs. Suppose
also that S D @N.�1/ is meridionally incompressible in N.�1/� k . It is not difficult
to see that there are plenty of such knots. See Figure 2 for an example.
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Figure 2

Theorem 2.1 Let �1 be a graph as above, and k in N.�1/ as above. Then k is
a .1; 2/–knot, and S D @N.�1/ is meridionally incompressible in S3 � k , except
possibly if �1 is as in case (3), ie it can be isotoped so that exactly one of the curves 
i

is a level curve.

Proof By construction k has a .1; 2/–presentation, and by hypothesis S is meridion-
ally incompressible in N.�1/� k . So it remains to prove that S is incompressible in
S3� int N.�1/.

Let T 0e D Te � int N.�1/, this is a once-punctured torus. Suppose D is a compression
disk for S , and suppose it intersects transversely the torus T 0e . Let ˇ be a simple closed
curve of intersection between D and T 0e , which is innermost in D . So ˇ bounds a
disk D0 � D , which is contained, say, in the solid torus .T � Œe; 1�/[R1 . If ˇ is
trivial on T 0e , then by cutting D with an innermost disk lying in the disk bounded by
ˇ on T 0e , we get a compression disk with fewer intersections with T 0e . If ˇ is essential
on T 0e , then it would be parallel to @T 0e , or it would be a meridian of the solid torus
.T � Œe; 1�/[R1 , but in any case the curve 
1 will be contained in a 3–ball, which is
a contradiction.

So suppose D intersects T 0e only in arcs. Let ˇ be such an arc which is outermost
on D ; it cobounds with an arc ı � @D a disk D0 . If ˇ is parallel to an arc on @T 0e ,
then by cutting D with such an outermost arc lying on T 0e we get another compression
disk with fewer intersections with T 0e , so assume that ˇ is an essential arc on T 0e .
After isotoping D if necessary, we can assume that the arc ı can be decomposed as
ıD ı1[ı2[ı3 , where ı1; ı3 lie on @N.˛/ and ı2 lie on @N.
1/ (if ı were contained
in @N.˛/, then by isotoping D we would get a compression disk whose intersection
with T 0e contains a simple closed curve). Let E be a disk contained in @N.˛/ so that
@E D ı1 [ ı4 [ ı3 [ ı5 , where ı4 lies on @T 0e and ı5 lies on @N.
1/\ @N.˛/. So
D0 [E is an annulus, where one boundary component, ie ˇ [ ı4 lies on Te , and
the other, ı2 [ ı5 , lies on @N.
1/. If ı2 [ ı5 is a meridian of 
1 , then ˇ [ ı4 is a
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meridian of the solid torus .T � Œe; 1�/[R1 . Then 
1 intersects a meridian disk of
.T � Œe; 1�/[R1 in one point, which implies that it is parallel to a knot lying on the
torus T1 , and it is isotopic to the core of R1 , which is a contradiction. If ı2[ ı5 goes
more than once longitudinally on 
1 , then the level curve ˇ [ ı4 (which is a trivial
or a torus knot) would be a cable knot around 
1 . This shows that 
1 is a core of the
solid torus R1 , which is not possible. If ı2[ ı5 goes once longitudinally on 
1 , then

1 is isotopic to a curve on T1 . So we conclude that either S is incompressible or 
1

is isotopic to a level curve on T1 .

Suppose now that �1 has been isotoped so that 
1 is a level curve in T1 and that 
0

is a level curve in T0 . The incompressibility of S now follows from [4, Theorem 4.1],
because we assume that �.
1; 
2/� 2. This completes the proof.

Note that if one of the curves 
0 , 
1 does not satisfy the required conditions, then the
surface S will be compressible.

It is not difficult to construct examples where 
1 is a level curve, but the curve 
0

it is not, and so that S is incompressible in S3 � int N.�1/. But at this writing we
do not have a precise description of all such curves. On the other hand, it is also not
difficult to construct examples of graphs with such curves so that the surface S is in
fact compressible. One such example can be constructed starting with a graph �1 so
that S D @N.�1/ is obviously compressible, say a graph where both curves 
0 and 
1

are level and �.
0; 
1/D 1. Now slide an endpoint of 
0 through ˛ and then through

1 , going around it several times, and then again through ˛ , to get a new curve 
 0

0
and

a new graph � 0
1

. The new curve 
 0
0

can be chosen so that it has a single local maximum,
a local minimum and it is not isotopic to a level curve. However S 0 D @N.� 0

1
/ would

be compressible, because the exteriors of �1 and � 0
1

are homeomorphic.

2.2 Surfaces of type 2

Let e be a point on I , so that 0< e < 1. Consider the level torus Te D T �feg. Let 

be a simple closed curve embedded in the level torus Te . Let ˛ be an arc contained in
T � I , with endpoints in 
 , so that it has just a local maximum at T1 , and just a local
minimum at T0 . Suppose that 
 is essential in Te , or well, it is inessential but bounds
a disk in Te which intersects ˛ in one point. Note that the interior of ˛ intersects Te

in one point, so ˛ is divided into a lower and an upper arc, say ˛1 and ˛2 . Suppose
that none of these arcs can be isotoped (in R0 [ .T � Œ0; e�/ or .T � Œe; 1�/[R1 ),
keeping its endpoints fixed, into an arc on Te with interior disjoint from 
 .

Let �2 be the 1–complex consisting of the union of the curve 
 and the arc ˛ . So
�2 is a trivalent graph embedded in S3 . Let N.�2/ be a regular neighborhood of �2 .
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This is a genus 2 handlebody. We can assume that N.�2/ is the union of the solid tori
N.
 / and 1–handle N.˛/, so that these intersect in two disks, E1 and E2 , where
say E1 is at level T �fe� �g and E2 at level T �feC �g, for some small � > 0. Let
S D @N.�2/. We say that S is a surface of type 2. In Figure 3 we show schematically
a surface of type 2, and give an explicit example.

T1

T0


 ˛ 


˛

Figure 3

Let k be a knot embedded in N.�2/ so that k intersects each of E1 and E2 in two
points, k\N.˛/ consists of two arcs, each with a local maximum and a local minimum
in T �I , and k\N.
 /, which is contained in T �Œe��; eC��, consists of two vertical
arcs. Suppose also that S D @N.�2/ is meridionally incompressible in N.�2/�k . To
get that it suffices to ask that k is well wrapped in N.�2/ (ie consider the two arcs of
k lying in N.
 /, get a knot by joining the ends of the arcs lying in E1 and E2 with
an arc contained in such disks, and then push the knot to the interior of N.
 /; to be
well wrapped just means that the wrapping number of this knot in the solid torus N.
 /

is � 2 [4]). Note that if such a knot is not well wrapped then S is in fact meridionally
compressible.

Theorem 2.2 Let �2 be a graph as above, and k in N.�2/ as above. Then S D

@N.�2/ is meridionally incompressible in S3� k , and k is a .1; 2/–knot.

Proof By construction k is in a .1; 2/–position. The surface S is meridionally incom-
pressible in N.�2/�k by hypothesis. So it remains to prove that S is incompressible
in S3� int N.�2/.

Let AD Te� int N.�2/. This is a once-punctured annulus if 
 is nontrivial in Te , and
it is a once-punctured disk plus a once-punctured torus if 
 is trivial in Te . Suppose
D is a compression disk for S . Look at the intersections between D and A. Let ˇ be
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a simple closed curve of intersection which is innermost in D . If ˇ is nontrivial in Te ,
then it is a meridian of the solid torus .T � Œe; 1�/[R1 , say, which implies that the arc
˛2 can be isotoped into Te disjoint from 
 . So suppose that ˇ is trivial in Te (but
perhaps nontrivial in A).

If 
 is nontrivial in Te , then the curve ˇ is trivial in A, and it is easily removed. If

 is trivial in Te , then ˇ will be trivial in A, except if it is a curve concentric with

 , not contained in the disk bounded by 
 . In this case, the disk bounded by ˇ in D

union the disk bounded by ˇ in Te bounds a 3–ball which contains the upper or the
lower arc of ˛ , and then as such arc has no local knots (for it has just one maximum or
minimum), it can be pushed into Te , which contradicts our hypothesis. Suppose then
that all simple closed curves of intersection between A and D have been removed.

Suppose now that ˇ is an arc of intersection between D and A which is outermost in
D . Then ˇ cuts off a disk D0�D , with @D0Dˇ[ı , where ı�S . If ˇ is trivial in A,
ie isotopic into a component of @A, then by cutting D with the disk in A determined
by ˇ (or an innermost one), we get a compression disk with fewer intersections with
A. Assume then that ˇ is nontrivial in A. Suppose first that the ends of ˇ lie on
N.
 /; in this case we can assume that ı is disjoint from @N.˛/ (for otherwise the
interior of ı would intersect A). If 
 is trivial in Te , then D0 is a meridian disk of
.T � Œe; 1�/[R1 , say, which implies that the arc ˛2 can be isotoped into Te . If 
 is
nontrivial in Te , then either D0 is a meridian disk of .T � Œe; 1�/[R1 , say, and 
 is a
curve intersecting a meridian of .T � Œe; 1�/[R1 in one point, or @D0 determines a
disk E � Te , which contains the point Te \˛ . Again, in both cases this implies that
the arc ˛2 can be isotoped into Te . Suppose now that both ends of ˇ lie on N.˛/. If
the arc ı is isotopic into @A, then by isotoping D we would get a compression disk
whose intersection with Te contains a simple closed curve. Otherwise, ıD ı1[ı2[ı3 ,
where ı1 and ı3 are arcs lying on @N.˛/, and ı2 is an arc lying on @N.
 /. Note
that ı2 goes around N.
 / just once. Let E be a disk contained in @N.˛/, such that
@ED ı1[ı4[ı3[ı5 , where ı4 � @N.˛/\@N.
 /, and ı5 � @A. Then D0[E is an
annulus in .T � Œe; 1�/[R1 , a boundary component of it is a curve parallel to 
 , the
other component lies on A, and the arc ˛2 is an spanning arc of D0[E . This again
shows that ˛2 can be isotoped into Te . Finally, if one endpoint of ˇ lies in N.
 / and
the other in N.˛/, then ˛2 can be isotoped to lie on Te .

Note that if in the 1–complex �2 one of the arcs ˛1 or ˛2 can be isotoped into an arc
on the level torus Te with interior disjoint from 
 , then the surface S will be either
compressible, or it can be isotoped to a surface of type 1, so that the knot k remains in
a .1; 2/–position.

Geometry & Topology Monographs, Volume 12 (2007)



44 M Eudave-Muñoz

2.3 Surfaces of type 3

Let e be a point on I , so that 0< e < 1. Consider the torus Te D T � feg. Let 
1 be
a simple closed curve embedded in the level torus Te and let 
2 be an essential simple
closed curve embedded in T0 which goes around R0 at least once longitudinally. Let
˛ be an arc contained in T � I , with endpoints in 
1 and 
2 , so that it has just a local
maximum at T1 . Suppose that 
1 is essential in Te , or that it is inessential but bounds
a disk in Te which intersects ˛ in one point. Note that the interior of ˛ intersects Te

in one point, so ˛ is divided into a lower and an upper arc, say ˛1 and ˛2 . Suppose
that the arc ˛2 cannot be isotoped (in .T � Œe; 1�/[R1 ), keeping its endpoints fixed,
into an arc on Te with interior disjoint from 
1 .

Let �3 be the 1–complex consisting of the union of the curves 
1 , 
2 and the arc ˛ .
So �3 is a trivalent graph embedded in S3 . Let N.�3/ be a regular neighborhood of
�3 . This is a genus 2 handlebody. We can assume that N.�3/ is the union of the solid
tori N.
1/ and N.
2/, joined by the 1–handle N.˛/, so that these intersect in two
disks, E1 and E2 , where say E1 is at level T �feC �g and E2 at level T �f�g, for
some small � > 0. Let S D @N.�3/, we say that S is a surface of type 3. A surface
of type 3 is shown schematically in Figure 4, and an explicit example is also given.

T1

T0


2


1

˛

1


2

˛

Figure 4

Let k be a knot embedded in N.�3/ so that k intersects each of E1 and E2 in
two points, k \ N.˛/ consists of two arcs, each with just a local maximum, and
k \N.
i/, i D 1; 2, consists of one arc with just a local minimum. Suppose also that
S is meridionally incompressible in N.�3/� k . To get that it suffices to ask that k

is well wrapped in N.�3/, that is, consider the arc of ki contained in N.
i/, join
its endpoints lying in Ei with an arc in Ei , push the resulting knot into N.
i/, and
assume that the wrapping number of such a knot in N.
i/ is � 2.
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Theorem 2.3 Let �3 be a graph as above, and k in N.�3/ as above. Then S D

@N.�3/ is meridionally incompressible in S3� k , and k is a .1; 2/–knot.

Proof By construction k is in a .1; 2/–position. The surface S is meridionally incom-
pressible in N.�3/�k by hypothesis. So it remains to prove that S is incompressible
in S3� int N.�3/.

The proof is an innermost disk/outermost arc argument, looking at the intersections of
a compression disk D with the surface Te � int.N.
1/[N.˛//.

Note that if the curves 
1 and 
2 have the same slope, then N.�3/ can be isotoped so
that both curves lie on the torus T0 . Note that if the arc ˛2 can be isotoped into an arc
on the level torus Te with interior disjoint from 
1 , then the surface S will be either
compressible, or it can be isotoped to a surface of type 1, so that the knot k remains in
a .1; 2/–position.

2.4 Surfaces of type 4

Let e , � be points on I so that 0 < � < e < 1. Consider the tori Te D T � feg and
F D T � f�g. Let 
1 be a simple closed curve embedded in the level torus Te and let
˛ be an arc contained in T � I , with endpoints in 
1 and F , so that it has just a local
maximum at T1 . Suppose that 
1 is essential in Te , or that it is inessential but bounds
a disk in Te which intersects ˛ in one point. Note that the interior of ˛ intersects Te

in one point, so ˛ is divided into a lower and an upper arc, say ˛1 and ˛2 . Suppose
that the arc ˛2 cannot be isotoped (in .T � Œe; 1�/[R1 ), keeping its endpoints fixed,
into an arc on Te with interior disjoint from 
1 .

The torus F bounds a solid torus F 0 DR0[ .T � Œ0; ��/. Consider the union H4 D

N.
1/ [N.˛/ [ F 0 . This is a genus 2 handlebody. This can be seen as the solid
tori N.
1/ and F 0 joined by the 1–handle N.˛/, so that these intersect in two disks,
E1 and E2 , where say E1 is at level T � feC �g, and E2 is at level T � f�g. Let
S D @H4 ; we say that S is a surface of type 4. For an example of a surface of type 4,
look at Figure 4, thinking of 
2 as a fat solid torus engulfing all of R0 .

Let k be a knot embedded in H4 so that k intersects each of E1 and E2 in two points,
k\N.˛/ consists of two arcs, each with just a local maximum, k\N.
1/ consists of
one arc, with just a local minimum, and k \F 0 consists also of one arc, with just a
local minimum. Suppose also that S D @H4 is meridionally incompressible in H4 . To
get that it suffices to ask that k is well wrapped in H4 .

Theorem 2.4 Let H4 be as above, and k in H4 as above. Then S D @H4 is merid-
ionally incompressible in S3� k , and k is a .1; 2/–knot.
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Proof By construction k is in a .1; 2/–position, and by hypothesis S is meridionally
incompressible in H4 � k . So it remains to prove that S is incompressible in the
complement S3 � int H4 . Such a proof is again an innermost disk/outermost arc
argument, looking at the intersections between a compression disk D and the surface
Te � int N.
1[˛/.

Note that a surface of type 4 can be isotoped to look like a surface of type 3, where the
curve 
2 for the new surface of type 3 will be longitudinal. But if this isotopy is done
then the knot k constructed for the surface of type 4 may not be in a .1; 2/–position.
But a surface of type 3, where the curve 
2 is longitudinal, will be in fact a surface of
type 4. Note also that if the arc ˛2 can be isotoped into an arc on the level torus Te

with interior disjoint from 
1 , then the surface S will be compressible.

2.5 Surfaces of type 5

Consider a sphere † that consists of two meridian disks in R1 , say D1 and D2 , two
vertical annuli A1 and A2 in T � Œ�; 1�, 0 < � < 1, and an annulus A3 in the level
torus T � f�g. Let B be a 3–ball bounded by † in S3 , say the one which does not
contain the point at infinity.

Assume first that the solid torus R0 is not contained in B . Let 
 be a level simple
closed curve lying in a level torus Te D T � feg, 0< � < e < 1, and which lies inside
the 3–ball B . Let ˛1 be a vertical arc in B with one endpoint in A1 at a level above
Te , and the other endpoint in 
 , and let ˛2 be a vertical arc in B with one endpoint in
A2 and the other in A2 or in A1 . If 
 is a trivial curve in the level torus Te , assume
that ˛2 intersects in one point the level disk E bounded by 
 . Assume that there is no
disk D in B with @D D ˛2[ ı , ı �†, and D\ .˛1[ 
 /D∅, that is, the arc ˛2 is
not isotopic to an arc in †. Suppose also that the arc ˛1 cannot be isotoped, keeping
its endpoints in † and 
 , so that ˛1 lies in the level torus Te , and the arc ˛2 remains
being a vertical arc. It is not difficult to construct examples satisfying these conditions.

Let B1 be the complementary ball in S3 bounded by †. Let H5 D B1 [N.˛1/[

N.˛2/ [N.
 /. This is a genus 2 handlebody. First, B1 [N.˛2/ is a solid torus,
formed by the 3–ball B1 and the 1–handle N.˛2/, where B1 \N.˛2/ consists of
two vertical disks, say E1 and E2 , where E1 is at an upper level. So H5 can be
seen as the solid tori B1 [N.˛2/ and N.
 / joined by the 1–handle N.˛1/, where
B1 \N.˛1/ consists of a vertical disk E3 , and N.˛1/\N.
 / is a level disk E4 ,
lying in a level T � feC ıg, for some small ı > 0. Let S D @H5 . We say that S is a
surface of type 5. Look at Figure 5, left, for an example of a surface of type 5.

Let † and B be as above, but suppose now that the solid torus R0 is contained in
the 3–ball B . Let F D T �f�1g, 0< �1 < � , and let F 0 DR0[ .T � Œ0; �1�/. So the

Geometry & Topology Monographs, Volume 12 (2007)



Incompressible surfaces and .1; 2/–knots 47

solid torus F 0 is contained in B . Let ˛1 be a vertical arc in B with one endpoint in
A1 and the other endpoint in F , and let ˛2 be a vertical arc in B with one endpoint
in A2 and the other in A2 or in A1 . As before, assume that the arc ˛2 is not isotopic
to an arc in †. Again, let B1 be the complementary ball in S3 bounded by †, and let
H5 be the genus 2 handlebody H5 D B1 [N.˛1/[N.˛2/[F 0 . Define disks E1 ,
E2 , E3 and E4 as above. Let S D @H5 , we also say that S is a surface of type 5.

D1

D2




˛1

˛2

A1

A2

A3

Figure 5

Let k be a knot in H5 , intersecting in two points each of the disks Ei , i D 1; 2; 3; 4,
and so that k\N.˛2/ consists of two vertical arcs, k\N.˛1/ consists of two vertical
arcs, k\N.
 / (or k\F 0 ) consists of one arc with a single local minimum and which
is well wrapped in N.
 / (F 0 ), and k \B1 consists of three arcs, two of them with a
single local maximum and with endpoints in E1 [E3 , the other with a single local
minimum and with endpoints in E2 . Suppose also that none of these arcs is isotopic
in B1 , keeping its endpoints and the other arcs fixed, to an arc lying on some Ei ,
i D 1; 2; 3.

Note that the two constructions of surfaces of type 5 produce surfaces which are
isotopic in S3 , but if such an isotopy is performed transforming one surface then the
corresponding knot k may not longer be in a .1; 2/–position.

Theorem 2.5 Let S and k be as above. S is meridionally incompressible in S3� k ,
and k is a .1; 2/–knot.

Proof By construction k is in a .1; 2/–position. We have to show that S is incom-
pressible in B � int H5 and that S is meridionally incompressible in H5�k . It is not
difficult to prove that S is meridionally incompressible in H5�k . To do that consider
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the disks E1 , E2 , E3 and E4 ; these are disks which intersects k in two points. Look
at the intersections between a compression disk D and E1[E2[E3[E4 . Using the
hypothesis on k , we conclude that D and E1[E2[E3[E4 can be made disjoint,
which then implies that D cannot exist.

Suppose that the solid torus R0 is not contained in the 3–ball B , the proof for the
remaining case is similar. Note that if the lower endpoint of the arc ˛2 lies in the
annulus A1 , and it is at a level below Te , then it can be isotoped, going through the
annulus A3 , so that both of its endpoints lie in A2 . This isotopy can be performed,
moving H5 and k , but so that k remains in a .1; 2/–position. If 
 is a nontrivial
curve in the level torus Te , and both endpoints of ˛2 lie in A2 , then 
 can be isotoped
so that it lies at a level below the lower endpoint of ˛2 . Assume these isotopies have
been performed, if possible.

Let E D Te \ .B � int H5/. If 
 is a nontrivial curve in the level torus Te , then E

consist of two annuli. And if 
 is a trivial curve in the level torus then E consists of a
punctured annulus and a punctured disk. The proof is now an innermost disk/outermost
arc argument, looking at the intersections between E and a compression disk.

Note that if the arcs ˛1 and ˛2 do not satisfy the required hypothesis, then the surface
S will be compressible.

2.6 Surfaces of type 6

Let 
 be a knot in T � I in a .1; 1/–position, so that it has a local maximum at a
level just below T1 , and a local minimum at a level just above T0 . Assume that 

is not isotopic in T � I to a meridian or a longitude of a level torus. Let N.
 / be
a neighborhood of 
 . Let ˛1 be a trivial curve, in a level torus T � feg, 0 < e < 1,
which bounds a level disk E such that E � int N.
 /. Let ˛2 be an arc contained
in N.
 / with an endpoint in @N.
 /, lying at a level f , with 0 < f < e , and the
other point in ˛1 . Suppose also that ˛2 has a single local maximum in T � I , that
˛2 intersects in one point the disk E bounded by ˛1 , and that ˛1 [ ˛2 intersects
each meridian of N.
 /, that is, we have something like in Figure 6. Assume that
N.˛1/\N.˛2/ consists of a level disk E1 lying in a level torus T �feC�g, for some
� > 0, and that N.˛2/\ @N.
 / is a disk E2 lying in the level torus T � ff g. Let
M6 DN.
 /� int N.˛1/[N.˛2/. Note that S D @M6 is a genus 2 surface. We say
that S is a surface of type 6.

Let k be a knot contained in S3 �M6 , which intersects each of E1 , E2 in two
points, and so that k\N.˛2/ consists of two arcs each having a single local maximum,
k \N.˛1/ consists of one arc, well wrapped in N.˛1/, and having just one local
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minimum, and k\ .S3� int N.
 // is one arc, with a single local minimum and which
goes around a longitude of R0 at least once. If 
 is a trivial knot assume further that
k is well wrapped in S3� int N.
 /. See Figure 6.

Theorem 2.6 Let S and k be as above. S is meridionally incompressible in S3� k ,
and k is a .1; 2/–knot. Furthermore, if 
 is a nontrivial knot, then S does not bound a
handlebody in S3 .

Proof We have to show that S is incompressible in M6 and that S is meridionally
incompressible in .S3 �M6/� k . It is not difficult to prove that S is meridionally
incompressible in .S3 �M6/ � k . To do that look at the intersections between a
compression disk D and E1[E2 . Using the facts that k is well wrapped in N.˛1[˛2/

and that k goes at least once longitudinally around R0 , or that k is well wrapped in
S3 � int N.
 /, we conclude that D and E1 [E2 can be made disjoint, which then
implies that D cannot exist.

N.
 /

˛1

˛2

k

Figure 6

It remains to prove that S is incompressible in M6 . Note that there are two nonsepa-
rating annuli properly embedded in M6 , say A1 and A2 , so that the boundary of A1

consists of a longitude of ˛1 and the boundary of a cocore of the 1–handle N.˛2/,
and the boundary of A2 consists of a meridian of 
 and the boundary of a cocore of
the 1–handle N.˛2/. Note that anyone of the boundary components of A1 and A2 is
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a nontrivial curve in M6 , because ˛1[˛2 is not contained in a 3–ball inside N.
 /.
In particular this shows that the annuli A1 and A2 are incompressible. Note also that
A1[A2 does not separate M6 . Suppose that D is a compression disk for S and look
at the intersections between D and A1[A2 . Simple closed curves of intersection are
easily removed, for these have to be trivial in the annuli. So the intersection consists
only of arcs. Let ˇ be an outermost arc of intersection in D , so it cuts off a disk
D0�D , with @D0Dˇ[ı . If the endpoints of ˇ lie on different boundary components
of A1 or A2 , then by inspection we see that there cannot be an arc ı in S , with interior
disjoint from the annuli, joining these two points. So if such ˇ exists, it must have
endpoints in the same boundary component of one of the annuli, so it bounds a disk
D00 in the annulus, and by cutting D with D00 (or with one outermost disk contained
in D00 ), we get a disk with fewer intersections with the annuli. Note also that D cannot
be disjoint from the annuli, for otherwise ˛1[˛2 will be contained in a 3–ball inside
N.
 /.

Finally note that if 
 is a nontrivial knot, then S does not bound a handlebody in
S3 , for in one it side bounds the disk sum of S3 � int N.
 / with N.˛1/[N.˛2/,
and the other side it bounds the manifold M6 , which is not a handlebody for it has
incompressible boundary.

Note that a knot k whose complement has a surface of type 6 will in general also have
a surface of type 4. To see that, consider the union of the curve ˛1 , the arc ˛2 and R0

(where the arc ˛2 has been prolonged to touch R0 ). So, let H4 DN.˛1[˛2[R0/.
Note that S 0 D @H4 is a surface of type 4, and if H4 is thin then S \S 0 D ∅. The
surface S 0 will be in fact meridionally incompressible in S3 � k , except if k goes
around R0 exactly once longitudinally.

2.7 Surfaces of type 7

Let 
 be a simple closed curve in T � f1=2g of slope p=q , jpj � 1 (in the usual
coordinates for the solid torus R0[ .T � f1=2g/. Let N1 DN1.
 / and N2 DN2.
 /

be two regular neighborhoods of 
 , with N1 �N2 , and N1 � T � Œ1=4; 3=4�, N2 �

T � Œ1=8; 15=16�. Let ˛ be an arc contained in N2� int N1 , connecting @N1 with @N2 ,
and so that ˛ has just one local maximum. Suppose also that ˛ cannot be isotoped,
keeping its endpoints in @N1 and @N2 , to an arc lying on a level torus T � fyg. The
arc ˛ can be isotoped so that it looks like the union of the arcs ˛1 [ ˛2 , where ˛1

is an arc of the form fxg � Œ1=2; 7=8�, going from @N1 to the local maximum, and
˛2 is a descending arc, which wraps around N2 and around ˛1 , until it finishes at a
point in @N2 . See Figure 7 for an example. By isotoping and sliding the arc ˛ , and
maintaining it with a single maximum, we can assume that its endpoints lie in the same
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level, say at level 1=2. We can connect its endpoints with an arc ˇ contained in an
annulus A (which is one of the components of .N2� int N1/\ .T � f1=2g/), and in
fact there are many of such arcs. Assuming that the arc ˛ cannot be isotoped to be
level, is equivalent to assuming that the knot `D ˛[ˇ is never trivial in N2� int N1 ,
for any of the choices of ˇ . We can think of the knot ` as lying in A� I , so that `
has just a maximum in A� I . By embedding A� I as a standard solid torus in S3 ,
with @A�f0g being a preferred longitude of such a solid torus, we get a 2–bridge link,
formed by ` and a meridian of the solid torus A� I . The assumption on the arcs is
equivalent to asking that the corresponding 2–bridge link is never a split link.

We can assume that a neighborhood of ˛ , N.˛/, is contained in N2 � int N1 , and
that N1\N.˛/ consists of a disk E1 and that N2\N.˛/ is a disk E2 . Let M7 D

N2� int.N1[N.˛//, and let S D @M7 . We say that S is a surface of type 7. Let k

be a knot contained in S3�M7 , which intersects each of E1 , E2 in two points, and
so that k \N.˛/ consists of two arcs, each with a single local maximum, and each
with an endpoint in E1 and the other in E2 . k \N1 is an arc with endpoints in E1 ,
with a single local minimum, and which is well wrapped in N1 , and k \ .S3�N2/ is
an arc with endpoints in E2 , with a single local minimum, and which goes around R0

at least once longitudinally. If 
 is a trivial knot assume further that k is well wrapped
in S3� int N2 .

N1

N2

˛1

˛2

A2 A2

Figure 7

Theorem 2.7 Let S and k be as above. S is meridionally incompressible in S3� k ,
and k is a .1; 2/–knot. Furthermore, if 
 is a nontrivial knot, then S does not bound a
handlebody in S3 .

Proof It is not difficult to prove that S is meridionally incompressible in .S3�M7/�k .
Look at the intersections between a compression disk D and the disks E1 and E2 .

Geometry & Topology Monographs, Volume 12 (2007)



52 M Eudave-Muñoz

Using the hypothesis on k , we conclude that D and E1 , E2 can be made disjoint,
which then implies that D cannot exist.

It remains to prove that S is incompressible in M7 . M7\ .T �f1=2g/ consists of two
annuli, and ˛ must be disjoint from one of these annuli, for otherwise it will contain
more than one local maxima. So let A1 be one of such annuli, and suppose that A1 is
disjoint from ˛ (the other annulus was denoted before by A). A1 is a nonseparating
annulus in M7 . Let A2 be an annulus in N2 � int N1 consisting of a meridian disk
of N2 minus a meridian disk of N1 . A1 and A2 intersect in a single arc which is
essential in both annuli. The arc ˛ must intersect A2 , for otherwise it will be contained
in a 3–ball and it would be isotopic to a level arc. So suppose that ˛ and A2 intersect
transversely and that this intersection is minimal. A2\M7 is then a punctured annulus,
which we call also A2 .

Suppose that S is compressible in M7 , and let D be a compression disk. Look at the
intersections between D and A1[A2 . Simple closed curves of intersection between
D and A1 are easily removed, for no such curve can be essential in A1 . For the same
reason, if there is a simple closed curve of intersection between D and A2 , it must
bound a disk in A2 ; if the disk intersects ˛ , then an isotopy reduces the number of
points of intersection between A2 and ˛ , otherwise such an isotopy reduces the number
of intersection curves between D and A2 . So the intersection consists only of arcs.
By isotoping D , we can assume that it is disjoint from the arc of intersection between
A1 and A2 . Let ˇ be an outermost arc of intersection between D and A1[A2 , and
suppose that ˇ lies on A1 . If ˇ is inessential in A1 then it is easily removed. So
suppose ˇ has endpoints on different components of A1 . The arc ˇ cuts off a disk
D0 � D , with @D D ˇ [ ı . But the arc ı must pass through N.˛/, for otherwise
cannot connect points on different components of @A1 . Then ı must intersect A2 ,
which contradicts the fact that ˇ is outermost. So any outermost arc of intersection
ˇ must lie on A2 . In any of the possible cases, the disk D0 determined by ˇ can be
used to isotope ˛ , reducing the number of points of intersection of ˛ with A2 . So the
disk D must be disjoint from A1 and A2 . Then it is not difficult to see that this is not
possible.

Finally, if 
 is a nontrivial knot, then S does not bound a handlebody in S3 , for in
one side it bounds the disk sum of S3� int N2 with N.˛/[N1 , and in the other side
it bounds M7 , which is not a handlebody for it has incompressible boundary.

Note that if the curve 
 is a curve of slope 1=q on T �f1=2g, then S will be isotopic
to a surface of type 4. Note that a knot k whose complement has a surface of type
7 will in general also have a surface of type 4. To see that, consider the union of the
solid torus N1 , the arc ˛ and R0 (where the arc ˛ has been prolonged to touch R0 ).
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So, let H4 D N1 [N.˛/[R0 . Note that S 0 D @H4 is a surface of type 4, and that
if H4 is thin enough then S \S 0 D ∅. The surface S 0 will be in fact meridionally
incompressible in S3� k , except if k goes around R0 exactly once longitudinally.

2.8 Surfaces of type 8

Let R be a torus in S3 constructed as follows. Let A1 , A2 , : : : , An be n annuli
properly embedded in R1 , all with slope p=q , jpj�2, jqj�2 (in the usual coordinates
of the solid torus R0 [ .T � Œ0; 1�/). Suppose the annuli are nested, and say, A1 is
the innermost one. Let B1

1
, B2

1
, : : : , B1

n , B2
n be 2n vertical annuli in T � I , so that

@Ai � @.B
1
i [B2

i /, 1 � i � n. Let C1 , : : : , Cn be n annuli properly embedded in
R0 , which are nested, whose boundaries coincide with the boundaries of the B

j
i ’s, so

that C1 is the innermost annulus and @C1 � @.B
2
1
[B2

2
/. Note that the union of the

Ai ’s, the B
j
i ’s and the Ci ’s is an embedded torus, denoted by R.

In the special case when nD 1, assume that the annulus C1 is chosen so that the torus
R does not bound a solid torus contained in T � I . In the special case when nD 2, it
is enough to assume that jpj � 2, jqj � 1. In this case we can take the annuli C1 and
C2 to be nested or non-nested.

Note that R is a standard torus in S3 , except in the case when nD 2, jqj � 2, and the
annuli C1 , C2 are non-nested. In that case R is isotopic to the boundary of a regular
neighborhood of the .p; q/–torus knot.

Let ˛ be an arc in T � I , with one endpoint in B1
1

, the other in B2
1

, with interior
disjoint from the B

j
i ’s, and so that it has a single local maximum in T � I . Let E

be the annulus in T0 , with @E � @.B1
1
[B2

1
/, and whose interior is disjoint from the

B
j
i ’s. So A1 [B1

1
[B2

1
[E bounds a solid torus P which contains the arc ˛ . By

sliding the arc ˛ , we can assume that its endpoints lie in the same level, say at level e ,
0< e < 1. We assume that the arc ˛ cannot be isotoped, keeping its endpoints fixed,
to a level arc lying in T � feg.

Let R0 be the solid torus bounded by R which does not contain the arc ˛ . Let
H8 DR0[N.˛/. This is a genus 2 handlebody; it can be seen as the solid torus R0

union the 1–handle N.˛/, where R0 \N.˛/ D .B1
1
[B2

1
/\N.˛/ consists of two

disks, say E1 and E2 . Let S D @H8 . We say that S is a surface of type 8. See
Figure 8, left.

Let k be a knot in H8 , intersecting in two points each of E1 , E2 , and so that k\N.˛/

consists of two arcs, each with a single local maximum, and k \R0 consists of two
arcs, each with a single local minimum, and each going at least once longitudinally
around R0 , ie none of the arcs can be isotoped into an arc lying in E1 or E2 .
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T1

T0

T1

T0

˛ ˛




Figure 8

Theorem 2.8 Let S and k be as above. S is meridionally incompressible in S3� k ,
and k is a .1; 2/–knot.

Proof By construction k is in a .1; 2/–position. We have to show that S is incom-
pressible in S3� int H8 and that S is meridionally incompressible in H8�k . It is not
difficult to prove that S is meridionally incompressible in H8�k . To do that consider
the disks E1 , E2 , and look at the intersections between a compression disk D and
E1[E2 . Using the hypothesis on k , we conclude that D and E1[E2 can be made
disjoint, which then implies that D cannot exist.

Suppose now that S is compressible in S3� int H8 , and let D be a compression disk.
Look at the intersections between D and the annulus E defined above. Simple closed
curves of intersection are easily removed. Let ˇ be an outermost arc of intersection in
D , which cuts a disk D0 �D , and say @D0 D ˇ [ ı . If ı is trivial in E , we cut D

with the disk in E determined by ı (or with an innermost one), getting a compression
disk with fewer intersections with E . If ı is essential in E , there are two cases. If
D0 is contained in the solid torus P , this will imply that the arc ˛ can be isotoped
to be level. If D0 is not contained in P , this would imply that the slope p=q of the
annulus E would satisfy jpj D 1 if n is even, or that jqj D 1 if n is odd, contrary to
the hypothesis. So assume that D and E do not intersect. Let F be a meridian disk
of the solid torus P , this can intersect the arc ˛ in many points, but suppose ˛ has
been isotoped so that its intersection with F is minimal. The intersection of F with
S3� int H8 is a punctured disk, which we call F again. Now look at the intersections
between F and D . An innermost disk or outermost arc of intersection can be used to
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reduce the number of points of intersection between F and ˛ , which is not possible.
So D must be disjoint from F , but this is not possible.

Note that a knot k which has a surface of type 8 may also have a surface of type 3.
Prolong the arc ˛ on both ends until it touches R0 in two points, but so that intersects
the B

j
i ’s only in two points, one lying in E1 , the other in E2 . Take curves 
1 and


2 in R0 of slope p=q , disjoint from the Ci ’s, so that one endpoint of ˛ lies in 
1

and the other in 
2 . �3 D ˛[ 
1[ 
2 is a 1–complex as defined in Section 2.3, and
S 0 D @N.�3/ is disjoint from S , just take N.
3/ thin enough. Note that if n� 3, the
knot k can be isotoped so that k is contained in N.�3/; so if k is well wrapped in
N.�3/, S 0 will also be meridionally incompressible in S3� k . If nD 1; 2 then this
construction may also work, depending if the knot k can or cannot be isotoped into
N.�3/. However, if nD 2 and the annuli C1 and C2 are nested, a similar construction
yields a surface of type 4, and if nD 1, then we get a surface of type 1. In both cases
the new surface may be meridionally incompressible.

Note that if n is even, and the slope of the annulus A1 is 1=q , then with a little work
it can be shown that the surface S is in fact compressible. If n is even, and the slope
of A1 is p=1, then the surface S is isotopic to a surface with nD 2. If n is odd, and
the slope of the annulus A1 is 1=q , then the surface S is isotopic to a surface with
nD 2. If n is odd, and the slope of A1 is p=1, then the surface S is compressible.

Also note that if nD 2, and the slope of the annulus A1 is p=1, then both versions of
a surface of type 8 are identical, ie the annuli C1 and C2 can be isotoped to be nested
or non-nested.

2.9 Surfaces of type 9

Let R be a torus in S3 constructed as follows. Let A1 , A2 , : : : , An be n annuli
properly embedded in R1 , all with slope p=q , jpj�2, jqj�2 (in the usual coordinates
of the solid torus R0 [ .T � Œ0; 1�/). Suppose the annuli are nested, and say, A1 is
the innermost one. Let B1

1
, B2

1
, : : : , B1

n , B2
n be 2n vertical annuli in T � I , so that

@Ai � @.B
1
i [B2

i /, 1 � i � n. Let C1 , : : : , Cn be n annuli properly embedded in
R0 , which are nested, whose boundaries coincide with the boundaries of the B

j
i ’s,

so that C1 is the innermost annulus and @C1 � @.B
2
1
[B2

2
/. Note that the union of

the Ai ’s, the B
j
i ’s and the Ci ’s is an embedded torus, denoted by R. In the special

case when nD 1, assume that the annulus C1 was chosen so that the torus R does not
bound a solid torus contained in T � I . Note that in any case, R is a standard torus in
S3 .

Let E be the annulus in T0 , with @E � @.B1
1
[B2

1
/, and whose interior is disjoint

from the B
j
i ’s. Let 
 be a simple closed curve which is a core of the annulus E , and
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let N.
 / a small neighborhood of 
 , disjoint from the B
j
i ’s. Let ˛ be an arc in T �I ,

with one endpoint in B1
1

, the other in N.
 /, with interior disjoint from the B
j
i ’s, and

so that it has a single local maximum in T � I . By sliding the arc ˛ , we can assume
that its endpoints lie in the same level, say at level � , 0< � < 1. We assume that the
arc ˛ cannot be isotoped, keeping its endpoints fixed, to a level arc lying in T � f�g.

Let R0 be the solid torus bounded by R which does not contain the arc ˛ . Let
H9DR0[N.˛/[N.
 /. This is a genus 2 handlebody; it can be seen as the solid tori
R0 and N.
 / joined by the 1–handle N.˛/, where R0\N.˛/DB1

1
\N.˛/ consists

of a disk, say E1 , and N.˛/\N.
 / consists of a disk E2 , which lies in level torus
T � f�g. Let S D @H9 . We say that S is a surface of type 9. See Figure 8, right.

Let k be a knot in H9 , intersecting in two points each of E1 , E2 , and so that k\N.˛/

consists of two arcs, each with a single local maximum, and k\R0 consists of one arc
with a single local minimum, which is well wrapped in the solid torus R0 . Furthermore,
k \N.
 / consists of one arc with a single local minimum and which is well wrapped
in N.
 /.

Theorem 2.9 Let S and k be as above. S is meridionally incompressible in S3� k ,
and k is a .1; 2/–knot.

Proof By construction k is in a .1; 2/–position. We have to show that S is incom-
pressible in S3� int H9 and that S is meridionally incompressible in H9�k . It is not
difficult to prove that S is meridionally incompressible in H9�k . To do that consider
the disks E1 , E2 , and look at the intersections between a compression disk D and
E1[E2 . Using the hypothesis on k , we conclude that D and E1[E2 can be made
disjoint, which then implies that D cannot exist.

Suppose now that S is compressible in S3� int H9 , and let D be a compression disk.
Let E0 D E � int N.
 /, these are two annuli. Look at the intersections between D

and the annuli E0 . An argument as in the proof of Theorem 2.7 or Theorem 2.8 yields
a contradiction.

Note that a knot k whose complement has a surface of type 9 may also have a surface
of type 3. The construction is identical to the one done in the previous section, just
after the proof of Theorem 2.8.

Note that if n is even, and the slope of the annulus A1 is 1=q , then the surface S

is isotopic to a surface of type 7. If n is even, and the slope of A1 is p=1, then the
surface S is isotopic to a surface of type 3. If n is odd, and the slope of the annulus
A1 is 1=q , then the surface S is isotopic to a surface of type 3. If n is odd, and the
slope of A1 is p=1, then the surface S is isotopic to a surface of type 7.
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2.10 Incompressible tori and .1; 2/–knots

It is not difficult to construct .1; 2/–knots whose complement contains a closed merid-
ionally incompressible torus. There are three cases.

Let K be a nontrivial knot in a .1; 1/–position. Embed a knot k in N.K/ so that
the wrapping number of k in N.K/ is 2, and that k is in a .1; 2/–position. Clearly
S D @N.K/ is meridionally incompressible and k is a .1; 2/–knot. These knots inside
N.K/ look like in Figure 9, left.

Let K be a nontrivial knot contained in the standard torus T in S3 . Assume that
N.K/ is of the form N.K/DA� I � T � I , where A is an annulus in T . Embed
a knot k in N.K/ so that the wrapping number of k in N.K/ is � 2, and that k is
in a .1; 2/–position. Clearly S D @N.K/ is meridionally incompressible and k is a
.1; 2/–knot. These knots inside N.K/ look like in Figure 9, right.

4–braid

4–braid
4–braid in A� I

Figure 9

Note that some of the knots constructed above could contain both, a meridionally
incompressible surface of genus 2, and one of genus 1. Namely, let S be a surface
of type 1, and let H be the handlebody bounded by S . Then we can find a knot
K �H , so that K is in a .1; 1/–position, and S is incompressible in H �K (but it
is meridionally compressible). Now let k be any 2–cable of K contained in N.K/.
Then both surfaces @N.K/ and S are meridionally incompressible in the complement
of k . This construction may not work for the remaining types of surfaces, for it seems
that there is no .1; 1/–knot embedded in the regions bounded by that surfaces, so that
the surfaces are incompressible in the complement of that knot.
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Let S be a surface of type 7, and let N be a big solid torus containing S , that is, a
big neighborhood of the torus knot used in the construction of the surface of type 7. If
the knot k constructed in Section 2.7 is chosen so that k lies in N , then both surfaces
S and @N will be meridionally incompressible.

This construction, that is, of a big torus containing the surface, can also be done for
surfaces of type 1, 2, 3, 4, and 6, if the surfaces and the knots are chosen adequately.
But it may fail in the remaining cases. This is because it seems that a surface of type 5,
8 or 9 cannot be confined inside a solid torus N , so that @N remains incompressible
in S3�k ; except in the special case in surfaces of type 8, where nD 2, and the lower
annuli are non-nested.

We showed before that knots with a surface of type 6 or 7 usually contain a surface of
type 4, and knots with a surface of type 8 usually contain a surface of type 3. It follows
that there are .1; 2/–knots which contain 3 meridionally incompressible surfaces, one
of genus 1, and two of genus 2 (one of type 4 and one of type 6 or 7, or one of type 3
and one of type 8).

2.11 Further remarks

All the knots k constructed in this section have a .1; 2/–presentation, that is, b1.k/� 2.
So we could ask if they really have b1.k/ D 2. In [6], all .1; 1/–knots containing
a closed meridionally incompressible surface are described, and it is shown that the
surfaces are the boundary of a regular neighborhood of what is called a toroidal graph.
So to show that the present knots are not .1; 1/–knots it suffices to show that the
surfaces constructed here do not satisfy the conditions given in [6]. This is clear for
some of the surfaces of type 6 and 7, the ones that do not bound a handlebody. It is
intuitively obvious for the remaining cases, but a little more work is required to show
that.

3 Characterization of meridionally incompressible surfaces

In this section we prove the following theorem.

Theorem 3.1 Let K be a .1; 2/–knot and let S be a genus 2 meridionally incom-
pressible surface in the complement of K . Then K and S come from the construction
of Section 2, that is, K and S can be isotoped so that S looks as one of the surfaces of
types 1, 2, 3, 4, 5, 6, 7, 8 and 9 constructed in Section 2.
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Let T be a standard torus in S3 , and let I D Œ0; 1�. Consider T �I �S3 . T0DT �f0g

bounds a solid torus R0 , and T1 D T � f1g bounds a solid torus R1 , such that
S3 DR0 [ .T � I/[R1 . Let k be a .1; 2/–knot, and assume that k lies in T � I ,
such that k \ T0 D k0 consists of two arcs, k \ T1 D k1 consists of two arcs, and
k \ .T � .0; 1// consists of four vertical arcs.

Suppose there is a closed surface S in S3 � int N.k/, which is incompressible and
meridionally incompressible. Assume that S intersects T0 and T1 transversely. Let
S0 D S \R0 , S1 D S \R1 , and zS D S \ .T � I/. Let � W T � I ! I be the height
function, where we choose 0 to be the lowest point, and 1 the highest. We may assume
that the height function on zS is a Morse function. So there is a finite set of different
points X D fx1;x2; : : : ;xmg in I , so that zS is tangent to T � fxig at exactly one
point, and this singularity can be a local maximum, a local minimum, or a simple
saddle. Suppose that 1 > x1 > x2 > � � � > xm > 0, that is, we numerate the singular
points starting from the upper level. For any y …X , T �fyg intersects zS transversely,
so for any such y , zS \ .T �fyg/ consists of a finite collection of simple closed curves
called level curves, and at a saddle point xi , either one level curve of zS splits into two
level curves, or two level curves are fused into one curve.

For example, any of the knots and surfaces constructed in Section 2 can be put in this
position, after doing an appropriate isotopy.

Define the complexity of S by the pair c.S/D .jS0j C jS1j C j
zS j; jX j/ (where jY j

denotes the number of points if Y is a finite set, or the number of connected components
if it is a surface, and give to such pairs the lexicographical order). Assume that S has
been isotoped so that c.S/ is minimal.

Claim 3.2 The surfaces S0 , S1 and zS are incompressible and meridionally incom-
pressible in R0 , R1 , and T � I � int N.k/ respectively.

Proof If there is a meridian compression disk for one of the surfaces, then it will
be also a meridian compression disk for S . Suppose then one of the surfaces is
compressible, say zS , and let D be a compression disk, which is disjoint from k . Then
@D is essential in zS but inessential in S . By cutting S along D we get a surface S 0

and a sphere E . Note that S and S 0 are isotopic in M � k . For S 0 we can similarly
define the surfaces S 0

0
, S 0

1
and zS 0 . Note that jSi j D jS

0
i jC jE \Ri j, i D 1; 0, then

either jS 0
0
j < jS0j or jS 0

1
j < jS1j, for E intersects at least one of R0 , R1 . Also

j zS 0j � j zS j, so c.S 0/ < c.S/, but this contradicts the minimality of c.S/.

This implies that S0 is a collection of trivial disks, meridian disks and incompressible
annuli in R0 . If a component of S0 is a trivial disk E , then @E bounds a disk on T0
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which contains at least a component of k0 , for otherwise jS0j could be reduced. If
a component of S0 is an incompressible annulus A, then A is parallel to an annulus
A0�T0 , and A0 must contain a component of k0 , for otherwise jS0j could be reduced.
Note that the slope of @A can consist of one longitude and several meridians of R0 ;
in this case A would also be parallel to T0�A0 , and then the other component of k0

would be in T0�A0 . Note also that S0 cannot contain both incompressible annuli and
meridian disks. A similar thing can be said for S1 .

Claim 3.3 zS does not have any local maximum or minimum.

Proof The proof is similar to that of [6, Claim 2]. It consists in taking the maximum
at the lowest level and then in pushing it down, getting that either the surface is
compressible or that zS has a component which is parallel to a subsurface in T0 . By
pushing it into R0 the complexity of S is reduced.

The proof of the claim also implies that if S is in a position where zS has a maximum
or a minimum, then S can be isotoped to a position of lower complexity.

Note that if at a certain nonsingular level fyg, there is a curve of intersection 
 which
is trivial in the level torus T � fyg, then 
 bounds a disk in the level torus which
intersects k in two or more points, for otherwise zS will be compressible, meridionally
compressible, or it would have a local maximum or minimum.

Claim 3.4 Only the following types of saddle points are possible.

(1) A saddle changing a trivial simple closed curve into two non-nested trivial simple
closed curves.

(2) A saddle changing a trivial simple closed curve into two nested trivial simple
closed curves.

(3) A saddle changing two non-nested trivial simple closed curves into a trivial
simple closed curve.

(4) A saddle changing two nested trivial simple closed curves into a trivial simple
closed curve.

(5) A saddle changing a trivial simple closed curve into two essential simple closed
curves.

(6) A saddle changing two parallel essential curves into a trivial curve.

(7) A saddle changing an essential curve 
 into a curve with the same slope as 
 ,
and a trivial curve.
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(8) A saddle changing an essential curve 
 and a trivial curve into an essential curve
with the same slope as 
 .

Proof See Figure 10 and Figure 11. At a saddle, either one level curve of zS splits
into two level curves, or two level curves are joined into one level curve. If a level
curve is trivial in the corresponding level torus and it bounds a disk intersecting k in
four points and at a saddle the curve joins with itself, then the result must be either
two non-nested trivial curves each bounding a disk intersecting k in two points, or two
essential simple closed curves, for otherwise zS would be compressible or meridionally
compressible; in this case the singularity is of type 1 or 5.

If a level curve is trivial in the corresponding level torus and it bounds a disk intersecting
k in less than four points and at a saddle the curve joins with itself, then the result
must be either two essential simple closed curves, or two nested trivial curves; in the
latter case, the original curve must bound a disk intersecting k in two points, and one
of the new curves bound a disk intersecting k in four points, for otherwise zS would
be compressible or meridionally compressible. So we have a singularity of type 2 or 5.

1

2

3

4

Figure 10

If two trivial level curves are joined into one and are non-nested, then each bounds a
disk intersecting k twice, and the new curve bounds a disk intersecting k in four points.
This is a singularity of type 3. If two trivial level curves are joined into one and are
nested, then the innermost one bounds a disk intersecting k twice, the outermost one
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bounds a disk intersecting k in four points, and the new one bounds a disk intersecting
k twice. This gives a singularity of type 4.

If in a level there are nontrivial curves of intersection, then there is an even number of
them, for S is separating. So if a curve is nontrivial and at the saddle joins with itself,
then the result is a curve with the same slope as the original and a trivial curve, for the
saddle must join points on the same side of the curve. This is a singularity of type 7.

Finally note that there may be singularities of types 6 and 8.

5

6

7

8

Figure 11

In Figure 12 we show locally how the surface S looks in the neighborhood of a
singularity.

Claim 3.5 Suppose that at a certain non-singular level there is a curve 
 of intersection
which is trivial in the level torus and bounds a disk which intersects k in two points. If

 is a trivial curve in S , then 
 bounds a disk D � S , which consists of an annulus
contained in zS with no singular points and a disk component of Si which is trivial in
Ri (i D 1; 0/.

Proof The curve 
 bounds a disk E in the level torus T � fyg, and also bounds a
disk D � S . Suppose that D is not as required. A collar neighborhood of 
 in D lies
below T �fyg, say. Suppose first that E\DD @ED @D , but note that E may contain
more curves of intersection with S . Now, D[E bounds a 3–ball B , which intersects
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1 2, 5 7

3 4, 6 8

Figure 12

k in a spanning arc k 0 . The 3–ball B can be isotoped to lie in a product neighborhood
of E , so that k 0 is isotoped to an arc in this product neighborhood, and it preserves
its singular points. Note that D may contain disks of S0 or S1 which are meridian
disks of R0 or R1 , and then an arc of k may wrap around a meridional annulus in
T0 or T1 ; during the isotopy, such arc must be arranged so that it now lies on a trivial
annulus contained in some level torus. Now pull B down, eliminating singular points
of D , until D consists of an annulus in zS without singular points and it intersects R0

in a trivial disk. If i nt B \S is non-empty, any component of B \S must be a disk,
for otherwise a component of zS , S0 or S1 would be compressible. So any component
of B \S can be arranged to be a disk consisting of an annulus in zS without singular
points and a trivial disk in R0 . At the end of this procedure we have reduced c.S/.
Now the arc k 0 can be rearranged so that the knot k is in a .1; 2/–position.

Suppose now that E and D intersect in some simple closed curves. Look at the whole
collection of curves E\S ; these curves are concentric in E , for each bounds a disk
intersecting k twice, and each curve is trivial in S . Look at the intersection curves in
S , and among the innermost ones, take the one which is outermost in E . Let ˛ be
this curve, which bounds a disk D0 � S . As D0 \E D @D0 , we can assume, by an
argument as in the previous paragraph, that D0 does not contain any singular points of
zS and that contain a single component of S0 or S1 . The curve ˛ in E , with another
curve of intersection, say ˇ (perhaps ˇ D 
 ), cobound an annulus E0 in E , with
interior disjoint from S . Consider a copy of D0 and E0 to form a disk D1 with interior
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disjoint from S , and with @D1Dˇ . Cut S with D1 , getting a new surface S 0 isotopic
to S . If the curves ˛ and ˇ are concentric in S , the region bounded by them in S

contains at least a component of S0 or S1 , which is eliminated in S 0 , so this reduces
c.S/. If the curves ˛ and ˇ are non-concentric in S , the disk D00 bounded by ˇ in S

must intersect the disk E in some simple closed curves and then must contain at least
two components of S0 or S1 . By replacing D00 with D1 we reduce the complexity of
S , for D1 contains only a component of S0 or S1 . We may have introduced a new
local maximum or minimum in S 0 at level fyg. This new singularity can be eliminated
as in Claim 3:3, getting a surface with lower complexity.

Claim 3.6 Suppose that at a certain nonsingular level there is a curve 
 of intersection
which is trivial in the level torus and bounds a disk which intersects k in four points,
and its interior is disjoint from S . If 
 is a trivial curve in S , then 
 bounds a disk
D � S , which consists of an annulus contained in zS with no singular points and a disk
component of Si trivial in Ri (i D 1; 0/.

Proof It is similar to the previous claim.

Claim 3.7 Suppose that at a certain level torus T � fyg, there is a singularity xi of
type 1, 2 or 7. So there is a curve 
 of intersection, which contains the singular point,
it is trivial in the level torus, bounds a disk E , so that the other singular curve is not
contained in E . Assume that E intersects k in two points. At a level just below y ,
there is a curve 
 0 of intersection, which is parallel to 
 in S , and which bound a disk
E0 in that level, also intersecting k in two points. Then 
 0 is a nontrivial curve in S .

Proof Suppose that 
 0 is trivial in S . Then by Claim 3.5, 
 0 , and in fact 
 , bounds a
disk D�S , which consists of an annulus contained in zS with no singular points and a
disk component of S0 trivial in R0 . Now, E and D bound a 3–ball, which intersects
k in a spanning arc k 0 . So D can be isotoped into E , and then the singularity xi

is eliminated. The arc k 0 can be isotoped to lie in a product neighborhood of E ,
preserving its singular points, and now by finding a vertical path from T � fyg to T0

disjoint from S , k 0 can be rearranged to be in a .1; 2/–position. This contradicts the
minimality of c.S/.

Claim 3.8 Suppose that at a certain nonsingular level there is a curve 
 of intersection
which is essential in the level torus. If 
 is a trivial curve in S , then 
 is a meridian or
a longitude of the level torus, and it bounds a disk D � S , which contains a meridian
disk of S0 or S1 .
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Proof Let T � fyg be the nonsingular level at which 
 lies. Let D be the disk in S

bounded by 
 . The disk D intersects T � fyg in @D and possibly in a collection of
simple closed curves, so the slope of @D on 
 , seen it as a knot in S3 , is the same
as the slope of .T � fyg/� int N.
 / in 
 , so this has to be 0, and then 
 must be a
meridian or a longitude of T � fyg. Now, D must contain a meridian disk of S0 or
S1 , for otherwise it will be contained in S3 minus the cores of R0 and R1 , but 
 is
not trivial in that product region.

Claim 3.9 Suppose that at a certain nonsingular level, there are two concentric trivial
curves of intersection, 
1 and 
2 , which bound an annulus A in such level, which is
disjoint from k . Suppose the curves are nontrivial in the surface S . Then the curves
cannot be parallel in S .

Proof Suppose the curves 
1 and 
2 are parallel in S , then they bound an annulus
A0�S . Now A and A0 bound a solid torus disjoint from k , and as 
i is a trivial curve,
it must be that A and A0 are in fact isotopic. If A has more intersections with S , then
we just have more annuli contained in that solid torus, and could take an innermost
one. The annulus A0 may have some singular points of zS , if not then it contains an
annulus of S0 or S1 , which is parallel to an annulus in T0 or T1 disjoint from k ,
which is not possible. So isotope A0 to A, reducing the complexity of S , but putting
it in a position, in which it has a maximum or minimum. This can be eliminated as in
Claim 3.3, reducing then the complexity of S .

Claim 3.10 Suppose that at a certain nonsingular level, there are two curves of
intersection, 
1 and 
2 , where 
1 is trivial and 
2 is essential in the level torus. If
the curves are parallel in S , then 
2 is a meridian or longitude of the level torus, and

1[ 
2 bounds an annulus containing a meridian disk of R0 or R1 .

Proof If 
1 and 
2 are parallel in S , then there is an annulus A� S , @AD 
1[ 
2 .
As 
1 is trivial in the level torus, by an argument as in Claim 3.8 we see that this is
possible only if 
2 is a meridian or a longitude of the level torus, but then A would
intersect the core of R0 or R1 , implying that one of S0 or S1 must contain a meridian
disk of R0 or R1 .

Claim 3.11 Suppose that at a certain nonsingular level torus T � fyg, there are two
curves of intersection, 
1 and 
2 , which are essential in the level torus, and bound an
annulus intersecting k twice. Suppose that the curves are parallel in S , and cobound an
annulus A� S which is contained in R0[ .T � Œ0;y�/. Then either A has no singular
points of S and contains just one annulus component of S0 , or it has just a type 6
singularity and contains just one disk component of S0 .
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Proof Suppose A has singular points of S , and look at the first one. If it is of type 7,
then it will contradict Claim 3.7. So it must be of type 6, changing the two curves into
a trivial curve 
3 . Then by Claim 3.5 there cannot be more singularities in A, and 
3

bounds a disk in S which contains a disk of S0 .

Claim 3.12 Suppose that at a certain nonsingular level torus T � fyg, there are two
curves of intersection, 
1 and 
2 , which are trivial in the level torus, are non-nested
and each bounds a disk intersecting k twice. Suppose that the curves are parallel in S ,
and cobound an annulus A� S which is contained in R0[ .T � Œ0;y�/. Then A has
just a type 3 singularity and contains just one disk component of S0 .

Proof Note that A must have some singularities. The first one can be of type 2 or 3.
If it is of type 2, it will contradict Claim 3.7, so assume it is of type 3. So, after this
singularity we get a trivial curve 
3 in a level torus, which bounds a disk intersecting
k in four points, and 
3 is trivial in S . By Claim 3.6, 
3 bounds a disk in S which
has no singular points and contain one disk component of S0 , so the annulus is as
desired.

Note that up to this point the arguments apply for any meridionally incompressible
surface in the complement of a .1; 2/–knot. The next claims will make use of the
hypothesis that genus.S/D 2.

Claim 3.13 Suppose that a certain nonsingular level there is a collection of concentric
trivial curves, where the innermost and the outermost one bound an annulus A in such
level, which is disjoint from k . Suppose the curves are nontrivial in the surface S .
Then the collection consists of at most 3 curves.

Proof If there are more than 3 curves, then as they are nontrivial in S , and S has
genus 2, necessarily two of them will be parallel, contradicting Claim 3.9.

These claims imply that most of the curves we see in a nonsingular level are essential
curves in S .

Claim 3.14 S1 (S0 ) does not contain both meridian disks and trivial disks of R1

(R0 ).

Proof Suppose S1 contains meridian disks and trivial disks; it must consist of an
even number of meridian disks, for it is separating. If zS has no singular points, then it
would be a collection of annuli, and S would be a sphere; suppose then that there are
some singularities on zS .
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If the first singularity is of type 2, then there is a trivial disk whose boundary joins
with itself. Note that this singularity can be pushed to lie on R1 , changing the trivial
disk into an annulus bounded by trivial curves. One of these curves bounds a disk E

intersecting k in two points, corresponding to one of the arcs of k lying in R1 . As
there are meridian disks, the arc can be rearranged to lie in E , but then S will be
compressible, as @E must be essential in S by Claim 3.7.

If the first singularity is of type 3, then it can be pushed to lie on R1 , changing two
trivial disks into a trivial disk, then reducing the complexity of S .

If the first singularity is of type 4, again it can be pushed to lie on R1 , changing two
trivial disks into a trivial disk, then reducing the complexity of S .

If the first singularity is of type 5, then it can be pushed to lie on R1 , changing a trivial
disk into an annulus A, whose boundary consists of curves parallel to the boundaries
of the meridian disks. At least one of the arcs of k1 must lie in the region between A

and T1 . So there is a disk D in R1 , with D\AD @D , which is an essential curve
on A. The remaining arc of k1 , say k 0 can be arranged so that intersect D in at most
one point. If k 0 intersects D in one point then S is meridionally compressible, and
if it is disjoint from D then S is compressible, unless @A is an inessential curve in
S , but in this case by cutting S with D we get a surface S 0 isotopic to S , but with
c.S 0/ < c.S/.

If the first singularity is of type 6, then again it can be pushed to lie on R1 , changing
two meridian disks into a trivial disk. The arcs of k1 can be rearranged to be in the
required position. So we have reduced the complexity of S .

If the first singularity is of type 7, then there is a meridian disk whose boundary joins
with itself. Push this singularity to R1 , getting an annulus whose boundary consists of
a meridian of R1 and a trivial curve ˛1 which bounds a disk E in T1 intersecting k1 .
Note that because there are trivial disks in S1 , the curve ˛1 bounds a disk D in R1

disjoint from k1 , and then S will be compressible, unless ˛1 is an inessential curve in
S , but this is not possible by Claim 3.7.

If the first singularity is of type 8, then it can be pushed to lie on R1 , changing a
meridian disk and a trivial disk into a meridian disk. Again, the arcs of k1 can be
rearranged to be in the required position. So we have reduced the complexity of S .

Therefore assume that the first singularity is of type 1. Then we have a collection of
nested trivial disks, each bounding a disk intersecting k in four points. Possibly we
have a sequence of type 1 singularities, starting with the innermost curve. In each
singularity the disk changes into an annulus. If there is a type 2, 3, 4, 5, 6, 7 or 8
singularity before all trivial disks are transformed, then with the same arguments as
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above we see that there will be a compression disk for S , or there is an isotopy which
reduces the complexity of S . So we must have a sequence of type 1 singularities which
transforms the disks into a collection of nested annuli. Note that the new level curves
obtained are nontrivial in S , by Claim 3.7. Then by Claim 3.13 there are at most 3 of
these singularities, so there are at most 3 nested annuli.

Up to this point, the annuli can be seen as lying around an arc with one maximum in a
region A� Œy; 1� (where A� T1 is an annulus), together with a ball bounded by two
meridians disks of R1 , ie this region is just a 3–ball B0 . In the level torus T �fyg there
are 3 sets of curves of intersection with S , consisting of curves ˛i ’s, which are trivial
and concentric in the level torus, essential and nonparallel in S ; curves ˇi ’s, which are
trivial and concentric in the level torus, essential and nonparallel in S , and such that

j̨ is parallel to ǰ in S , for each j ; curves 
i ’s, which are essential in the level torus,
are trivial in S , and bound a meridian disk in the solid torus .T � Œy; 1�/[R1 . Note
also that the curves ˛i ’s and ˇi ’s lie in the same component of .T �fyg/�[f
ig, say
in an annulus between 
1 and 
2 .

The next singularity could be of types 2, 3, 5, 6, 7 or 8. It is not difficult to see that if
the next singularity is of type 2, 3 or 5, then there will be a compression disk for S . If
it is of type 6, then two meridian disks are changed into a disk E . The path followed
by the singularity can be complicated, but because the nested annuli lie around an
arc with just one maximum, these can be isotoped (in the 3–ball B0 determined by
A� Œy; 1� and the 3–ball bounded by two meridians disks of R1 ), so that the path and
the annuli look simple, and then it is not difficult to see that the disk E can be isotoped
so that E\R1 is a new trivial disk in S1 , reducing the complexity of S . If the next
singularity is of type 8, then it can be pushed into R1 , changing a meridian disk and a
trivial disk into a meridian disk, then reducing the complexity of S .

So the only possibility left is that the next singularity is of type 7, where the path of the
saddle encircles the nested annuli. So a curve, say 
1 , is split into a nontrivial curve

 0

1
and a trivial curve ǰ , which is concentric with the curves ˇi ’s, say. So if there

are 3 nested annuli, we will have four parallel curves, which contradicts Claim 3.13.
Suppose then that there are two nested annuli, and then curves ˛1; ˛2 , and ˇ1; ˇ2 .
After the singularity of type 7 we have one more curve, denoted ˇ3 , and the curves
ˇi ’s lie between 
 0

1
and 
n , say.

So far, we have 3 singularities, x1 , x2 of type 1 and x3 of type 7. Look at the next
singularity x4 , it may be of types 5, 6, 7 or 8. If it is of type 5, then the surface S will
be compressible. If it is of type 6 or 8, then such singularity can be pushed to a level
above the singularity x3 . So the singularity x4 is again of type 7. After this singularity
we will have one more trivial curve of intersection, which cannot be concentric with
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the ˇi ’s by Claim 3.13, so it must be concentric with the ˛i ’s. There are two cases,
depending on which of 
 0

1
or 
2 is split by the singularity. Suppose first that 
 0

1
is

split into 
 00
1

and ˛3 . Note that 
 00
1

is the boundary of a disk D (formed by a meridian
disk bounded by 
2 and an annulus between 
 00

1
and 
2 ), so S is compressible, except

if 
 00
1

is trivial in S , but in that case, by cutting S with D , we get a new surface S 0

isotopic to S , its embedding has a local minimum at T � Œ0; 1�, so that by isotoping it
we get a surface with lower complexity than S .

Suppose then that the singularity x4 splits 
2 into curves 
 0
2

and ˛3 . If there are more
than 2 curves 
i , by the same arguments the next singularity would be of type 7, which
again yields a contradiction with Claim 3.13. So, up to this level, say y1 , we have only
the curves of intersection 
 0

1
; 
 0

2
, ˛1 , ˛2 , ˛3 , ˇ1 , ˇ2 , ˇ3 . Note that the curves 
 0

1
and

ˇ3 are parallel in S , and 
 0
2

and ˛3 are also parallel in S . Note that because S is a
surface of genus 2, these four curves must be parallel in S (for ˛3 (ˇ3 ) is nonparallel
to ˛1 or ˛2 (ˇ1 or ˇ2 )). So in the solid torus R0[ .T � Œ0;y1�/, there is an annulus
A bounded by two of these curves. In fact, S \ .R0 [ .T � Œ0;y1�// consists of the
annulus A plus two pair of pants. Note that @A cannot consist of 
 0i and one of ˛3 or
ˇ3 , for 
 0i is a longitude of the solid torus R0[ .T � Œ0;y1�/. If @AD ˛3[ˇ3 , then
as A is a separating surface, it leaves in one side the curves ˛1 , ˛2 , ˇ1 , ˇ2 , and in
the other side the curves 
 0

1
, 
 0

2
, so there cannot be two pairs of pants with these six

curves as their boundary. So we have @AD 
 0
1
[ 
 0

2
, but this annulus is isotopic to an

annulus in T � fyg, by an isotopy that leaves fixed the knot and the rest of the surface.
Then c.S/ was not minimal.

Suppose then that S0 contains just one trivial disk. The first singularity is of type 1, and
after that level we have curves ˛1 , ˇ1 and the 
i ’s. By the same arguments as above, the
next two singularities must be of type 7. If there are 6 or more curves 
i , there will be
4 or more curves ˇi , which is not possible. So suppose we have just curves 
1 , 
2 , 
3 ,
and 
4 . By arguments as above, there are 4 singularities of type 7, after which at a level
y1 we get curves f˛1; ˛2; ˛3g, fˇ1; ˇ2; ˇ3g, and f
 0

1
; 
 0

2
; 
 0

3
; 
 0

4
g, where the following

pair of curves are parallel in S , f˛1; ˇ1g, fˇ2; 

0
1
g, fˇ3; 


0
4
g, f˛2; 


0
2
g, f˛3; 


0
3
g. The

curves ˛i ’s and ˇi ’s lie in an annulus in the level torus between the curves 
 0
2

and 
 0
3

.
Now in S we have two sets of 4 parallel curves, and S \ .R0 � Œ0;y1�/ consists of
two annuli and two pair of pants. An argument as above yields a contradiction.

Suppose now we have just two curves 
1 and 
2 . After the singularity of type 1
we have curves ˛1 , ˇ1 , 
1 and 
2 . Arguments as above show that the next two
singularities are of type 7. There are two possibilities. In one case, in a level y1 just
after these singularities we get curves ˛1 , ˇ1 , ˇ2 , ˇ3 , 
 0

1
and 
 0

2
, where the pairs

fˇ2; 

0
1
g and fˇ3; 


0
2
g are parallel curves in S . So in S we have 3 pairs of parallel

curves, which implies that S \ .R0[ .T � Œ0;y1�// consists of two pairs of pants, say
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P1 and P2 . One of the pair of pants must have the curves 
 0
1

and 
 0
2

. By the position
of the curves in the level torus T �fy1g, it is not possible that @P1D 


0
1
[
 0

2
[ˇ1 and

@P2 D ˛1[ˇ2[ˇ3 , so we must have @P1 D 

0
1
[ 
 0

2
[˛1 and @P2 D ˇ1[ˇ2[ˇ3 .

By the position of the curves, we see that the curve ˇ3 must bound a disk disjoint from
S and disjoint from the knot, so S will be compressible.

The final case is that after the two type 7 singularities, at a level y1 , we have curves
˛1 , ˛2 , ˇ1 , ˇ2 , 
 0

1
and 
 0

2
, where the ˛i ’s and the ˇi ’s lie in the same level annulus

between 
 0
1

and 
 0
2

, and the pairs of curves f˛2; 

0
2
g, fˇ2; 


0
1
g are parallel in S . If


 0
1

and 
 0
2

are parallel in S , we will have a set of 4 parallel edges and an argument
as above yields a contradiction. If they are nonparallel in S , then S \ .R0 � Œ0;y1�/

consists of two pairs of pants, say P1 and P2 . One of the pair of pants must have the
curves 
 0

1
and 
 0

2
. So the only possibility (up to interchanging ˛i ’s and ˇi ’s) is that

@P1 D 

0
1
[ 
 0

2
[ˇ1 and @P2 D ˛1[˛2[ˇ2 , but by the position of the curves this is

not possible.

Claim 3.15 Suppose S1 contains meridian disks of R1 , then S1 contains exactly two
meridian disks of R1 , and S is a surface of type 5.

Proof Suppose that @S1 consists of curves 
1; 
2; : : : ; 
n , with n an even number.
Look at the first singularity, it may be of type 6 or 7, for there are no trivial disks in
S1 . If it is of type 6, then two curves, say 
1 and 
2 are fused into a curve ˛1 , which
is trivial in a level torus and bounds a disk in such level torus intersecting k in 2 or
4 points. But the curve 
1 is trivial in S , so by Claim 3.5 or Claim 3.6, S can be
isotoped to a position with lower complexity.

So assume the first singularity is of type 7. So a curve, say 
1 , is split into a nontrivial
curve 
 0

1
and a trivial curve ˇ1 , which bounds a disk in a level torus T � fy1g

intersecting k in two points (for if it intersects k in 3 or 4 points, there is a meridional
compression or compression disk for S , which is formed by the union of an annulus
between 
 0

1
and 
2 and a meridian disk bounded by 
2 ). If the arcs of k1 lie in

different components of T1�S1 , then again after passing the first singularity, we see
that there is a compression disk for S . So both arcs of k1 lie in the annulus determined
by 
1 and 
2 , say. After the first singularity, the curve ˇ1 lies in an annulus determined
by the curves 
 0

1
and 
n . The second singularity may be of types 5, 6, 7 or 8. If it

is of type 5, then the surface S will be compressible. If it is of type 6 or 8, then the
surface will be compressible or such singularity can be pushed to a level above the first
singularity. So the second singularity is again of type 7.

Suppose first that the second singularity splits the curve 
 0
1

into a nontrivial curve 
 00
1

and a trivial curve ˇ2 . There are two cases, depending if the curves ˇ1 and ˇ2 are
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concentric or not. Suppose first that the curves ˇ1 and ˇ2 are concentric. They lie in
a level annulus determined by 
 00

1
and 
2 . Note that 
 00

1
is the boundary of a disk D

(formed by a meridian disk bounded by 
n and an annulus between 
 00
1

and 
n ), so S

is compressible, except if 
 00
1

is trivial in S , but in that case, by cutting S with D , we
get a new surface S 0 isotopic to S , its embedding has a local minimum at T � Œ0; 1�,
so that by isotoping it we get a surface with lower complexity than S .

Suppose now that the curves ˇ1 and ˇ2 are nonconcentric. They lie in a level annulus
determined by 
 00

1
and 
n . Note that 
 00

1
is the boundary of a disk D (formed by a

meridian disk bounded by 
2 and an annulus between 
 00
1

and 
2 ). So as before, S is
compressible or it can be isotoped to a surface with lower complexity.

Therefore the second singularity splits a curve other than 
 0
1

into two curves. By these
arguments, and as in the proof of the previous claim, we have a sequence of type 7
singularities which create two sets of concentric trivial curves, ˛i ’s and ˇi ’s. If n� 8,
there will in a certain level 4 of such concentric curves, contradicting Claim 3.13. If
nD6, there will be in a certain level torus T �fy1g, two sets of concentric trivial curves
f˛1; ˛2; ˛3g, fˇ1; ˇ2; ˇ3g, plus 6 essential curves. Then in the surface S we have two
sets of 4 parallel edges. As in the proof of Claim 3.14, this yields a contradiction. If
nD 4 there are two possibilities, one is that in a level torus T �fy1g there are two sets
of concentric trivial curves f˛1; ˛2g, fˇ1; ˇ2g, plus 4 essential curves, or well two sets
of concentric trivial curves f˛1g, fˇ1; ˇ2; ˇ3g, plus 4 essential curves. An argument
as in the proof of Claim 3.14 yields a contradiction.

So we must have nD 2, and the first two singularities are of type 7. There are two
possibilities for the curves obtained after these singularities, either we get two trivial
concentric curves, or two trivial curves which are nonconcentric, and in any case we
get essential curves 
 0

1
and 
 0

2
. Suppose first that after the singularities we get trivial

concentric curves ˇ1 and ˇ2 , plus the essential curves 
 0
1

and 
 0
2

. Note that ˇ1 and ˇ2

are essential and nonparallel in S , by Claim 3.7 and Claim 3.9. The third singularity
can be of types 2, 5, 6, 7 or 8. Let T �fy1g be a level torus just below this singularity,
and let W DR0[ .T � Œ0;y1�/, this is a solid torus. If the third singularity is of type
2, the curve ˇ2 is split into curves ˛1 and ˛2 , where ˛1 bounds a disk intersecting k

in two points and ˛2 encircles ˇ1 and ˛1 ; the curve ˛1 is essential in S by Claim 3.7,
and the curve ˛2 is also essential, for otherwise by Claim 3.5, ˛2 bounds a disk D

with no singularities, which then implies that 
 0
1

and 
 0
2

cobound an annulus which
can be isotoped into T � I , contradicting the minimality of c.S/. The surface S \W

consists of an annulus and a pair of pants. Because of the position of the curves, the
annulus bounds the curves ˛1 and ˇ1 , and the pair of pants has as boundary the curves

 0

1
, 
 0

2
and ˛2 . So, by Claim 3.12, in the annulus there must be a singularity of type
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3, but this singularity can be interchanged with the type 2 singularity, to become a
singularity between ˇ1 and ˇ2 , which implies that S is compressible.

If the third singularity is of type 5, the curve ˇ2 is split into curves ˛1 and ˛2 , which
are parallel in the level torus T �fy1g to 
 0

1
, and which are essential in S , for otherwise

˛1 or ˛2 will bound a disk contained in W , which is not possible. The surface S \W

consists of an annulus and a pair of pants. Because of the position of the curves, the
annulus bounds, say, the curves ˛1 and 
 0

1
, and the pair of pants has as boundary the

curves 
 0
2

, ˛2 and ˇ1 . So in the pair of pants there must be a singularity of type 8,
joining ˇ1 and ˛2 , but this singularity can be interchanged with the type 5 singularity,
to become a singularity between ˇ1 and ˇ2 , which implies that S is compressible.

If the third singularity is of type 6, the curves 
 0
1

and 
 0
2

are fused into a curve ˛1 ,
which is essential in S , and in the level torus T � fy1g cobound an annulus with ˇ2

which intersects k in two points. Now the curves ˛1 , ˇ1 and ˇ2 must bound a pair of
pants in the solid torus W . Then the curve ˛1 bounds a disk disjoint from k , so S is
compressible.

If the third singularity is of type 7, the curve 
 0
1

(or 
 0
2

) is split into a curve 
 00
1

and
a trivial curve ˛1 . Again in S \W , there is a pair of pants and an annulus bounded
by the curves 
 00

1
, 
 0

2
, ˛1 , ˇ1 and ˇ2 . The only possibility is that the pair of pants

bounds 
 00
1

, 
 0
2

and ˇ2 , and the annulus bounds ˛1 and ˇ1 , so ˛1 is nonconcentric
with ˇ2 in the level torus, by Claim 3.9. Note that the pair of pants can be isotoped
into the level torus T � fy1g, so that c.S/ can be reduced.

If the third singularity is of type 8, the curve ˇ2 and 
 0
1

(or 
 0
2

) are fused into a curve

 00

1
. The surface S \W consists of a pair of pants with boundary curves 
 00

1
, 
 0

2
and

ˇ1 . Then there must be one more singularity of type 8. If it is between ˇ1 and 
 00
1

, it
can be interchanged with the previous singularity, getting then a singularity between
ˇ1 and ˇ2 , which shows that S is compressible. If the singularity is between ˇ1 and

 0

2
, then after isotoping S in R0 , the singularities can be interchanged, showing that

S is compressible.

So assume that after the first two type 7 singularities we have two nonconcentric
trivial curves ˛1 and ˇ1 , and two essential curves 
 0

1
and 
 0

2
. Note that the pairs of

curves f˛1; 

0
2
g and fˇ1; 


0
1
g are parallel in S , and that curves from different pairs are

nonparallel in S ; this is because if they are parallel, then there is an annulus cobounded
by ˛1 and ˇ1 , and a twice punctured torus bounded by 
 0

1
and 
 0

2
, but in this case

S would be compressible. The next singularity can be of types 2, 3, 5, 6, 7 or 8. Let
T � fy1g be a level torus just below this singularity, and let W DR0[ .T � Œ0;y1�/.

If the third singularity is of type 3, the curves ˛1 and ˇ1 are fused into a curve ˛2

which bounds a disk in the level torus T � fy1g intersecting k in four points. One
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possibility is that the surface S \W is a pair of pants bounded by 
 0
1

, 
 0
2

and ˛2 .
Note that such a pair of pants can be isotoped into T �fy1g, then c.S/ is not minimal.
The other possibility is that S \W consists of a once-punctured torus bounded by ˛2

and an annulus bounded by 
 0
1

and 
 0
2

. But note that because the curves 
 0
1

and 
 0
2

are longitudinal in W , such an annulus bounded by 
 0
1

and 
 0
2

can be isotoped into
T � fy1g, reducing c.S/.

If the third singularity is of type 7, the curve 
 0
1

is split into 
 00
1

and ˇ2 , where now
ˇ2 is concentric with ˇ1 . After that level S \W consists of an annulus and a pair of
pants, and by the configuration of the curves this is not possible.

If the third singularity is of type 6, the curves 
 0
1

and 
 0
2

are fused into a curve ˛2

which is trivial in the level torus and encircles ˛1 and ˇ1 . Below that level, there are
two possibilities for the surface S \W . If it is a pair of pants bounded by ˛1 , ˇ1 and
˛2 , then it can be isotoped to the level torus, and so c.S/ is not minimal. The other
case is that S \W is an annulus bounded by ˛2 and ˛1 and a once-punctured torus
bounded by ˇ1 . In that case, the fourth singularity is of type 4, splitting ˇ1 into ˇ2

and ˇ3 . Note that the third and fourth singularities can be interchanged, and the type 6
singularity can be pushed to R0 , reducing c.S/.

If the third singularity is of type 8, the curves 
 0
1

and ˇ1 , say, are fused into a curve 
 00
1

.
After that level the surface S\W is a pair of pants or an annulus and a once-punctured
torus. If it is a pair of pants, then it can be isotoped to the level torus, contradicting the
minimality of c.S/. So, it consists of an annulus and a once-punctured torus. Then
the once-punctured torus is bounded by ˛1 and the annulus by 
 00

1
and 
 0

2
. So there

must be a singularity of type 5, and the part of S below a certain level torus T � fy2g

consists of two annuli. By Claim 3.11, S0 consists of two annuli (which are isotopic
to nested annuli, and anyone of them could be the innermost one), or there are two
more singularities of type 6 and S0 consists of two nested trivial disks (again, anyone
of them could be the innermost one). If there is just one more singularity of type 6,
then it can be pushed into R0 , reducing c.S/. Note that the singularities of type 8 and
5 can be interchanged, and that the singularity of type 8 and one of the singularities of
type 6 can be interchanged, giving one of type 6 and one of type 4. In any case we get
a surface of type 5.

If the third singularity is of type 2, then similar arguments show that there is one more
singularity of type 4, followed by one of type 8, concluding with a trivial disk and an
annulus in R0 , or well, there is one more singularity of type 6, and S0 consists of two
nested trivial disks. Again, the singularities of type 8 and 6 can be interchanged, giving
one of type 6 and one of type 4. In any case this is a surface of type 5.
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If the third singularity is of type 5, then similar arguments show that there is one more
singularity of type 8, concluding with two annuli or two disks in R0 . This is a surface
of type 5.

Summarizing, the following sequences of singularity types are possible, all producing
a surface of type 5.

(a) 7, 7, 2, 4, 8, and S0 consists of a trivial disk and an annulus, which are nested.

(b) 7, 7, 2, 4, 8, 6, or 7, 7, 2, 4, 6, 4, and S0 consists of two nested trivial disks.

(c) 7, 7, 8, 5, or 7, 7, 5, 8, and S0 consists of two nested annuli.

(d) 7, 7, 8, 5, 6, 6, or 7, 7, 5, 8, 6, 6, or 7, 7, 5, 6, 8, 6, or 7, 7, 5, 6, 6, 4, and S0

consists of two nested trivial disks.

Note that the proof of this claim also shows that if S1 contains meridian disks, then
S0 has two components, two disks, two annuli or a disk and an annulus.

Claim 3.16 Suppose that S0 and S1 consist only of trivial disks and annuli. Suppose
that at a certain nonsingular level there is a curve 
 of intersection which is essential in
the level torus. Then 
 is an essential curve in S .

Proof This follows from Claim 3.8.

Claim 3.17 Suppose S1 consists of just one trivial disk. Then S is a surface of type
1, 2, 3 or 4.

Proof As S1 contains a single disk, S0 cannot contain meridian disks by the remark
following Claim 3.15. So by Claim 3.16, any level curve of intersection which is
essential in a level torus, it must be essential in S .

Let D be the disk component of S1 , then @D bounds a disk in T1 which contains
both arcs of k1 , for otherwise S will be nonseparating. If the first singularity is of type
5, then it can be pushed to lie in R1 , changing D into an annulus, but this reduces
the complexity of S , which is not possible. So the first singularity must be of type 1,
which splits the trivial curve into two trivial curves 
1 and 
2 , each bounding a disk
intersecting k in two points.

The next singularity has to be of type 3 or of type 2 or 5. Suppose first that it is of type
3. Then the curves 
1 and 
2 are fused into a trivial curve 
3 , which bounds a disk in
a level torus intersecting k in four points. Up to this level the surface obtained is a
once-punctured torus. The next singularity can be of type 1 or 5. Suppose it is of type 5;

Geometry & Topology Monographs, Volume 12 (2007)



Incompressible surfaces and .1; 2/–knots 75

so 
3 is split into two curves 
4 and 
5 , which are essential in the corresponding level
torus. These curves are essential in S , so they must be parallel in S , for otherwise
the genus of S is greater than 2. Then by Claim 3.11, we can assume that 
4 and 
5

lie on T0 and bound an annulus component of S0 . Then S is as surface of type 1, as
defined in Section 2.1.

Suppose now the third singularity is of type 1, so 
3 is split into two trivial curves 
4

and 
5 , each bounding a disk in a level torus intersecting k in two points. Note that

4 and 
5 are essential in S by Claim 3.7, and that 
4 and 
5 must be parallel in S ,
because genus.S/D 2. Then by Claim 3.12, the next singular point must be of type 3,
fusing 
4 and 
5 into a trivial curve 
6 . So, 
6 must lie at T0 , and it bounds a disk in
R0 . So, S is a surface of type 1.

Suppose now that the second singularity is of type 5. So, the curve 
1 splits into
two curves 
3 and 
4 , which are essential in the corresponding level torus. The third
singularity can be of type 5, 6, 7 or 8.

If the third singularity is of type 8, say fusing 
2 and 
3 , then the second and third
singularities can be interchanged, so that the new second singularity is of type 3 and
we are in the previous case.

If the third singularity is of type 5, then 
2 is split into two curves 
5 and 
6 , which are
essential in a level torus, say T � fy1g. Then as 
3 , 
4 , 
5 and 
6 are essential in S ,
among them there must be two pairs of parallel curves of S , which bound annuli A1

and A2 in S . So A1 and A2 are contained in R0[.T � Œ0;y1�/. If A1 bounds 
3 and

6 and A2 bounds 
4 and 
5 , then one of the annuli, say A1 , can be isotoped to lie in
T � I , reducing c.S/. So assume that A1 bounds 
3 and 
4 and that A2 bounds 
5

and 
6 . By Claim 3.11, we can assume that either there are no more singularities in S

and that S0 consists of two annuli, or that there two more singularities of type 6 and S0

consists of two disks (which have to be nested, for otherwise c.S/ could be reduced).
Note also that if there is just one more singularity of type 6, then it can be pushed into
R0 , reducing c.S/. If the annuli A1 and A2 are non-nested in R0[ .T � Œ0;y1�/ we
have a surface of type 3, and if the annuli are nested then we have a surface of type 4.

If the third singularity is of type 6. Then the two curves 
3 and 
4 are fused into a
trivial curve 
5 . The surface up to that level is a twice punctured torus. The curve

2 is essential in S by Claim 3.7. If 
5 is essential in S , then 
2 and 
5 must be
parallel in S . By Claim 3.12, the next singularity must be of type 3, fusing 
2 and

5 into a trivial curve 
6 which must bound a disk in R0 . So we have a surface of
type 2. If 
5 is trivial in S , then it bounds a disk in S with no more singularities by
Claim 3.5. It follows that the next singularity must be of type 5, changing 
2 into two
curves 
6 and 
7 . These curves must be parallel in S , so that we may assume that in
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a level torus T � fy1g there are 3 curves, 
6 , 
7 and 
5 . The part of S contained in
R0 [ .T � Œ0;y1�/ consists of a disk and an annulus. If the disk and the annulus are
non-nested in R0[ .T � Œ0;y1�/, then we can assume that S0 consists of a trivial disk
and an annulus and we have a surface of type 3. If the disk and annulus are nested then
we have a surface of type 4, but in this case there may be one more singularity of type
6, so S0 consists of a disk and one annulus, or of two disks.

Finally suppose that the third singularity is of type 7. Then the curve 
3 , say, is split
into two curves 
5 and 
6 , where 
5 is concentric with 
2 and 
6 is parallel to 
4 . The
curve 
5 is nontrivial in S , by Claim 3.7. Also, the curves 
2 and 
5 are nonparallel
in S by Claim 3.9. The curves 
4 and 
6 are also nontrivial in S by Claim 3.16. The
curve 
4 (or 
6 ) cannot be parallel in S to 
3 or 
5 , by Claim 3.10. Then 
4 and

6 must be parallel in S , for otherwise genus.S/ > 2. Note that the surface up to a
level just below the third singularity, union with the annulus bounded by 
4 and 
6 is
a twice punctured torus, so that for S to be a genus 2 surface, the curves 
2 and 
5

must be parallel in S , a contradiction.

Suppose now that the second singularity is of type 2. So, the curve 
1 splits into two
curves 
3 and 
4 , which are trivial and concentric with 
2 in the corresponding level
torus. The third singularity can be of type 4 or 5. If it is of type 4, then the curves 
3

and 
4 are fused into a curve 
5 which is trivial in the corresponding level torus. The
surface up to that level is a twice punctured torus. The curve 
2 is essential in S . If

5 is essential in S , then 
2 and 
5 must be parallel in S . So the next singularity
must be of type 3, fusing 
2 and 
5 into a trivial curve 
6 which must bound a disk in
R0 . So we have a surface of type 2. If 
5 is trivial in S , then the next singularity must
be of type 5, changing 
2 into two curves 
6 and 
7 . These curves must be parallel in
S . So in a level torus T � fy1g there are 3 curves, 
6 , 
7 and 
5 , and the part of S

below that level consists of a trivial disk and an annulus. If the annulus and the disk
are non-nested we have a surface of type 3, and if they are nested, we have a surface
of type 4, but in this last case we may have one more singularity of type 6. Finally,
suppose the third singularity is of type 5. In this case the curve 
4 transforms into two
curves 
5 and 
6 , which are essential in the corresponding level torus. This situation
is identical to the situation in the preceding paragraph, so it is not possible.

Summarizing, the following sequences of singularity types are possible:

(a) 1, 3, 5, or 1, 5, 8, S0 consists of an annulus, and S is a surface of type 1.

(b) 1, 3, 1, 3, S0 consists of a trivial disk, and S is a surface of type 1.

(c) 1, 5, 5, S0 consists of two non-nested annuli, and S is a surface of type 3.

(d) 1, 5, 5, or 1, 5, 5, 6, 6, S0 consists of two nested annuli, or of two nested disks,
and S is a surface of type 4.
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(e) 1, 5, 6, 3, S0 consists of a trivial disk, and S is a surface of type 2.

(f) 1, 5, 6, 5, S0 consists of a trivial disk and an annulus, which are non-nested, and
S is a surface of type 3.

(g) 1, 5, 6, 5, or 1, 5, 6, 5, 6, S0 consists of a trivial disk and an annulus, which are
nested, or of two nested trivial disks, and S is a surface of type 4.

(h) 1, 2, 4, 3, S0 consists of a trivial disk, and S is a surface of type 2.

(i) 1, 2, 4, 5, S0 consists of a trivial disk and an annulus, which are non-nested and S

is a surface of type 3.

(j) 1, 2, 4, 5, or 1, 2, 4, 5, 6, S0 consists of a trivial disk and an annulus, which are
nested, or of two nested trivial disks, and S is a surface of type 4.

Claim 3.18 Suppose S1 consists of two trivial disks. Then S is a surface of type 4, 5,
6 or 7.

Proof Suppose that the disk components of S1 are non-nested, so each curve bounds
a disk in T1 containing one arc of k1 . The first singularity must be of type 2, 3 or
5. Note that in any case such singularity can be pushed into R1 , showing that S is
compressible, or well, that a disk is changed by an annulus, or that the two disks are
changed by one disk. In any case the complexity of S is reduced. So suppose the disks
are nested.

Suppose first that each of these disks bounds a disk in T1 containing the two arcs of k1 .
So just below T1 , we have two concentric curves bounding a disk which intersects k

in 4 points. The first two singularities must be of type 1, so just after these singularities
we have two pairs of parallel curves, say f
1; 
2g and f
3; 
4g, each bounding a disk
intersecting k in two points. So up to this level the surface is just two nested annuli.
The third singularity must be of type 2, 3 or 5. Suppose first it is of type 5. So, say, the
curve 
1 is split into two curves 
5 and 
6 , which are essential in the corresponding
level torus. Note that the curves 
2 , 
5 and 
6 are nontrivial in S (by Claim 3.7 and
Claim 3.16). By Claim 3.9 the curves 
3 and 
4 are nonparallel in S , and note also
that the curves 
5 and 
6 cannot be parallel in S to one of the curves 
3 or 
4 , by
Claim 3.10. So 
5 and 
6 must be parallel in S for otherwise the genus of S is > 2.
So 
5 and 
6 cobound an annulus in S . Then there should be a singularity of type 5
joining the curve 
2 with itself. This shows that the genus of S is > 2.

Suppose now that the third singularity is of type 2, so, say, the curve 
1 is split into
two curves 
5 and 
6 , which are trivial in the corresponding level torus. The next
singularity must be of type 5, changing the curve 
6 , say, into curves 
7 and 
8 ,
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which are essential in a level torus. Note that 
3 , 
4 and 
5 are nonparallel in S , by
Claim 3.9, and none of them is parallel in S to 
7 , by Claim 3.10. This implies that
the genus of S is > 2.

So the third singularity must be of type 3. In this singularity the curves 
1 and 
3 are
fused into a curve 
5 ; this is a trivial curve bounding in its interior two nonconcentric
curves. Note that 
5 must be essential in S , for otherwise S will be disconnected. If
the next singularity is of type 3 again, then 
2 and 
4 are fused into a curve 
6 , but
then 
5 and 
6 must be parallel in S , contradicting Claim 3.9.

If the fourth singularity is of type 4, then it can be interchanged with the third singularity,
showing then that the surface is compressible. If the fourth singularity is of type 5, the
curve 
5 is split into two curves which will be essential in S , but then there will be
more than 3 essential nonparallel curves in S , which is not possible.

So the fourth singularity must be of type 2, splitting 
2 , say, into 
6 and 
7 . The next
singularity must be of type 4, fusing 
6 and 
7 into a curve 
8 , for otherwise S will
be compressible. Note that the curves 
3 , 
4 , 
5 , 
6 and 
7 are essential in S , and
that 
3 and 
4 are nonparallel in S . If 
8 is nontrivial in S , then S is disconnected
or have genus > 2. Then 
8 is trivial and 
6 , 
7 are parallel in S . We must also have
that 
4 and 
5 are parallel in S . So we must have one more singularity of type 4,
fusing 
4 and 
5 into a trivial curve 
9 . Then we can assume that 
8 and 
9 lie on
T0 , and bound nested disks of S0 enclosing just one of the arcs of k0 . This shows
that S is a surface of type 6.

Summarizing, we have the following case:

(a) The sequence of singularity types is 1, 1, 3, 2, 4, 4, S0 consists of nested two
trivial disks, and S is a surface of type 6.

Suppose now that S1 consists of two nested disks which enclose just one of the two
arcs of k1 . A similar argument shows that these are the possible cases for the sequences
of types of singularities:

(b) 2, 2, 4, 1, 3, 3, S0 consists of two nested disks, and S is a surface of type 6, but
in an inverted position, ie changing the roles of R0 and R1 .

(c) 5, 5, 6, 7, 3, or 5, 5, 7, 6, 3, S0 consists of a disk and an annulus, which are nested,
and S is a surface of type 7, but in an inverted position.

(d) 5, 6, 5, 6, 3, or 5, 5, 6, 6, 3, or 5, 6, 2, 4, 3, S0 consists of a trivial disk and S is a
surface of type 4, which looks inverted.

(e) 5, 5, 6, 7, 8, 8, or 5, 5, 7, 6, 8, 8, or, 5, 7, 5, 6, 8, 8, or 2, 5, 5, 6, 8, 8, or 5, 7, 2, 4,
8, 8, or 2, 5, 2, 4, 8, 8, and S0 consists of two meridian disks and S is a surface of
type 5, which looks inverted.
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Claim 3.19 Suppose S1 consists of just one annulus. Then S is a surface of type 1 or
8.

Proof The annulus in S1 then determines an annulus in T1 which contains both arcs
of k1 . An argument as above shows that there are several possibilities for the sequences
of types of singularities, these are:

(a) 6, 1, 3, or 7, 6, 3, S0 consists of a trivial disk, and S is a surface of type 1.

(b) 6, 5, S0 consists of an annulus, and S is a surface of type 1.

(c) 7, 7, 3, S0 consists of a trivial disk and an annulus, which are nested, and S is a
surface of type 8, which looks inverted.

Claim 3.20 Suppose S1 consists of two non-nested annuli (and nonisotopic to nested
annuli). Then S is a surface of type 3, 8 or 9.

Proof Each of the annuli on S1 determines an annulus in T1 which contains an arc
of k1 . The possible sequences of types of singularities are:

(a) 6, 6, 3, S0 consists of a trivial disk, and S is a surface of type 3.

(b) 7, 7, 3, S0 consists of a trivial disk and two annuli, which are nested, and S is a
surface of type 8, which looks inverted.

(c) 6, 7, 3, or 7, 6, 3, S0 consists of a disk and an annulus, which are nested, and S

is a surface of type 9, which looks inverted.

Claim 3.21 Suppose S1 consists of two nested annuli. Then S is a surface of type 4,
5, 7 or 8.

Proof One possibility is that there is an annulus in T1 containing both arcs of k1 ,
but by tracking the singularities as above, we can see that this case is not possible. So
the arcs of k1 are on different components of T1 � S1 . The possible cases for the
sequence of singularity types are:

(a) 6, 6, 3, S0 consists of a trivial disk, and S is a surface of type 4.

(b) 6, 7, 8, 8, or 7, 6, 8, 8, S0 consists of two meridian disks, and S is a surface of
type 5, but it looks inverted.

(c) 7, 6, 3, or 6, 7, 3, S0 consists of a trivial disk and an annulus, which are nested,
and S is a surface of type 7, but it looks inverted.

(d) 7, 7, 3, S0 consists of a trivial disk and two annuli, which are nested, and S is a
surface of type 8, which looks inverted.
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Claim 3.22 Suppose S1 consists of an annulus and a disk, which are non-nested (and
cannot be isotoped to be nested). Then S is a surface of type 3.

Proof Here the annulus in S1 determines an annulus in T1 which contains an arc of
k1 , and the trivial disk determines a disk in T1 which contains the other arc of k1 .
The possible sequences of types of singularities are:

(a) 6, 5, 6, 3, and S0 consists of a trivial disk.

(b) 6, 2, 4, 3, and S0 consists of a trivial disk.

Claim 3.23 Suppose S1 consists of one annulus and one disk, which are nested. Then
S is a surface of type 4, 5, 7, 8 or 9.

Proof If the disk in S1 determines a disk in T1 containing just one of the arcs of k1 ,
then the possible sequences of types of singularities are:

(a) 6, 2, 4, 3, or 6, 5, 6, 3, S0 consists of a trivial disk and S is a surface of type 4,
but it looks inverted.

(b) 7, 2, 4, 8, 8, S0 consists of two meridian disks, and S is a surface of type 5, which
looks inverted.

If the disk in S1 determines a disk in T1 containing both arcs of k1 then the possible
sequences of types of singularities are:

(c) 1, 8, 5, or 1, 5, 8, S0 consists of two nested annuli, and S is a surface of type 7.

(d) 1, 8, 5, 6, 6, or 1, 5, 8, 6, 6, S0 consists of two nested annuli, and S is a surface
of type 7.

(e) 1, 8, 8, S0 consists of an annulus, and S is a surface of type 8.

(f) 1, 8, 5 , or 1, 5, 8, S0 consists of two non-nested annuli, and S is a surface of type
9.

Claim 3.24 If jS1j � 3, then S is a surface of type 8 or 9.

Proof An argument as in Claim 3.18, shows that it is not possible that S1 contain 3
or more trivial disks, or two disks and some annuli. If S0 contains a trivial disk and
two or more annuli, an argument as in previous claims shows that the only possibility
is that the trivial disks bounds a disk in T1 containing both arcs of k1 , and that the
disk and the annuli are nested. There are two possibilities:
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(a) S1 consists of a disk and n annuli, which are nested, the sequence of singularity
types is 1, 8, 8, S0 consists of n nested annuli, and S is a surface of type 8.

(b) S1 consists of a disk and n annuli, which are nested, the sequence of singularity
types is 1, 8, 5 (or 1, 5, 8), S0 consists of nC1 annuli, two of them are innermost, the
others are nested around the innermost ones, and S is a surface of type 9.

Suppose now that S1 consists only of annuli. By similar arguments as in previous
claims, it can be shown that there are two possibilities:

(c) S1 consists of n annuli which are nested. The innermost one determines an
annulus in T1 which contains one arc of k1 . The other arc of k1 is between the second
and third annulus. The sequence of singularity types is 7, 7, 3, S0 consists of a trivial
disk and n nested annuli, and S is a surface of type 8, which looks inverted.

(d) S1 consists of n annuli, two of them are innermost, each determining an annulus
in T0 containing an arc of k1 , the other annuli are nested around both of the innermost
annuli. The sequence of singularity types is 6, 7, 3 (or 7, 6, 3), S0 consists of a trivial
disk and n� 1 annuli, which are nested, and S is a surface of type 9, which looks
inverted.

This completes the proof of Theorem 3.1.

The same arguments as in the previous claims can be applied when S is a surface of
genus 1, and in fact the arguments are simpler. Again, the surface S can be divided
into pieces S1 , S0 , and zS , and it can be shown that S1 consists of just one disk or
one annulus. So we have the following result.

Theorem 3.25 Let K be a .1; 2/–knot and S a genus 1 meridionally incompressible
surface in the complement of K . Then K and S can be isotoped so that S look as one
of the surfaces constructed in Section 2.10.

4 Knots which are not .1; 2/–knots

We recall the construction of [4, Section 6], which produces tunnel number one knots
whose complement contain a genus 2 closed meridionally incompressible surface which
does not bound a handlebody in S3 .

Let K be a satellite tunnel number one knot in S3 , and let S be the closed incompress-
ible surface of genus 1 contained in the complement of K ; then S divides S3 into
two parts, denoted by M1 and M2 , where, say, K lies in M2 . In fact, it follows from
[17] (or [3]) that M1 is the exterior of a torus knot, M2� int N.K/ is homeomorphic
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to the exterior of a 2–bridge link and that a fiber of M1 is glued to a meridian of
M2� int N.K/. Let ˇDˇ1[ˇ2 be an unknotting tunnel for K , where ˇ1 is a simple
closed curve, and ˇ2 is an arc joining K and ˇ1 . The tunnel ˇ can be chosen so that
ˇ1 is disjoint from S , and that ˇ2 intersects S transversely in one point, so ˇ1 lies in
M1 . The surface S then divides ˇ2 in two arcs, ˇ0

2
and ˇ00

2
, where ˇ0

2
joins K and

S , and ˇ00
2

joins S and ˇ1 .

Let 
 be a simple closed curve contained in @N.K/. Assume that the arc ˇ0
2

connects
S with a point in @N.K/, so that such a point lies on 
 . Consider the manifold
M DM2 � int N.K/. This is a compact, irreducible 3–manifold, whose boundary
consists of two incompressible surfaces, S and @N.K/. The curve 
 lies on @N.K/.
We assume that 
 goes at least twice longitudinally around N.K/, and that 
 is a
nonreducing curve for M , ie M.
 /, the manifold obtained by doing Dehn filling on
M with slope 
 , has incompressible boundary.

Note that if K is not a cable knot, then any such curve 
 is a nonreducing curve,
for it is at distance � 2 from a meridian of K [24]. If K is a cable knot, then there
is a properly embedded annulus in M , with one of its boundary components lying
in S and the other one lying in @N.K/, which we denote by 
1 . It follows from
[1, Theorem 2.4.3] that M.
 / is @–reducible if and only if �.
; 
1/� 1.

Let H DM1 [N.
 /[N.ˇ0
2
/. We can assume that H is made of the union of the

solid torus N.
 / and the manifold M1 , which are joined by the 1–handle N.ˇ0
2
/.

Let W D S3 � int H . It follows from [4, Theorem 6.3] that † D @W D @H is
incompressible in W .

Let K� be a knot such that K� �H , K� DK1[K2 , where K1 is an arc contained
in @N.K/\N.
 /, and K2 is an arc contained in N.ˇ0

2
/[M1 , which is obtained

by sliding ˇ1 over ˇ2 , ie K2 is an unknotting tunnel for K . In other words, K� is
an iterate of K and ˇ , as defined in [4, Section 6], and in particular K� is a tunnel
number one knot. Assume further that the wrapping number of K1 in N.K/ is � 2,
that is, if we connect the endpoint of K1 with an arc lying in N.ˇ0

2
/\N.
 /, we should

get a knot whose wrapping number in N.K/ is � 2. It follows from [4, Theorem 6.4]
that † is meridionally incompressible in S3�K� .

Note that the wrapping number of 
 in N.K/ is � 2, and that the wrapping number
of K1 in N.
 / is also � 2, so the wrapping number of K1 in N.K/ is � 4. As K is
a .1; 1/–knot, then it seems that K� is a .1; n/–knot with n� 4.

Here, we show the following.

Theorem 4.1 A knot K� constructed as above is not a .1; 2/–knot, ie b1.K
�/� 3.

Geometry & Topology Monographs, Volume 12 (2007)



Incompressible surfaces and .1; 2/–knots 83

Proof Note that the surface † does not bound a handlebody in S3 . In fact, to one
side it bounds the manifold W , which has incompressible boundary, and to the other
side it bounds the manifold H , which is the disk sum of a solid torus (ie N.
 )) and the
exterior of a torus knot (ie M1 ). This shows immediately that K is not a .1; 1/–knot,
for any meridionally incompressible surface in the complement of a .1; 1/–knot bounds
a handlebody in S3 [6]. It follows also that † cannot be a surface of type 1, 2, 3, 4, 5,
8 or 9 for any such surface bounds a handlebody in S3 . So, if we show that † cannot
be a surface of type 6 or 7, then we will show that K� cannot be a .1; 2/–knot.

By construction K� �H , and there is a disk DW properly embedded in H , which
intersects K� in two points, separates H and @DW is essential in @H . The disk DW

is just the cocore of N.ˇ0
2
/, and we can assume that DW divides K� into the arcs

K1 and K2 defined above. We claim that if D is another disk properly embedded
in H , intersecting K� in two points, separating H , and with @D essential in @H ,
then D must be isotopic to DW . To see that, look at the intersections between DW

and D , and by doing an innermost disk/outermost arc argument, remove all curves
and arcs of intersection. To do that we use the following facts: (a) † is meridionally
incompressible in H �K� ; (b) the arc obtained by sliding ˇ1 over ˇ00

2
is not isotopic

into the surface S , for it is an unknotting tunnel for M1 ; (c) the knot in N.
 / (M1 )
obtained from the arc K1 (K2 ), by joining the endpoints of K1 (K2 ) lying in DW

and then pushing it into N.
 / (M1 ), does not have local knots in N.
 / (M1 ). If D

and DW are disjoint, then it is not difficult to see that they are isotopic in H .

Let S6 be a surface of type 6, and let K6 be a .1; 2/–knot in the complement of S6 ,
so that the surface S6 is meridionally incompressible in S3 �K6 . It follows from
Section 2.6 that S6 bounds a manifold M6 which has incompressible boundary (this
is a single manifold). Let H6 D S3� int M6 . It follows from Section 2.6 that H6 is
the disk sum of the exterior, S3� int N.
6/, of a certain knot 
6 , and the solid torus
N.˛1/. We assume that 
6 is a nontrivial knot, for otherwise H6 is a handlebody.
Here there is also a disk D6 , separating H6 , with @D6 essential in @H6 , and which
intersects K6 in two points. This is just a cocore of N.˛2/. Note however that the
disk D6 may not be unique, it will depend on the way the corresponding arc of K6 is
embedded in S3� int N.
6/.

Let S7 be a surface of type 7, and let K7 be a .1; 2/–knot in the complement of S7 ,
so that the surface S7 is meridionally incompressible in S3 �K7 . It follows from
Section 2.7 that S7 bounds a manifold M7 which has incompressible boundary (where
this is a family of manifolds constructed in a similar manner). Let H7 D S3� int M7 .
It follows from Section 2.7 that H7 is the disk sum of the solid torus N1 and the
exterior of a torus knot (S3� int N2 ), which we are assuming is nontrivial. Here there
is also a disk D7 , separating H7 , with @D7 essential in @H7 , and which intersects
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K7 in two points. This is just a cocore of N.˛/. Note however that the disk D7 may
not be unique, it depends on the way the corresponding arc of K7 is embedded in
S3� int N2 .

If K� is a .1; 2/–knot, there must be a homeomorphism h W .S3;K�/! .S3;Ki/,
i D 6 or 7, where Ki is a .1; 2/–knot having a surface of type 6 or 7. The image
of the surface † must be a surface of type 6 or 7, and the image of W must be a
manifold M6 or M7 . But in the complement of W there is a unique disk DW with
certain properties, so in M6 or M7 there must be also such a disk, ie the disk D6 or
D7 must be the unique disk with that properties. Then the homeomorphism must take
the disk DW onto a disk parallel to D6 or D7 . This implies that W [N.DW / must
be homeomorphic to M7[N.D6/ or to M7[N.D7/.

Note that W [N.DW / is just the manifold M2� int N.
 /, which is an irreducible
manifold with incompressible boundary, and not homeomorphic to T 2 � I , T 2 a
torus. But M6[N.D6/ is homeomorphic to N.
6/� int N.˛1/, which is a reducible
manifold with compressible boundary. And note that M7 [N.D7/ is the manifold
.N2� int.N1[N.˛//[N.˛/, which is just N2� int N1 , and it is homeomorphic to
T 2 � I . So we got different manifolds in each case.

We conclude that † cannot be a surface of type 6 or 7.

We give now an explicit example of a knot K� . Suppose that K is the .�13; 2/–cable
of the left hand trefoil knot. This is a tunnel number one knot. The cabling annulus of
K has slope .�26; 1/ on K . So let 
 be a curve on @N.K/ of slope .�55; 2/. Now
take an arc K1 on @N.K/ which goes around N.
 / twice, and connect it with an
unknotting arc K2 for K . Such a K�DK1[K2 is shown in Figure 13. As said above,
there is a surface † in the complement of K� which is meridionally incompressible;
this surface is implicit in Figure 13. The surface † bounds a manifold W , in this
example the manifold W is homeomorphic to the manifold shown in Figure 14, ie the
exterior of 
 [ˇ0

2
in the solid torus. To see a real picture, just embed W appropriately

in the neighborhood of a trefoil knot, or of any torus knot.
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[8] M Eudave Muñoz, E Ramı́rez-Losada, Meridional surfaces and .1; 1/–knots, to
appear in Trans. Amer. Math. Soc. arXiv:math.GT/0608205
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