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Kleinian orbifolds uniformized by RP groups with an
elliptic and a hyperbolic generator

ELENA KLIMENKO

NATALIA KOPTEVA

We consider non-elementary Kleinian groups � , without invariant plane, generated
by an elliptic and a hyperbolic element, with their axes lying in one plane. We find
presentations and a complete list of orbifolds uniformized by such � .

30F40; 22E40, 57M12, 57M50

This work is a part of a program to describe all 2–generator Kleinian groups with real
parameters. We study RP groups, that is, marked 2–generator subgroups � D hf;gi
of PSL.2;C/ for which the generating pair .f;g/ has real parameters ˇ D ˇ.f /D
tr 2f � 4, ˇ0 D ˇ.g/ D tr 2g � 4 and  D  .f;g/ D tr Œf;g�� 2 (see Section 1 for
exact definitions). Since discreteness questions were answered for elementary groups
and for groups with invariant hyperbolic plane (in particular, all Fuchsian groups were
described), we concentrate only on the non-elementary RP groups without invariant
plane, which we call truly spatial RP groups.

This paper deals with the most complicated case of RP groups, the case with one
generator elliptic and the other one hyperbolic. It was shown by Klimenko and Kopteva
[12] that ‘truly spatial’ for this class means that the elliptic generator is not a half-
turn and the axes of the generators either (1) are disjoint (non-parallel) lines lying
in a hyperbolic plane or (2) intersect non-orthogonally at a point of H3 . In terms of
parameters, we have here ˇ 2 .�4; 0/, ˇ0 2 .0;1/ and  for (1) and (2) belongs to
the intervals .�1; 0/ and .0;�ˇˇ0=4/, respectively [12, Theorem 1 and Table 1]. In
the previous papers by Klimenko [10] and Klimenko and Kopteva [12; 13] necessary
and sufficient conditions for discreteness of all such groups were found constructively.
Here we use the construction (we reproduce it in Section 2) to determine fundamental
polyhedra, presentations and orbifolds for all truly spatial discrete RP groups with an
elliptic and a hyperbolic generators (Section 3).

The other cases of f and g with real traces that generate a truly spatial RP group
and the question when the group is discrete were investigated earlier by Klimenko
[9; 11] and Klimenko and Kopteva [14]. The final results including the results of the
present paper are collected in Klimenko and Kopteva [15] (mostly without proofs),
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where parameters, presentations and orbifolds for all truly spatial discrete RP groups
with real traces of the generators are given.
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1 Preliminaries

Definitions and notation We identify PSL.2;C/ with the full group of orientation
preserving isometries of hyperbolic 3–space H3 .

Let f;g2PSL.2;C/. The complex numbers ˇDˇ.f /D tr2f �4, ˇ0Dˇ.g/D tr2g�4

and  D  .f;g/D trŒf;g�� 2, where Œf;g� denotes the commutator fgf �1g�1 , are
called the parameters for the pair .f;g/ and for the group � D hf;gi.

The same 2–generator subgroup � of PSL.2;C/ can have different triples of parameters
.ˇ; ˇ0;  / depending on the choice of the generating pair .f;g/. On the other hand, the
triple of parameters .ˇ; ˇ0;  / determines � up to conjugacy whenever  6D 0. More
precisely, if .f1;g1/ and .f2;g2/ both have the same triple of parameters .ˇ; ˇ0;  /
with  6D 0, then there is h 2 PSL.2;C/ so that f2D hf1h�1 and either g2D hg1h�1

or g2 D hg�1
1

h�1 , see Gehring and Martin [5].

Notice that if  D 0 then � is not determined uniquely by the numbers ˇ and ˇ0 .
There are examples of a discrete group �1 and a non-discrete �2 with  D 0 and the
same pair .ˇ; ˇ0/. However, it is known that in this case f and g have a common
fixed point in @H3 , that is, � is elementary. Since we are concerned only with truly
spatial groups, we may assume that  6D 0 throughout this paper.

A triple .�If;g/, where � D hf;gi, is called an RP group if the pair .f;g/ has real
parameters .ˇ; ˇ0;  /. Note that the requirement of discreteness is not included in the
definition of an RP group.

We recall that a non-trivial element f 2 PSL.2;C/ with real ˇ D ˇ.f / is elliptic,
parabolic, hyperbolic or � –loxodromic according to whether ˇ 2 Œ�4; 0/, ˇ D 0,
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Kleinian orbifolds uniformized by RP groups 123

ˇ 2 .0;C1/ or ˇ 2 .�1;�4/. If ˇ … Œ�4;1/, ie if trf is not real, then f is called
strictly loxodromic.

An elliptic element f of order n is said to be primitive if it is a rotation through
2�=n (with ˇ D�4 sin2.�=n/); otherwise, it is called non-primitive (and then ˇ D
�4 sin2.�q=n/, where q and n are coprime and 1< q < n=2).

A hyperbolic plane divides H3 into two components; we shall call the closure in H3

of either of them a half-space in H3 . A connected subset P of H3 with non-empty
interior is said to be a (convex) polyhedron if it is the intersection of a family H of
half-spaces with the property that each point of P has a neighborhood meeting at
most a finite number of boundaries of elements of H . A closed polyhedron with finite
number of faces bounded by planes ˛1; : : : ; ˛k is denoted by P.˛1; : : : ; ˛k/.

We define a tetrahedron T to be a polyhedron which in the projective ball model is
the intersection of the hyperbolic space H3 with a Euclidean tetrahedron TE (possibly
with vertices on the sphere @H3 at infinity or beyond it) so that the intersection of each
edge of TE with H3 is non-empty.

A tetrahedron T (possibly of infinite volume) in H3 is uniquely determined up to
isometry by its dihedral angles. Let T have dihedral angles �=p1 , �=p2 , �=p3 at
the edges of some face and let �=q1 , �=q2 , �=q3 be dihedral angles of T that are
opposite to �=p1 , �=p2 , �=p3 , respectively. Then a standard notation for such a T is
T Œp1;p2;p3I q1; q2; q3� and a standard notation for the group generated by reflections
in the faces of T is GT .

We denote the reflection in a plane � by R� . The axis of an element h 2 PSL.2;C/
with two distinct fixed points in @H3 is denoted by the same h if this does not lead to
any confusion.

We use symbols1 and1 with the following convention. We assume that1>1>x

and x=1D x=1D 0 for every real x ; 1=x D1 and 1=x D1 for every positive
real x ; in particular, .1; k/D .1; k/D k for every positive integer k . We use .�; �/
for gcd.�; �/.

If we denote the dihedral angle between two planes by �=p (1<p�1), then the planes
intersect when p is finite, they are parallel (that is, their closures in H3 D @H3[H3

have just one common point in @H3 ) when pD1 and disjoint (that is, the boundaries
of the planes do not intersect in @H3 ) when p D1.

Convention on pictures Since the methods we use here are essentially geometrical,
the paper contains many pictures of hyperbolic polyhedra. In those pictures, shaded
polygons are not faces of polyhedra, but are drawn to underline the combinatorial
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structure of the corresponding polyhedron. They are just intersections of the polyhedron
with appropriate planes.

If a line on a picture is an edge of a polyhedron, then it is labelled by the dihedral
angle at this edge. We often omit labels �=2. If a line is not an edge of a polyhedron
and is labelled by an integer k , then this means that the line is the axis of an elliptic
element of order k that belongs to �� (see below). Figure 11 is an exception from
this convention. We shall explain labels in Figure 11 in Remark 3.4.

2 Fundamental polyhedra and parameters

From here on f is a primitive elliptic element and g is hyperbolic. The main tool
in the study of discreteness of � D hf;gi in Klimenko [10] and Klimenko–Kopteva
[12; 13] was a construction of a ‘convenient’ finite index extension �� of � together
with a fundamental polyhedron for each discrete �� . In this section, we reproduce the
construction of �� and describe the fundamental polyhedra for all discrete �� . This is
a preliminary part for Section 3, where we shall work with the groups �� themselves
to list the corresponding orbifolds.

2.1 Geometric description of discrete groups for the case of disjoint axes

Theorem 2.1 below gives necessary and sufficient conditions for discreteness of � for
the case of disjoint axes of the generators f and g ; a complete proof can be found
in Klimenko [10]. We also repeat the geometric construction from [10] and recall
fundamental polyhedra for the series of discrete groups �� corresponding to Items
(2)(i)–(2)(iii) of Theorem 2.1.

Theorem 2.1 ([10]) Let f 2PSL.2;C/ be a primitive elliptic element of order n� 3,
g 2 PSL.2;C/ be a hyperbolic element and let their axes be disjoint lines lying in a
hyperbolic plane.

(1) There exists h 2 PSL.2;C/ such that h2 D fgf �1g�1 and .hg/2 D 1.

(2) � D hf;gi is discrete if and only if one of the following holds:
(i) h is a hyperbolic, parabolic or primitive elliptic element of order p � 3;

(ii) n � 5 is odd, h D x2 , where x is a primitive elliptic element of order n,
and y D hgf x�1f is a hyperbolic, parabolic or primitive elliptic element
of order q � 4 or

(iii) n D 3, h D x2 , where x is a primitive elliptic element of order 5, and
z D hgf .x�1f /3 is a hyperbolic, parabolic or primitive elliptic element of
order r � 3.
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Let f and g be as in Theorem 2.1, and let ! be the plane in which the (disjoint) axes
of f and g lie.

Denote by " the plane that passes through the common perpendicular to the axes of
f and g orthogonally to ! . Let ˛ and � be the planes such that f D R˛R! and
g DR�R" , and let P D P.!; "; ˛; �/. The planes ! and ˛ make a dihedral angle of
�=n; the planes " and � are disjoint so that the axis of g is their common perpendicular.
Moreover, ˛ is orthogonal to " and � is orthogonal to ! . The planes ˛ and � either
intersect non-orthogonally or are parallel or disjoint. We denote the dihedral angle of
P between these planes by �=p , p > 2, where, by convention, p D1 if ˛ and �
are parallel and p D1 if they are disjoint.

We consider two finite index extensions of �Dhf;gi: ��Dhf;g; ei, where eDR"R! ,
and �� D hf;g; e;R!i. �� is the orientation preserving subgroup of index 2 in ��

and �� contains � as a subgroup of index at most 2. In Section 3, we shall see when
� D�� and when � 6D�� .

It was shown in [10] that hDR˛R� is the only element that satisfies both h2 D Œf;g�

and .hg/2 D 1. There are three series of discrete groups �� depending on how P
is decomposed into fundamental polyhedra for �� . The series correspond to the
conditions (2)(i), (2)(ii) and (2)(iii) of Theorem 2.1.

1. h is a hyperbolic, parabolic or primitive elliptic element of order p � 3 (that is
(2)(i) holds) if and only if the dihedral angle of P between ˛ and � is of the form
�=p with p D1, p D1, or p 2 Z, p � 3, respectively. This is the first series of
the discrete groups. In this case the polyhedron P is a fundamental polyhedron for
�� . In Figure 1(a) P is drawn under assumption that 1=nC 1=p > 1=2.

The other discrete groups appear only if h is the square of a primitive elliptic element
x D R�R� , where � is the bisector of the dihedral angle of P made by ˛ and � .
Fundamental polyhedra for �� corresponding to these two series are obtained by
decomposing P into smaller polyhedra as follows (see [10] for the proof).

2. Let � be determined by the condition (2)(ii). In this case, n � 5 is odd, the
dihedral angle of P between ˛ and � is 2�=n, and � and ! make a dihedral angle
of �=3. Hence, �1 , where �1 D R�.!/, and ! also make a dihedral angle of �=3,
and �1 and ˛ are orthogonal. The planes �1 and " either intersect at an angle of �=q ,
where q 2 Z, q � 4, or are parallel or disjoint (q D 3 is not included, because then "
and � must intersect). One can show that if y DR"R�1

, then y D hgf x�1f . The
polyhedron P.!; "; ˛; �1/ is a fundamental polyhedron for �� . For q D 4 or 5 and
nD 5, P.!; "; ˛; �1/ is a compact tetrahedron. It is denoted by ABCD in Figure 1(b)
and shown by bold lines.
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Figure 1: Fundamental polyhedra for �� ( < 0)

3. Let � be determined by the condition (2)(iii). In this case nD 3 and the dihedral
angle of P between ˛ and � is 2�=5. Denote �2DR�.!/. The planes � and ! make
a dihedral angle of 2�=5 and, hence, �2 and ! make an angle of �=5. It can be shown
that �2 and ˛ are orthogonal. The planes " and �2 either intersect at an angle of �=r ,
where r 2Z, r � 3, or are parallel or disjoint. In this case zDR"R�2

D hgf .x�1f /3 .
The polyhedron P.!; "; ˛; �2/ is a fundamental polyhedron for �� (see Figure 1(c),
where P.!; "; ˛; �2/ is drawn for r D 3).
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2.2 Parameters for discrete groups in the case of disjoint axes

Let
U D fujuD i�=p;p 2 Z;p � 2g[ Œ0;C1/:

Define a function t W U ! f2; 3; : : : g[ f1;1g as follows:

t.u/D

8̂<̂
:

p if uD i�=p

1 if uD 0

1 if u> 0:

The purpose of introducing the function t.u/ is to shorten statements that involve
parameters .ˇ; ˇ0;  /. We use it in Theorems 2.2, 2.3, 3.1, 3.2 and 3.5.

Now we give a parameter version of Theorem 2.1 with a proof. Theorem 2.2 is new
and did not appear before, however, we did use a similar technique in earlier papers.

Theorem 2.2 Let .�If;g/ be an RP group with ˇ D �4 sin2.�=n/, where n � 3

is an integer, ˇ0 2 .0;C1/ and  2 .�1; 0/. Then � is discrete if and only if one of
the following holds:

(1)  D�4 cosh2 u, where u 2 U and t.u/� 3;

(2) n� 5, .n; 2/D 1,  D�.ˇC2/2 and ˇ0 D 4.ˇC4/ cosh2 u�4, where u 2 U
and t.u/� 4 or

(3) ˇ D�3,  D .
p

5� 3/=2 and ˇ0 D 2.7C 3
p

5/ cosh2 u� 4, where u 2 U and
t.u/� 3.

Proof ˇ D �4 sin2.�=n/, where n 2 Z and n � 3, if and only if f is a primitive
elliptic element of order n� 3, and ˇ0 2 .0;C1/ if and only if g is hyperbolic. Since
n � 3 and  2 .�1; 0/, � is non-elementary and the axes of f and g are disjoint
by Klimenko and Kopteva [12, Theorem 1]. So the hypotheses of Theorem 2.2 and
Theorem 2.1 are equivalent.

Let us find explicit values of ˇ0 and  for each of the discrete groups from part (2)
of Theorem 2.1. The idea is to use the fundamental polyhedra described in Section
2.1. Since  D tr Œf;g�� 2 and h is a square root of Œf;g�, it is not difficult to get
conditions on  .

We start with (2)(i) in Theorem 2.1. The element hDR˛R� is hyperbolic if and only
if the planes ˛ and � (see Figure 1(a)) are disjoint in H3 . Therefore, tr Œf;g�D tr h2D

�2 cosh.2d/, where d is the hyperbolic distance between ˛ and � . Here tr Œf;g� must
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be negative, because  is negative for all values of ˇ and ˇ0 that satisfy the hypotheses
of the theorem.

The element h is parabolic if and only if Œf;g� is parabolic and if and only if tr Œf;g�D
�2 which is equivalent to  D�4 (tr Œf;g�D 2 would give  D 0).

Thus, h is hyperbolic or parabolic if and only if

(2.1)  D tr Œf;g�� 2D�2 cosh.2d/� 2D�4 cosh2 d; d � 0:

Now suppose that h is an elliptic element with rotation angle � , where �=2D �=p <
�=2 is the dihedral angle of P.!; "; ˛; �/ made by ˛ and � . Then Œf;g�D h2 is also
elliptic with rotation angle 2� . Note that there is another square root h of the elliptic
commutator Œf;g� which has rotation angle � D � C � . One of the two angles �
and � is a solution to tr Œf;g�D 2 cos � , the other one to tr Œf;g�D �2 cos � . Since
tr Œf;g� depends on � continuously and we know that tr Œf;g� must approach �2 as
�! 0 (geometrically it means that Œf;g�, and h, approaches a parabolic element as
soon as the dihedral angle �=p above approaches 0), we conclude that � is a solution
to the second equation, that is, tr Œf;g�D�2 cos� .

On the other hand, if tr Œf;g� 2 .�2; 2/ is given, we can use the formula tr Œf;g� D
�2 cos� , 0<� <� , to determine the rotation angle � of the element h from Theorem
2.1.

Hence, h is a primitive elliptic element of order p (p � 3), that is, � D 2�=p , if and
only if

(2.2)  D tr Œf;g�� 2D�2 cos.2�=p/� 2D�4 cos2.�=p/; p 2 Z; p � 3:

Now we can combine the formulas (2.1) and (2.2) for  and write them as

 D�4 cosh2 u; where u 2 U and t.u/� 3:

It is clear that for the groups from Item (2)(i) of Theorem 2.1, we have no further
restrictions on n and ˇ0 . So, (2)(i) of Theorem 2.1 is equivalent to part 1 of Theorem
2.2.

Now consider (2)(ii) of Theorem 2.1. Here n � 5 is odd and h is the square of a
primitive elliptic element of order n (that is, �D 4�=n) if and only if n� 5, .n; 2/D 1

and  D�4 cos2.2�=n/D�.ˇC 2/2 .

So it remains to specify ˇ0 for (2)(ii). Now ˇ0 depends on the order of the element y

defined in Theorem 2.1. Since gDR�R" , we have ˇ0 D tr 2g�4D 4 sinh2 T , where
T is the distance between the planes " and � .
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Let us show how to calculate T for the case nD 5 and 4� q <1. Since the link of
the vertex B in Figure 1(b) is a spherical triangle, we get

cos†ABE D
cos.2�=n/

sin.�=n/
and cos†ABC D

1

2 sin.�=n/
:

Further, since 4ABC is a right triangle with †ACB D �=q , we have

cosh AB D
cos†ACB

sin†ABC
D

2 cos.�=q/ sin.�=n/q
4 sin2.�=n/� 1

:

Since T is the length of the common perpendicular to BE and AD , we can now
calculate cosh T from the plane ! :

cosh T D sin†ABE � cosh AB:

Since

sin2
†ABE D

sin2.�=n/� cos2.2�=n/

sin2.�=n/
D
.sin2.�=n/� 1/.1� 4 sin2.�=n//

sin2.�=n/

D
cos2.�=n/.4 sin2.�=n/� 1/

sin2.�=n/
;

we get that

cosh2 T D 4 cos2.�=n/ cos2.�=q/D .ˇC 4/ cos2.�=q/:

Hence, ˇ0 D 4 sinh2 T D 4.ˇC 4/ cos2.�=q/� 4.

Analogous calculations can be done for the other cases (when n> 5 or q �1). We
obtain that for the groups from Item (2)(ii),

ˇ0 D

8̂<̂
:

4.ˇC 4/ cos2.�=q/� 4 if 4� q <1

4.ˇC 4/� 4 if q D1

4.ˇC 4/ cosh2 d1� 4 if q D1;

where d1 is the distance between " and �1 if they are disjoint and �=q is the angle
between " and �1 if they intersect. Hence, ˇ0 can be written in general form as follows:

ˇ0 D 4.ˇC 4/ cosh2 u� 4 where u 2 U and t.u/� 4:

Finally, for the groups from Item (2)(iii) of Theorem 2.1, we have nD 3 and �D 4�=5

and therefore
ˇ D�3 and  D�4 cos2.2�=5/D .

p
5� 3/=2:
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Moreover, we can calculate

ˇ0 D

8̂<̂
:

2.7C 3
p

5/ cos2.�=r/� 4 if 3� r <1

2.7C 3
p

5/� 4 if r D1

2.7C 3
p

5/ cosh2 d2� 4 if r D1;

where d2 is the distance between " and �2 if they are disjoint and �=r is the angle
between " and �2 if they intersect and, hence,

ˇ0 D 2.7C 3
p

5/ cosh2 u� 4; where u 2 U and t.u/� 3:

2.3 Geometric description of discrete groups for the case of intersecting
axes

Now we consider � Dhf;gi with f primitive elliptic of order n> 2 and g hyperbolic
with non-orthogonally intersecting axes. In Klimenko–Kopteva [12; 13], criteria for
discreteness of such groups were found for n even and odd, respectively. In this
section we recall the criteria in terms of parameters and remind the construction of a
fundamental polyhedron for each discrete group �� .

Theorem 2.3 ([12] and [13]) Let .�If;g/ be an RP group with ˇD�4 sin2.�=n/,
where n� 3 is an integer, ˇ0 2 .0;1/ and  2 .0;�ˇˇ0=4/. Then � is discrete if and
only if .ˇ; ˇ0;  / is one of the triples listed in Table 1.

Remark 2.4 Note that if a formula in Table 1 involves u 2 U such that .t.u/; 2/D 1,
then t.u/ is finite and odd, while for u 2 U with .t.u/; 2/D 2, t.u/ can be not only
finite (and even), but 1 or 1, which implies that the formula is applicable also to
u� 0. In general, if .m; k/ < k , then m is finite.

Table 1: All parameters for discrete RP groups generated by a primitive
elliptic element f of order n� 3 and a hyperbolic element g whose axes
intersect non-orthogonally.

ˇ D ˇ.f /  D  .f;g/ ˇ0 D ˇ.g/

n� 4, .n; 2/D 2, u; v 2 U , 1=nC 1=t.u/ < 1=2

P1 �4 sin2 �
n
; n� 4 4 cosh2 uCˇ,

4


cosh2 v�

4

ˇ
,

.t.u/; 2/D 2 t.v/� 3
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Table 1: (continued)

ˇ D ˇ.f /  D  .f;g/ ˇ0 D ˇ.g/

P2 �4 sin2 �
n
; n� 4 4 cosh2 uCˇ,

4. �ˇ/


cosh2 v�

4

ˇ
,

.t.u/; 2/D 1 t.v/� 3

P3 �2 2 cos.2�=m/, m� 5,  2C 4

.m; 2/D 1

n� 3, .n; 2/D 1, u; v 2 U , 1=nC 1=t.u/ < 1=2;

S D�2
. �ˇ/2 cos �

n
C  . Cˇ/

ˇ
, T D�2

.ˇC 2/2 cos �
n

ˇC 1
� 2

.ˇ2C 6ˇC 4/

ˇ

P4 �4 sin2 �
n
; n� 3 4 cosh2 uCˇ,

2


.cosh v� cos

�

n
/CS ,

.t.u/; 2/D 2 t.v/� 2

P5 �4 sin2 �
n
; n� 3 4 cosh2 uCˇ,

2. �ˇ/


cosh vCS ,

.t.u/; 2/D 1 t.v/� 2

P6 �4 sin2 �
n
; n� 7 .ˇC 4/.ˇC 1/

2.ˇC 2/2

ˇC 1
cosh vCT; t.v/� 2

P7 �4 sin2 �

n
, ˇC 3

2

ˇ

�
.ˇ� 3/ cos

�

n
� 2ˇ� 3

�
n� 5, .n; 3/D 1

P8 �4 sin2 �

n
, 2.ˇC 3/ �

6

ˇ

�
2 cos

�

n
CˇC 2

�
n� 5, .n; 3/D 1

P9 �3 2 cos.2�=m/� 1,
2



�
 2
C 2 C 2

�
m� 7, .m; 2/D 1

P10 �3 2 cos.2�=m/� 1,  2C 4

m� 8, .m; 6/D 2

P11 �3 2 cos.2�=m/, 2

m� 7, .m; 4/� 2

P12 �3 .
p

5C 1/=2
p

5

P13 �3 .
p

5� 1/=2
p

5
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Table 1: (continued)

ˇ D ˇ.f /  D  .f;g/ ˇ0 D ˇ.g/

P14 �3 .
p

5� 1/=2
p

5� 1

P15 .
p

5� 5/=2 .
p

5� 1/=2
p

5

P16 .
p

5� 5/=2 .
p

5� 1/=2 .3
p

5� 1/=2

P17 .
p

5� 5/=2 .
p

5� 1/=2 3.
p

5C 1/=2

P18 .
p

5� 5/=2 .
p

5C 1/=2 3.
p

5C 1/=2

P19 .
p

5� 5/=2
p

5C 2 .5
p

5C 9/=2

Let f and g be as in Theorem 2.3, that is, let f be a primitive elliptic element of order
n� 3, g be a hyperbolic element and let their axes intersect non-orthogonally. Let !
be the plane containing f and g , and let e be a half-turn whose axis is orthogonal to
! and passes through the point of intersection of f and g .

Again, we define two finite index extensions of � D hf;gi as follows: �� D hf;g; ei
and �� D hf;g; e;R!i.

Let ef and eg be half-turns such that f D ef e and g D ege . The lines ef and e lie
in a plane, denote it by ", and intersect at an angle of �=n; " and ! are mutually
orthogonal; eg is orthogonal to ! and intersects g .

Let ˛ be a hyperbolic plane such that f DR!R˛ and let ˛0 D eg.˛/. There exists a
plane ı which is orthogonal to the planes ˛ , ! and ˛0 . The plane ı passes through
the common perpendicular to f and eg.f / orthogonally to ! . It is clear that eg � ı .

From here on, we describe the cases of even n and odd n separately (n is the order of
the elliptic generator f ).

n � 4 is even. Let P D P.˛; !; ˛0; ı; "/. The polyhedron P can be compact or
non-compact; in Figure 2(a), P is drawn as compact.

The polyhedron P has five right dihedral angles; the dihedral angles formed by !
with ˛ and ˛0 equal �=n. The planes ˛ and ˛0 can either intersect or be parallel or
disjoint; the same is true for " and ˛0 . Denote the angle between " and ˛0 by �=`,
where ` 2 .2;1/[f1;1g and denote the angle between ˛ and ˛0 by 2�=m, where
m 2 .2;1/[f1;1g, 1=nC 1=m< 1=2.

For each triple of parameters with n even in Table 1, we know (from the paper [12])
how a fundamental polyhedron for �� looks like, and we describe all such polyhedra
below.
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�

n

f
g

ı eg

2�

m

�

n

!

"

˛ ˛0 �=
l

�

n

ı
eg

�

m
!

"

˛ �
�

k

�

n
D
�

4

ı

eg

2�

m

�

m
"

2
2

3

(a): P1 (b): P2 (c): P3

Figure 2: Fundamental polyhedra for �� in the case of even n (0<  < �ˇˇ0=4)

P1 . P is a fundamental polyhedron for �� if and only if m 2 Z[ f1;1g, m is
even (1=mC 1=n < 1=2) and ` 2 Z[ f1;1g (` � 3). In terms of the function t ,
mD t.u/ and `D t.v/ (cf Table 1).

P2 . Note that in this case mD t.u/ is finite and odd. Let � be the bisector of the
dihedral angle of P at the edge ˛ \ ˛0 . It is clear that � passes through eg and is
orthogonal to ! . The polyhedron P.˛; ı; �; "; !/ is bounded by reflection planes of
�� (see Figure 2(b)) and, therefore, it is a fundamental polyhedron for �� if and only
if � and " intersect at an angle of �=k , where k � 3, or are parallel or disjoint (kD1
or k D1, respectively). In Table 1, k D t.v/ for the parameters P2 .

P3 . In this case nD 4 and the dihedral angle of P.˛; ı; �; "; !/ at the edge � \ "
is 2�=m, where m D t.u/ is odd, 5 � m <1. The polyhedron P.˛; ı; �; "; !/ is
decomposed by reflection planes of �� into three (possibly infinite volume) tetrahedra
T Œ2; 2; 4I 2; 3;m�, each of which is a fundamental polyhedron for �� (see Figure 2(c)).

n� 3 is odd. Denote e1 D f
.n�1/=2e . Note that e1 makes angles of �=.2n/ with

˛ and ! .

We can forget about the plane ", because now we need another plane, denote it by
� , for the construction of a fundamental polyhedron for �� . To construct � we use
an auxiliary plane � that passes through e1 orthogonally to ˛0 . The plane � then
passes through e1 orthogonally to � . (Note that � is not orthogonal to each of the
planes ˛ and ! if m ¤ 2n.) In fact, the planes � and ˛0 can either intersect or be
parallel or disjoint. Note that if � \ ˛0 6D ∅ then e1 is orthogonal to � \ ˛0 . Let
P D P.˛; !; ˛0; ı; �/. In Figure 3(a), P is drawn for the compact case.

Consider the dihedral angles of P . The angles between ı and ! , ı and ˛ , ı and ˛0

are all of �=2; the angles formed by ! with ˛ and ˛0 equal �=n; since � passes
through e1 , which is orthogonal to f , the sum of the angles � and  formed by �
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with ˛ and ! , respectively, equals � . The planes ˛ and ˛0 can either intersect or be
parallel or disjoint. The same is true for � and ˛0 . Denote the angle between ˛ and ˛0

by 2�=m and the angle between ˛0 and � by �=.2`/.

Fundamental polyhedra for groups �� for all triples of parameters with odd n from
Table 1 were constructed in [13]. Now we describe them.

�

n

f

�

 

˛
eg ı

˛0
�

n

!

�
e1

2�

m

�=
2l

�

n

�1

˛ eg

ı

�

m!

�1
e1

�

 1

�=
2k

(a): P4 (b): P5

Figure 3

P4 . P itself is a fundamental polyhedron for �� if and only if m is even (1=mC

1=n< 1=2), mD1 or mD1, and ` 2 Z[f1;1g, `� 2. In terms of the function
t , mD t.u/ and `D t.v/ (cf Table 1).

P5 . Let � be the bisector of the dihedral angle of P at the edge ˛\˛0 . Clearly, �
passes through eg orthogonally to ! and ı . Construct a plane �1 in a similar way
as � above (now � plays the role of ˛0 ). The polyhedron QD P.˛; ı; �; �1; !/ is a
fundamental polyhedron for �� (see Figure 3(b)) if and only if m is odd and � and �1
make an angle of �=.2k/, where k � 2 is an integer, 1 or 1.

P6 . In this case, the dihedral angle of Q at the edge ˛\� equals 2�=n (ie mDn=2),
n � 7 is odd. Let � be the bisector of this dihedral angle and let � D R�.!/. The
bisector � makes an angle of �=3 with ! and, therefore, so does � . It is clear that then
� is orthogonal to ˛ (in ı , we have one of Knapp’s triangles with one non-primitive and
two primitive angles leading to a discrete group [16]). Construct a plane �2 similarly to
the planes � and �1 above (but using � ). The polyhedron P.˛; ı; !; �; �2/ (see Figure
4(a), where we show also a part of the plane ı ) is a fundamental polyhedron for �� if
and only if �2 and � intersect at an angle of �=.2k/, where k � 2 is an integer, or are
parallel or disjoint (k D1 or k D1, respectively). In Table 1, t.v/ corresponds to
k .

P9 . The dihedral angles of Q at the edges ˛\ � and �1\ � equal �=m, m is odd.
The plane �1 makes dihedral angles of 2�=3 and �=3 with ˛ and ! , respectively. Let
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� be the bisector of the dihedral angle of Q at ˛\ �1 . It is clear that � is orthogonal
to ! . P.˛; !; �; ı; �/, where � is the plane that passes through � \! orthogonally
to ˛ , is a fundamental polyhedron for �� (see Figure 4(b)). The dihedral angle of
P.˛; !; �; ı; �/ at �\! equals �=4.

˛

�

n !  2

e1�2 �=
2k

�2

�

ı

�

3

eg �
=
m�

3

�

2

2

4
�
2

2

2

�1

2�=3

e1

˛

�=3

�=
m

(a): P6 (b): P9

Figure 4

Fundamental polyhedra for remaining discrete groups �� are obtained after decompo-
sition of P (which is shown in Figure 3(a)) by the planes of reflections from �� , that
is, .m; 2/D 2, m� 4 and ` is fractional. We first consider the cases where R� 2 �

� .

A compact convex polyhedron in H3 whose skeleton is a trivalent graph is uniquely
determined by its dihedral angles up to isometry of H3 , see Hodgson and Rivin [7].
Given n, m and `, all the dihedral angles of the polyhedron P [ e1.P/ are defined.
Therefore, the dihedral angle � of P at ˛ \ � can be obtained. So to determine a
compact P it is sufficient to indicate only n, m and `, but we shall also give the
value of � for convenience. If P has infinite volume, but ` <1 and m <1 (then
2=mC 1=nC 1=` < 1), P is also determined by the values of n, m and `, since we
can cut off a compact polyhedron from P [ e1.P/ by a plane orthogonal to � , ˛ , ˛0

and a plane orthogonal to � , ! , ˛0 .

There are no discrete groups for which m D 1 or ` � 1 except for those with
parameters of type P4 . When mD1 we also indicate the distance d between ˛ and
˛0 to determine P . In fact, given d , one can find � , but we shall give � explicitly for
convenience.

In all of these cases Rı 62 �
� , so we do not show ı (but indicate eg ) in figures in

order to simplify the picture. By the same reason we draw only those parts of the
decomposition (including ! ) that are important for the reconstruction of the action of
�� and help to determine positions of e1 and eg .
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Figure 5

P11 . n D 3, m D 1, ` D r=4, .r; 4/ � 2, r � 7, � D 2�=3 and cosh d D

2 cos2.�=r/�1=2. P.˛; ˛0; !; �/ is decomposed into tetrahedra T DT Œ2; 3; r I 2; 2; 4�

each of which is a fundamental polyhedron for �� (Figure 5(a)). �� DGT .

P12 . nD 3, mD1, `D 3=2, �D 4�=5 and cosh d D .3C
p

5/=4. P.˛; ˛0; !; �/
is decomposed into tetrahedra T D T Œ2; 2; 3I 2; 5; 3�. A half of T is a fundamental
polyhedron for �� (Figure 5(b)). �� D hGT ; egi.

P13 . n D 3, m D 10, ` D 3=2, � D 3�=5. P.˛; ˛0; !; �/ is decomposed into
tetrahedra T D T Œ2; 3; 5I 2; 3; 2�. A half of T is a fundamental polyhedron for ��

(Figure 6(a)). �� D hGT ; egi.

P14 . n D 3, m D 10, ` D 5=4, � D 2�=3. P.˛; ˛0; !; �/ is decomposed into
tetrahedra T D T Œ2; 3; 5I 2; 2; 4� each of which is a fundamental polyhedron for ��

(Figure 6(b)). �� DGT .

P15 . nD 5, mD 4, `D 3=2, �D�=5. P.˛; ˛0; !; �/ is decomposed into tetrahedra
T D T Œ2; 3; 5I 2; 3; 2�. A half of T is a fundamental polyhedron for �� (Figure 6(c)).
�� D hGT ; egi.

P17 . nD 5, mD 4, `D 5=2, �D�=3. P.˛; ˛0; !; �/ is decomposed into tetrahedra
T D T Œ2; 3; 5I 2; 2; 5�. A half of T is a fundamental polyhedron for �� (Figure 6(d)).
�� D hGT ; egi.

P18 . nD 5, mD 6, `D 5=4, �D�=3. P.˛; ˛0; !; �/ is decomposed into tetrahedra
T D T Œ2; 3; 5I 2; 2; 5�. A half of T is a fundamental polyhedron for �� (Figure 6(e)).
�� D hGT ; egi.
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Now consider discrete groups for which R� 62 �
� . In all these cases `D p=3, where

.p; 3/D 1. Let � be the plane through ˛0 \ � that makes a dihedral angle of 2�=p

with ˛0 and let P D P.˛; ˛0; !; ı; �/. Denote by �1 and �2 dihedral angles of P at
�\˛ and �\! , respectively.

If P is compact or non-compact with m<1, P is determined by values n, m, `, �1

and �2 . For mD1, we give the distance d between ˛ and ˛0 .

P7 . n � 5, .n; 3/ D 1, m D 6, ` D n=3, �1 D �=3, �2 D �=2. P.˛; ˛0; !; �/ is
decomposed into tetrahedra T D T Œ2; 3; nI 2; 3; n�. A quarter of T is a fundamental
polyhedron for �� (Figure 7(a)). �� D hGT ; e1; egi.

P8 . n � 5, .n; 3/ D 1, m D 1, ` D n=3, �1 D �=2, �2 D �=n and cosh d D

2 cos2.�=n/. P.˛; ˛0; !; �/ is decomposed into tetrahedra T D T Œ2; 2; 4I 2; n; 4�. A
half of T is a fundamental polyhedron for �� (Figure 7(b)). �� D hGT ; e1i.

P10 . nD3, m�8 is even, .m; 3/D1, `Dm=6, �1D�=2, �2D�=3. P.˛; ˛0; !; �/
is decomposed into tetrahedra T D T Œ2; 3;m=2I 2; 3; 3�. A half of T is a fundamental
polyhedron for �� (Figure 7(c)). �� D hGT ; egi D hGT ; e1i.

P16 . nD 5, mD 4, `D 5=3, �1D �=5, �2D 2�=3. P.˛; ˛0; !; �/ is decomposed
into tetrahedra T D T Œ2; 3; 5I 2; 3; 2�. A half of T is a fundamental polyhedron for
�� (Figure 7(d)). �� D hGT ; egi D hGT ; e1i.

P19 . nD 5, mD1, `D 5=3, �1D 3�=5 and cosh d D .5C
p

5/=4. The planes �
and ! are disjoint. P.˛; ˛0; !; �/ is decomposed into tetrahedra T DT Œ2; 2; 3I 2; 5; 3�.
A half of T is a fundamental polyhedron for �� , see Figure 7(e), where LM D eg

and VE D e1 . �� D hGT ; egi.

3 Kleinian orbifolds and their fundamental groups

Let � be a non-elementary Kleinian group, and let �.�/ be the discontinuity set
of � . Following Boileau and Porti [2], we say that the Kleinian orbifold Q.�/ D

.H3[�.�//=� is an orientable 3–orbifold with a complete hyperbolic structure on
its interior H3=� and a conformal structure on its boundary �.�/=� .

In this section we shall describe the Kleinian orbifold Q.�/ and a presentation for each
truly spatial discrete RP group .�If;g/ with f elliptic and g hyperbolic. Since a
fundamental polyhedron for �� (a finite index extension of � ) was shown, it remains
to construct a fundamental polyhedron for � itself and identify the equivalent points
on the boundary of the new polyhedron to get the corresponding orbifold.
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In figures, we schematically draw singular sets and boundary components of the
orbifolds using fat vertices and fat edges. In fact, each picture gives rise to an infinite
series of orbifolds which might be compact or non-compact of finite or infinite volume.

We say that a finite 3–regular graph †.Q/ with fat vertices and fat edges embedded
in a topological space X represents the singular set and/or boundary components of
QDQ.�/ if:

(1) non-fat edges of †.Q/ are labelled by positive integers greater than 1,

(2) fat edges of †.Q/ are labelled by positive integers greater than 1 or symbols
1 and 1,

(3) the endpoints of a fat edge are fat vertices,

(4) if p , q and r are labels of the edges incident to a non-fat vertex, then 1=pC

1=qC 1=r > 1.

If an edge has no label then the label is meant to be 2. To reproduce the orbifold Q

from a graph †.Q/ we first work out all fat vertices and then all fat edges according
to labels assigned as follows.

Let v 2†.Q/ be a fat vertex and p , q and r be the labels of the edges incident to v .

Suppose that all p , q , r <1. If 1=pC1=qC1=r > 1 then the vertex v is a singular
point of Q and the local group of v is one of the finite groups D2n , S4 , A4 , A5 .
If 1=pC 1=q C 1=r D 1 then v represents a puncture. A cusp neighborhood of v
is a quotient of a horoball in H3 by a Euclidean triangle group .2; 3; 6/, .2; 4; 4/ or
.3; 3; 3/. In case 1=pC 1=qC 1=r < 1 the vertex v must be removed together with
its open neighborhood, which means that Q has a boundary component.

If one of the indices, say p , equals 1 and 1=pC1=qC1=r D 1, then q D r D 2 and
v is a puncture.

For all the other p , q , r , the vertex v is removed together with its open neighborhood.

Now we proceed with the edges. If an edge e (fat or non-fat) is labelled by an integer
p <1, then e is a part of the singular set of the orbifold Q and consists of cone
points of index p .

Fat edges labelled by 1 represent cusps of Q. A cusp neighborhood is the quotient of
a horoball by an elementary parabolic group. Topologically it is F�Œ0;1/, where F is
a Euclidean orbifold called the cross-section of the cusp (see eg Boileau–Maillot–Porti
[1] for geometric structures on orbifolds).

If e is labelled by 1, then it must be deleted together with its open regular neighbor-
hood. More details on how to ‘decode’ an orbifold with fat edges and vertices are given
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in Klimenko–Kopteva [15]. We do not discuss them here since fundamental polyhedra
for all � will be found, so it is not difficult to reconstruct the orbifolds.

Denote:

(1) GT Œn;mI q�D hf;gjf n;gm; Œf;g�qi,

(2) PH Œn;m; q�D hx;y; zjxn;y2; z2; .xz/2; Œx;y�m; .yxyz/qi,

(3) H ŒpI n;mI q�D hx;y; sjs2;xn;ym; .xy�1/p; .sxsy�1/q; .sx�1y/2i,

(4) P Œn;m; q�D hw;x;y; zjwn;x2;y2; z2; .wx/2; .wy/2; .yz/2; .zx/q; .zw/mi,

(5) TetŒp1;p2;p3I q1; q2; q3�D

hx;y; zjxp1 ;yp2 ; zp3 ; .yz�1/q1 ; .zx�1/q2 ; .xy�1/q3i, where, for simplicity,
the group TetŒ2; 2; nI 2; q;m� is denoted by TetŒn;mI q�,

(6) GTet1Œn;m; q�D hx;y; zjx
n;y2; .xy/m; Œy; z�q; Œx; z�i,

(7) GTet2Œn;m; q�D hx;y; zjx
n;y2; .xy/m; .xz�1y�1zy/q; Œx; z�i,

(8) S2Œn;m; q�D hx;Ljx
n; .xLxL�1/m; .xL2x�1L�2/qi,

(9) S3Œn;m; q�D hx;Ljx
n; .xLxL�1/m; .xLxLxL�2/qi,

(10) RŒn;mI q�D hu; vj.uv/n; .uv�1/m; Œu; v�qi.

In the presentations (1)–(10), the exponents n;m; q; : : : may be integers (greater than
1), 1 or 1. We employ the symbols 1 and 1 in the following way. If we have
relations of the form wn D 1, where nD1, we remove them from the presentation
(in fact, this means that the element w is hyperbolic in the Kleinian group). Further, if
we keep the relations w1 D 1, we get a Kleinian group presentation where parabolics
are indicated. To get an abstract group presentation, we need to remove such relations
as well.

The reader can find the orbifolds that correspond to the above presentations in Figures
8, 10 and 12.

We start with description of presentations and orbifolds for all truly spatial discrete
groups generated by a primitive elliptic and a hyperbolic elements with disjoint axes
(Theorem 3.1). All such orbifolds are embedded in S3 .

As usual, we can also apply the theorem when the elliptic generator is non-primitive,
using recalculation formulas for parameters as follows. Suppose that f is a non-
primitive elliptic of finite order n, that is, ˇ.f /D�4 sin2.q�=n/, where .q; n/D 1

and 1< q < n=2. Then there exists an integer r so that f r is primitive of the same
order. Obviously, hf;gi D hf r ;gi and ˇ.f r / D �4 sin2.�=n/. By Gehring and
Martin [6],  .f;g/D  .f r ;g/ �ˇ.f /=ˇ.f r /.
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(d): TetŒp1;p2;p3I q1; q2; q3� (d’): TetŒn;mI q� (e): P Œn;m; q�

Figure 8: Orbifolds embedded in S3

Theorem 3.1 Let .�If;g/ be a discrete RP group with ˇ D�4 sin2.�=n/, n� 3,
ˇ0 2 .0;C1/ and  2 .�1; 0/. Then one of the following occurs.

(1)  D�4 cosh2 u, where u 2 U , .t.u/; 2/D 2 and t.u/� 4; � is isomorphic to
GT Œn;1I t.u/=2�.

(2)  D�4 cosh2 u, where u 2 U , .t.u/; 2/D 1 and t.u/� 3; � is isomorphic to
TetŒn;1I t.u/�.

(3) n� 5, .n; 2/D 1,  D�.ˇC2/2 and ˇ0 D 4.ˇC4/ cosh2 u�4, where u 2 U
and t.u/� 4; � is isomorphic to TetŒn; t.u/I 3�.

(4) ˇ D�3,  D .
p

5� 3/=2 and ˇ0 D 2.7C 3
p

5/ cosh2 u� 4, where u 2 U and
t.u/� 3; � is isomorphic to TetŒ3; t.u/I 5�.

Proof All parameters for discrete groups in the statement of Theorem 3.1 are described
in Theorem 2.2. We shall obtain a presentation for each discrete group by using the
Poincaré polyhedron theorem, see eg Epstein and Petronio [4].

Let � have parameters as in part (1) of Theorem 2.2. In Section 2.1, a fundamental
polyhedron for the group �� was described. Since �� is the orientation preserving index
2 subgroup of �� , we can take �P D P."; ˛; �;R!.˛// as a fundamental polyhedron
for �� (see Figure 9(a)). In our notation p D t.u/.

Let eg D R�R! . It is clear that eg D ge . By applying the Poincaré polyhedron
theorem to �P and face pairing transformations e , eg and f , we get�� D he; eg; f je

2; e2
g; f

n; .fe/2; .feg/
p
i;
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Figure 9: Fundamental polyhedra for �� and � in case of disjoint axes

where p is an integer, 1 or 1. Since g D ege ,

�� D hf;g; ejf n; e2; .fe/2; .ge/2; .fge/pi:

If p is odd, then from the relations for �� it follows that e D .fgf �1g�1/.p�1/=2fg .
Hence, in this case �� D� and � Š TetŒn;1Ip�. The isomorphism is given by f 7! z ,
g 7! xy�1 and e 7! y . Identifying faces of �P , we get the orbifold Q.�/ shown in
Figure 8(d’).

If p is even, 1 or 1, then � is a subgroup of index 2 in �� . To see this, we apply the
Poincaré theorem to the polyhedron P.˛; �;R!.˛/;R".�// (see Figure 9(b)). Then

� D hf;gjf n; .fgf �1g�1/p=2i ŠGT Œn;1Ip=2�:

The orbifold Q.�/ is shown in Figure 8(a).

Now consider the groups with parameters from part (2) of Theorem 2.2. In this case
t.u/ D q from Theorem 2.1. By applying the Poincaré theorem to the polyhedron
P."; ˛; �1;R!.˛/;R!.�1// and the group generated by f , e and s , where sDR!R�1

,
we get the following presentation for the group hf; e; si:

hf; e; sjf n; e2; s3; .fe/2; .f s/2; .se/qi:

Since x DR�R� , we have x2 D h and x D f s�1 . Therefore, g D ege D f �1he D

f �1x2e D f �1.f s�1/2e D s�1f s�1e and hence � � hf; e; si.

Since hn D 1, n is odd and h2 D Œf;g�, we have that hD Œf;g��.n�1/=2 2 � . Further,
egDf

�1h and so eD eggDf �1hg2� . From xnD1 we have that xDh�.n�1/=2 2
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� and, therefore, s D x�1f 2 � . Then hf; e; si � � and so we have shown that
� D hf; e; si.

Mapping x 7! s�1f �1 , y 7! fe , z 7! f , we see that hf; e; si D � is isomorphic to
the group TetŒn; qI 3�. Therefore, � Š TetŒn; qI 3�, where q � 4 is an integer, 1 or
1.

The orbifold Q.�/ is shown in Figure 8(d’).

Similarly, one can show that the groups with parameters from part (3) of Theorem 2.2
are isomorphic to TetŒ3; t.u/I 5�, where t.u/� 3 is an integer, 1 or 1.

Let T .p/, p 2 Z, be a Seifert fibered solid torus obtained from a trivially fibered solid
torus D2�S1 by cutting it along D2�fxg for some x 2S1 , rotating one of the discs
through 2�=p and gluing back together.

Denote by S.p/ a space obtained by gluing T .p/ with its mirror symmetric copy
along their boundaries fiber to fiber. Clearly, S.p/ is homeomorphic to S2 �S1 and
is p -fold covered by trivially fibered S2 �S1 . There are two critical fibers1 in S.p/
whose ‘length’ is p times shorter than the ‘length’ of a regular fiber.

Next two theorems describe presentations and orbifolds for all truly spatial discrete
groups � D hf;gi whose generators have intersecting axes, g is hyperbolic and f
is primitive elliptic of even order (Theorem 3.2) or odd order (Theorem 3.5). In both
theorems there are series of orbifolds embedded into S3 and S2 �S1 ; in case when
f has odd order some orbifolds are embedded into RP3 .

Again for non-primitive elliptics we can use recalculation formulas for parameters to
apply Theorem 3.2 or Theorem 3.5 (see the paragraph before Theorem 3.1).

Theorem 3.2 Let .�If;g/ be a discrete RP group so that ˇD�4 sin2.�=n/, n� 4,
.n; 2/D 2, ˇ0 2 .0;C1/ and  2 .0;�ˇˇ0=4/. Then  D 4 cosh2 uCˇ , where u2U
and 1=nC 1=t.u/ < 1=2, and one of the following occurs.

(1) .t.u/; 2/ D 2 and ˇ0 D 4.cosh2 v/= � 4=ˇ , where v 2 U , t.v/ � 3 and
.t.v/; 2/D 1; � is isomorphic to PH Œn; t.u/=2; t.v/�.

(2) .t.u/; 2/ D 2 and ˇ0 D 4.cosh2 v/= � 4=ˇ , where v 2 U , t.v/ � 4 and
.t.v/; 2/D 2; � is isomorphic to S2Œn; t.u/=2; t.v/=2�.

(3) .t.u/; 2/ D 1 and ˇ0 D 4. � ˇ/.cosh2 v/= � 4=ˇ , where v 2 U , t.v/ � 3

and .t.v/; 2/D 1; � is isomorphic to P Œn; t.u/; t.v/�.

1A critical fiber is also called a singular fiber. We use the word ‘critical’ in order not to confuse it with
components of the singular sets of orbifolds.
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(4) .t.u/; 2/ D 1 and ˇ0 D 4. � ˇ/.cosh2 v/= � 4=ˇ , where v 2 U , t.v/ � 4

and .t.v/; 2/D 2; � is isomorphic to GTet1Œn; t.u/; t.v/=2�.

(5) ˇ D �2, .t.u/; 2/ D 1, t.u/ � 5 and ˇ0 D  2 C 4 ; � is isomorphic to
TetŒ4; t.u/I 3�.

Proof The idea of the proof is the same as for Theorem 3.1. We refer now to the part
of Section 2.3 where n is even.

1. Let � have parameters as in row P1 of Table 1. A fundamental polyhedron
P.˛; ˛0; ı; "; !/ for �� is shown in Figure 2(a). A fundamental polyhedron for �� is
P.˛; ˛0;R!.˛/;R!.˛

0/; ı; "/, whose faces are identified by face pairing transforma-
tions f , f 0DR!R˛0 , e2D f

n=2e and eg . (We doubled the fundamental polyhedron
for �� shown in Figure 2(a).) By the Poincaré polyhedron theorem, we get that�� D hf; f 0; eg; e2jf

n; .f 0/n; e2
g; e

2
2 ; .fe2/

2; egf
�1egf

0; .f �1f 0/m=2; .e2f
0/`i:

Since eg D ge and e2 D f
n=2e , we have that�� D hf;g; ejf n; e2; .fe/2; .ge/2; .gfg�1f /m=2; .f n=2g�1fge/`i:

If ` is odd, e 2 hf;gi. Therefore, in this case � D�� Š PH Œn;m=2; `�, where m=2

is an integer, 1 or 1 and ` is odd; the orbifold Q.�/ is shown in Figure 8(b).

Suppose now that ` is even. Consider the polyhedron P 0 bounded by ˛ , ˛0 , ", R!.˛/,
R!.˛

0/ and eg."/. The � –loxodromic element L D ege2 identifies the faces of
P 0 lying in " and eg."/. Applying the Poincaré polyhedron theorem to P 0 and the
transformations f , f 0 and L, we get that hf; f 0;Li is discrete and P 0 is a fundamental
polyhedron for it. It follows, in particular, that j�� W �j D 2 for even `. Moreover,
hf; f 0;Li has the following presentation:

hf; f 0;Ljf n; .f 0/n; .f �1f 0/m=2;L�1f 0Lf; .L�1fLf 0/`=2i:

Since f 0DLf �1L�1 , the group hf; f 0;Li is generated by f and L and is isomorphic
to S2Œn;m=2; `=2�. Further, since L D ege2 D gf n=2 , the group hf;Li coincides
with � . Therefore, � Š S2Œn;m=2; `=2�, where m=2 and `=2 are integers, 1 or 1;
the orbifold Q.�/ is shown in Figure 10(a), see also Remark 3.3 and Remark 3.4 after
the proof.

2. Now let � have parameters as in row P2 of Table 1. A fundamental polyhedron
for �� is P.˛; ı; "; �;R!.˛//, whose faces are identified by f , e2 , y D RıR! and
z DR!R� . Then�� D hf; e2;y; zjf

n; e2
2 ;y

2; z2; .yz/2; .yf /2; .fe2/
2; .ze2/

k ; .f z/mi:
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Using the facts that eg D yz D ge and yfy D f �1 , we get zf z D .zy/.yfy/.yz/D

gef �1ge D gfg�1 . Therefore, since m is odd, z D z.f;g/. Furthermore, since
e2D f

n=2e , hf; e2;y; zi D�� . Similarly to part 1 above, if k is odd then �� D � since
in this case e D e.f;g/ 2 � . Further, the group hf; e2;y; zi is obviously isomorphic
to P Œn;m; k�, where m<1 is also odd. The orbifold Q.�/ is shown in Figure 8(e).

If k is even, � is an index 2 subgroup in �� . The polyhedron P.˛; "; �;R!.˛/;Rı."//,
whose faces are identified by f , z and uDye2D zgf n=2 2� , satisfies the hypotheses
of the Poincaré polyhedron theorem. Then hf; z;ui is discrete and has presentation

hf; z;ujf n; z2; .zf /m; Œz;u�k=2; Œf;u�i

and P.˛; "; �;R!.˛/;Rı."// is a fundamental polyhedron for this group.

Obviously, hf; z;ui is isomorphic to GTet1Œn;m; k=2�. On the other hand, since
uD zgf n=2 , we have hf; z;ui D hf;g; zi. Moreover, z D z.f;g/ because m is odd.
Hence, hf;g; zi D � and, therefore, � is isomorphic to GTet1Œn;m; k=2�, where
m<1 is odd and k=2 is an integer, 1 or 1. The orbifold Q.�/ is shown in Figure
10(d).

3. If � has parameters as in row P3 of Table 1, it is easy to show that � D�� and �
is isomorphic to a tetrahedron group TetŒ4;mI 3�, where 5�m<1 is odd.

Remark 3.3 Note that when QDQ.S2Œn;m=2; `=2�/, due to the action of the face
pairing transformation of the fundamental polyhedron, Q is embedded in a Seifert
fiber space S.2/ and the singular set is placed in S.2/ in such a way that the axis of
order m (if m<1) lies on a critical fiber of S.2/ and the axis of order n lies on a
regular one. In Figure 10(a) we draw only the solid torus that contains singular points
(or boundary components). The other fibered torus is meant to be attached and is not
shown.

Remark 3.4 As an illustration of the orbifold covering Q.�/!Q.��/, consider the
case when parameters of � are as in row P1 of Table 1 and t.u/D ` is even. Denote
QDQ.�/ and �QDQ.��/, where � Š S2Œn;m=2; `=2� and �� ŠPH Œn;m=2; `�. Let
us show the structure of the orbifold covering � W Q! �Q. Assume for simplicity that
m; ` <1. Draw the orbifold Q (same as in Figure 10(a), but with the change of
indices q 7! `=2, m 7!m=2) in the spherical shell S2�I as shown in Figure 11; keep
in mind that the inner and outer spheres are identified. In Figure 11, the labels on the
upper left and the lower right pictures are integers and denote the cone singularities.
The labels on the central pictures (which show the structure of the covering) are of the
form 2�=k ; they indicate cone/dihedral angles.
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q m
n

qm

n

2

(a) Orbifolds embedded in S.2/; (b) Orbifolds embedded in S.2/;
�orb

1
.Q/Š S2Œn;m; q� �orb

1
.Q/ŠGTet2Œn;m; q�

qm

n q m

n

2

(c) Orbifolds embedded in S.3/; (d) Orbifolds embedded in S2 �S1;
�orb

1
.Q/Š S3Œn;m; q� �orb

1
.Q/ŠGTet1Œn;m; q�

Figure 10: Orbifolds embedded in Seifert fiber spaces; only the torus that
contains cone points or boundary components is shown.

Let � be a circle in the xy -plane such that the inversion in the sphere for which � is a
big circle identifies the inner and the outer spheres. Let s be the orientation preserving
automorphism of Q induced by the composition of this inversion and the reflection in
the xy–plane. Thus, s is of order 2 with the axis � . Then s determines � W Q! �Q
and h�orb

1
.Q/; si D �orb

1
.�Q/. The underlying space of �Q is S3 .

Theorem 3.5 Let .�If;g/ be a discrete RP group so that ˇD�4 sin2.�=n/, n� 3,
.n; 2/D 1, ˇ0 2 .0;C1/ and  2 .0;�ˇˇ0=4/. Then one of the following occurs.

(1)  D 4 cosh2 uCˇ , where u 2 U , .t.u/; 2/D 2, 1=nC1=t.u/ < 1=2, and ˇ0D
2

.cosh v� cos.�=n//� 2

ˇ

�
. �ˇ/2 cos.�=n/C  . Cˇ/

�
, where v 2 U ; �

is isomorphic to S3Œn; t.u/=2; t.v/�.

(2)  D 4 cosh2 uC ˇ , where u 2 U , .t.u/; 2/ D 1, 1=nC 1=t.u/ < 1=2, and
ˇ0 D 2.�ˇ/


cosh v� 2

ˇ

�
. �ˇ/2 cos.�=n/C  . Cˇ/

�
, where v 2 U ; � is

isomorphic to GTet2Œn; t.u/; t.v/�.

(3) n� 7,  D .ˇC 4/.ˇC 1/ and ˇ0 D 2.ˇC 2/2.cosh v� cos.�=n//=.ˇC 1/�

2
�
ˇ2C 6ˇC 4

�
=ˇ , where v 2 U ; � is isomorphic GTet2Œn; 3; t.v/�.
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Figure 11: Branched covering � W Q! �Q
(4) ˇ D �3,  D 2 cos.2�=m/� 1, where m � 7, .m; 2/ D 1, and ˇ0 D 2. 2C

2 C 2/= ; � is isomorphic to GTet1Œm; 3; 2�.

(5) n� 5, .n; 3/D 1,  D ˇC3 and ˇ0 D 2 ..ˇ� 3/ cos.�=n/� 2ˇ� 3/ =ˇ ; � is
isomorphic to H Œ2I 3; nI 2�.

(6) .ˇ; ; ˇ0/ D ..
p

5 � 5/=2; .
p

5 ˙ 1/=2; 3.
p

5 C 1/=2/; � is isomorphic to
H Œ2I 2; 5I 3�.

(7) .ˇ; ; ˇ0/D.�3; .
p

5˙1/=2;
p

5/ or .ˇ; ; ˇ0/D..
p

5�5/=2; .
p

5�1/=2;
p

5/,
or .ˇ; ; ˇ0/D ..

p
5�5/=2;

p
5C2; .5

p
5C9/=2/; in all cases � is isomorphic

to H Œ2I 2; 3I 5�.

(8) .ˇ; ; ˇ0/ D ..
p

5 � 5/=2; .
p

5 � 1/=2; .3
p

5 � 1/=2/; � is isomorphic to
TetŒ3; 3I 5�.

(9) ˇ D �3,  D 2 cos.2�=m/, where m � 5, .m; 4/ D 1, and ˇ0 D 2 ; � is
isomorphic to TetŒ4;mI 3�.

(10) n � 5, .n; 3/ D 1,  D 2.ˇC 3/ and ˇ0 D �6.2 cos.�=n/C ˇC 2/=ˇ ; � is
isomorphic to RŒn; 2I 2�.

(11) ˇ D �3,  D 2 cos.2�=m/, where m � 8, .m; 4/ D 2, and ˇ0 D 2 ; � is
isomorphic to H ŒmI 3; 3I 2�.

(12) ˇ D�3,  D 2 cos.2�=m/� 1, where m� 4, .m; 3/D 1, and ˇ0 D  2C 4 ;
� is isomorphic to TetŒ2; 3; 3I 2; 3;m�.
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Proof Now we shall use fundamental polyhedra for �� described in Section 2.3 for
n odd and the Poincaré theorem to find a presentation for � .

1. Let � have parameters as in row P4 of Table 1. Consider the polyhedron bounded
by ˛ , ˛0 , R!.˛/, R!.˛

0/, � , R!.�/, eg.�/ and R!.eg.�//, which is the union of
four copies of P shown in Figure 3(a). Its faces are identified by f , f 0 D egf

�1eg

and two loxodromic elements L D ege1 and L0 D ege1f
�1 D Lf �1 . Using the

Poincaré polyhedron theorem, one can show that

hf; f 0;L;L0i D hf;Ljf n; .LfL�1f /m=2; .fL�1fL�1fL2/`i:

Obviously, hf;Li Š S3Œn;m=2; `�. Further, since L D ege1 D gef .n�1/=2e D

gf �.n�1/=2 , the group hf;Li coincides with � . Hence, � is isomorphic toS3Œn;m=2;`�,
where m is even (1=nC1=m� 1=2), mD1 or mD1 and `� 2 is an integer. The
orbifold Q.�/ is shown in Figure 10(c).

2. Let � have parameters as in row P5 . Denote y D RıR! , �0
1
D R!.�1/ and

consider the polyhedron P.˛;R!.˛/; �; �1; �
0
1
;y.�1/;y.�

0
1
//, which is the union of

four copies of the polyhedron Q shown in Figure 3(b). Its faces are identified by the
transformations f , vDyeg , uDye1 and u0Dyfe1 . As usual, we apply the Poincaré
polyhedron theorem to get

hf; v;u;u0i D hf; v;ujf n; v2; .f v/m; .f vuvu�1/k ; Œf;u�i:

We see that hf; v;ui ŠGTet2Œn;m; k�, where the isomorphism is given by f 7! x�1 ,
v 7! y , u 7! z�1 . So it remains to show that hf; v;ui is actually generated by f and
g .

First, note that since the axis of y is orthogonal to the axis of f , yfy D f �1 . Now
since m is odd and v2 D 1, we can write

1D .f v/m D .f vf v/.m�1/=2f v D .fegyfyeg/
.m�1/=2f v

D .fegf
�1eg/

.m�1/=2f v D .fgfg�1/.m�1/=2f v:

Therefore, v D .fgfg�1/.m�1/=2f 2 � . Further, u D ye1 D vgef .n�1/=2e D

vgf �.n�1/=2 and hence u 2 � . So we have shown that hf; v;ui � � . On the other
hand, gD vuf .n�1/=2 and hence � �hf; v;ui. Then �Dhf; v;uiŠGTet2Œn;m; k�,
where m is odd (1=nC 1=m< 1=2) and k � 2 is an integer, 1 or 1.

Now suppose that � has parameters as in row P6 . This case is similar to the case of
parameters P5 , but technically it is more complicated.

Denote t DRıR� , y DR˛Rı and v D yt . Consider the polyhedron bounded by ! ,
R˛.!/, � , �2 , R˛.�2/, y.�2/ and y.R˛.�2//, which is the union of four copies of
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the polyhedron shown in Figure 4(a). Its faces are identified by f , v , uD ye1 and
u00 D ye1f . Again, by the Poincaré polyhedron theorem, we get

hf; v;u;u00i D hf; v;ujf n; v2; .f v/3; .f vuvu�1/k ; Œf;u�i ŠGTet2Œn; 3; k�:

Further,

uD ye1 D .yeg/.ege1/D .R˛Rı/.RıR�/.gef .n�1/=2e/D h�1
1 gf �.n�1/=2;

where h1 DR�R˛ . Note that h1 D vf
�2v . Then

g D h1uf .n�1/=2
D vf �2vuf .n�1/=2:

Hence, � is a subgroup of hf; v;ui. Now one can apply the Todd–Coxeter al-
gorithm, see eg Johnson [8] to hf; v;ui and its subgroup � generated by f and
g D vf �2vuf .n�1/=2 to show that jhf; v;ui W �j D 1, ie, hf; v;ui D � .

The orbifold with the fundamental group GTet2Œn;m; k� is shown in Figure 10(b).

3. If � has parameters as in row P9 , we consider the polyhedron bounded by ! , � ,
R˛.!/, R˛.�/, � and Rı.�/ (compare with Figure 4(b)) whose faces are identified
by f , h1 DR�R˛ and z DRıR� . Then hf; h1; zi has the presentation

(3.3) hf; h1; zjf
3; hm

1 ; .f
�1h1/

2; Œf; z�2; Œh1; z�i

Hence, hf; h1; zi Š GTet1Œm; 3; 2�, where the isomorphism is given by f 7! xy ,
h1 7! x , z 7! z . Let us show that hf; h1; zi D � .

Denote aDR�R˛ , b DRıR˛ and s DR˛R�1
. Then z D ba. Since the axis of b is

orthogonal to f , we have bf b D f �1 and, since � is orthogonal to ˛ , we have that
a2 D 1. From the decomposition of the link made by ˛ , ! and �1 by the reflection
planes, we obtain

e1 D sas�1 and s D afa:

Therefore, e D f �1e1 D f
�1sas�1 D f �1afaf �1a and

g D ege D h1bf �1afaf �1aD h1f zf z�1f z:

So we have shown that � is a subgroup of hf; h1; zi. Now it is sufficient to apply
the Todd–Coxeter algorithm to the group hf; h1; zi given by presentation (3.3) and its
subgroup hf;gi to see that hf; h1; zi D � .

Thus � ŠGTet1Œm; 3; 2� and the orbifold Q.�/ is shown in Figure 10(d).

4. Consider the groups with parameters as in rows P11 –P15 , P17 , P18 . In all of
these cases R� 2 �

� . We know a fundamental polyhedron for �� and the structure of
�� in each case. Since all these polyhedra are obtained as decompositions of P into
smaller polyhedra, they have common properties. Namely,
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(P1) the elements f 0 DR˛0R! and hDR˛0R˛ belong to � . Indeed,

f 0 DR˛0R! D egR˛egR! D .egR˛R!/.R!egR!/

D egf
�1eg D gfg�1

and hD f 0f D gfg�1f .

(P2) the elements h2 DR˛0R� , t1 DR˛R� and t2 DR!R� belong to � .
Denote ˛00 D e1.˛

0/. Note that R˛00 D e1R˛0e1 and R! D e1R˛e1 . Then

h2
2 DR˛0R˛00 D .R˛0R˛/.R˛R˛00/D hR˛e1R˛0e1 D he1R!R˛0e1

D he1gf �1g�1e1 D gfg�1f �.n�1/=2g�1fgf �.n�1/=2:

Since h2 always has odd order for the groups with parameters P11 –P15 , P17 ,
P18 , the fact that h2

2
2� implies h22� . Further, since t1D .R˛R˛0/.R˛0R�/D

h�1h2 and t2 D R!R� D e1R˛e1R� D e1R˛R�e1 D e1t1e1 , both t1 and t2
belong to � .

For the groups with parameters P12 , P13 , P15 , P17 or P18 , ��DhGT ; egi, where eg

coincides with the axis of a Z2 –symmetry of T (see Figures 5(b), 6(a), 6(c)–(e)). Then�� D h�T ; egi, where �T is the orientation preserving subgroup of GT . Proceeding
as in the proof of the property (P2), one can show that the rotations from �T belong
to � . In particular, since e1 passes through an edge of T , e1 2 � and, therefore,
e 2 � . Thus, � D�� . If T is a compact tetrahedron, it was shown by Derevnin and
Mednykh [3] that each h�T ; egi is isomorphic to some H ŒpI n;mI q�. It is easy to see
that the same is true for non-compact T . It remains to find p , n, m and q , which is
not difficult to do since the position of eg is known in each case. For example, if �
has parameters P12 , � ŠH Œ2I 2; 3I 5�.

Now consider the groups with parameters as in row P14 (see Figure 6(b)). In this case
T D T Œ2; 2; 4I 2; 3; 5�. Denote by � the reflection plane through eg and ˛0\ � and let

h2 DR�R� . Then h
2

2 D h2 .

It is clear that �T is generated by e1 , t1 and h2 and has the presentation

he1; t1; h2je
2
1 ; t

3
1 ; h

5

2; .e1t1/
4; .e1h2/

2; .t�1
1 h2/

2
i Š TetŒ4; 5I 3�:

Let us show that �T D � . From the link of the vertex made by ˛ , ! and � , we see
that f D t2t�1

1
D e1t1e1t�1

1
. Since eg D h2t1 , g D ege D h2t1f

�1e1 D h2t2
1

e1t�1
1

.
Therefore, hf;gi is a subgroup of �T . Furthermore, since h2 is of odd order, the
Todd–Coxeter method gives us that hf;gi coincides with �T . Thus � Š TetŒ4; 5I 3�.
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We remark that the case of the groups with parameters as in row P11 with .r; 4/D 1 is
analogous to the case of the groups with parameters as in row P14 with the difference
that h is hyperbolic and T D T Œ2; 2; 4I 2; 3; r � is an infinite volume tetrahedron. The
group � is then isomorphic to TetŒ4; r I 3�, where r � 7 is odd.

Consider the groups with parameters P11 with .r; 4/D 2. The consideration is quite
delicate so we shall do it in detail.

Let � be the reflection plane passing through e1 orthogonally to � (see Figure 5(a)), let
� be the plane through eg and t1 , and let � again be the plane through eg and ˛0[� . De-
note sDR�R� , s0DR�sR� , uDR�R˛0 and consider P.˛; �; �; ˛0;R� .˛

0/;R� .�//.
Its faces are identified by s , s0 , t1 and u. Then by the Poincaré polyhedron theorem
we get the presentation

G D hs; s0; t1;ujs
2; .s0/2; t3

1 ;u
3; .t1u/r=2;ust1s0; .ss0/2i:

Since s0 D ust1 ,

G D hs; t1;ujs
2; t3

1 ;u
3; .t1u/r=2; .sust1/

2; .ust1/
2
i ŠH Œr=2I 3; 3I 2�;

where r=2� 5 and r=2 is odd. We claim that G D � .

Note that R! DR�R�R� and R˛ DR�R�R� . Therefore,

f DR!R˛ DR�R�R�R�R�R� D ..R�R�/.R�R� //
2.R�R� /

D .seg/
2t1 D ss0t1;

because egseg D s0 . Hence, f D sust2
1

. Denote as before h2 DR�R� and h2 D h
2

2 .

Since e1 D h
�1

2 s , we get e D e1f D h
�1

2 ust2
1

. Therefore, since h
2

2 D h2 D u�1t�1
1

and eg D t�1
1

h
�1

2 , we obtain that

g D ege D t�1
1 h

�2

2 ust2
1 D u2st2

1 :

So we have proved that � is a subgroup of G .

On the other hand, since h2 2 � and t1 2 � (see the property (P2)), we get that
uD t�1

1
h�1

2
2 � and, therefore, s D u�2gt�2

1
D ugt1 2 � . Thus, � DG .

5. Consider the remaining cases of groups, with parameters as in rows P7 , P8 , P10 ,
P16 and P19 . In all of these cases R� … �

� . As in part 4 of the proof, the elements
h D R˛0R˛ and h3 D R˛0R˛00 belong to � . Denote � D e1.�/, a D R�R˛ and
b DR˛R� .

Suppose � has parameters as in row P7 . Consider the tetrahedron T DT Œ2; 3; nI 2; 3; n�

bounded by ˛ , ! , � and � . Denote sDR�egR� and t D e1s . Then t passes through
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the “midpoints” of the edges with dihedral angles of �=2 and all e1 , s and t are the
axes of Z2 –symmetries of T .

It is clear that the group �T , which is the orientation preserving subgroup of GT ,
is generated by f , a and b . Let H D h�T ; ti. We leave a proof of the fact that
H Š H Œ2I 3; nI 2� as an exercise for the reader, but we prove that H D � . Let
� 0 D eg.�/. Then R� 0 D egR�eg and R�R� 0 DR!R� . Therefore,

e1eg D .e1s/.seg/D tsR�R�eg D tR�egR�eg D tR�R� 0 D tR!R� D tf b:

Hence, g D ege D ege1f
.n�1/=2 D .tf b/�1f .n�1/=2 2H . So � �H .

On the other hand, e1egDf
.n�1/=2g�1 . Denote h3DR�R�DR˛0R� . We know that

h
3

3 D h3 2 � . Since .n; 3/D 1, h3 2 � . Then b D .R˛R˛0/.R˛0R� /D h�1h3 2 � ,

a D h
�1

3 b�1 2 � and t D f .n�1/=2g�1b�1f �1 2 � . Thus, H D hf; a; b; ti is a
subgroup of � . So � DH ŠH Œ2I 3; nI 2�.

Suppose � has parameters as in row P8 . Let now � be the reflection plane such
that eg D R�R� and let s D R�e1R� . Let � be the plane through M , K and L,
and let � DR�.�/ (see Figure 7(b)). Then � passes through M , K and L0 , where
L0 D R�.L/, and s lies in � . Moreover, the sum of the angles that � makes with
˛ and � equals � and � intersects � orthogonally. Consider the polyhedron P D
P.˛; �; ˛0;R� .˛/; �; �;R� .�/;R� .�//. Its faces are identified by h3 , z D egh3eg ,
uD seg and vD e1eg . Using the Poincaré polyhedron theorem, we get the presentation

H D hz; h3;u; vjz
n; h

n

3; .h3z/2; vuh3;uvz�1; .uv�1/2i:

Since z D uv and h3 D u�1v�1 ,

H D hu; vj.uv/n; .uv�1/2; Œu; v�2i ŠRŒn; 2I 2�:

Let us show that H D � . First, note that since .n; 3/D 1, h3 2 � . Therefore, since
v D e1eg D f

.n�1/=2g�1 2 � and uD v�1h3 2 � , H � � .

In order to express f and g in terms of u and v , we recall that R� D e1R�e1 and

R! D e1R˛e1 and note that z DR�h
�1

3 R� DR˛R� . Then

sh3s DR�e1R�h3R�e1R� DR�e1z�1e1R� DR�e1R�R˛e1R� DR�R�R!R� :

Furthermore, R˛DR�R�R� and, since � is orthogonal to ! , R!R�DR�R! . Hence,
sh3sDR˛R�R!R�DR˛R!Df

�1 . On the other hand, sh3sD segzegsDu2vu�1 .
Thus, f D uv�1u�2 and g D v�1f .n�1/=2 D v�1.uv�1u�2/.n�1/=2 . So we have
shown that � �H and, hence, � DH .
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Gluing the faces of P by h3 , z , u and v , we obtain the orbifold embedded in RP3

(see Figure 12).

n

2

n

�=2

�orb
1
.Q/ŠRŒn; 2I 2�

Figure 12: Underlying space is RP 3nB3

Suppose that � has parameters as in row P10 . Consider the tetrahedron T D

T Œ2; 3; 3I 2; 3;m=2� bounded by ˛ , ! , � and � . The group �T has the presentation

�T D hf; a; bjf
3; a2; b3; .af /3; .bf /2; .ab/m=2i Š TetŒ2; 3; 3I 2; 3;m=2�:

We shall show that �T D � . Note that eg D b�1e1b . Then

e1be1 D e1R˛R�e1 D e1R˛e1R� DR!R� D fa:

Therefore,
g D ege1f D b�1e1be1f D b�1faf:

Hence, � D hf;gi is a subgroup of �T . Applying the Todd–Coxeter algorithm, we
see that, since .m=2; 3/D 1, hf;gi D�T .

Similarly, one can show that in the case of the parameters of type P16 , � D�T , where
T D T Œ2; 2; 3I 2; 5; 3� and �T Š TetŒ3; 3I 5�.

Suppose that � has parameters as in row P19 . In this case �� D hGT ; egi, where
T D T Œ2; 2; 3I 2; 5; 3�. Then �� D h�T ; egi. Notice that all rotations from �T belong
to � , in particular, e1 2 � . Hence, e 2 � and, therefore, � D �� . It was shown by
Derevnin and Mednykh [3] that h�T ; egi ŠH Œ2I 2; 3I 5�. Thus, � ŠH Œ2I 2; 3I 5�.

Remark 3.6 When Q DQ.S3Œn;m; q�/, the singular set of Q is placed into S.3/
in such a way that the curve consisting of cone points of indices n and m lies on a
regular fiber. When QDQ.GTet2Œn;m; q�/, the curve consisting of cone points of
indices m and 2 lies on a regular fiber and the singular component of index n lies on
a critical fiber.
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In Figure 12, RP3 is shown as a lens with antipodal points on the boundary identified.
The angle at the edge of the lens is �=2 and, therefore, the edge is mapped onto a
singular loop with index 2.
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208 MR1844891 Appendix A: Limit of hyperbolicity for spherical 3–orbifolds by M
Heusener and J Porti

[3] D A Derevnin, A D Mednykh, Discrete extensions of the Lanner groups, Dokl. Akad.
Nauk 361 (1998) 439–442 MR1693083 Translation in: Dokl. Math. 58 (1998), no. 1,
78–80

[4] D A Epstein, C Petronio, An exposition of Poincaré’s polyhedron theorem, Enseign.
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