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Destabilizing amalgamated Heegaard splittings

JENNIFER SCHULTENS

RICHARD WEIDMANN

We construct a sequence of pairs of 3–manifolds .M n
1
;M n

2
/ each with incompressible

torus boundary and with the following two properties:

(1) For M n the result of a carefully chosen glueing of M n
1

and M n
2

along their
boundary tori, the genera .gn

1 ;g
n
2/ of .M n

1 ;M
n
2 / and the genus gn of M n satisfy

the inequality
gn

gn
1 Cgn

2

<
1

2
:

(2) The result of amalgamating certain unstabilized Heegaard splittings of M n
1 and

M n
2

to form a Heegaard splitting of M produces a stabilized Heegaard splitting that
can be destabilized successively n times.

57M27

1 Introduction

About 10 years ago, Cameron McA Gordon asked the following question: Can the
pairwise connect sum of two 3–manifolds each with an unstabilized Heegaard split-
ting yield a 3–manifold with a stabilized Heegaard splitting? This question stumped
the experts for many years but recently a negative answer to this question has been
announced by D Bachman [1] and R Qiu [11].

More generally, one can ask how Heegaard splittings behave under other types of
“sums”, that is, when the 3–manifolds containing them are glued along positive genus
boundary components. How Heegaard genus behaves under these circumstances is one
of the many questions investigated by Klaus Johannson in [6] and by the first author in
[16]. In both cases, inequalities relating the Heegaard genus of the glued 3–manifold
to the Heegaard genera of the original 3–manifolds are obtained. Most strikingly, the
inequalities give lower bounds on the Heegaard genus of the glued 3–manifold in
terms of the Heegaard genera of the original 3–manifolds. But these lower bounds are
fractions of the sum of the genera of the original 3–manifolds. A better bound under
more restrictive circumstances has recently been obtained by D Bachman, E Sedgwick
and S Schleimer [2].
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320 Jennifer Schultens and Richard Weidmann

One upshot is that, in general, the phenomenon of “degeneration of Heegaard genus”
under glueing of 3–manifolds can’t be ruled out. It appears however that under certain,
possibly generic circumstances, this phenomenon does not occur. For instance, in [8]
Marc Lackenby shows that for a pair of hyperbolic 3–manifolds each with one boundary
component and under certain restrictions on the glueing, minimal genus Heegaard
splittings of the glued 3–manifold are always obtained from Heegaard splittings of the
original 3–manifolds by amalgamation.

It is presently unknown how large “degeneration of Heegaard genus” under glueing
can be. Interestingly, the issue of stabilization implicitly arises in the investigation
of this phenomenon in [13] and in [16]. The examples given in this note make this
issue explicit. In particular, we provide examples that illustrate how “degeneration
of Heegaard genus” under glueing corresponds to the existence of stabilizations in
the amalgamation of Heegaard splittings of the original 3–manifolds. In doing so, we
provide counterexamples to a conjecture of Kobayashi, Qiu, Rieck and Wang [7].
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2 Definitions

For standard definitions and results concerning knots, see Burde and Zieschang [3],
Lickorish [9] or Rolfsen [12]. For standard definitions and results pertaining to 3–
manifolds, see Hempel [4] or Jaco [5].

Definition 1 A height function on S3 is a Morse function with exactly two critical
points.

This last assumption guarantees that h induces a foliation of S3 by spheres, along
with one maximum that we denote by 1 and one minimum that we denote by �1.

Definition 2 Let K be a knot in S3 . If all minima of hjK occur below all maxima
of hjK , then we say that K is in bridge position with respect to h. The bridge number
of K, b.K/, is the minimal number of maxima required for hjK .

Definition 3 If K is in bridge position, then a regular level surface below all maxima
and above all minima is called a bridge surface.
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Definition 4 An upper disk (lower disk) is an embedded disk whose interior is disjoint
from the knot whose boundary is partitioned into two subarcs, one contained in a bridge
surface and one a subarc of the knot that lies above (below) the bridge surface. A strict
upper disk (strict lower disk) is an upper (lower) disk whose interior lies above (below)
the bridge surface.

A complete set of strict upper (lower) disks is a set of upper (lower) disks such that
each subarc of the knot lying above (below) the bridge surface meets exactly one disk
in the set.

Definition 5 A compression body is a 3–manifold W obtained from S � I where S

is a closed orientable connected surface by attaching 2–handles to S � f0g � S � I

and capping off any resulting 2–sphere boundary components with 3–handles. We
denote S �f1g by @CW and @W �@CW by @�W . Dually, a compression body is an
orientable 3–manifold obtained from a closed orientable surface @�W � I or a 3–ball
or a union of the two by attaching 1–handles.

In the case where @�W D∅, we also call W a handlebody.

Definition 6 Let AD fa1; : : : ; akg be a collection of annuli in a compression body
W . Then A is a primitive collection if there is a collection D D fD1; : : : ;Dkg of
pairwise disjoint properly embedded disks in W such that ai meets Di in a single
spanning arc and ai \Dj D∅ for j ¤ i .

Definition 7 A set of defining disks for a compression body W is a set of disks
fD1; : : : ;Dng properly embedded in W with @Di � @CW for i D 1, : : : ; n such that
the result of cutting W along D1[� � �[Dn is homeomorphic to @�W �I or a 3–ball
in the case that W is a handlebody.

Definition 8 A Heegaard splitting of a 3–manifold M is a pair .V;W / in which V ,
W are compression bodies and such that M DV [W and V \W D@CV D@CW DS .
We call S the splitting surface or Heegaard surface. Two Heegaard splittings are
considered equivalent if their splitting surfaces are isotopic.

The genus of M , denoted by g.M /, is the smallest possible genus of the splitting
surface of a Heegaard splitting for M .

Definition 9 Let .V;W / be a Heegaard splitting. A Heegaard splitting is called
stabilized if there is a pair of properly embedded disks .D;E/ with D � V and
E �W such that #j@D\ @Ej D 1. We call the pair of disks .D;E/ a stabilizing pair
of disks. A Heegaard splitting is unstabilized if it is not stabilized.
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Definition 10 Destabilizing a Heegaard splitting .V;W / is the act of creating a
Heegaard splitting from .V;W / by performing ambient 2–surgery on S along the
cocore of a 1–handle in either V or W .

Note that the result of performing ambient 2–surgery on S along the cocore of a
1–handle in either V or W is not necessarily a Heegaard splitting. In order for this
operation to be a destabilization, the result is required to be a Heegaard splitting. This
definition is equivalent to presupposing a stabilizing pair of disks .D;E/ and cutting
along D . (Here D is the cocore of a 1–handle of V and the existence of E guarantees
that the result of cutting along D is a Heegaard splitting.)

Definition 11 Let M be a compact orientable Seifert fibered space with quotient
space an orientable orbifold Q. Denote the genus of the surface underlying Q by
g and the number of cone points by n. Assume further that M (and hence Q) has
exactly one boundary component. (This simplifying assumption is met in all examples
considered here.)

Let a1; : : : ; a2g; b1; : : : ; bn�1 be a disjoint collection of arcs in Q that cut Q into
disks each containing at most one cone point. In the case of the once punctured torus,
such a collection of arcs is shown in Figure 1. In the case of an orbifold with underlying
surface a disk and with four cone points, such a collection of arcs is shown in Figure 2.
If the underlying surface of Q is a disk, we further assume that each arc bi cuts off a
subdisk from Q containing exactly one cone point.

Abusing notation slightly, denote a collection of arcs in M that projects to a1; : : : ;

a2g; b1; : : : ; bn�1 also by a1; : : : ; a2g; b1; : : : ; bn�1 . Now take V to be a regular
neighborhood of a1; : : : ; a2g; b1; : : : ; bn�1 together with a regular neighborhood of
@Q � S1 . Take W to be the closure of the complement of V in M . It is an easy
exercise to show that .V;W / is a Heegaard splitting of M . Such a Heegaard splitting
is called a vertical Heegaard splitting of M . If Q has no cone points, that is, if
M DQ�S1 , then this splitting is also called the standard Heegaard splitting of M .

Definition 12 A tunnel system for a knot K in S3 is a collection of arcs t1; : : : ; tn
such that the complement of K[ t1[ � � �[ tn is a handlebody. The tunnel number of a
knot K is the least number of arcs required for a tunnel system of K .

Definition 13 Suppose K is in bridge position and that there are n maxima. We may
assume temporarily that all maxima occur in the same level surface L. The maxima
may be connected by a system of n� 1 disjoint arcs in L. It is an easy exercise to
show that this set of arcs is a tunnel system. It is called an upper tunnel system.
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a1

a2

Figure 1: Arcs a1; a2 for a punctured torus

b1

b2

b3

Figure 2: Arcs b1; b2; b3 for an orbifold with four cone points

The same exercise shows that there is a set of defining disks D for the complement
of K [ t1 [ � � � [ tn of the following type: Each component of D has interior below
L, furthermore, below L, its boundary runs once along exactly one component of
K�K\L. This set of disks is called a complete set of lower disks for the upper tunnel
system.

Definition 14 Suppose t1; : : : ; tn is a tunnel system for a knot K in S3 . Denote the
complement of K by M . Take V to be a regular neighborhood of @M [ t1[ � � � [ tn
and take W to the closure of the complement of V . Then .V;W / is a Heegaard
splitting called the Heegaard splitting corresponding to the tunnel system t1; : : : ; tn .
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324 Jennifer Schultens and Richard Weidmann

The definition of amalgamation is a lengthy one. In the last 15 years, this term has been
used in the following context: A pair of 3–manifolds M1;M2 each with a Heegaard
splitting are identified along components of their boundary. This results in a 3–manifold
M . The Heegaard splittings of M1;M2 can be used to construct a canonical Heegaard
splitting of M called the amalgamation of the two Heegaard splittings. One assumes
that in each of M1;M2 the boundary components along which the glueing occurs are
contained in a single compression body. Roughly speaking, then, the collars of the
boundary components lying in this compression body are discarded and the remnants
of the two compression bodies in M1� (collars) identified to the remnants of the two
compression bodies in M2� (collars). This is done in such a way that the 1–handles
that are attached to the collar on such a boundary component in M1 become attached
to the compression body in M2 that does not meet any of the boundary components
along which the glueing takes place and vice versa. For a formal definition see below.

Definition 15 Let M1;M2 be 3–manifolds with R a closed subsurface of @M1 ,
and S a closed subsurface of @M2 . Suppose that R is homeomorphic to S via a
homeomorphism h. Further, let .X1;Y1/; .X2;Y2/ be Heegaard splittings of M1;M2 .
Suppose further that N.R/ � X1;N.S/ � X2 . Then, for some R0 � @M1nR and
S 0�@M2nS , X1DN.R[R0/[.1–handles/ and X2DN.S[S 0/[.1–handles/. Here
N.R/ is homeomorphic to R�I via a homeomorphism f and N.S/ is homeomorphic
to S � I via a homeomorphism g . Let � be the equivalence relation on M1 [M2

generated by

(1) x � y if x;y � �.R/ and p1 �f .x/D p1 �f .y/,

(2) x � y if x;y � �.S/ and p1 �g.x/D p1 �g.y/,

(3) x � y if x � R, y � S and h.x/D y ,

where p1 is projection onto the first coordinate. Perform isotopies so that for D

an attaching disk for a 1–handle in X1;D
0 an attaching disk for a 1–handle in X2 ,

ŒD�\ ŒD0�D∅. Set M D .M1[M2/=�;X D .X1[Y2/=�; and Y D .Y1[X2/=�.
In particular, .N.R/ [N.S/= �/ Š R;S . Then X D Y2 [N.R0/ [ .1–handles/,
where the 1–handles are attached to @CY2 and connect @N.R0/ to @CY2 . Hence X is
a compression body. Analogously, Y is a compression body. So .X;Y / is a Heegaard
splitting of M . The splitting .X;Y / is called the amalgamation of .X1;Y1/ and
.X2;Y2/ along R, S via h.

3 A single destabilization

We first consider a concrete example that illustrates the issues under discussion. Let
Ti be a punctured torus for i D 1; 2. As 3–manifolds M1;M2 we take Ti �S1 for
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i D 1; 2. Note that @Mi is a torus, for i D 1; 2. We take M to be the result of glueing
M1 to M2 in such a way that .@T1/� f1g and .@T2/� fpg have intersection number
one on the resulting torus.

We describe two distinct Hegaard splittings for M :

Example 16 Let S1D I1[I2 be a decomposition of S1 into two intervals that meet
at their endpoints. Let Vi D Ti � I1 and Wi D Ti � I2 , for i D 1; 2. Then Vi and Wi

are genus 2 handlebodies. Denote the annulus in which Vi meets @Mi by Ai and that
in which Wi meets @Mi by Bi . Due to the choice of glueing of @M1 and @M2 that
results in M , A1 meets A2 in a (square) disk. As do B1 and B2 . In other words,
V D V1[V2 is homeomorphic to the result of taking the disjoint union of V1 and V2

and joining the two components by a 1–handle. In particular, it is a genus 4 handlebody.
The same is true for W DW1[W2 . Thus .V;W / is a genus 4 Heegaard splitting of
M .

Example 17 Let .Xi ;Yi/ be the standard Heegaard splitting of Mi (see Definition
11), for i D 1; 2. And let .X;Y / be the amalgamation of .X1;Y1/ and .X2;Y2/

Theorem 18 The genus of Mi is three for i D 1; 2 and the genus of M is four.

Proof Recall that the rank, that is, the smallest number of generators, of the funda-
mental group of a 3–manifold provides a lower bound for the genus of a Heegaard
splitting of that 3–manifold. Here

�1.Mi/D F2˚Z

Abelianizing yields a free abelian group of rank 3. Thus rank �1.Mi/D 3 and hence
the Heegaard splitting constructed in Example 17 has minimal genus.

The Seifert–Van Kampen Theorem yields a presentation of �1.M / as

�1.M1/�Z2 �1.M2/:

Quotienting out the normal closure of the amalgamated subgroup yields Z2 �Z2 as
this kills the fibre and the commutator of the generating pair of the free base group on
both sides. It follows that

rank �1.M /� rank Z2
�Z2
D 4:

Hence the Heegaard splitting in Example 16 has minimal genus.

The fact that the minimal genus Heegaard splitting is less than the genus of a minimal
genus amalgamation in these examples illustrates a phenomenon known as “degenera-
tion of Heegaard genus” under glueing.
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Figure 3: The boundary of Di as it appears on @Mi

Figure 4: The boundaries of D1 and D2 as they intersect

Theorem 19 The Heegaard splitting .X;Y / of M is stabilized.

Proof For i D 1; 2, choose arcs ai
1
; a2

1
in Ti � Mi as in Definition 11. Then

Ti � .N.a
i
1
/[N.ai

2
// is a disk Di . It’s boundary meets @Mi as in Figure 3. After the

amalgamation, a copy of Di survives in Mi �M , for i D 1; 2. How @D1 and @D2

intersect is pictured in Figure 4. Thus .D1;D2/ are a stabilizing pair of disks.

Corollary 20 The Heegaard splitting .X;Y / of M can be destabilized exactly once.

Geometry & Topology Monographs, Volume 12 (2007)



Destabilizing amalgamated Heegaard splittings 327

Exercise 21 Show that destabilizing the Heegaard splitting in Example 17 yields the
Heegaard splitting in Example 16.

4 Arbitrarily many destabilizations

We now construct a sequence of pairs of 3–manifolds that exhibit a more general
phenomenon. More specifically, for each n, we construct a pair .M n

1
;M n

2
/ of 3–

manifolds as follows: Given n, take M n
1

to be a Seifert fibered space with base
orbifold a disk with nC 1 cone points. We denote the natural quotient map from M n

1

to the base orbifold by pn . Take Kn to be a knot that has bridge number n and tunnel
number n�1. The existence of such knots is guaranteed by [10, Theorem 0.1]. Indeed,
in [10], M Lustig and Y Moriah define the class of generalized Montesinos knots.
The referenced theorem provides very technical but nevertheless achievable sufficient
conditions under which such a knot has bridge number n and tunnel number n� 1.
Take M n

2
to be the complement of Kn in S3 .

Glue M n
1

to M n
2

in such a way that a fiber of M n
1

is identified with a meridian of
M n

2
. Denote the 3–manifold obtained in this way by M n . Consider the following

Heegaard splittings of M n :

Example 22 Let b1; : : : ; bn be a collection of arcs that cut the base orbifold of M n
1

into disks each with exactly one cone point. Bicolor these disks red and blue, that is,
color these disks in such a way that disks abutting along an arc are given distinct colors.
The preimage of these arcs in M n

1
is a collection of annuli that cut M n

1
into solid tori.

These tori inherit colors from the bicoloring of the disks to which they project. Take
V n

1
to be the union of the red tori and W n

1
to be the union of the blue tori.

Let P be a bridge sphere for Kn . Then P divides M n
2

into two components that we
label V n

2
and W n

2
. We can clearly assume that the 2n meridional boundary curves

of P \M n
2

match up with the boundary curves of the annuli b1; : : : ; bn Now set
V n D V n

1
[V n

2
and W n DW n

1
[W n

2
.

Lemma 23 The decomposition .V n;W n/ is a Heegaard splitting of M n .

We first prove an auxilliary lemma. It is well known, but we include it here for
completeness.

Lemma 24 Suppose X and Y are handlebodies. Let A be a collection of k essential
annuli in @X and let B be a primitive collection of k annuli in @Y . Glue X to Y by
identifying A and B. Denote the result by E . Then E is a handlebody.
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Proof Since B is a primitive collection of k annuli in @Y , there is a collection Y of
k disjoint essential disks such that each annulus meets one of the disks in exactly one
arc and is disjoint from the other disks. Cutting Y along Y yields a handlebody Y 0

and cuts each component of B into a disk. The remnants of Y [B on @Y 0 are disks.
Thus a set of defining disks for Y 0 can be isotoped to be disjoint from the remnants of
Y [B on @Y 0 . Hence they can be used to augment Y to a set of defining disks Y 0 of
Y .

Choose a set of defining disks X for X . We may assume that each component of
X meets each component of A in spanning arcs. (Note that each component of A is
met by a non zero number of such arcs, because it is essential.) In E we can place a
copy of the appropriate element of Y along each such spanning arc. Thus in E , the
components of X can be extended into Y �E by parallel copies of elements of Y to
an embedded disk. Denote the set of disks resulting from X via these extensions along
with a set of defining disks for Y 0 by E .

Now the result of cutting E along E is a 3–ball since it can also be obtained by glueing
3–balls (the result of cutting Y along E \Y ) to a 3–ball (the result of cutting X along
X ) along disks. It follows that E is a handlebody.

We now prove Lemma 23. Fortunately, the hard work has already been accomplished.

Proof of Lemma 23 To see that .V n;W n/ is a Heegaard splitting, consider the
following: Each component of V n

1
and W n

1
is a solid torus. In particular, it is a

handlebody. Furthermore, both V n
2

and W n
2

are genus n handlebodies each meeting
@M n

2
in a primitive collection of n annuli. More specifically, we can take a complete

set of strict upper disks or a complete set of strict lower disks, respectively, to be the
required collection of disks. See Figure 5.

It thus follows from Lemma 24 that V n and W n are handlebodies. Thus .V n;W n/ is
a Heegaard splitting.

Example 25 Take .X n
1
;Y n

1
/ to be a vertical Heegaard splitting of M n

1
. Take

t1; : : : ; tn�1 to be an upper tunnel system of M n
2

and take .X n
2
;Y n

2
/ to be the Heegaard

splitting corresponding to t1; : : : ; tn�1 . Now take .X n;Y n/ to be the Heegaard splitting
of M n resulting from the amalgamation of .X n

1
;Y n

1
/ and .Y n

1
;Y n

2
/.

Theorem 26 For M n
1
;M n

2
;M n as above,

genus.M n
1 /C genus.M n

2 /� genus.M n/ > n
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Figure 5: The submanifold V 1
2

or W 1
2

of M 1
2

with a collection of disks
meeting primitive annuli as required

and
genus.M n/

genus.M n
1
/C genus.M n

2
/
<

1

2

Proof Note first that �1.M
n
1
/ maps onto the fundamental group of the base orbifold

which is a free product of nC 1 cyclic groups. Thus �1.M
n
1
/ is of rank nC 1 by

Grushko’s theorem. It follows that the genus of M n
1

is nC 1. Furthermore, since
the tunnel number of Kn is n� 1, the genus of M n

2
is n. The Heegaard splitting

constructed in Example 22 bears witness to the fact that the Heegaard genus of M n is
at most n.

Again, the manifold pairs M n
1
;M n

2
exhibit the phenomenon of “degeneration of

Heegaard genus” under glueing.

Note that the genus of a Heegaard splitting of M n resulting from an amalgamation of
minimal genus Heegaard splittings is 2n. In particular, the genus of .X n;Y n/ is 2n.

Theorem 27 There are n disjoint pairs of stabilizing disks for .X n;Y n/. In other
words, the Heegaard splitting .X n;Y n/ of M n can be destabilized successively at
least n times. Specifically, the Heegaard splitting obtained from .X n;Y n/ is the result
of stabilizing .V n;W n/ n times.

Proof Recall that M n
2

is the complement of Kn and that Y n
2

is the complement
of Kn together with an upper tunnel system. See Figure 6. Recall also that after
amalgamation, (a collar of) Y n

2
is a subset of X n .
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Figure 6: K3 with an upper tunnel system

Denote the torus resulting from the identification of @M n
1

and @M n
2

by T . Recall that
after the amalgamation, the torus T minus the attaching disks for the 1–handles with
cores b1; : : : ; bn to one side and the upper tunnel system to the other side lies in the
splitting surface Fn of .X n;Y n/. We isotope n essential subannuli of T into M n

1

and denote the resulting annuli by U1; : : : ;Un . We isotope the other n subannuli of T

into M n
2

and denote the result by A1; : : : ;An . We subdivide T into these subannuli
in such a way that U1; : : : ;Un are vertical in M n

1
and A1; : : : ;An are meridional in

M n
2

. Furthermore, we subdivide T into these subannuli in such a way that Ui meets
the endpoints of exactly two distinct components of b1; : : : ; bn . See Figures 7 and 8.

Consider the portion of Fn lying in M n
2

. See Figure 8. It is a punctured sphere.
Moreover, it is isotopic to a punctured sphere that consists of a level disk with 2n

punctures and an upper hemisphere. See Figure 9. Now note that the portion of S3

above a bridge sphere that coincides with this level punctured disk and above the upper
hemisphere is a 3–ball. (Replacing the upper hemisphere of this sphere with a level
disk is equivalent to isotoping the upper hemisphere of this sphere through infinity.
For details, see [15, Lemma 1].) Thus the portion of Fn lying in M n

2
is isotopic to a

bridge sphere. It is hence as required in M n
2

.

It now suffices to verify that the portion of Fn lying in M n
1

admits the required pairs
of disks. After a small isotopy, b1; : : : ; bn lie in the interior of M n

1
. We then see that

the portion of Fn lying in M n
1

may be reconstructed from n vertical annuli and one
torus by ambient 1–surgery along arcs dual to b1; : : : ; bn . See Figure 10. (Compare to
Figure 7.)
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b1

b2

b3

Figure 7: Vertical annuli in M 3
1

tunnel tube tunnel tubeA1
A2 A3

T

Figure 8: The result of isotoping the annuli A1;A2;A3 into M 3
2

Comparing the decomposition here with .V n;W n/, we see that the splitting surface
Fn is entirely contained in a collar of one of the handlebodies V n , W n , say V n .
Furthermore, it induces a Heegaard splitting .X n

v ;Y
n
v / of V n as follows: Take X n

v

to be X n \ V n D X n and take Y n
v to be the collar of @V n together with Y n \ V n .
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Figure 9: The punctured sphere in M 3
2

that is isotopic to a bridge sphere

Figure 10: A dual schematic for Fn\M n
1

Then Y n
v D .collar of V n/[ .solid torus/[ .1–handles/ and hence X n

v and Y n
v are

both handlebodies.

However, the genus of Fn is 2n and the genus of @V n is n. It thus follows from
Scharlemann and Thompson [14, Lemma 2.7] that .X n

v ;Y
n
v / and thus .X n;Y n/ is
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stabilized. By applying [14, Lemma 2.7] to locate a stabilizing pair of disks and using
one of the disks to destabilize n times in succession, we locate the n pairs of stabilizing
disks required.
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