Volume 13 (2008)

Download this article
For screen
For printing
Recent Volumes
Volume 1, 1998
Volume 2, 1999
Volume 3, 2000
Volume 4, 2002
Volume 5, 2002
Volume 6, 2003
Volume 7, 2004
Volume 8, 2006
Volume 9, 2006
Volume 10, 2007
Volume 11, 2007
Volume 12, 2007
Volume 13, 2008
Volume 14, 2008
Volume 15, 2008
Volume 16, 2009
Volume 17, 2011
Volume 18, 2012
Volume 19, 2015
The Series
About this Series
Editorial Board
Ethics Statement
Submission Guidelines
Purchases
ISSN (electronic): 1464-8997
ISSN (print): 1464-8989
Author Index
 
MSP Books and Monographs
Other MSP Publications

The boundary manifold of a complex line arrangement

Daniel C Cohen and Alexander I Suciu

Geometry & Topology Monographs 13 (2008) 105–146

DOI: 10.2140/gtm.2008.13.105

Bibliography
1 D Arapura, Geometry of cohomology support loci for local systems I, J. Algebraic Geom. 6 (1997) 563–597 MR1487227
2 V I Arnol'd, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969) 227–231 MR0242196
3 R Bieri, W D Neumann, R Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451–477 MR914846
4 A Björner, M Las Vergnas, B Sturmfels, N White, G M Ziegler, Oriented matroids, Encyclopedia of Mathematics and its Applications 46, Cambridge University Press (1993) MR1226888
5 K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) MR672956
6 D C Cohen, A I Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999) 33–53 MR1692519
7 D C Cohen, A I Suciu, Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006) 538–566 MR2263714
8 F R Cohen, The homology of Cn+1–spaces, n>0, from: "The homology of iterated loop spaces", Lecture Notes in Math. 533, Springer (1976) 207–352 MR0436146
9 A Dimca, Singularities and topology of hypersurfaces, Universitext, Springer (1992) MR1194180
10 A Dimca, S Papadima, A Suciu, Alexander polynomials: Essential variables and multiplicities, Int. Math. Res. Not. (to appear) arXiv:0706.2499
11 A Dimca, S Papadima, A Suciu, Formality, Alexander invariants, and a question of Serre, arXiv:math.AT/0512480
12 N M Dunfield, Alexander and Thurston norms of fibered 3–manifolds, Pacific J. Math. 200 (2001) 43–58 MR1863406
13 A H Durfee, Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983) 517–530 MR688959
14 D Eisenbud, W Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies 110, Princeton University Press (1985) MR817982
15 M Falk, Homotopy types of line arrangements, Invent. Math. 111 (1993) 139–150 MR1193601
16 M Falk, Arrangements and cohomology, Ann. Comb. 1 (1997) 135–157 MR1629681
17 R Fenn, D Sjerve, Massey products and lower central series of free groups, Canad. J. Math. 39 (1987) 322–337 MR899840
18 S Friedl, T Kim, Twisted Alexander norms give lower bounds on the Thurston norm, Trans. Amer. Math. Soc. (to appear) arXiv:math.GT/0505682
19 D Grayson, M Stillman, Macaulay 2: a software system for research in algebraic geometry
20 E Hironaka, Boundary manifolds of line arrangements, Math. Ann. 319 (2001) 17–32 MR1812817
21 F Hirzebruch, The topology of normal singularities of an algebraic surface (after D. Mumford), from: "Séminaire Bourbaki", Soc. Math. France (1995) 129–137 MR1611536
22 T Jiang, S S T Yau, Topological invariance of intersection lattices of arrangements in C, Bull. Amer. Math. Soc. (N.S.) 29 (1993) 88–93 MR1197426
23 T Jiang, S S T Yau, Intersection lattices and topological structures of complements of arrangements in C, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998) 357–381 MR1631597
24 P Kirk, C Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson–Gordon invariants, Topology 38 (1999) 635–661 MR1670420
25 T Kitano, M Suzuki, M Wada, Twisted Alexander polynomials and surjectivity of a group homomorphism, Algebr. Geom. Topol. 5 (2005) 1315–1324 MR2171811
26 T Kohno, On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math. J. 92 (1983) 21–37 MR726138
27 A Libgober, First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118 (2002) 159–168 MR1877722
28 A Libgober, S Yuzvinsky, Cohomology of the Orlik–Solomon algebras and local systems, Compositio Math. 121 (2000) 337–361 MR1761630
29 D Matei, Massey products of complex hypersurface complements, from: "Singularity theory and its applications", Adv. Stud. Pure Math. 43, Math. Soc. Japan (2006) 205–219 MR2325139
30 D Matei, A I Suciu, Cohomology rings and nilpotent quotients of real and complex arrangements, from: "Arrangements – Tokyo 1998", Adv. Stud. Pure Math. 27, Kinokuniya (2000) 185–215 MR1796900
31 C T McMullen, The Alexander polynomial of a 3–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002) 153–171 MR1914929
32 G Meng, C H Taubes, \underlineSW= Milnor torsion, Math. Res. Lett. 3 (1996) 661–674 MR1418579
33 J W Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978) 137–204 MR516917
34 P Orlik, H Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer (1992) MR1217488
35 S Papadima, A I Suciu, Chen Lie algebras, Int. Math. Res. Not. (2004) 1057–1086 MR2037049
36 D Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969) 205–295 MR0258031
37 D Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975) 275–277 MR0383415
38 D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977) MR0646078
39 V Turaev, Torsions of 3–dimensional manifolds, Progress in Mathematics 208, Birkhäuser Verlag (2002) MR1958479
40 S Vidussi, Norms on the cohomology of a 3–manifold and SW theory, Pacific J. Math. 208 (2003) 169–186 MR1979378
41 F Waldhausen, Eine Klasse von 3–dimensionalen Mannigfaltigkeiten I, Invent. Math. 3 (1967) 308–333 MR0235576
42 F Waldhausen, Eine Klasse von 3–dimensionalen Mannigfaltigkeiten II, Invent. Math. 4 (1967) 87–117 MR0235576
43 E Westlund, The boundary manifold of an arrangement, PhD thesis, University of Wisconsin, Madison (1967)
44 T Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975) MR0357135