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The homology of spaces of polynomials
with roots of bounded multiplicity

YASUHIKO KAMIYAMA

Let P l
k;n

be the space consisting of monic complex polynomials f .z/ of degree k

and such that the number of n–fold roots of f .z/ is at most l . In this paper, we
determine the integral homology groups of P l

k;n
.

55P35; 55R20, 58D15

1 Introduction

In [1], Arnol’d studied a space P l
k;n

consisting of monic complex polynomials f .z/ of
degree k and such that the number of n–fold roots of f .z/ is at most l . In particular,
he calculated the first five nontrivial integral homology groups of P l

k;n
. The purpose

of this paper is, using another approach, to determine H�.P
l
k;n
IZ/ completely.

Let Ck.C/ denote the configuration space of unordered k –tuples of distinct points in
C. The study of the topology of Ck.C/ originated in [1]. For that purpose, Arnol’d
performed an induction for P l

k;n
with making k larger and l smaller while n being

fixed. Then one obtains information on P l
k;n

for all k , n and l . In particular, setting
n D 2 and l D 0, we obtain information on Ck.C/. (Strictly speaking, Arnol’d
considered the complement S2k �P l

k;n
instead of P l

k;n
.)

Using this induction, Arnol’d calculated the first five nontrivial integral homology
groups of P l

k;n
. (See Theorem 3.1 for nD 2.) But because of problems involved in the

induction, it seems difficult to calculate further homology groups. Then we naturally
encounter the following problem: how to determine H�.P

l
k;n
IZ/.

The purpose of this paper is to give an answer to the problem. Our main results will be
stated in Section 3. (See Theorems 3.3 and 3.7.) Here we summarize how the groups
H�.P

l
k;n
IZ/ are determined.

Theorem 1.1 Let J l.S2n�2/ be the l -th stage of the James construction which
builds �S2n�1 , and let W l.S2n�2/ be the homotopy theoretic fiber of the inclusion
J l.S2n�2/ ,!�S2n�1 . Then:
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(i) (a) The homomorphism

H�.P
l
k;nIZ/!H�.P

l
kC1;nIZ/

which is induced from the natural inclusion P l
k;n

,! P l
kC1;n

is a monomor-
phism onto a direct summand.

(b) There is a stable homotopy equivalence

P l
1;n 's

W l.S2n�2/:

(ii) The homology groups H�.W
l.S2n�2/IZ/ are determined. In particular, all

higher p–torsions are determined for all primes p .

(iii) For each x 2 H�.W
l.S2n�2/IZ/, the least k such that x is contained in

H�.P
l
k;n
IZ/ is determined.

Remark 1.2 For l D 0, Theorem 1.1 is already well-known. First, about Theorem
1.1 (i) (a), the inclusion P0

k;n
,! P0

kC1;n
, which is called a stabilization map, was

constructed by Guest, Kozlowski and Yamaguchi in [7; 8]. Moreover, the induced
homomorphism H�.P

0
k;n
IZ/! H�.P

0
kC1;n

IZ/ was studied in [8]. Second, about
Theorem 1.1 (i) (b) and (iii) for l D 0, Guest, Kozlowski and Yamaguchi [7] and
independently Kallel [9] established a more precise result. (See Theorem 2.2.)

Finally, we note that the homology groups H�.Ck.C/IZ=p/ were determined later,
using other approaches, by Fuks for p D 2 [6] and by F Cohen for odd primes p [3].
F Cohen also determined Steenrod operations.

This paper is organized as follows. In Section 2 we summarize previous results on
P l

k;n
which imply Theorem 1.1 (i). In Section 3 we first recall Arnol’d’s results in

Theorem 3.1. Our main result for nD 2 is Theorem 3.3, which generalizes Theorem
3.1. Theorem 3.7 is a generalization of Theorem 3.3 for general n.

The author would like to thank the referee for invaluable suggestions.

2 Previous results

As in Section 1, we set

P l
k;n D ff .z/ W f .z/ is a monic complex polynomial of degree k

and such that the number of n–fold roots of f .z/ is at most lg:

Since P l
k;n
D Ck for k < n.l C 1/, we can assume that k � n.l C 1/.
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On the other hand, let Ratk.CPn�1/ denote the space of based holomorphic maps of
degree k from the Riemannian sphere S2 to the complex projective space CPn�1 .
The basepoint condition we assume is that f .1/D Œ1; : : : ; 1�. Such holomorphic maps
are given by rational functions:

Ratk.CPn�1/D f.p1.z/; : : : ;pn.z// W each pi.z/ is a monic degree–k polynomial

and such that there are no roots common to all pi.z/g:

The study of the topology of Ratk.CPn�1/ originated in Segal’s paper [13], where
it is proved that the natural inclusion Ratk.CPn�1/ ,! �2

k
CPn�1 ' �2S2n�1 is a

homotopy equivalence up to dimension k.2n� 3/.

Later, F Cohen et al determined the stable homotopy type of Ratk.CPn�1/ as follows:

Theorem 2.1 [4; 5] Let

�2S2n�1
'
s

_
1�j

Dj .S
2n�3/

be Snaith’s stable splitting. Then there is a stable homotopy equivalence

Ratk.CPn�1/'
s

k_
jD1

Dj .S
2n�3/:

In particular, combining Theorem 2.1 for n D 2 with the stable splitting of Ck.C/

(Brown and Peterson [2]), we have

(2–1) Ck.C/'
s

RatŒk2 �
.CP1/:

Guest, Kozlowski and Yamaguchi and independently Kallel generalized (2–1) as follows:

Theorem 2.2 [7; 9] For n� 3, there is a homotopy equivalence

P0
k;n ' RatŒkn �

.CPn�1/:

Remarks 2.3 (i) It is proved by Guest, Kozlowski and Yamaguchi in [8] that the
(modified) jet map P0

k;n
! Ratk.CPn�1/ defined by

f .z/ 7! .f .z/; f .z/Cf 0.z/; : : : ; f .z/Cf .n�1/.z//
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is a homotopy equivalence up to dimension .2n� 3/
h

k
n

i
if n � 3, and a homology

equivalence up to dimension .2n� 3/
h

k
n

i
if nD 2.

(ii) Kallel [10] generalized P0
k;n

as follows: let Fd .Rm; k/ be the space of ordered
k –tuples of vectors in Rm so that no vector occurs more than d times in the k –tuple.
We set C d .Rm; k/ D Fd .Rm; k/=†k . Then C 1.Rm; k/ is the usual configuration
space and C n�1.R2; k/ Š P0

k;n
. Recall that using F1.Rm; k/, May, Milgram and

Segal constructed a combinatorial model for �m†mX , where X is a connected CW–
complex. Using Fd .Rm; k/, Kallel [10] generalized the model for general d . He also
considered the case when X is disconnected. In particular, setting mD 2, d D n� 1

and X D S0 in his result, he recovered the homotopy and homology equivalences
P0
1;n '�

2S2n�1 for n� 3 and nD 2, respectively. (See Theorem 2.2 and (2–1) for
these equivalences.)

(iii) For n� 2, a stable homotopy equivalence

(2–2) P0
k;n 's

RatŒkn �
.CPn�1/

was proved by Vassiliev in [14]. Theorem 2.2 is a stronger version of (2–2) for n� 3.

We consider generalizations of Theorems 2.1 and 2.2. We set

X l
k;n D f.p1.z/; : : : ;pn.z// W each pi.z/ is a monic degree–k polynomial

and such that there are at most l roots common to all pi.z/g:

Theorem 2.4 (Kamiyama [11]) Let J l.S2n�2/ denote the l -th stage of the James
construction which builds �S2n�1 , and let W l.S2n�2/ be the homotopy theoretic
fiber of the inclusion J l.S2n�2/ ,!�S2n�1 . Let

W l.S2n�2/'
s

_
1�j

Dj�
l.S2n�2/

be a generalization of Snaith’s stable splitting. (See Wong [15] and Kamiyama [11].)
Then, there is a stable homotopy equivalence

X l
k;n 's

k_
jD1

Dj�
l.S2n�2/:

Theorem 2.5 (Kamiyama [12]) For l � 1 and n� 2, there is a homotopy equivalence

P l
k;n 'X l

Œkn �;n
:

Geometry & Topology Monographs, Volume 13 (2008)



The homology of spaces of polynomials 285

Note that Theorem 1.1 (i) are consequences of Theorems 2.4 and 2.5.

3 The main results

In order to simplify notation, we first consider the case nD 2, which is of particular
interest to us. Since P l

k;2
D Ck for k < 2l C 2, we assume that k � 2l C 2.

Arnol’d proved the following:

Theorem 3.1 [1]

(i) For 1� j � 2l , we have Hj .P
l
k;2
IZ/D 0.

(ii) For 2l C 1� j � 2l C 5, the groups Hj .P
l
k;2
IZ/ are cyclic and the orders are

given by the following table.

Table 1: The orders of the groups Hj .P
l
k;2
IZ/ .2l C 1� j � 2l C 5/

k n j 2l C 1 2l C 2 2l C 3 2l C 4 2l C 5

2l C 2; 2l C 3 1 0 0 0 0

2l C 4; 2l C 5 1 l C 2 0 0 0

2l C 6; 2l C 7 1 l C 2 2=.l C 1/ .l C 3/=2 0

2l C 8; 2l C 9 1 l C 2 2=.l C 1/ ..l C 3/=2/.2=.l C 1// 3=.l C 1/

2l C 10; 2l C 11 1 l C 2 2=.l C 1/ ..l C 3/=2/.2=.l C 1// 6=.l C 1/
:::

:::
:::

:::
:::

:::

1 1 l C 2 2=.l C 1/ ..l C 3/=2/.2=.l C 1// 6=.l C 1/

Here we introduce the notation

a=b D
a

gcd.a; b/
;

where gcd.a; b/ is the greatest common divisor of the integers a and b .

In order to state our main results, we prepare some notation.

Definition 3.2 Let p be a prime.

(i) We write l as l D pmq such that

q D

NX
�D0

a�p
� ;

where 0� a� � p� 1 and aN 6D 0, a0 6D 0.
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(ii) For q in (i), we consider terms of the form

.p� 1/

iX
�Dj

p� :

We take such terms as large as possible, whence we have a� Dp�1 .j � � � i/

and aiC1 6D p � 1, aj�1 6D p � 1. Assume that all possible pairs .i; j / for q

are given by
.i˛; j˛/; 1� ˛ � r;

where we arrange them as j˛ � i˛C1C 2.

(iii) For 1� ˛ � r , we set

u˛ D

NX
�Di˛C1

a�p
� :

(iv) We set
d˛ D 2

�
pmu˛CpmCi˛C1

� 1
�
:

(v) We set
�˛ D i˛ � j˛C 2:

Our main result for nD 2 is then:

Theorem 3.3 Let p be a prime. Then all higher p–torsions in H�.W
l.S2/IZ/ are

given as follows.

(i) If m� 1, then
(a) For 1� ˛ � r , Hd˛ .W

l.S2/IZ/ contains Z=p�˛ as a direct summand.
(b) For each ˛ , the least k such that the higher p–torsion in (a) appears as a

direct summand in Hd˛ .P
l
k;2
IZ/ is

k D d˛C 2:

(ii) If mD 0, then we omit the case ˛ D r from (i).

Remark 3.4 We can determine all p–torsions of order exactly p in H�.P
l
k;2
IZ/

from the following facts: all p–torsions in H�.W
l.S2/IZ/ of order exactly p are

determined from the Bockstein operation on H�.W
l.S2/IZ=p/, and H�.P

l
k;2
IZ=p/

is a subspace of H�.W
l.S2/IZ=p/ (see Proposition 3.6). Hence using Theorem 3.3,

we know the groups H�.P
l
k;2
IZ/ completely.
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Example 3.5 We consider the case

l D pm.p� 1/

0@ i1X
�Dj1

p� C

i2X
�Dj2

p�

1A :
(i) If m� 1, then there are 2 higher p–torsions:

(a) For k � 2pmCi1C1 ,

H2.pmCi1C1�1/.P
l
k;2IZ/

contains Z=pi1�j1C2 as a direct summand.
(b) For k � 2pm.pi1C1�pj1 Cpi2C1/,

H2pm.pi1C1�pj1Cpi2C1/�2.P
l
k;2IZ/

contains Z=pi2�j2C2 as a direct summand.

(ii) If mD 0, then we omit the case (b) from (i).

Proof of Theorem 3.3 (i) In order to prove (a), we determine H�.W
l.S2/IZ/ by

the following 2 steps.

(1) Using the structure of H�.W
l.S2/IZ=p/, we determine the homological di-

mensions which have higher p–torsions.

(2) Using the cohomology Serre spectral sequence for a fibration with coefficients
in Z.p/ , we determine the higher p–torsions.

(1) The structure of H�.W
l.S2/IZ=p/ was determined in [11] from the mod p Serre

spectral sequence for the fibration

�2S3
!W l.S2/! J l.S2/:

Let x 2 H2.J
l.S2/IZ=p/ and � 2 H1.�

2S3IZ=p/ be the generators and we write
Qt

1
DQ1 � � �Q1 (D t -times Q1 ). In H�.W

l.S2/IZ=p/, the cases that the Bockstein
operation is not clear are given as follows:

(3–1) xpmu˛ ˝Q
mCi˛C1
1

.�/! xpmv˛ ˝ˇQ
mCj˛
1

.�/; 1� ˛ � r;

where we set

v˛ D

NX
�Dj˛

a�p
� :
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288 Yasuhiko Kamiyama

(Note that by Definition 3.2, we have v˛ D u˛ C
Pi˛
�Dj˛

.p � 1/p� . Note also that
v˛ D u˛C1 for p D 2.) Since

deg.xpmv˛ ˝ˇQ
mCj˛
1

.�//D d˛;

there is a higher p–torsion in Hd˛ .W
l.S2/IZ/. This completes (1).

(2) Consider the following homotopy commutative diagram:

W l.S2/ ����! QJ l.S2/ ����! �S3h3i

k

??y ??y
W l.S2/ ����! J l.S2/ ����! �S3??y ??y ??y
� ����! K.Z; 2/ ����! K.Z; 2/

where QJ l.S2/ and �S3h3i are the homotopy theoretic fibers of the second and
third columns respectively. Then the first row is a fibration and we consider the
cohomology Serre spectral sequence for the fibration with coefficients in Z.p/ . Note that
H d˛C1.W l.S2/IZ.p// is determined if we calculate the cokernels of the differentials

(3–2) d WE2ps;d˛�2psC1
!Ed˛C2;0

for all possible s � 1. Since Hq.W
l.S2/IZ.p//D 0 for q � 2l , we have the following

restriction on s : d˛ � 2psC 1� 2l C 1, that is,

(3–3) pmCj˛ � 1�

mCj˛�2X
�D0

b�p
�
� ps;

where 0� b� � p� 1.

Let y2ps 2H 2ps.�S3h3iIZ.p// be a generator. Then a generator of E2ps;d˛�2psC1

is mapped by d in (3–2) to y2psyd˛�2psC2 . It is easy to see that

(3–4) y2psyd˛�2psC2 D

�
pmu˛CpmCi˛C1

ps

�
yd˛C2:

Consider the p–power component of the prime decomposition of the binomial co-
efficient in (3–4). Using (3–3), we see that the component is smallest when ps D

tpmCj˛�1 .1� t � p� 1/ such that the p–power is pi˛�j˛C2 . Hence

H d˛C1.W l.S2/IZ.p//D Z=p�˛

and Theorem 3.3 (i) (a) follows.
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For Theorem 3.3 (i) (b), we have the following:

Proposition 3.6 In H�.P
l
k;2
IZ=p/, we define the weights of the homology classes

x and � (see (3–1)) to be 2. Then H�.P
l
k;2
IZ=p/ is isomorphic to the subspace of

H�.W l.S2/IZ=p/ spanned by monomials of weight � k .

Proof The proposition is an easy consequence of Theorems 2.4 and 2.5. Note that it
is reasonable to define the weights of x and � to be 2 by the following reason: we have
H�.W

l.S2/IQ/D
V
.xl ˝ �/. Since P l

2lC2;2
' S2lC1 , the weight of xl ˝ � must be

2l C 2.

Since the weight of xpmv˛ ˝ ˇQ
mCj˛
1

.�/ in (3–1) is d˛ C 2, Theorem 3.3 (i) (b)
follows.

(ii) For mD 0 and ˛ D r , the left-hand side of (3–1) is the mod p reduction of the
generator of H2lC1.W

l.S2/IZ/ D Z and the right-hand side is 0. Hence we must
omit this case from (i). This completes the proof of Theorem 3.3.

Finally we generalize Theorem 3.3 for general n.

Theorem 3.7 We keep the notation of Definition 3.2 except that we generalize d˛ in
(iv) as

dn;˛ D 2.n� 1/pm.u˛Cpi˛C1/� 2:

Then:

(1) Theorem 3.3 (i) (a) is generalized to the assertion that Hdn;˛
.W l.S2n�2/IZ/

contains Z=p�˛ as a direct summand.

(2) About Theorem 3.3 (i) (b), the least k such that the higher p–torsion in the
above (1) appears as a direct summand in Hdn;˛

.P l
k;n
IZ/ is

k D
n.dn;˛C 2/

2.n� 1/
:

(3) Theorem 3.3 (ii) holds under these modifications.

Proof About x and � in (3–1), we generalize that x 2H2n�2.J
l.S2n�2/IZ=p/ and

� 2H2n�3.�
2S2n�1IZ=p/ such that the weights of these elements are n. Theorem

3.7 is clear from this.

Geometry & Topology Monographs, Volume 13 (2008)



290 Yasuhiko Kamiyama

References
[1] V I Arnol’d, Certain topological invariants of algebrac functions, Trudy Moskov. Mat.
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