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A family of embedding spaces

RYAN BUDNEY

Let Emb.Sj ;Sn/ denote the space of C1–smooth embeddings of the j –sphere
in the n–sphere. This paper considers homotopy-theoretic properties of the fam-
ily of spaces Emb.Sj ;Sn/ for n � j > 0 . There is a homotopy-equivalence
Emb.Sj ;Sn/' SOnC1�SOn�j

Kn;j where Kn;j is the space of embeddings of Rj

in Rn which are standard outside of a ball. The main results of this paper are that Kn;j

is .2n�3j�4/–connected, the computation of �2n�3j�3Kn;j together with a geo-
metric interpretation of the generators. A graphing construction �Kn�1;j�1!Kn;j

is shown to induce an epimorphism on homotopy groups up to dimension 2n�2j�5 .
This gives a new proof of Haefliger’s theorem that �0Emb.Sj ;Sn/ is a group for
n�j > 2 . The proof given is analogous to the proof that the braid group has inverses.
Relationship between the graphing construction and actions of operads of cubes on
embedding spaces are developed. The paper ends with a brief survey of what is known
about the spaces Kn;j , focusing on issues related to iterated loop-space structures.

57R40; 57R50, 57M25, 55Q45

1 Introduction

Haefliger proved that the isotopy classes of smooth embeddings of Sj in Sn form a
group provided n� j > 2, with the connect-sum as multiplication. This paper starts
with a new proof of Haefliger’s result, showing not only that �0Emb.Sj ;Sn/ is a
group, but the reason it is a group is that every element is spun (see Proposition 3.2
for the definition of the graphing/spinning map, gr1 ). The inverse of a spun knot is its
mirror-reflection, as in braid groups. The key strategy revolves around a pseudo-isotopy
fibre-sequence KnC1;jC1!Pn;j!Kn;j . The fact that the pseudo-isotopy embedding
space Pn;j is connected implies the result. In his dissertation, Tom Goodwillie [23] gave
a very detailed study of (general) pseudo-isotopy embedding spaces. His results include
that Pn;j is at least .2n�2j�5/–connected. This allows for the computation of the
first non-trivial homotopy groups of Kn;j and Emb.Sj ;Sn/ provided 2n�3j �3� 0.
The 2–fold spinning construction �2K4;1! �0K6;3D �0Emb.S3;S6/' Z is shown
to be an isomorphism, answering a question posed by the author in [9]. This also allows
for a new construction of explicit generators of �2n�3j�3Kn;j for all n; j such that
2n� 3j � 3� 0.
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Definition 1.1

� Dn WDfx 2Rn W jxj�1g is the unit n–disc, with Sn�1D@Dn the .n�1/–sphere.

� ID Œ�1; 1�DD1 is the standard interval.

� Given a topological space (resp. smooth manifold) X with base-point, denote the
space of continuous (resp. smooth) functions f W R!X such that f .Rn I/D�
by �X .

� Emb.Dj ;Dn/ denotes the space of embeddings f W Dj !Dn which are ‘neat’
in the sense that f .Dj /\Sn�1Df .Sj�1/ and f intersects Sn�1 transversely.

� The space of smooth embeddings of a j –sphere in an n–sphere is denoted
Emb.Sj ;Sn/.

� Kn;j denotes the space of ‘long’ embeddings of Rj in Rn . This is the space of
all smooth embeddings f W Rj ! Rn such that

f .t1; t2; : : : ; tj /D .t1; t2; : : : ; tj ; 0; : : : ; 0/

provided .t1; : : : ; tj / 62 Ij and f .Rj / \ @In D @Ij � f0gn�j . If f 2 Kn;j ,
let Kn;j .f / denote the path-component of Kn;j containing f . We will show
Kn;j has the homotopy type of the subspace of Emb.Dj ;Dn/ such that every
embedding restricts to a fixed linear embedding on the boundary.

� Let Pn;j denote the space of embeddings f W Rj ! Rn such that:

– f .t1; t2; : : : ; tj /D .t1; t2; : : : ; tj ; 0; : : : ; 0/ for .t1; : : : ; tj / 62 Œ�1;1/�Ij�1

– there is a g 2 Kn�1;j�1 such that for all .t1; : : : ; tj / 2 Œ1;1/ � Rj�1 ,
f .t1; t2; : : : ; tj /D .t1;g.t2; : : : ; tj //.

– f .Rj /\ @In D f .@Ij /� f0gn�j .

In the literature, Pn;j is sometimes given the notation PE.Dj�1;Dn�1/,
C.Dj�1;Dn�1/ or cemb.Dj�1;Dn�1/, and is either called a pseudoisotopy
embedding space, or concordance embedding space respectively. Here it will
be called the pseudoisotopy embedding space. We will show that Pn;j has the
homotopy-type of the subspace of Emb.Dj ;Dn/ which restricts to a standard
linear embedding on a fixed hemisphere in the boundary of Dj .

� EC.j ;M / is defined to be the space of embeddings f W Rj �M ! Rj �M

such that supp.f / � Ij �M , where, supp.f / D fx 2 Rj �M W f .x/ ¤ xg.
‘EC’ stands for ‘cubically-supported embeddings’. We are mostly interested in
the case where M is a disc M DDk . These embeddings are not required to
send boundary to boundary. See Figure 1.
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f 2 EC.1;D2/

1�1

Figure 1

� PEC.j ;M / is the space of embeddings f W Rj �M ! Rj �M such that
supp.f / � Œ�1;1/ � Ij�1 �M and there exists some g 2 EC.j � 1;M /

such that f .t1; t2; : : : ; tj ;m/D .t1;g.t2; : : : ; tj ;m// for all .t1; t2; : : : ; tj ;m/ 2
Œ1;1/�Rj�1�M . The letters ‘PEC’ stand for ‘cubically-supported embedding
pseudo-isotopy space.’ PEC.j ;Dk/ is the framed analogue of PjCk;j .

� A diagram of two maps A! C ! D is a homotopy fibre sequence if there
exists a commutative diagram

A //

��

C //

��

D

��
F // E // B

such that F ! E ! B is a fibration and the vertical maps are homotopy-
equivalences.

� Diff.Dn/ denotes the space of smooth diffeomorphisms of Dn which restrict to
the identity on the boundary. Diff.Sn/ is the group of diffeomorphisms of Sn .

All embedding spaces are endowed with the weak C1–topology (see Hirsch [34]),
sometimes also called the Whitney topology. Many classical results on the homotopy
properties of embedding spaces that will be repeatedly used in this paper appear in
Cerf’s paper [16], such as the fibration properties of restriction maps, and the homotopy-
classification of spaces of tubular neighbourhoods.

In the definition of Kn;j replacing the cubes In and Ij with discs Dn and Dj gives a
homotopy-equivalent space. Similarly for the definition of Diff.Dn/ and EC.j ;M /.
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The proof is a typical argument when one deals with these spaces, see for example [9,
Corollary 6].

Section 2 briefly covers the most elementary relationships between the spaces de-
fined above: Kn;j , Emb.Sj ;Sn/, Emb.Sj ;Rn/, Emb.Dj ;Dn/, Pn;j , EC.j ;Dn�j /

and PEC.j ;Dn�j /. This section also includes a generalisation of an observation of
Goodwillie and Sinha [69] concerning the Smale–Hirsch map Kn;j !�j Vn;j . The
Goodwillie–Sinha result is that this map is null-homotopic for j D1. The generalisation
that appears here is that the map factors as a composite Kn;j!�j Vn�1;j�1!�j Vn;j

where the map �j Vn�1;j�1!�j Vn;j is the j –fold loop of the fibre inclusion in the
Stiefel fibration Vn�1;j�1! Vn;j ! Sn�1 .

Section 3 is the heart of the paper. A proof of Haefliger’s theorem, that for n� j > 2

�0Emb.Sj ;Sn/ is a group is given. The proof permutes some of the main concepts
of Haefliger’s original argument. It has two essential steps: 1) The construction of a
homotopy-equivalence Emb.Sj ;Sn/' SOnC1�SOn�j

Kn;j together with fibrations
Pn;j ! Emb.Dj ;Dn/! Vn;j and Kn;j !Pn;j !Kn�1;j�1 reduces the problem to
2) proving that Emb.Dj ;Dn/ is connected. Thus, the argument boils down to showing
the monoid �0Kn;j is a group because it is the image of the group �1Kn�1;j�1 .
Further, it is shown that the ‘boundary map’ gr1W �Kn�1;j�1!Kn;j has a geometric
interpretation as a variant of Litherland ‘deform spinning.’ In this case it is given by
the formula

.gr1f /.t0; t1; : : : ; tj�1/D
�
t0; f .t0/

�
t1; : : : ; tj�1

��
:

In Proposition 3.9, Goodwillie’s dissertation is used to prove that gr1W �Kn�1;j�1!

Kn;j induces an epimorphism of the on homotopy groups �i for i � 2n� 2j � 5.
By comparing with the work of Turchin and Sinha this allows the computation of
�2n�3j�3Kn;j . An enumerative-geometry argument is used to construct a cohomology
class �2 2H 2n�6.Kn;1IZ/, which is used to find an explicit generator of �2n�6Kn;1'

Z. The generator can be thought of as the resolutions of a long immersion of R in
Rn having two regular double points, corresponding to the

N
chord diagram. The

generators of the groups �0Kn;j for 2n�3j �3D 0 are constructed as iterated graphs
of the generator of �j�1Kn�jC1;1 .

Section 4 investigates the extent to which the fibration Kn;j ! Pn;j ! Kn�1;j�1 ,
and its framed analogue are equivariant with respect to natural actions of operads of
cubes. PEC.j ;M / is shown to have an action of the operad of j –cubes, the map
PEC.j ;M /! EC.j � 1;M / is shown to be equivariant with respect to the j –cubes
action defined by the author in [9]. The graphing construction �EC.j � 1;M /!

EC.j ;M / is shown to be equivariant with respect to the .j C 1/–cubes action.
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Section 5 covers, in a rather terse survey manner, many of the basic properties the
spaces Kn;j which have not already been mentioned. A curiosity is put forward: two
seemingly distinct null homotopies of the inclusion Kn;1 ! KnC1;1 are described,
giving a mysterious map †Kn;1!KnC1;1 . This leads to a question about the existence
of a ‘Freudenthal suspension’ †2Kn;1! KnC1;1 . Basic properties of other natural
maps such as Kn;j !�Kn;j�1 and the Smale–Hirsch map SH W Kn;j !�j Vn;j are
described.

Part of this manuscript was produced while visiting the University of Rome ‘La
Sapienza’, Louvain-la-neuve, the American Institute of Mathematics, the University
of Tokyo and IHÉS. I would especially like to thank the Max Planck Institute for
Mathematics, in Bonn, for giving me the freedom to pursue this line of enquiry. I would
like to thank my hosts for their hospitality: Riccardo Longoni, Paolo Salvatore, Corrado
De Concini, Magnus Jacobsson, Pascal Lambrechts, Victor Turchin, and Toshitake
Kohno. Victor Turchin’s comments on the first draft of this manuscript were particularly
helpful. I would like to thank several mathematicians whose comments, knowingly or
not, have helped me in putting this paper together: Greg Arone, John Rognes, Tom
Goodwillie, Larry Siebenmann, Dev Sinha, Arkadiy Skopenkov, Lee Rudolph, Matthias
Kreck, Paolo Salvatore, Jianguo Cao and Danny Ruberman.

2 Basic relations between embedding spaces

This section describes some basic relationships between the spaces: Kn;j , EC.j ;M /,
Emb.Sj ;Sn/, Emb.Sj ;Rn/, Emb.Dj ;Dn/, Pn;j and PEC.j ;M /. The essential
spirit of the results is that most homotopy questions about these spaces reduce to
studying Kn;j and Pn;j .

Given a neat embedding f W Dj!Dn , the restriction to the boundary is an embedding
fj@Dj W Sj�1! Sn�1 . On a global level, restriction defines a function

Emb.Dj ;Dn/! Emb.Sj�1;Sn�1/

which is a fibration (see Cerf [16] and Palais [57]). In this paper ‘fibration’ means
Serre fibration. The above map is known to be more than a fibration, it is a locally
trivial fibre-bundle [57]. Fibrations need not be onto. In this example, the fibration
is onto the isotopy classes of ‘slice’ knots (and not all knots are slice, see Kawauchi
[39] for examples). Thus, the homotopy-type of the fibre can change as one changes
base-space components, and fibres are allowed to be empty.

Consider Emb.Sj�1;Sn�1/ to be a based space, with base-point the standard inclusion
Sj�1 � Sn�1 . The fibre of Emb.Dj ;Dn/! Emb.Sj�1;Sn�1/ over the base-point
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has the homotopy-type of Kn;j . There is a similar fibration Kn;j !Pn;j !Kn�1;j�1

defined by restriction to the ‘free face.’ The next theorem shows that this fibration
induces the fibration Emb.Dj ;Dn/! Emb.Sj�1;Sn�1/.

Theorem 2.1 For n� j > 0 there are homotopy-equivalences

Emb.Dj ;Dn/' SOn �SOn�j
Pn;j

Emb.Sj�1;Sn�1/' SOn �SOn�j
Kn�1;j�1:

Moreover, the homotopy fibre sequence Kn;j ! Emb.Dj ;Dn/! Emb.Sj�1;Sn�1/

fits into a commutative diagram of 6 homotopy fibre sequences:

Kn;j //

��

Pn;j //

��

Kn�1;j�1

��
Kn;j //

��

Emb.Dj ;Dn/ //

��

Emb.Sj�1;Sn�1/

��
* // Vn;j

// Vn;j

Proof In Budney and Cohen [10] a homotopy-equivalence

SOn �SOn�j
Kn�1;j�1! Emb.Sj�1;Sn�1/

was constructed. The basic idea is to consider Sn�1 to be the one-point compactification
of Rn�1 , this gives an inclusion Kn�1;j�1! Emb.Sj�1;Sn�1/. The action of SOn

on Sn�1 gives an extension

SOn �SOn�j
Kn�1;j�1! Emb.Sj�1;Sn�1/:

SOn �SOn�j
Kn�1;j�1 fibres over Vn;j D SOn=SOn�j by projection onto the first

coordinate. Emb.Sj�1;Sn�1/ fibres over a space homotopy-equivalent to Vn;j by
restriction to a fixed hemi-sphere B � Sj�1 , Emb.Sj�1;Sn�1/! Emb.B;Sn�1/'

Vn;j [16]. This makes SOn�SOn�j
Kn�1;j�1!Emb.Sj�1;Sn�1/ a map of fibrations.

The same idea can be applied to Emb.Dj ;Dn/. Let B�@Dj DSj�1 be as above. Let
Emb.Dj rel B;Dn/ denote the subspace of Emb.Dj ;Dn/ which is fixed point-wise
on B . There is a fibre bundle Emb.Dj rel B;Dn/!Emb.Dj ;Dn/!Emb.B;Sn�1/

given by restriction to B . The base-space has the homotopy-type of Vn;j'SOn=SOn�j

and as in the previous paragraph, there is a map of fibrations

SOn �SOn�j
Emb.Dj rel B;Dn/! Emb.Dj ;Dn/:
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That Emb.Dj rel B;Dn/ has the same homotopy-type as Pn;j is a fairly standard
argument, see for example the second half of [9, Corollary 6].

When nD j , the above argument proves that Emb.Dn;Dn/ has the homotopy-type
of On �Pn;n . Similarly, Emb.Sn�1;Sn�1/D Diff.Sn�1/ has the homotopy-type of
On �Kn�1;n�1 . This case appears in Hatcher [30].

There is a similar relationship between Emb.Sj ;Rn/ and Kn;j . For this proposition,
identify Rn (the one-point compactification of Rn ) with Sn via stereographic projection.
This makes SOn the stabiliser of 1 under the SOnC1 action on Sn . Denote the
projection map SOnC1! Sn by � . Given f 2 Kn;j let xf 2 Emb.Sj ;Sn/ be the
one-point compactification of f . Notice that the space

f.A; f / WA 2 SOnC1; �.A/ 2 Sn
n img. xf /; f 2Kn;j g

fibres over C ÌKn;j with fibre SOn , for

C ÌKn;j D f.p; f / W p 2 Sn
n img. xf /; f 2Kn;j g:

Denote f.A; f / W A 2 SOnC1; �.A/ 2 Sn n img. xf /; f 2 Kn;j g by .C ÌKn;j /
�.�/.

Consider .C ÌKn;j /
�.�/ to be the pull-back of � over Rn . Since � is trivial over

Rn , the pull-back must be as well.

SOn � .C ÌKn;j /' .C ÌKn;j /
�.�/:

Notice that SOn�j acts on .C ÌKn;j /
�.�/ from the left, by considering SOn�j �

SOnC1 to be the group that leaves Sj D Rj in Sn fixed point-wise.

Proposition 2.2 Provided n� j > 0 there is a homotopy-equivalence

SOn�jn.C ÌKn;j /
�.�/! Emb.Sj ;Rn/

induced by the map .A; f / 7�!A�1 ı xf . Moreover, there is a homotopy-equivalence

SOn�jn.C ÌKn;j /
�.�/! SOn �SOn�j

.C ÌKn;j /

where the action of SOn�j on SOn is by left multiplication.

Proof Observe that Emb.Sj ;Rn/ fibres over Vn;j . The fibre can be identified with
ff 2Kn;j W 0 62 f .R

j /g. C ÌKn;j fibres over a ball with fibre ff 2Kn;j W 0 62 f .R
j /g,

thus there is a homotopy-fibre sequence

C ÌKn;j ! Emb.Sj ;Rn/! Vn;j
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.C ÌKn;j /
�.�/ similarly fibres over Vn;j giving a commutative ladder of homotopy

fibre sequences

C ÌKn;j
// Emb.Sj ;Rn/ // Vn;j

C ÌKn;j
//

OO

.C ÌKn;j /
�.�/ //

OO

Vn;j

OO

Let .A; f / 2 .C Ì Kn;j /
�.�/, then A is a matrix whose first column vector is

�.A/, the remaining vectors are in the tangent space to Rn at �.A/. Let ŒA��.A/
denote the representation of A with respect to the standard framing of Rn at �.A/.
Consider the map .C ÌKn;j /

�.�/! SOn � .C ÌKn;j / given by sending the pair
.A; f / to

�
ŒA��.A/; .�.A/; f /

�
. This map is equivariant with respect to the ac-

tion of SOn�j since if B 2 SOn�j then B:.A; f / D .BA;Bf /, which is sent to�
ŒBA��.BA/; .�.BA/;Bf /

�
D
�
ŒBA�B�.A/;B:.A; f /

�
, but ŒBA�B�.A/ D BŒA��.A/

by a change of variables argument, giving the result.

A basic fact and conventions about homotopy-fibres is given for future reference.

Lemma 2.3 Let pW E! B be a fibration. Let e 2E and b 2 B be the base-points
of E and B respectively, with p.e/ D b . Let i W F ! E be the fibre inclusion. Let
R.F /D f.a; h/ W a 2 F; hW Œ0; 1�! E; h.0/D i.a/g then the map R.i/W R.F /! E

given by evaluation h.1/ is a fibration, and �F W R.F /! F given by projection onto
F is a homotopy-equivalence. The fibre of the map R.i/W R.F /! E is the space
HF.i/D fh W Œ0; 1�!E; h.0/ 2 F; h.1/D eg, and the map p�W HF.i/!�B given
by post-composition with p is a weak homotopy-equivalence, giving a fibration:

�E!HF.i/! F

and a homotopy-commutative diagram

�B F
i // E

p // B

�E // HF.i/

p�

OO

//

::uuuuuuuuuu
R.F /

' �F

OO

R.i/

<<yyyyyyyy

The map HF.i/!F is sometimes called the ‘connecting map’ or the ‘boundary map’
as it induces the same map as the connecting map in the homotopy long exact sequence
of the fibration p .

The next two results are a modest generalisation of observations due to Goodwillie
(unpublished), Sinha [69], Turchin [77] and Salvatore [65], concerning the monodromy
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of the fibration EC.j ;Dn�j /! Kn;j and the Smale–Hirsch map Kn;j ! �j Vn;j .
Note, �j Vn;j has the homotopy-type of the space of long immersions Rj ! Rn

provided n� j > 0, by the Smale–Hirsch theorem.

Theorem 2.4 The homotopy fibre sequence

�j SOn�j ! EC.j ;Dn�j /!Kn;j

is trivial for j D 1, and also for n� j � 2. There is a pull-back diagram of homotopy
fibre sequences:

�j SOn�j

��

// �j SOn�j

��

EC.j ;Dn�j /

��

// P�j�1SOn�j

��
Kn;j

cl // �j�1SOn�j

Where �j SOn�j ! P�j�1SOn�j !�j�1SOn�j is the path-loop fibration of the
space �j�1SOn�j . The classifying map cl W Kn;j !�j�1SOn�j fits into a commu-
tative diagram

�j Vn;n�j

��
�j SOj

// �j Vn;j
// �j Gn;j ��

j Gn;n�j

mono
��

Kn;j

SH

OO

cl // �j�1SOn�j

where ‘SH ’ is the Smale–Hirsch map, Vn;j is the Stiefel manifold of j linearly
independent vectors in Rn , SOj ! Vn;j ! Gn;j is the canonical fibration for the
Grassmanian of oriented j –dimensional subspaces of Rn . ‘mono’ is the j –fold looping
of the classifying map Gn;n�j!BSOn�j for the bundle SOn�j!Vn;n�j!Gn;n�j .
Identify Gn;j with Gn;n�j via the oriented orthogonal complement.

Framed and unframed pseudoisotopy embedding spaces are more directly related, as
the forgetful map PEC.j ;Dn�j /! Pn;j is a homotopy-equivalence.

Proof The observation of the existence of the above pull-back diagram first appears in
Turchin’s work [77] for j D 1. The idea is to divide Ij into I�Ij�1 . Given a knot f 2
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Kn;j , let �f be its normal bundle, and consider parallel transport (using the connection
inherited as a submanifold of Euclidean space Rn ) from �fjf�1g�Ij�1 to �ff1g�Ij�1 ,
this is an element of �j�1SOn�j . The map EC.j ;Dn�j /!P�j�1SOn�j is defined
similarly, only along the paths I� fxg � I� Ij�1 f 2 EC.j ;Dn�j / one has a pre-
defined framing of �fjRj�f0gn�j which can be compared to the parallel transport
framing, giving the bundle map.

Observe that the way Kn;j!�j�1SOn�j is defined, it factors as a composite Kn;j!

�j Gn;j � �
j Gn;n�j ! �j�1SOn�j . Kn;j ! �j Gn;j is the ‘tangent space map.’

Gn;j is the Grassmanian of j –dimensional subspaces of Rn . monoW �j Gn;n�j !

�j�1SOn�j is the j –fold looping of the classifying map of the bundle SOn�j !

Vn;n�j !Gn;n�j .

For the fibration PEC.j ;Dn�j /! Pn;j observe the fibre has the homotopy-type of
the path-space P�j�1SOn�j .

The homotopy-class of the Smale–Hirsch map SH W Kn;j ! �j Vn;j is not so well
understood. There are results concerning the induced map SH W �0Kn;j ! �j Vn;j

in two cases: Kervaire proved it to be trivial provided 2n� 3j � 2 [41]. In the co-
dimension 2 case n� j D 2, Hughes and Melvin showed that SH W �0Kn;j ! �j Vn;j

has non-trivial image if and only if j � 3 mod 4 [36], moreover they gave a rather
appealing description of the immersions that can be realised as embeddings. Eckholm
and Szücs [19; 20] have recently given more geometric interpretations of the obstruction
to an immersion having a representative that is an embedding.

Theorem 2.5 The Smale–Hirsch map SH W Kn;j ! �j Vn;j fits into a homotopy-
commutative diagram

Kn;j

%%KKKKKKKKKK
SH // �j Vn;j

�j Vn�1;j�1

�j .i/

88qqqqqqqqqq

where i W Vn�1;j�1! Vn;j is the fibre-inclusion of the fibration Vn�1;j�1! Vn;j !

Sn�1 .

Proof Consider the commutative diagram of spaces and maps:

Kn;j //

SH
��

Pn;j //

SH
��

Kn�1;j�1

SH
��

�j Vn;j
// �j�1HF.i/ // �j�1Vn�1;j�1
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HF.i/ is the homotopy-fibre of i . By Lemma 2.3, there is a homotopy-equivalence
HF.i/'�Sn�1 .

The Smale–Hirsch map SH W Pn;j!�j Sn�1 is given by differentiation in the vertical
‘pseudo-isotopy’ direction. The map hW Œ0; 3��Rj �Pn;j ! Sn�1 given by

h.t;x1; : : : ;xj ; f /D

8̂<̂
:

n
� @f
@x1
.x1; : : : ;xj /

�
t D 0

n.f .x1C t;x2; : : : ;xj /�f .x1; : : : ;xj // 0< t � 2

pt�2.n.f .x1C 2;x2; : : : ;xj /�f .x1; : : : ;xj /// 2� t � 3

is a null-homotopy of the Smale–Hirsch map, provided pW Œ0; 1��Sn�1nf�1g!Sn�1n

f�1g is a deformation-retraction of Sn�1nf�1g to f1g�Sn�1 , and nW Rnnf0g!Sn�1

is the function n.v/D v
jvj

.

Theorems 2.4 and 2.5 combine to give a commutative diagram involving the maps
cl W Kn;j !�j�1SOn�j and SH W Kn;j !�j Vn;j .

�j Vn�1;n�j

��
�j Vn;j �j Vn�1;j�1

oo �j? // �j Gn�1;j�1 ��
j Gn�1;n�j

��
Kn;j

SH

ffMMMMMMMMMMM

OO

cl // �j�1SOn�j

3 Spinning and graphing in high co-dimensions

This section is devoted to the concepts surrounding a new proof that �0Kn;j is a
group, provided n� j > 2. The proof is quite simple: show that the total-space of
the fibration Kn;j ! Pn;j !Kn�1;j�1 is connected. This forces the boundary map
�1Kn�1;j�1!�0Kn;j from the homotopy long exact sequence to be an epi-morphism.
Showing that Pn;j is connected reduces to showing that every neat embedding of Dj

in Dn is isotopic (through neat embeddings) to a linear inclusion. The remainder of the
section elaborates on ingredients used in the proof and its consequences. The boundary
map �Kn�1;j�1 ! Kn;j is shown to be homotopic an explicitly-defined graphing
map gr1W �Kn�1;j�1!Kn;j in Proposition 3.2. Propositions 3.4 and 3.6 demonstrate
that gr1 is a variant of Litherland’s deform-spinning construction [47]. Goodwillie’s
dissertation is invoked, showing that gr1 is a surprisingly highly-connected map. This
allows the computation of the first non-trivial homotopy groups of Kn;j provided
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2n� 3j � 3 � 0. Using some computations of Victor Turchin and a quadrisecants
argument, an explicit generator is constructed for �2n�6Kn;1 . Via spinning, this gives
new explicit constructions of Haefliger’s spheres �0Kn;j for 2n� 3j � 3D 0.

The next proposition is an old result which is known to hold in far greater generality
(see Hudson [35] and Goodwillie [23]). Goodwillie’s generalisation will later be used
in this paper. So strictly speaking, this proposition is redundant. The proof is included
as several later developments in this section build on it, making it the natural starting
point.

Proposition 3.1 Provided n � j > 2, the map �1Kn�1;j�1 ! �0Kn;j is an epi-
morphism. The spaces Emb.Dj ;Dn/ and Pn;j are connected.

Proof Once Emb.Dj ;Dn/ is shown to be connected, the remaining results follow
from the homotopy long exact sequences of the fibrations Kn;j ! Pn;j !Kn�1;j�1

and Pn;j ! Emb.Dj ;Dn/! Vn;j from Theorem 2.1.

� Consider n D 4. The path-connectivity of Emb.D1;D4/ is well-known and
appears in many places. Let f 2 Emb.D1;D4/, and isotope it to be standard
on the boundary: f .�1/ D .�1; 0; 0; 0/ and f .1/ D .1; 0; 0; 0/. Let v 2 S3 .
By Sard’s theorem, the projection of f into the orthogonal complement of
v is generically an embedding. Choose one such value for v such that c D

hv; .1; 0; 0; 0/i> 0. Then the formula f .t/� ahf .t/; vivC act � v describes a
path (parametrised by a 2 Œ0; 1�) in Emb.D1;D4/, starting at f and ending at
a function which is monotone increasing in the direction of v , thus isotopic to
t 7�! .t; 0; 0; 0/ by the straight-line homotopy.

� Consider n D 5. As in the previous case, isotope f 2 Emb.D2;D5/ to be
standard on the boundary, and let faW D

2!D5 for a2 Œ0; 1� be the straight-line
homotopy from f to the standard inclusion. By the weak Whitney immersion
theorem, one can assume fa is generically an embedding, with only finitely many
times a for which it has an isolated, regular double point. Wu [82] developed a
1–parameter ‘Whitney trick’ for this situation, to remove the double points from
the family.

� Consider the case n � 6 and let eW Dj ! Dn be a proper embedding. Let
B � Dj be the open ball of radius 1

2
, centred about the origin. Consider

Dj DDj � f0gn�j �Dn . By a local linearisation, isotope e so that it agrees
with inclusion on B , e.x/ D x for all x 2 B . Let U be the open ball of
radius 1

2
centred about 0 in Dn , and isotope e so that e.Dj /\U D e.B/. Let

W D Dn nU , W1 D @U and W2 D @D
n . @W D W1 tW2 . Wi ! W is a

homotopy-equivalence for i 2 f1; 2g, since W is a product. Let V D e.Dj nB/
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with V1 DW1 \ V , V2 DW2 \ V , and let f W V1 �
�

1
2
; 1
�
!W be the map

defined by f .v; t/ D e.2tv/. f maps V1 �
�

1
2
; 1
�

diffeomorphically to V .
Smale [72, Corollary 3.2] states that f extends to a diffeomorphism of pairs
f W .W1;V1/�

�
1
2
; 1
�
! .W;V /. Therefore it further extends to a diffeomorphism

of pairs f W .Dn;Dj /! .Dn; img.e//. So e D f ı h where h is the standard
inclusion hW Dj !Dn . Given an orientation-preserving diffeomorphism f of
Dn it acts on Emb.Dj ;Dn/, but the action is trivial on �0Emb.Dj ;Dn/ – the
idea is that one can linearise f on the complement of a neighbourhood of a
point in the boundary of Dn (a similar argument is given in the proof of Lemma
3.5).

The earliest claim in the literature that Emb.Dj ;Dn/ is connected for n�j > 2 seems
to be made by Haefliger. It appears in his AMS math review of Zeeman’s paper [83].
Perhaps the above proof is similar to what Haefliger had in mind, as he states the result
follows from Smale’s paper [72]. It would be interesting to know if there are any more
elementary proofs.

The fibre-sequence Kn;j ! Pn;j !Kn�1;j�1 ‘backs-up’ to a fibre-sequence

�Kn�1;j�1!Kn;j ! Pn;j

by Lemma 2.3. The remainder of this section is devoted to the properties of the
‘connecting map’ �Kn�1;j�1!Kn;j and its relatives.

Proposition 3.2 The connecting-map �Kn�1;j�1!Kn;j is homotopic to

�Kn�1;j�1
gr1 //

–

Kn;j

–

f
� //

�
.t0; t1; : : : ; tj�1/ 7�!

�
t0; f .t0/.t1; : : : ; tj�1/

��
and the connecting map �EC.j � 1;M /! EC.j ;M / is homotopic to

�EC.j � 1;M /
gr1 //

–

EC.j ;M /

–

f
� //

�
.t0; t1; : : : ; tj�1;m/ 7�!

�
t0; f .t0/.t1; : : : ; tj�1;m/

��
:

Proof The two cases are essentially the same, so restrict attention to the fibration

EC.j ;M /
i // PEC.j ;M /

p // EC.j � 1;M / :

By Lemma 2.3

HF.i/D ff W Œ0; 1�! PEC.j ;M /; f .0/D IdRj�M ; f .1/ 2 EC.j ;M /g:
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The map HF.i/ ! �EC.j � 1;M / defined in Lemma 2.3 is a weak homotopy
equivalence. Palais has proved that every embedding space has the homotopy-type
of a CW–complex (see Palais [58]). Strictly speaking, he proves embedding spaces
are dominated by CW–complexes, but at that time it was a well-known theorem of
Whitehead’s that a space dominated by a CW–complex has the homotopy-type of a
(perhaps different) CW–complex [81]. The further fact that the various loop space and
homotopy-fibre constructions send spaces with the homotopy-type of CW–complexes
to spaces having the homotopy-type of CW–complexes is due to Milnor [53]. Thus,
HF.i/!�EC.j � 1;M / is a homotopy-equivalence.

An explicit homotopy-inverse of �EC.j � 1;M /!HF.i/ is exhibited. Given f 2
�EC.j � 1;M /, consider the object

.t; t1; : : : ; tj ;m/ 7�!

�
.t1; f .t1/.t2; : : : ; tj ;m// for 2t � 1� t1
.t1; f .2t � 1/.t2; : : : ; tj ;m// for t1 � 2t � 1

This would be the ‘right’ map �EC.j � 1;M /!HF.i/ (with loop-space parameter
t ) if it was a smooth function in the variable t1 . Consider a smooth ‘wet blanket’
function bW R! R with the properties:
� b.x/D x for all x � 0

� b.x/D 1=2 for all x � 1

� b0.x/� 0 for all x 2 R.

Such a function can be obtained in closed-form as

b.x/D

Z x

0

�
1�

Z x

0

B.x/dx

�
dx

where BW R!R is any smooth function such that B
�

1
2
Cx

�
DB

�
1
2
�x

�
and B.x/� 0

for all x 2 R, with B.x/D 0 for all jx� 1
2
j �

1
2

and
R1
�1

B.x/dx D 1.

For t 2 R define bt W R ! R as bt .x/ D b.x � t/ C t . Consider the function
�EC.j � 1;M /! HF.i/ defined by sending f 2 �EC.j � 1;M / to zf 2 HF.i/

by the formula

(�) zf .t/.t1; : : : ; tj ;m/D
�
t1; f

�
b�3C5t

2

.t1/
�
.t2; t3; : : : ; tj ;m/

�
The composite �EC.j � 1;M /!HF.i/!�EC.j � 1;M / is obtained by setting
t1 D 1 in (�), thus f is sent to the map�

.t; t2; : : : ; tj ;m/ 7�! f
�
b�3C5t

2

.1/
�
.t2; : : : ; tj ;m/

�
2�EC.j � 1;M /

which is just a reparametrisation of f by b�3C5t
2

.1/ (thought of as a function of t ).
Since b�3C5t

2

.1/ is an increasing function of t it is homotopic to the identity.
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Pn

Figure 2

Zeeman proved that the complements of certain co-dimension two ‘twist-spun’ knots
fibre over S1 [84]. Litherland later went on to formulate a more general notion of
spinning, at the time called ‘deform-spinning,’ further generalising Zeeman’s theorem
to this context [47]. The Zeeman–Litherland results are important for a number of
reasons – one being that they are an excellent source of embeddings of 3–manifolds in
S4 , as the Seifert-surfaces of embeddings of S2 in S4 . The next proposition points out
that the connecting map gr1W �Kn�1;j�1!Kn;j is a mild variation of Litherland’s
spinning construction.

Given a topological space X , denote the space of continuous functions f W S1 �

R=2Z ! X by LX called the ‘free loop space of X .’ Define P2W I2 ! I2 by
P2.t1; t2/ D

�
t2C2

3
cos.� t1/;

t2C2
3

sin.� t1/
�

and PnW In ! In as Pn D P2 � IdIn�2 .
See Figure 2. Notice Pn is an embedding on the interior of In , and is globally one-to-
one except for the equality Pn.�1; t2; t3; : : : ; tn/D Pn.1; t2; : : : ; tn/.

Definition 3.3 Given f 2LKn�1;j�1 , let hW Rj ! Rn be the function

h.t0; t1; : : : ; tj�1/D .t0; f .t0/.t1; : : : ; tj�1//;

and consider the composite Pn ı h ıP�1
j . It is well-defined on the image of Pj . On

@Pj .Ij / it agrees with the standard inclusion Rj ! Rn . Define gr1.f / 2 Kn;j to
be the unique extension of Pn ı h ıP�1

j such that gr1.f /jRj nPj .Ij / agrees with the
standard inclusion.

Proposition 3.4 The diagram

LKn�1;j�1
gr1 // Kn;j

�Kn�1;j�1

OO

gr1

99ssssssssss
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is homotopy-commutative.

Proof There exists a 1–parameter family Pn.t/W In ! In for t 2 Œ0; 1� satisfying
Pn.0/D Pn , Pn.1/D IdIn , such that for all t 2 .0; 1� the function Pn.t/W In! In is
an embedding. Substituting Pn.t/ for Pn in the definition of gr1W LKn�1;j�1!Kn;j

gives the desired homotopy.

In the literature, Litherland spinning is not defined as the map gr1W LKn�1;j�1!Kn;j ,
but what Litherland defined in [47], when appropriately adapted to the smooth category,
turns out to be precisely gr1 . This is the content of Proposition 3.6.

EC.n;�/ is the group of diffeomorphisms of Rn whose support is contained in In ,
thus it acts (by composition on the left) on Kn;j . Notice that if n� j > 0, f 2Kn;j

and g 2 EC.n;�/ then g ıf is in the the same path-component of Kn;j as f . In fact,
much more is true. Let Kn;j .f / denote the path-component of f in Kn;j .

Lemma 3.5 Provided n� j > 0 and f 2Kn;j , the map EC.n;�/!Kn;j given by
sending g 2 EC.n;�/ to g ı f is a null-homotopic fibration whose image is Kn;j .f /.
The fibre of this fibration is denoted Diff.In; f /.

Proof That the map is a fibration is classical (see Cerf [16]). That the image con-
tains Kn;j .f / follows from the isotopy extension theorem. Consider an orientation-
preserving affine-linear transformation LW Rn ! Rn such that L.In/ � In . Given
g 2 EC.n;�/ notice that Lıg ıL�1 2 EC.n;�/, moreover the support of Lıg ıL�1

is contained in L.In/. The space of orientation-preserving affine linear transformations
of Rn which preserves In is connected, thus there is a path Lt in this space such that
L0 D IdRn and L1 DL. The function

Œ0; 1��EC.n;�/ //

–

Kn;j

–

.t;g/
� // Lt ıg ıL�1

t ıf

is a null-homotopy of the map EC.n;�/!Kn;j provided L.In/\f .Rj /D∅, which
can always be arranged provided n� j > 0, by Sard’s theorem.

The map �1Kn;j .f /! �0Diff.In; f / is therefore a bijection onto the subgroup of
�0Diff.In; f / which is the kernel of the forgetful map �0Diff.In; f /! �0EC.n;�/.
Given an element g 2 �1Kn;j .f /, let zg 2 �0Diff.In; f / be its image. Given g 2

�1Kn;j .f / and gr1g 2 KnC1;jC1 denote the one-point compactification by gr1g 2

Emb.SjC1;SnC1/.
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Starting from an element h 2 Diff.In; f / which is in the kernel of the forgetful
map Diff.In; f /! �0EC.n;�/, Litherland gave a ‘surgery’ description [47] of an
embedding SjC1 ! SnC1 . Consider InC2 to be the product InC2 D In � I2 , so
@InC2 D In � .@I2/[ .@In/� I2 . Think of In � .@I2/ as a trivial In –bundle over @I2 ,
therefore it is diffeomorphic to the bundle over @I2 with fibre In and monodromy given
by h. Call this space In �h @I

2 . Since h acts as the identity on @In , the boundary of
In �h @I2 is canonically identified with @In � @I2 . Thus the union�

.In; f /�h @I2
�
[.@In; @Ij /� I2

makes sense as a manifold pair. Identify @InC2 with SnC1�RnC2 by radial projection
from the origin. Thus,

�
.In; f /�h @I2

�
[ .@In; @Ij /� I2 describes an embedding of

SjC1 in SnC1 . This is Litherland’s deform-spun knot construction [47].

Proposition 3.6 Given g 2�1Kn;j .f /, the ‘Litherland spun’ knot
�
.In; f /�zg @I2

�
[

.@In; @Ij /� I2 and gr1g 2 Emb.SjC1;SnC1/ are isotopic, once SnC1 is identified
with @InC2 via radial projection.

Proof The key step is to remember that the identification of In� .@I2/ with In�zg @I
2

is made via the null-isotopy of zg when considered as an element of EC.n;�/. Under
this identification, the two definitions are identical.

Given f 2 Kn;j and g 2 �Kn;j .f /, let Cf be the complement of an open tubular
neighbourhood of xf in Sn . By the above argument, the complement of gr1.g/ in
SnC1 is diffeomorphic to Cf Ìzg S1 union a 2–handle and an .n�jC1/–handle. Here
Cf Ìzg S1 indicates the Cf bundle over S1 with monodromy induced by zg . This gives
a presentation

�1Cgr1.g/
' �1Cf =hzg:x D x 8x 2 �1Cf i

where hzg:xDx 8x2�1Cf i is the normal subgroup of �1Cf generated by the relations
zg:x D x for all x 2 �1Cf .

Example 3.7 If g 2�K3;1.f / is the Gramain element (rotation by 2� about the long
axis), its action on �1Cf is conjugation by the meridian. Thus �1Cgr1.g/

is trivial, as
all knot groups are ‘normally generated’ by a meridian. This observation anticipates the
Zeeman–Litherland theorem, which states that gr1.g/ is the unknot (see Zeeman [84]
and Litherland [47] ) whenever g is the Gramain element. The Zeeman–Litherland
theorem is stated in full generality in Section 5.

The spaces Kn;n D EC.n;�/ are the groups of diffeomorphisms of a cube, and have
the homotopy-type of Diff.Dn/, the group of diffeomorphisms of a disc which are
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the identity on the boundary. The maps gr1W �Kn;n!KnC1;nC1 have been studied
in this context. Define gr2W �

2Kn;j ! KnC2;jC2 to be the composite gr1 ı�gr1

where �gr1W �
2Kn;j ! �KnC1;jC1 is the induced map of gr1 . Similarly define

gri W �
iKn;j ! KnCi;jCi . In the literature (see Antonelli, Burghelea and Kahn [4],

Weiss and Williams [80] and Gromoll [25]) elements of �0Kn;n which are in the image
of gri W �iKn�i;n�i ! �0Kn;n but which are not in the image of griC1 are typically
said to have Gromoll degree i .

Definition 3.8 An element f 2 �0Kn;j has (Gromoll) degree i if it is in the image of
the i th graphing map gri W �iKn�i;j�i! �0Kn;j but not in the image of the .iC1/st
graphing map griC1 .

Proposition 3.9 (1) The Gromoll degree of the elements of �0Kn;j is at least
2n� 2j � 4 for all n� j > 0.

(2) Kn;j is .2n�3j�4/–connected for all n � j � 1. Provided 2n� 3j � 3 � 0

and n� j > 2 the first non-trivial homotopy group of Kn;j is

�2n�3j�3Kn;j '

�
Z j D 1 or n� j is odd
Z2 j > 1 and n� j is even

The elements of �0Kn;j for 2n� 3j � 3D 0 have Gromoll degree .j � 1/, ie:
grj�1W �j�1Kn�jC1;1! �0Kn;j is onto.

(3) Emb.Sj ;Sn/ is minf.2n� 3j � 4/; .n� j � 2/g–connected for all n� j � 1.
Let mDminf2n� 3j � 3; n� j � 1g. Provided 2n� 3j � 3� 0 and n� j > 2

the first non-trivial homotopy-group of Emb.Sj ;Sn/ is

�mEmb.Sj ;Sn/'

8̂̂̂̂
<̂
ˆ̂̂:

Z 2n� 3j � 3< n� j � 1; .j D 1 or n� j odd/
Z 2n� 3j � 3> n� j � 1; n� j even
Z2 2n� 3j � 3< n� j � 1; j > 1 and n� j even
Z2 2n� 3j � 3> n� j � 1; n� j odd
Z˚Z2 2n� 3j � 3D n� j � 1

(4) Emb.Sj ;Rn/ is minf2n� 3j � 4; n� j � 2g connected for all n � j C 2 � 3.
Let mDminf2n� 3j � 3; n� j � 1g. Provided 2n� 3j � 3� 0 and n� j > 2

the first non-trivial homotopy group of Emb.Sj ;Rn/ is

�mEmb.Sj ;Rn/'

8̂̂̂̂
<̂
ˆ̂̂:

Z 2n� 3j � 3< n� j � 1; .j D 1 or n� j odd/
Z2 2n� 3j � 3< n� j � 1; j > 1 and n� j even
Z 2n� 3j � 3> n� j � 1

Z2 2n� 3j � 3D n� j � 1; .j D 1 or n� j odd/
Z˚Z2 2n� 3j � 3D n� j � 1; j > 1 and j even
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(5) Pn;j is .2n�2j�5/–connected for all n� j > 2.

(6) Emb.Dj ;Dn/ is .n�j�2/–connected for all n� j > 2.

Proof (5) That Pn;j is 2n� 3j � 5 connected follows directly from Goodwillie’s
dissertation [23, Theorem C, page 9].

(6) This result follows from (5) and Theorem 2.1.

(1) Consider the homotopy fibre-sequence �Kn�1;j�1!Kn;j ! Pn;j from Propo-
sition 3.2. Since Pn;j is .2n�2j�5/–connected, �1Kn�1;j�1! �0Kn;j is epic for
n� j > 2. Moreover, �2Kn�2;j�2 ! �1Kn�1;j�1 is also epic, as �1Pn�1;j�1 is
trivial. The result follows by induction.

(2) There is a computation of the 3rd stage of the Goodwillie tower for Kn;1 in [11].
This is a .2n�6/–connected map Kn;1!AM3 . AM3 is known to have the homotopy-
type of the 3–fold loop-space on the homotopy fibre of the inclusion Sn�1 _Sn�1!

Sn�1�Sn�1 , thus Kn;1 is .2n�7/–connected. The first non-trivial integral homology
group of Kn;1 is computed by Victor Turchin [76] (see the computations for the
homology of the complexes C T0Deven and C T0Dodd for j D 4, i D 2). Turchin’s
result is that H2n�6.Kn;1IZ/ ' Z, so by the Hurewicz Theorem, �2n�6Kn;1 ' Z.
That verifies the result for Kn;1 .

Consider the space KnCj ;jC1 for j � 1. The fibre-sequence

�KnCj�1;j !KnCj ;jC1! PnCj ;jC1

has a .2n�7/–connected base-space. In the special case of j D 1 the fibre has
first non-trivial homotopy group in dimension 2n � 7. But �2n�7PnC1;2 is triv-
ial, thus �2n�6Kn;1! �2n�7KnC1;2 is epic with kernel generated by the image of
�2n�6PnC1;2 , giving the isomorphism

�2n�7KnC1;2 ' �2n�6Kn;1= img
�
�2n�6PnC1;2

�
:

Repeat the argument for j > 1, inductively assuming that the first non-trivial homotopy
group of �KnCj�1;j is �2n�j�6�KnCj�1;j and isomorphic to

�2n�6Kn;1= img
�
�2n�6PnC1;2

�
:

Since PnCj ;jC1 is .2n�7/–connected, the map

�2n�j�6�KnCj�1;j ! �2n�j�6KnCj ;jC1

is an isomorphism of first non-trivial homotopy-groups, thus for all j � 1 there is an
isomorphism

�2n�j�6KnCj ;jC1 ' �2n�6Kn;1= img
�
�2n�6PnC1;2

�
:
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Setting j equal to 2n� 6 gives the isomorphism

�0K3n�6;2n�5 ' �2n�6Kn;1= img
�
�2n�6PnC1;2

�
:

Haefliger’s computations [28] completes the proof:

�0K3n�6;2n�5 '

�
Z2 for n� 4 odd
Z for n� 4 even.

(3) Theorem 2.1 gives us a homotopy equivalence Emb.Sj ;Sn/' SOnC1 �SOn�j

Kn;j . Since SOnC1=SOn�j � VnC1;jC1 is .n�j�1/–connected, the homotopy
long exact sequence of the fibration Kn;j ! Emb.Sj ;Sn/ ! VnC1;jC1 tells us
that Emb.Sj ;Sn/ is minfn�j�1; 2n�3j�4g–connected. Since the bundle

Emb.Sj ;Sn/! VnC1;jC1

is split, the first non-trivial homotopy group of Emb.Sj ;Sn/ can be computed directly.

(4) For Emb.Sj ;Rn/ use the homotopy equivalence Emb.Sj ;Rn/ ' SOn �SOn�j�
C ÌKn;j

�
from Proposition 2.2. The bundles C ÌKn;j ! Kn;j and SOn �SOn�j�

C ÌKn;j

�
! Vn;j are split, so the computation follows directly.

An interesting corollary is that there are ‘exotic families’ of smooth 2–discs in the
6–disc.

Corollary 3.10 �2n�6PnC1;2 has rank at least 1 provided n� 5 is odd.

Brian Munson [56] gave a lower bound of minf2n�3j�4; n�j�2g on the connectivity
of Emb.Sj ;Rn/. Proposition 3.9 proves that Munson’s lower bound is sharp.

The rest of this section is devoted to a geometric construction of the generators of
�2n�6Kn;1 for n� 4. Take a ‘long’ immersion f W R! R3 � Rn having two regular
double points f .t1/ D f .t3/, f .t2/ D f .t4/ with t1 < t2 < t3 < t4 2 R such that
one of the four resolutions of f in R3 is a trefoil knot. Let Tfi be the tangent
space to f .R/ at ti . Let P1 be the orthogonal complement to Tf1 ˚ Tf3 in Rn ,
and P2 the orthogonal complement of Tf2 ˚ Tf4 in Rn . P1 and P2 are .n�2/–
dimensional, so if S1 and S2 are the unit sphere of P1 and P2 respectively they are
both .n�3/–dimensional. There is a ‘resolution function’ r W S1�S2!Kn;1 given by
perturbing f near the double points via bump-functions whose directions are prescribed
by the pair .v1; v2/ 2 S1 � S2 . See Figure 3. The claim is that r is a generator of
H2n�6.Kn;1IZ/' Z. One could potentially trace through the computations of Turchin
[76] and Vassiliev [78] to verify that r generates H2n�6.Kn;1IZ/. The following
approach is perhaps more direct. It is inspired by the author’s quadrisecant description
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Rn

P1
P2

Figure 3

of the type-2 Vassiliev invariant for knots R3 [11]. The idea is to construct an integral co-
homology class �2 2H 2n�6.Kn;1IZ/ such that if x 2H2n�6.Kn;1IZ/ is represented
as an oriented .2n�6/–dimensional manifold mapping into Kn;1 then �2.x/ can be
computed as a signed count of the number of alternating quadrisecants along the family
of long knots represented by x . Every class in H2n�6.Kn;1IZ/ is realisable as a map
from an oriented .2n�6/–dimensional manifold M to Kn;1 since Kn;1 is .2n�7/–
connected (Proposition 3.9). Moreover, by the Hurewicz theorem, M can be assumed
to be S2n�6 , as �2n�6Kn;1 'H2n�6.Kn;1IZ/.

Definition 3.11 Given two points x;y 2Rn let Œx;y� denote the oriented line segment
in Rn , starting at x and ending at y . An alternating quadrisecant in C4.R

n/ is a point
.x1;x2;x3;x4/ 2 C4.R

n/ such that Œx1;x4� � Œx3;x2� as an oriented subinterval.
CkM denotes the configuration space of distinct k –tuples of points in M , CkM D

fx 2 M k W xi ¤ xj 8 i ¤ j g. Provided M is a manifold, let Ck ŒM � denotes the
(real oriented) Fulton–Macpherson compactification of CkM , as in [11]. Ck ŒM � is a
compact manifold, provided M is compact. The ‘real oriented’ Fulton–Macpherson
compactification has the property that the inclusion CkM ! Ck ŒM � is a homotopy-
equivalence.

Let AQn � C4ŒR
n� denote the closure of the set of all alternating quadrisecants in

C4.R
n/. Let C 0

4
ŒR�D ft 2 C4.R/ W t1 < t2 < t3 < t4g. Given f 2Kn;1 let AQn.f /�

C 0
4
ŒR� denote the pull-back of AQn . More generally, if f W M ! Kn;1 is smooth,

define AQn.f /�M �C 0
4
ŒR� as the pull-back of AQn .

Given a closed, oriented .2n�6/–dimensional manifold M and a map f W M !Kn;1

such that f�W M � C 0
4
ŒR�! C4ŒR

n� is transverse to AQn , AQn.f / �M � C 0
4
ŒR�

is a 0–dimensional submanifold whose normal bundle is oriented by the map. A
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well-defined integer invariant �2.f / 2 Z is defined as the signed count (of the relative
orientations) of the points in AQn.f /. The sign of each point of AQn.f / could be
computed by a formula analogous to the one in [11, Proposition 6.2]. Lemma 3.12 is
the key technical lemma needed to show that �2.f / is an invariant of the homology
class of f .

Given f 2 Kn;1 let �.f / 2 .0;1� be the ‘cut radius’ of f in Rn , defined as the
supremum over all R such that the exponential map from f ’s radius-R normal disc
bundle to Rn is an embedding. �W Kn;1! .0;1� can be shown to be a continuous
function, as �.f / is the minimum of two continuous quantities 1) the focal radius of
f (which can be computed in terms of the 2nd fundamental form of f ) and 2) the
minimum of the distances L such that there exists two geodesics segments, each of
length L, emanating from a point in Rn and terminating in f .R/, orthogonal to the
tangent space of f .R/. This kind of continuity argument is standard in differential
geometry, see Sakai [64, Proposition III.4.1] for example.

Lemma 3.12 Every x 2H2n�6.Kn;1IZ/ represented by a manifold f W M ! Kn;1

can be perturbed so that f� is transverse to AQn .

Proof Let R be the cut radius of f , RDminf�.f .x// W x 2M g. Let bW R! R be
a C1–smooth function satisfying:

� b.x/D 0 for all jxj � 1

� b.x/D b.�x/ for all x 2 R

�
R1
�1

b.x/dx D 1

� b0.x/ > 0 for all �1< x < 0.

For �>0 and t 2R let b�;t W R!R be defined as b�;t .x/D
1
�
b
�

x�t
�

�
. By a compactness

argument, there exists an m 2 Z (perhaps very large) such that if I1; : : : ; Im is the par-
tition of I into m equal-length sub-intervals, then for all x 2M and j 2 f1; 2; : : : ;mg,
f .x/.Ij / is contained in the radius R=2 tubular neighbourhood of f .x/.

Consider the function zf defined as

M � .Rn/m �R
zf //

–

Rn

–

.x; v1; : : : ; vm; t/
� // f .t/C

Pm
jD1 b 3

2m
;pj
.t/vj

where pj 2 Ij is the mid-point of the interval Ij . Since embeddings are an open
subset of the space of all ‘long’ smooth maps from R to Rn (see Hirsch [34]), in
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some neighbourhood U of 0 in .Rn/m , a restriction of zf can be thought of as a map
xf W M � U ! Kn;1 . Consider a point .x;y; t1; t2; t3; t4/ of AQn. xf / � M � U �

C 0
4
ŒR�. For each i , ti and tiC1 cannot both be elements of some common Ij since

.f .t1/; f .t2/; f .t3/; f .t4// is an alternating quadrisecant. Thus xf�W M �U �C 0
4
ŒR�!

C4ŒR
n� is transverse to AQn . By the Transversality Theorem (see Guillemin and

Pollack [26]), f can be approximated by a map M !Kn;1 such that the induced map
M �C 0

4
ŒR�! C4ŒR

n� is transverse to AQn .

Theorem 3.13 �2 2H 2n�6.Kn;1IZ/ is a well-defined cohomology class. Moreover,
�2.r/D˙1, forcing r to be a generator of H2n�6.Kn;1IZ/' Z.

Proof An alternating quadrisecant can never appear on @.M �C 0
4
ŒR�/ nor can a 1–

parameter family of alternating quadrisecants run off to infinity, thus, by the Transver-
sality Extension Theorem (see for example [26, Chapter 2]) �2.f / is well-defined
integer invariant of the homology class of f .

In the picture of the ‘immersed trefoil’ f W R! R3 � Rn there are no quadrisecants,
except the ‘degenerate’ quadrisecant that consisting of the secant between the two
pairs of double-points. Consider all the possible resolutions r of this immersed trefoil.
r only has 4 resolutions in R3 � Rn , so these are the only 4 resolutions that could
possibly have quadrisecants. Moreover, only the resolution which is a trefoil in R3 has
a quadrisecant.

Since Kn;1 is .2n�7/–connected, by the Hurewicz Theorem �2n�6Kn;1 ' Z is gen-
erated by any map zr W S2n�6!Kn;1 homologous to r . One can explicitly construct
such a map – attachment of an .n�3/–handle to S1�S2� Œ0; 1� along S1�f�g� f1g

gives a cobordism between S1�S2 and S2n�6 . rjS1�f�g
is null so r extends over the

cobordism. zr can be chosen to be the restriction of this cobordism to S2n�6 .

4 Actions of operads of little cubes on embedding spaces

This section is devoted to the study of the iterated loop-space structures on the embed-
ding spaces Kn;j and EC.j ;Dn/, especially focusing on the compatibility of these
structures with Litherland spinning gr1 . The context of these results comes from the
work of Boardman and Vogt [5] and May [49; 50]. They give a very simple criterion
for recognising if a space X has the homotopy-type of an n–fold loop-space, being
that X admits an action of the operad of little n–cubes, and that the induced monoid
structure on �0X is that of a group. A useful reference for operads relevant to topology,
including operads of cubes, is the book of Markl, Shnider and Stasheff [48].
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f #g

g#f

f

g

Figure 4

There is an action of the operad of j –cubes on the spaces EC.j ;M / and Kn;j given
by concatenation (see Definition 4.2). The first instance of an action of the operad of
.jC1/–cubes on any space of the form EC.j ;M / was given by Morlet [54]. The Cerf–
Morlet ‘Comparison Theorem’ states that EC.j ;�/'�jC1.PLj=Oj / (see Burghelea
and Lashof [13] or Kirby and Siebenmann [43] for a proof). Here PLj is the group of
PL-automorphisms of Rj (given a suitable topology) and Oj is the group of linear
isometries of Rj . The first ‘hint’ of a higher cubes action on the spaces EC.j ;M / for
M non-trivial would perhaps be the work of Schubert [67]. Schubert demonstrated
that the connect-sum pairing turns �0K3;1 into a free commutative monoid on the
isotopy-classes of prime long knots, where the demonstration of commutativity involved
‘pulling one knot through another’ as in Figure 4.

In ‘Little cubes and long knots’ [9] this idea was extended to construct a .jC1/–cubes
action on the spaces EC.j ;M / for an arbitrary compact manifold M . By some
elementary considerations, this also gives an action of the operad of .jC1/–cubes on
Kn;j for all n� j � 2. Schubert’s theorem that �0K3;1 is a free commutative monoid
over the isotopy classes of prime long knots generalises in this context to say that K3;1

is a free 2–cubes object over the based space P tf�g where P �K3;1 is the subspace
of prime long knots. This can be thought of as a precise ‘space level’ non-uniqueness
result for the connect-sum decomposition of knots, whereas Schubert’s result states
uniqueness on the level of isotopy classes of knots.

There is a major conceptual gap between the Cerf–Morlet ‘Comparison Theorem’ and
the freeness of K3;1 as a 2–cubes object. Getting a better understanding of this defect
was one of the primary motivations behind this paper.
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Definition 4.1
� A (single) little n–cube is a function LW In ! In such that L D l1 � � � � � ln

where each li W I! I is affine-linear and increasing ie: li.t/D ai tCbi for some
0� ai < 1 and bi 2 R.

� Let CAutn denote the monoid of affine-linear automorphisms of Rn of the form
LD l1� � � � � ln where li W R! R affine linear and increasing, and L.In/� In .

� Given a little n–cube L a mild abuse of notation is to consider L 2 CAutn by
taking the unique affine-linear extension of L to Rn .

� The space of j little n–cubes Cn.j / is the space of maps LW t
j
iD1

In! In such
that the restriction of L to the interior of its domain is an embedding, and the
restriction of L to any connected component of its domain is a little n–cube.
Given L 2 Cn.j / let Li denote the restriction of L to the i th copy of In . By
convention Cn.0/ is taken to be a point. This makes the union t1

jD0
Cn.j / into

an operad, called the operad of little n–cubes Cn (see May [49]).
� There is an action of CAutn on EC.n;M / given by

�W CAutn �Emb.Rn
�M;Rn

�M /! Emb.Rn
�M;Rn

�M /

�.L; f /D .L� IdM / ıf ı .L�1
� IdM /

In the above formula, L�1 is the inverse of L in the group of affine-linear
isomorphisms of Rn . The above action is denoted �.L; f /DL:f . There is an
action of CAutj on Kn;j defined essentially the same way.

An action of the operad of j –cubes on both Kn;j and EC.j ;M / where the associated
multiplication on �0Kn;j is the connect-sum operation, is given next.

Definition 4.2 ki W Cj .i/�
�
Kn;j

�i
!Kn;j , ki W Cj .i/�EC.j ;M /i! EC.j ;M / is

defined by the rule ki.L1; : : : ;Li ; f1; : : : ; fi/DL1:f1 ı � � � ıLi :fi . In the case of the
space Kn;j , given f;g 2Kn;j with disjoint support, f ıg is defined so that

f ıg.x/D

�
f .x/ if f .x/¤ x

g.x/ if otherwise.

Definition 4.3 extends the j –cubes action on EC.j ;M / to a .jC1/–cubes action.

Definition 4.3
� Given j little .nC1/–cubes, LD .L1; : : : ;Lj /2CnC1.j / define the j –tuple of

(non-disjoint) little n–cubes L�D .L�
1
; : : : ;L�j / by the rule L�i D li;1�� � ��li;n

where Li D li;1 � � � � � li;nC1 . See Figure 5. Similarly define Lt 2 Ij by
Lt D .Lt

1
; : : : ;Lt

j / where Lt
i D li;nC1.�1/.
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f0gn �R

Lt

L�

Rn � f0g

L

Figure 5

� The action of the operad of little .nC1/–cubes on the space EC.n;M / is given
by the maps �j W CnC1.j /�EC.n;M /j ! EC.n;M / for j 2 f1; 2; : : :g defined
by

�j .L1; : : : ;Lj ; f1; : : : ; fj /DL��.1/:f�.1/ ıL��.2/:f�.2/ ı � � � ıL��.j/:f�.j/

where � W f1; : : : ; j g!f1; : : : ; j g is any permutation such that Lt
�.1/
�Lt

�.2/
�

� � � �Lt
�.j/

. See Figure 6. The map �0W CnC1.0/�EC.n;M /0! EC.n;M / is
the inclusion of a point � in EC.n;M /, defined so that �0.�/D IdRn�M .

Theorem 4.4 (Budney [9]) For any compact manifold M and any integer n� 0 the
maps �j for j 2 f0; 1; 2; : : :g define an action of the operad of little .nC1/–cubes on
EC.n;M /.

Example 4.5 Lt
1
<Lt

3
<Lt

2
so � D .23/ and �3.L1;L2;L3; f1; f2; f3/DL�

1
:f1ı

L�
3
:f3 ıL�

2
:f2 , which explains the figure–8 knot being ‘inside’ of the trefoil on the

left hand side of the picture.

In the definition of EC.n;M /, if one replaces the condition that the support of f is
contained in In �M with it being contained in Dn �M one obtains a homotopy-
equivalent space ED.n;M /. By a similar construction to Definition 4.3, one also
obtains an action of the operad of unframed little .nC1/–discs on ED.n;M /. Since
�0Kn;j is a group for n� j > 2, EC.j ;Dn�j / an .nC1/–fold loop space. Next is a
construction of analogous operad actions on the spaces PEC.n;M /.

Definition 4.6 �j W Cn.j /�PEC.n;M /j ! PEC.n;M / for j 2 f1; 2; : : :g is defined
by

�j .L1; : : : ;Lj ; f1; : : : ; fj /DL�.1/:f�.1/ ıL�.2/:f�.2/ ı � � � ıL�.j/:f�.j/
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where � W f1; : : : ; j g! f1; : : : ; j g is any permutation such that Lt
�.1/
�Lt

�.2/
� � � � �

Lt
�.j/

.

Proposition 4.7 The maps �� define an action of the operad of little n–cubes on
PEC.n;M /.

Proof There are three axioms to verify.

Identity: Let IdIn be the identity n–cube, then �1.IdIn ; f / D IdIn :f D f by
design.

Symmetry: We need to verify that �n.L:˛; f:˛/D �n.L; f /, for ˛ 2†n .
Let

�j .L; f /DL�.1/:f�.1/ ıL�.2/:f�.2/ ı � � � ıL�.j/:f�.j/

and

�j .L:˛; f:˛/DL˛� 0.1/:f˛� 0.1/ ıL˛� 0.2/:f˛� 0.2/ ı � � � ıL˛� 0.j/:f˛� 0.j/

where �; � 0 2 Sn satisfy Lt
�.1/
� � � � �Lt

�.n/
and Lt

˛� 0.1/
� � � � �Lt

˛� 0.n/
. Up

to the ambiguity in our choice of � and � 0 one can assume � 0 D ˛�1� , giving
the result.
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Associativity: We need to verify the diagram below commutes:

Cn.m/�
�
Cn.j1/�PEC.n;M /j1� � � � �Cn.jm/�PEC.n;M /jm

� //

��

Cn.m/�PEC.n;M /m

��
Cn.j1C � � �Cjm/�PEC.n;M /j1C���Cjm // PEC.n;M /

Given something in the top-left corner, consider what it maps to in the bottom-
right corner, going around both ways. Either way around the diagram, one gets a
composite of functions of the form Li :Li;p:fi;p , in some order. The difference
in the order of composition is irrelevant as our definition only allows functions
to appear in different relative orders if they have disjoint supports.

Proposition 4.8 Both the fibre-inclusion and projection maps in the fibration

EC.n;M /! PEC.n;M /! EC.n� 1;M /

are maps of little n–cubes objects. The graphing map

gr1W �EC.n� 1;M /! EC.n;M /

is a map of .nC1/–cubes object.

Proof The map PEC.n;M /! EC.n� 1;M / is of course restriction to the f1g �
Rn�1 �M ‘face’, followed by the natural identification with Rn�1 �M .

�j .L1; : : : ;Lj ; f1; : : : ; fj /DL�.1/:f�.1/ ıL�.2/:f�.2/ ı � � � ıL�.j/:f�.j/

Once restricted to f1g �Rn�1 �M it becomes the composite

L��.1/:f�.1/jf1g�Rn�1�M ıL��.2/:f�.2/jf1g�Rn�1�M ı � � � ıL��.j/:f�.j/jf1g�Rn�1�M

which is precisely

�j .L1; : : : ;Lj ; f1jf1g�Rn�1�M ; : : : ; fj jf1g�Rn�1�M /:

Consider the .nC1/–cubes action on �EC.n� 1;M /. Given i little .nC1/–cubes
L D .L1; : : : ;Li/ let L˛ D .L˛

1
; : : : ;L˛i / 2 C1.1/

i be the projection on the 1st

coordinate, and let Lˇ D .L
ˇ
1
; : : : ;L

ˇ
i / 2 Cj .1/

i be their projections on the remaining
n coordinates. The .nC1/–cubes action on �EC.n� 1;M / is given by �0 defined
below:

�0i.L1; : : : ;Li ; f1; : : : ; fi/ WD �i.L
ˇ
1
; : : : ;L

ˇ
i ;L

˛
1 :f1; : : : ;L

˛
i :fi/

DL
ˇ�

�.1/
:L˛�.1/:f�.1/ ıL

ˇ�

�.2/
:L˛�.2/:f�.2/ ı � � � ıL

ˇ�

�.i/
:L˛�.i/:f�.i/
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L˛i :fi is the C1 –action on �EC.n� 1;M / (reparametrisation in the loop-space co-
ordinate) and L

ˇ
i acts on this via the Cn –action on EC.n� 1;M /. � 2 †i is any

permutation such that L
ˇt

�.1/
�L

ˇt

�.2/
� � � � �L

ˇt

�.i/
.

Consider applying the map gr1 :

gr1W �EC.n� 1;M / 3 F 7�! ..t0; t; v/ 7�! .t0;F.t0/.t; v/// 2 EC.n;M /

Observe that gr1.L
ˇ�

�.p/
:L˛
�.p/

:f�.p//DL�
�.p/

:gr1.f�.p// thus

gr1.�
0
i.L1; : : : ;Li ; f1; : : : ; fi//D

L��.1/:gr1.f�.1// ıL��.2/:gr1.f�.2// ı � � � ıL��.i/:gr1.f�.i//D

�i.L1; : : : ;Li ; gr1.f1/; : : : ; gr1.fi//

since gr1 commutes with ı.

5 Survey

Much of this paper has been devoted to studying the map gr1W �Kn�1;j�1! Kn;j

and the pseudoisotopy formalism for embedding spaces. This section is more survey
in nature, mentioning what is known on the homotopy-type of the embedding spaces
Kn;j and the properties of natural maps into and out of these spaces, focusing largely
on the issues most closely related to iterated loop-space structures on these spaces and
EC.j ;Dn�j /.

Proposition 5.1 is a generalisation of the classical theorem that an embedding of S1 in
S3 unknots in S4 . It is based loosely on the argument in Rolfsen’s textbook [61]. The
argument itself is likely much older.

Proposition 5.1 The natural inclusion Rn! RnC1 induces an inclusion i W Kn;1!

KnC1;1 which is null-homotopic.

Proof Two null-homotopies of i will be constructed, giving a map Kn;1!�KnC1;1 .

Let jt W Kn;1!Kn;1 for t 2 ID Œ�1; 1� be defined as

jt .f /.x/D
f ..1C t2/x� t3/C .t3; 0; : : : ; 0/

1C t2
:

j0 is the identity, yet j1 consists of knots which are standard outside of Œ0; 1�, and
j�1 consists of knots which are standard outside of Œ�1; 0�.

Let bW R! R be a C1–smooth function with the properties that:
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� b.x/D 0 for all jxj � 1.

� b.x/D b.�x/ for all x 2 R.

� b0.x/ > 0 for all �1< x < 0.

Let BW R ! RnC1 satisfy B.x/ D .x; 0; : : : ; 0; b.x//. Let C W R ! RnC1 satisfy
C.x/D .x; 0; : : : ; 0; 0/.

Given f 2Kn;1 , consider the function F W I�R! RnC1 defined as

Ft .x/D

8̂<̂
:

i.j3t .f //.x/ for jt j 2 Œ0; 1
3
�;x 2 R

.2� 3jt j/ i
�
j t
jtj
.f /

�
.x/C .3jt j � 1/B.x/ for jt j 2

�
1
3
; 2

3

�
;x 2 R

.3� 3jt j/B.x/C .3jt j � 2/C.x/ for jt j 2
�

2
3
; 1
�
;x 2 R

F , restricted to either Œ0; 1��R or Œ�1; 0��R is a null-homotopy of i .

It is not known whether or not F W Kn;1!�KnC1;1 is null-homotopic. The adjoint of
F , †Kn;1! KnC1;1 is the direct-analogue of the ‘Freudenthal suspension map for
configuration spaces’ (see Cohen, Cohen and Xicoténcatl [18]) †CkRn! CkRnC1

which is known to induce an isomorphism on the 1st non-trivial homology groups of
the spaces provided n> 1. But in this case, first non-trivial homology group of †Kn;1

is in dimension 2n� 5, while for KnC1;1 it is in dimension 2n� 4.

Using the same constructions, one can construct null-homotopies of the inclusions
Kn;j !KnCj ;j for all j > 0.

Question 5.2

� For each n and j , what is the smallest i such that inclusion Kn;j !KnCi;j is
null-homotopic?

� Is F W †Kn;1!KnC1;1 defined in Proposition 5.1 null-homotopic?

� If the answer to the previous question is positive, then does F have two distinct
null-homotopies? Is there a ‘Freudenthal suspension map’ †2Kn;1!KnC1;1

inducing an isomorphism of H2n�4†
2Kn;1 and H2n�4KnC1;1 ?

There is a ‘fibrewise restriction’ map RW Kn;j!�Kn;j�1 , thinking of Rj as R�Rj�1 .
If 2n� 3j � 3� 0 this map is exactly .2n�3j�3/–connected, as the first non-trivial
homotopy groups of the two spaces are in different dimensions. These maps have been
studied in some detail by Morlet and Goodwillie. The ‘Morlet Disjunction Lemma’
(see for example Goodwillie [23, page 9]) is a theorem on the connectivity of this map
in the context of arbitrary pseudoisotopy embedding spaces.
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Proposition 5.3 The map R is a homotopy-equivalence RW Kn;n!�Kn;n�1 .

Proof There are homotopy-equivalences Kn;n'EC.n;�/ and Kn;n�1'EC.n� 1; I/
given by the fibrations in Theorem 2.4. Restriction to Rn�1�I gives a map EC.n;�/!
EC.n� 1; I/ which is homotopic to a fibration, whose fibre has the homotopy-type of
EC.n;�/2 . The fibre-inclusion map EC.n;�/2! EC.n;�/ is homotopic to multiplica-
tion in the group EC.n;�/ (the homotopy is constructed via the .nC1/–cubes action on
EC.n;�/). Thus, the homotopy fibre of the map EC.n;�/2! EC.n;�/ is EC.n;�/.
By Lemma 2.3, this homotopy-fibre has the homotopy-type of �EC.n� 1; I/. With
some additional work, we can see that this homotopy-equivalence is homotopic to
R.

The above argument is a mild variant of Hatcher’s arguments where he gives various
equivalent statements of the Smale conjecture [30]. A way to look at the above
proposition is that studying the homotopy-type of the spaces Emb.Sn�1;Sn/ and
Diff.Sn/ ultimately reduces to studying the homotopy-types of the spaces Kn;n�1 and
Kn;n . Since �Kn;n�1 'Kn;n , the study of the homotopy-properties of these spaces is
essentially identical modulo �0Kn;n�1'�0Emb.Sn�1;Sn/. The next result compiles
the major theorems on �0Kn;n�1 .

Theorem 5.4

� If f W Sn�1! Sn is a smooth embedding, then f .Sn�1/ bounds a topological
disc. See Mazur [51] and Brown [6].

� The disc Dn has a unique smooth structure for n� 6, and D5 admits a unique
smooth structure which restricts to the standard smooth structure on @D5 . See
Smale [72].

� (Corollary of the above two results) If f W Sn�1 ! Sn is a smooth embed-
ding, then f .Sn�1/ bounds a smooth disc provided n � 5. Thus, the space
Emb.Sn�1;Sn/=Diff.Sn�1/ is connected. See Kosinski [44] for a modern
account of the results in Smale’s paper [72].

� For n 2 f2; 3g, Emb.Sn�1;Sn/ is known to be connected. For nD 2 this is the
Schoenflies theorem. See Siebenmann [68] for a historical account. For nD 3 it
is the combination of Alexander’s theorem [2], and Smale’s theorem [71].

� Whether or not Emb.S3;S4/ is connected is called the smooth Schoenflies
problem in dimension 4. Scharlemann [66] and Poenaru [59] have some partial
results on this problem.
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Observe that an element of Emb.Sn�1;Sn/ is isotopic to the standard inclusion if
and only if it extends to an embedding of Dn in Sn , thus the kernel of the map
�0Kn�1;n�1!�0Kn;n�1 is the image of �0Pn;n!�0Kn�1;n�1 . The above observa-
tion that �0Emb.Sn�1;Sn/=Diff.Sn�1/ is connected for n� 5 allows the extension
of the homotopy long exact sequence of the fibration Kn;n! Pn;n!Kn�1;n�1 from
Theorem 2.1 to the ‘classical’ sequence:

� � � ! �1Kn�1;n�1! �0Kn;n! �0Pn;n! �0Kn�1;n�1! �0Kn;n�1! 0:

Thus, for n � 5 �0Kn;n�1 is isomorphic to the groups of homotopy n–spheres �n

(see Kosinski [44]). �n is known to be finite, and many of these groups have been
computed, for example �5 D 0, �6 D 0, �7 ' Z28 , �8 ' Z2 , �9 is known to have 8
elements, �10 is known to have 6 elements, �11 ' Z992 .

Theorem 5.5 (Cerf [17]) Pn;n is connected for n� 6. So there is an isomorphism
of groups �0Diff.Dn�1/'�0Emb.Sn�1;Sn/ and an epimorphism �1Diff.Dn�1/!

�0Diff.Dn/.

A metric g on Sn is said to be round if for any points x;y 2 Sn there is an isometry
of g carrying x to y which can also be chosen to send an orthonormal basis in TxSn

to any orthonormal basis in TySn . Let Mn denote the space of round Riemann metrics
on Sn .

Proposition 5.6 (Hatcher [30]) Mn has the same homotopy-type as Kn;n'Diff.Dn/.

Proof There is a fibration Mn! .0;1/ given by taking the volume of the metric.
The fibre of this map is a DiffC.Sn/–homogeneous space, with isotropy group SOnC1 .
Theorem 2.1 tells us that Kn;n ' Diff.Dn/ is also the base-space of such a homotopy-
fibre sequence SOnC1! DiffC.Sn/! Diff.Dn/.

Smale [71] and Hatcher [30] have proved that Diff.Dn/ is contractible for nD 2 and
nD 3 respectively. That Diff.D1/ is contractible follows from an averaging argument,
or equivalently from the ‘length’ classification of connected closed 1–dimensional
Riemann manifolds via Proposition 5.6. The space of Riemann metrics on Sn is
contractible since it is an affine space, making the homotopy-type of Diff.Dn/ the
complete obstruction to Mn being a deformation-retract of the space of all Riemann
metrics on Sn .

Diff.Dn/ is an .nC1/–fold loop space (see Budney [9], Morlet [54] and Burghelea
and Lashof [13]) whose .nC1/–fold delooping is PL.n/=On [13; 54]. As of yet, their
does not appear to be any direct methods of studying the homotopy-type of PL.n/. In
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particular, essentially nothing is known about the homotopy-type of Diff.D4/. Farrell
and Hsiang computed the rational homotopy of Diff.Dn/ in a range.

Theorem 5.7 (Farrell and Hsiang [22]) Provided 0� i <minfn�4
3
; n�7

2
g

�iDiff.Dn/˝Q'

�
Q provided 4j.i C 1/

0 otherwise

The bound i <minfn�4
3
; n�7

2
g is known as Igusa’s stable range [37]. Roughly this the

range where �iPn;n can be related to K–theory. Antonelli, Burghelea and Kahn had
shown earlier that H�Diff.Dn/ is not finitely-generated for n� 7 [4].

The spaces KnC2;n are in the realm of ‘traditional’ co-dimension 2 knot theory, on
which there is a plethora of literature. The majority of the literature focuses on issues
related to isotopy classification, ie: �0KnC2;n . Some good general references are
Kawauchi [39], Hillman [33; 32], Ranicki [60] and Kervaire–Weber [42].

The homotopy-type of K3;1 has been described, component-by-component, as an
iterated fibre bundle in the author’s article [7], which builds on the previous works of
Hatcher [31; 29], and the author [8; 9].

Theorem 5.8 (Budney [7]) Given a long knot f 2K3;1 , let K3;1.f / denote the path
component in K3;1 containing f . Then K3;1.f / has the homotopy-type of:

(1) f�g if f is the unknot.

(2) S1 �K3;1.g/ if f is a cable of g .

(3) Cn.R
2/�†f

Qn
iD1K3;1.fi/ if f D f1# � � � #fn is the prime decomposition of

f , with n � 2. †f is the subgroup of †n corresponding to the partition of
f1; 2; : : : ; ng defined by the equivalence relation i � j if and only if K3;1.fi/D

K3;1.fj /.

(4) S1 �
�
SO2 �Af

Qn
iD1K3;1.fi/

�
if f D .f1; : : : ; fn/‰L is hyperbolically-

spliced. Here L is some hyperbolic link L D .L0;L1; : : : ;Ln/ in S3 with
the L0 component ‘long’. Define BL to be the group of orientation-preserving
hyperbolic isometries of S3 n L which extend to L, preserving L0 and its
orientation. BL!Diff.S3;L0/ is a faithful representation, giving an embedding
of BL in Diff.L0/ (thus conjugate to a subgroup of SO2 ). Similarly, there is
a homomorphism BL! �0Diff.L1 [ : : :[Ln/ � †

C
n the signed symmetric

group of f1; 2; : : : ; ng. †Cn acts on Kn
3;1

by permutation of the factors and knot
inversion. Let Af be the subgroup of BL �†

C
n that preserves

Qn
iD1K3;1.fi/.
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Case (2) above is considered to apply to torus knots – think of a torus knot as a
cable of the unknot, thus the component of a torus knot has the homotopy-type of
S1 . A hyperbolic knot is thought of as a hyperbolically-spliced knot where L is a 1–
component hyperbolic link, thus such a component has the homotopy-type of S1�S1 .
Since every knot can be obtained from the unknot by iterated cabling, connect-sum
and hyperbolic splicing operations [8], the above result describes the homotopy-type of
K3;1.f / for any f 2K3;1 . To be clear, if the knot f has j tori in the JSJ-decomposition
of its complement, to obtain an answer for the homotopy-type of K3;1.f /, one would
have to apply Theorem 5.8 j C 1 times. A detailed justification for the above theorem
is given in the reference [7]. The homotopy-equivalence in part (3) of Theorem 5.8 is
induced by the action of the operad of 2–cubes on K3;1 . Another way to state (3) is that
K3;1 is a free 2–cubes object, with generating space P t f�g, P �K3;1 the space of
prime long knots. By the work of May [49], the group-completion �BK3;1 of the knot
space has a particularly simple structure, �BK3;1 ' �

2†2 .P t f�g/. Fred Cohen
and the author have used these results to compute the homology of many components
of K3;1 [10]. In the process it became clear that the homotopy-type and homology of
K3;1 would likely have a more elegant description if one could prove that K3;1 had an
action of the operad of framed little 2–discs.

Question 5.9 Can one define an action of the operad of framed .nC1/–discs on
the spaces ED.n;Dk/, in a ‘natural geometric manner’ similar to Definition 4.3?
ED.n;Dk/ refers to the comments preceding Definition 4.6.

The topic of �0K4;2 has a few new references. Carter and Saito have constructed an
analogue of Reidermeister theory [14]. Kamada has constructed an analogue of the
Alexander–Markov theorem from dimension 3 [38].

Theorem 5.10 (Zeeman [84] and Litherland [47]) Let g 2�KnC2;n.f / be such that
zg2�0Diff.InC2; f / preserves a Seifert surface for f . Let G2�0Diff.InC2; f / denote
the Gramain element (a meridional Dehn twist). If k 2 Z n f0g then the complement of
gr1.G

kg/ 2KnC3;nC1 fibres over S1 .

For nD1 Litherland went on to identify the fibre in several cases. From a practical point
of view, the Zeeman–Litherland theorem is a useful tool for constructing embeddings
of 3–manifolds into S4 , as fibres of fibred knot complements (see Ruberman [63]). It
is possible that there are other types of Alexander–Markov theorems in dimension four.
Recently it was shown by Mozgova and the author that Litherland spinning does not
suffice [12], because the Alexander polynomial provides an obstruction to elements of
�0K4;2 being deform-spun.
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Up to a homotopy-equivalence, the spaces ED.j ;Dn�j / and EC.j ;Dn�j / admit an
action of the operad of framed little .jC1/–discs, provided n�j > 2. This is because
they are .jC1/–fold loop spaces. This argument does not apply when n�j D 2 since
�0EC.n;D2/ is never a group. This will be explained in the next proposition.

Proposition 5.11

� �0KnC2;n is not a group for all n� 1.

� The map �0KnC1;n! �0KnC2;n induced by inclusion RnC1! RnC2 is injec-
tive and maps onto the maximal subgroup of �0KnC2;n provided n� 4.

Proof To prove the first point, non-invertible elements are constructed. Start with
f1 2 K3;1 a trefoil knot. Then �1Cf is the braid group on 3 strands. Let g1 D 0 2

�1K3;1.f1/ be the constant loop, and observe that the complement of f2 D gr1.g1/ 2

K4;2 also has the braid group on 3 strands as its fundamental group. Continuing, this
constructs for all n� 1 a knot fn 2KnC2;n whose complement has the braid group on
3 strands as its fundamental group. fn is non-invertible in the monoid �0KnC2;n by
Zieschang, Vogt and Coldewey [85, Proposition 2.3.4]. This is because if h 2KnC2;n

then the complement of the connect-sum fn#h, Cfn#h has the homotopy-type of the
union of Cfn

and Ch where Cfn
and Ch intersect along a meridional circle, so by the

canonical form for amalgamated free products, �1Cfn#h contains �1Cfn
.

By the above argument, if f 2�0KnC2;n is invertible, �1Cf 'Z. By a Mayer–Vietoris
sequence argument, HiCf D 0 for all i > 1. Thus, Cf has the homotopy-type of a
circle. By Levigne’s unknotting theorem [46] (provided n� 4) or Wall’s unknotting
theorem [79] (for nD 3), f is in the image of �0KnC1;n .

The last item to prove is that the map �0KnC1;n! �0KnC2;n is injective. Consider
Sn � SnC1 � SnC2 . Let f W Sn ! SnC2 be an embedding with f .Sn/ D Sn .
By Theorem 2.1 we could equivalently prove that if f extends to an embedding
F W DnC1!SnC2 , then there is another extension of f , F 0W DnC1!SnC1 . Identify
the complement of an open tubular neighbourhood of Sn in SnC2 with S1 �DnC1 .
Thus, F , if it exists, is an embedding F W DnC1!S1�DnC1 such that F.@DnC1/D

f1g � @DnC1 . By Farrell’s proof of the relative Browder–Livesay–Leving–Farrell
fibration theorem [21], there is a diffeomorphism GW S1 �DnC1! S1 �DnC1 such
that G.F.DnC1// D f1g �DnC1 and GjS1�@DnC1 is the identity on S1 � @DnC1 .
Farrell’s theorem requires n� 4. The basic idea of the proof is much like the proof of
Proposition 3.1, but in this case one lifts F to an embedding of DnC1 in R�DnC1 and
applies the relative H-cobordism theorem to acquire the neccessary diffeomorphism.
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I would like to thank Larry Siebenmann for suggesting the Browder–Livesay–Leving–
Farrell fibration theorem.

The above proposition implies that EC.n;D2/ is not a free .nC1/–cubes object pro-
vided there exists exotic .nC1/–spheres, so no direct analogue of [9] is true in high
dimensions. Of course, EC.1;D2/ is not a free object, either, as it splits as a product
of Z with the free object K3;1 . One might hope that for n> 1, EC.n;D2/'KnC2;n

is closely related to a free .nC1/–cubes object, but there are yet further obstructions.
Provided n� 3, �0KnC2;n=�0KnC1;n (this is the isotopy classes of the images of the
elements of KnC2;n ) is not a free commutative monoid. Kearton proved this in the
nD 3 case, which has since been generalised to all n� 3. Bayer–Fluckiger went on to
prove the non-existence of a ‘cancellation law’ ie: one can satisfy aC b D aC c with
b ¤ c . See Kearton’s survey [40] for details.

Question 5.12

� What is the group-completion of the monoid �0KnC2;n ?

� Can one characterise the monoid structure on �0KnC2;n for n� 2?

� If f 2 KnC2;n is a connect-sum of two non-trivial knots, the action of the
operad of .nC1/–cubes on KnC2;n gives a map Sn!KnC2;n.f /. Is this map
a non-trivial element of �nKnC2;n.f /?

For the last of the above questions, a theorem of Swarup’s [73] is relevant. He proves
that if Cf is the complement of a non-trivial co-dimension two knot f 2KnC2;n with
n> 2 then the knot longitude is a non-trivial element of �nCf .

The remainder of the survey will focus on the high co-dimension case: Kn;j for
n � j > 2. For references, Adachi’s survey has been around for a few years [1].
It focuses on topics such as the Whitney trick, and the Smale–Hirsch immersion
theorem. Skopenkov has a recent survey article [70] which is concerned with �0Kn;j .
Goodwillie, Klein and Weiss have recently put together a survey of what is known
about embedding spaces from the point of view of disjunction [24].

There have been computations of some of the groups �0Kn;j . From Proposition 3.9,
the first non-trivial homotopy-group of Kn;j is in dimension 2n� 3j � 3 (provided
2n� 3j � 3 � 0). Along the 2n� 3j � 3D 0 line there is �0K3;1 which is the free
commutative monoid on �0P , the isotopy-classes of prime long knots (see Schubert
[67]). Provided j > 1 and 2n� 3j � 3D 0, there are Haefliger’s computations [28]:

�0Kn;j '

�
Z j � 3.mod 4/

Z2 j � 1.mod 4/
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The generator being Haefliger’s Borromean rings construction [27], also sometimes
called the ‘trefoil’ [70]. The generator has also been described (Theorem 3.13) as
an iterated graphing construction applied to r , the resolution of an immersion of
R in Euclidean space, corresponding to the

N
chord-diagram (see Cattaneo, Cotta-

Ramusino and Longini [15]). More recently, another spinning construction involving r

has recently been developed by Roseman and Takase [62].

The work of Haefliger [28], Milgram [52], Kreck and Skopenkov [45] gives �0Kn;j

along the n� j > 2 part of the 2n� 3j � 3D�1 line. Their computations are:

�0Kn;j '

8̂̂<̂
:̂

0 j � 2 or 6.mod 4/

Z12 .n; j /D .7; 4/

Z4 j � 4.mod 8/; j � 12

Z2˚Z2 j � 0.mod 8/

The above results give the next corollary as a direct analogue to Proposition 3.9.

Corollary 5.13

� �6nK3nC4;2 is non-trivial and has Z2˚Z2 as a quotient for all n� 1.

� �6nC2K3nC5;2 is non-trivial and has Z4 as a quotient for all n � 0 (Z12 for
nD 0).

Question 5.14 What is the structure of the groups �2K5;2 and �6K7;2 . Further, find
explicit geometric representatives for the embeddings, in analogy to Theorem 3.13.

The technique of Haefliger [28] involves two main steps. The first step is the construc-
tion of an isomorphism �0Kn;j ' C

n�j
j where C

n�j
j is the group of concordance

classes of embeddings of Sj in Sn . This step is formally analogous to Propo-
sition 3.1. Using a Thom-type construction, Haefliger constructs an isomorphism
between C

n�j
j and a multi-relative homotopy group C n

j '�jC1.GISO;Gn�j / where
SO D lim

�!
.SO1! SO2! SO3! � � � / is the stable special-orthogonal group, Gn is

the space of degree 1 self-maps of Sn�1 , with G the analogous stable object, defined
via suspensions G D lim

�!
.G1!G2!G3! � � � /. This reduces the computation

of �0Kn;j to rather traditional difficult problems common to surgery theory [60]:
homotopy groups of spheres and orthogonal groups.

Takase [74] has recently proved that any embedding of S4k�1! S6k can be extended
to an embedding of .S2k �S2k/nD4k! S6k . Takase gives a rather explicit formula
for determining the isotopy class of an element of Emb.S4k�1;S6k/ that simplifies
Haefliger’s characteristic class computations [27].
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The work of Volic, Lambrechts and Turchin [75] gives the homology H�.Kn;1IQ/ for
n� 4 as the homology of a differential graded algebra, by showing the collapse of the
rational Vassiliev spectral sequence. Turchin has found a Poisson algebra structure for
this DGA [77; 76], which motivated the author’s construction of the 2–cubes action on
K3;1 . Salvatore [65], building on the work of Sinha [69] has recently constructed a
2–cubes action on Kn;1 for n� 4. The structure of Kn;1 and EC.1;Dn�1/ as 2–cubes
objects for n� 4 remains mysterious. One would hope that constructions having the
flavour of Mostovoy’s [55] ‘short rope’ spaces, or Anderson and Hsiang’s ‘bounded
embedding spaces’ [3] could give useful geometric models that one could use to get
homotopy-theoretic information on BjKn;j , B2Kn;1 , BjC1EC.j ;M /. Not only is
there a lack of proofs that these spaces are the appropriate iterated classifying spaces,
but, even if they were, its not clear how one could use such results to study the spaces
Kn;j .
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Math. Ann. 164 (1966) 353–371 MR0196754

[26] V Guillemin, A Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, N.J.
(1974) MR0348781

[27] A Haefliger, Knotted .4k�1/–spheres in 6k –space, Ann. of Math. .2/ 75 (1962)
452–466 MR0145539

Geometry & Topology Monographs, Volume 13 (2008)



80 Ryan Budney

[28] A Haefliger, Differential embeddings of Sn in SnCq for q > 2 , Ann. of Math. .2/ 83
(1966) 402–436 MR0202151

[29] A E Hatcher, Concordance spaces, higher simple-homotopy theory, and applications,
from: “Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ.,
Stanford, CA, 1976), Part 1”, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc.,
Providence, R.I. (1978) 3–21 MR520490

[30] A E Hatcher, A proof of a Smale conjecture, Diff.S3/' O.4/ , Ann. of Math. .2/ 117
(1983) 553–607 MR701256

[31] A E Hatcher, Topological moduli spaces of knots (2002)

[32] J Hillman, Algebraic invariants of links, Series on Knots and Everything 32, World
Scientific Publishing Co., River Edge, NJ (2002) MR1932169

[33] J A Hillman, Four-manifolds, geometries and knots, Geometry & Topology Mono-
graphs 5, Geometry & Topology Publications, Coventry (2002) MR1943724

[34] M W Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer, New
York (1976) MR0448362

[35] J F P Hudson, Embeddings of bounded manifolds, Proc. Cambridge Philos. Soc. 72
(1972) 11–20 MR0298679

[36] J F Hughes, P M Melvin, The Smale invariant of a knot, Comment. Math. Helv. 60
(1985) 615–627 MR826874

[37] K Igusa, The stability theorem for smooth pseudoisotopies, K–Theory 2 (1988) vi+355
MR972368

[38] S Kamada, Braid and knot theory in dimension four, Mathematical Surveys and
Monographs 95, American Mathematical Society, Providence, RI (2002) MR1900979

[39] A Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel (1996) MR1417494
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