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Twisted Morita–Mumford classes on braid groups

NARIYA KAWAZUMI

Evaluating the twisted Morita–Mumford classes hp (Kawazumi [12]) on the Artin
braid group Bn , we give the stable algebraic independence of the hp ’s on the auto-
morphism group of the free group, Aut.Fn/ . This is sharper than the results obtained
by restricting them to the mapping class group (Kawazumi [9]).

20F36; 14H15, 20J06, 20F28, 32G15, 57R20, 57M50

Introduction

In the cohomological study of the mapping class group for a surface, the Morita–
Mumford classes, ei D .�1/iC1�i , i � 1, [19; 17] play some important roles. As
was proved by Miller [16] and Morita [17] independently, they are algebraically
independent in the stable range � < 2

3
g . Madsen and Weiss [15] proved that the

rational stable cohomology algebra of the mapping class groups, H�.M1IQ/, is
generated by the Morita–Mumford classes. The Morita–Mumford classes have twisted
variants, mi;j 2 H 2iCj�2.Mg;1I

Vj
H /, i; j � 0, introduced by the author [11].

Here we denote by †g;1 a 2–dimensional oriented compact connected C1 manifold
of genus g with 1 boundary component, Mg;1 its mapping class group, Mg;1 WD

�0Diff.†g;1; id on @†g;1 /, and H the integral first homology group of the surface
†g;1 . The mapping class group Mg;1 acts on H in an obvious way. The twisted
variants also satisfy the algebraic independence. More precisely, the algebra
H�.Mg;1I

V�
H /˝Q is the polynomial algebra in the set fmi;j I i � 0; j � 1; and iC

j � 2g over the algebra H�.Mg;1IQ/ in the range where the total degree � 2
3
g

(Kawazumi [9, Theorem 1.C].) Hence, from the theorem of Madsen and Weiss [15]
stated above, the algebra H�.Mg;1I

V�
H /˝Q is stably isomorphic to the polynomial

algebra in the set fmi;j I i � 0; j � 0; and i C j � 2g over Q. Similar results hold for
any other symplectic coefficients (Kawazumi [9, Theorem 1.B].) Furthermore all the
cohomology classes on the mapping class group obtained by contracting the coefficients
of the twisted ones using the intersection pairing H˝2! Z are exactly the algebra
generated by the (original) Morita–Mumford classes ei ’s (Morita [18], Kawazumi and
Morita [13]).
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Some of the twisted ones have the advantage over the original ones of being defined
on the automorphism group of a free group, which has the mapping class group and
the braid group as proper subgroups. Let n� 2 be an integer, Fn a free group of rank
n with free basis x1;x2; : : : ;xn

Fn D hx1;x2; : : : ;xni;

and Aut.Fn/ the automorphism group of the group Fn . The Dehn–Nielsen theorem
tells us the natural action of the group Mg;1 on the free group �1.†g;1/ of rank 2g

induces an injective homomorphism Mg;1!Aut.F2g/. In view of a theorem of Artin
[2] the braid group Bn of n strings is embedded into the group Aut.Fn/.

Now we denote by H and H� the first integral homology and cohomology groups of
the group Fn

H WDH1.FnIZ/D Fn
abel
D Fn=ŒFn:Fn� and H� WDH 1.FnIZ/D Hom.H;Z/;

respectively, on which the automorphism group Aut.Fn/ acts in an obvious way. We
write Œ
 � WD 
 mod ŒFn;Fn� 2H for 
 2 Fn , and Xi WD Œxi � 2H for i , 1� i � n. In
[12] we introduced cohomology classes

hp 2H p.Aut.Fn/IH
�
˝H˝.pC1// and hp 2H p.Aut.Fn/IH

˝p/

for p � 1. Restricted to the mapping class group Mg;1 they coincide with the twisted
Morita–Mumford classes

.pC 2/! hpjMg;1
Dm0;pC2 2H p.Mg;1IH

˝.pC2//; and

p! hpjMg;1
D�m1;p 2H p.Mg;1IH

˝p/:

Here H and H� are isomorphic to each other as Mg;1 modules because of the
intersection pairing of the surface †g;1 . The class p!hp can be regarded as an element
in H p.Aut.Fn/I

Vp
H /.

In this note we confine ourselves to studying the behavior of hp ’s restricted to the braid
group Bn , and consider the rational coefficients

HQ WDH ˝Z Q and H�Q WDH�˝Z Q:

In this paper we prove the following result:

Theorem 1 The cohomology classes hp ’s are algebraically independent in the algebra
H�.BnI

V�
HQ/ in the range where the total degree � n.
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Here the total degree of hp is defined to be 2p . Theorem 1 implies the algebraic
independence on the automorphism group Aut.Fn/. This is sharper than that obtained
by restricting them to the mapping class group Mg;1 [9, Theorem 1.C], where the
range is given by the inequality the total degree � 2

3
g D 1

3
n.

Theorem 1 was announced in [10]. Its proof given in Section 3 is based on some kind
of primitiveness of the hp ’s (Proposition 1.2) and the evaluation of hn�1 on the pure
braid group of n strings, Pn (Lemma 2.4). In Section 4 we will give some remarks on
the cohomology of the automorphism group Aut.Fn/.

1 Twisted Morita–Mumford classes on the automorphism
group Aut.Fn/

Throughtout this paper we denote by C �.GIM / the normalized standard complex
of a group G with values in a G–module M , and use the Alexander–Whitney cup
product [W C �.GIM1/˝C �.GIM2/! C �.GIM1˝M2/. Moreover we denote by
Zp.GIM /, p � 0, the p–cocycles in the cochain complex C �.GIM /.

Now we recall the definition of the twisted cohomology classes hp and hp on the
automorphism group Aut.Fn/ for p � 1. The semi-direct product

An WD Fn Ì Aut.Fn/

admits an extension of groups

(1–1) Fn
�
!An

�
!Aut.Fn/

given by �.
 / D .
; 1/ and �.
; '/ D ' for 
 2 Fn and ' 2 Aut.Fn/. The map
k0 WAn!H , .
; '/ 7! Œ
 �, satisfies the cocycle condition. We write also k0 for the
cohomology class Œk0� 2H 1.AnIH /. For each p � 1 we define hp by the image of
the .pC1/-st power of the cohomology class k0 under the Gysin map of the extension
(1–1)

(1–2) hp WD �].k0
˝.pC1// 2H p.Aut.Fn/IH

�
˝H˝.pC1//

[12]. Contracting the coefficients by the GL.H /–homomorphism

(1–3) rpW H
�
˝H˝.pC1/

!H˝p; f ˝v0˝v1˝� � �˝vp 7! f .v0/v1˝� � �˝vp;

we define

(1–4) hp WD rp�.hp/ 2H p.Aut.Fn/IH
˝p/:
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The p -th exterior power k0
p
D p!k0

˝p can be regarded as a cohomology class with
coefficients in

Vp
H . Hence, if we consider the rational coefficients HQ , we may

regard hp as a cohomology class in H p.Aut.Fn/I
Vp

HQ/.

A Magnus expansion � of the free group Fn gives an explicit cocycle representing the
class hp . The completed tensor algebra generated by H , bT D bT .H / WD

Q1
mD0H˝m ,

has a decreasing filtration of two-sided ideals bT p WD
Q

m�pH˝m , p � 1. It should

be remarked that the subset 1C bT 1 is a subgroup of the multiplicative group of the
algebra bT . We call a map � W Fn! 1C bT 1 a Magnus expansion of the free group Fn ,
if � W Fn! 1C bT 1 is a group homomorphism, and if �.
 /� 1C Œ
 � .mod bT 2/ for
any 
 2 Fn . We write �.
 /D

P1
mD0 �m.
 /, �m.
 / 2H˝m . The m-th component

�mW Fn ! H˝m is a map, but not a group homomorphism. A Magnus expansion
stdW Fn ! 1C bT 1 is defined by std.xi/ WD 1C Xi , 1 � i � n. Here we denote
Xi WD Œxi � 2 H , the homology class of the generator xi . We call it the standard
Magnus expansion. As is described in classical references, the value std.
 / for any
word 
 2 Fn is explicitly computed by means of Fox’ free differentials. All the results
of this paper can be derived from the expansion std.

We define a map ��
1
W Aut.Fn/!H�˝H˝2 by

(1–5) ��1 .'/Œ
 �D �2.
 /� j'j
˝2�2.'

�1.
 // 2H˝2

for 
 2Fn and ' 2Aut.Fn/. Here j'j 2GL.H / is the automorphism of H DFn
abel

induced by ' . This map ��
1

satisfies the cocycle condition [12, Lemma 2.1]. Now we
introduce a GL.H /–homomorphism

&pW .H
�
˝H˝2/˝p

DHom.H;H˝2/˝p
!Hom.H;H˝.pC1//DH�˝H˝.pC1/

for each p � 1. If p � 2, we define

&p.u.1/˝u.2/˝ � � �˝u.p�1/˝u.p//(1–6)

WD

�
u.1/˝ 1H

˝.p�1/
�
ı

�
u.2/˝ 1H

˝.p�2/
�
ı � � � ı

�
u.p�1/˝ 1H

�
ıu.p/;

where u.i/ 2 Hom.H;H˝2/DH�˝H˝2 , 1� i � p . In the case p D 1, we define
&1 WD 1H �˝H˝2 . Then we have:

Theorem 1.1 [12, Theorem 4.1]

hp D &p�.Œ�
�
1 �
˝p/ 2H p.Aut.Fn/IH

�
˝H˝.pC1//

for any Magnus expansion � and each p � 1. In the case p D 1 we have Œ��
1
�D h1 2

H 1.Aut.Fn/IH
�˝H˝2/.
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Some kind of primitiveness of the cohomology classes hp and hp follows from
the theorem. We write simply An WD Aut.Fn/ for the remainder of the section.
Suppose n1 C n2 � n. Let An2

act on the words in the letters xn1C1;xn1C2;

: : : ;xn1Cn2
in an obvious way. Then we have a natural homomorphism

�D �n1;n2
W An1

�An2
!An:

We denote by $1W An1
�An2

! An1
and $2W An1

�An2
! An2

the first and the
second projections of the product An1

�An2
, respectively, and by H.n1/ , H.n2/ and

H.n�n1�n2/ the submodules of H spanned by fX1; : : : ;Xn1
g, fXn1C1; : : : ;Xn1Cn2

g

and fXn1Cn2C1; : : : ;Xng, respectively. Then we have a direct-sum decomposition
H DH.n1/˚H.n2/˚H.n�n1�n2/ , and can consider the map

$k
�
W H�.Ank

IH�.nk/
˝H

˝.pC1/

.nk/
/!H�.An1

�An2
IH�˝H˝.pC1//

for k D 1 and 2. For any p � 1 we have:

Proposition 1.2
(1) ��hp D$1

�hpC$2
�hp 2H p.An1

�An2
IH�˝H˝.pC1//,

(2) ��hp D$1
�hpC$2

�hp 2H p.An1
�An2

IH˝p/.

Proof Using the standard expansion std, we write simply

� .k/ WD$k
��std

1 2Z1.An1
�An2

IH�˝H˝2/:

Clearly we have std.
1/ 2
Q1

pD0 H.n1/
˝p
� bT for any word 
1 in the letters

x1; : : : ;xn1
. Similar conditions hold for any word 
2 in the letters xn1C1; : : : ;xn1Cn2

and any 
3 in xn1Cn2C1; : : : ;xn . Hence, from the definition of ��
1

(1–5), we have

���std
1 D � .1/C � .2/ 2Z1.An1

�An2
IH�˝H˝2/:

If we use the GL.H /–homomorphism &2W .H
�˝H˝2/˝2!H�˝H˝3 in (1–6),

then we have

(1–7) &2�.�
.1/� .2//D &2�.�

.2/� .1//D 0 2Z2.An1
�An2

IH�˝H˝3/:

In fact, f .u/D 0 for any f 2H�
.n1/

and u 2H.n2/ and vice versa. From Theorem
1.1 follows

��hp D &p�.�
�Œ�std

1
�˝p/D &p�..�

.1/C � .2//˝p/

D &p�..�
.1//˝p/C &p�..�

.2//˝p/D$1
�hpC$2

�hp:

Here &p� of each mixed term in � .1/ and � .2/ vanishes by (1–7). Applying rp� to (1),
we deduce (2). This completes the proof of the proposition.
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2 Evaluation on the Artin braid groups

The n-th symmetric group Sn acts on the space Cn by permuting the components.
The open subset

Yn WD f.z1; z2; : : : ; zn/ 2 Cn
I zi ¤ zj for i ¤ j g

is stable under the action of the group Sn . By definition, the Artin braid group of n

strings, Bn , is the fundamental group of the quotient space Yn=Sn , Bn WD�1.Yn=Sn/.
As was shown by Artin [2], the group Bn admits a presentation

generators: �i ; 1� i � n� 1;

relations: �i�j D �j�i ; if ji � j j � 2;(2–1)

�i�iC1�i D �iC1�i�iC1; for 1� i � n� 2.

The pure braid group of n strings, Pn , is defined to be the fundamental group of the
space Yn , Pn WD �1.Yn/. We have a natural extension of groups

Pn! Bn!Sn:

As is known, Ai;j , 1� i < j � n, given by

Ai;j WD �j�1�j�2 � � � �iC1�i
2�iC1

�1
� � � �j�2

�1�j�1
�1

can serve as a generating system of the group Pn . For details, see Birman [3].

The braid group Bn admits a natural homomorphism into the group Aut.Fn/, �W Bn!

Aut.Fn/. To recall how to construct it, we consider an action of the group Sn on the
space YnC1 � CnC1 D Cn �C given by

�.z1; : : : ; zn; znC1/D .z��1.1/; : : : ; z��1.n/; znC1/

for � 2Sn . We denote by cBn the fundamental group of the quotient space YnC1=Sn ,cBn WD �1.YnC1=Sn/.

The forgetful map YnC1! Yn , .z1; : : : ; zn; znC1/ 7! .z1; : : : ; zn/, induces a fibration

C n fn pointsg ! YnC1=Sn! Yn=Sn

with a section sW Yn=Sn ! YnC1=Sn given by .z1; : : : ; zn/ 7! .z1; : : : ; zn;
1
n

Pn
iD1zi C

Pn
jD1jzj �

1
n

Pn
iD1zi j/ (Arnol’d [1]). This fibration with the section

s induces an extension of groups

(2–2) Fn
�
!cBn

�
!Bn
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with a split homomorphism sW Bn!
cBn . Thus we obtain a morphism of extensions

of groups

(2–3)

Fn ����!
cBn ����! Bn


 b�??y �

??y
Fn ����! An ����! Aut.Fn/:

The homomorphisms � and b� are explicitly given by

�.�.x/.
 //D s.x/
 s.x/�1b�.�.
 /s.x//D .
; �.x// 2 Fn Ì Aut.Fn/DAn

for x 2 Bn and 
 2 Fn . The group cBn is embedded into BnC1 in an obvious way.
Then the homomorphisms s and � are described as

s.�i/D �i for 1� i � n� 1,(2–4)

�.xj /D �n�n�1 � � � �jC1�j
2�jC1

�1
� � � �n�1

�1�n
�1

DAj ;nC1 for 1� j � n

in terms of the presentation (2–1). So the homomorphism � is explicitly given by

(2–5) �.�i/.xj /D

8̂<̂
:

xiC1; if j D i ,

xiC1
�1xixiC1; if j D i C 1,

xj ; otherwise.

We now evaluate the cohomology classes h1 and hn�1 on the braid group Bn . Here
we use the standard Magnus expansion stdW Fn! 1C bT 1 introduced in Section 1.
For the rest of this section we write simply k0 , �1 , hp and hp for b� �k0 , ���std

1
,

��hp and ��hp , respectively. Let fligniD1
�H� denote the dual basis of fXig

n
iD1
D

fŒxi �g
n
iD1
�H .

Lemma 2.1

�1.�i/D li ˝ .Xi ˝XiC1�XiC1˝Xi/ 2H�˝H˝2

Proof From (1–5)

�1.�i/D
Xn

jD1
lj ˝ .std2.xj /� j�i j

˝2std2.�i
�1.xj ///

D�li ˝j�i j
˝2std2.�i

�1.xi//� liC1˝j�i j
˝2std2.�i

�1.xiC1//

D�li ˝j�i j
˝2std2.xixiC1xi

�1/� liC1˝j�i j
˝2std2.xi/

D�li ˝j�i j
˝2std2.xixiC1xi

�1/:

Geometry & Topology Monographs, Volume 13 (2008)



300 Nariya Kawazumi

On the other hand, we have

std2.xixiC1xi
�1/DXi ˝XiC1�XiC1˝Xi :

In fact, Xi ˝ XiC1 D std2.xixiC1/ D std2.xixiC1xi
�1xi/ D std2.xixiC1xi

�1/C

std2.xi/CXiC1˝XiD std2.xixiC1xi
�1/CXiC1˝Xi . Therefore we obtain �1.�i/D

�li˝j�i j
˝2.Xi˝XiC1�XiC1˝Xi/D�li˝ .XiC1˝Xi �Xi˝XiC1/, as was to

be shown.

The pure braid group Pn acts on the homology H trivially. Hence, from [12, Theorem
3.1], the restriction of �1 to Pn does not depend on the choice of Magnus expansions.

Lemma 2.2
�1.Ai;j /D .li � lj /˝ .Xi ˝Xj �Xj ˝Xi/

Proof Recall the map �1 satisfies the cocycle condition on the automorphism group
Aut.Fn/. When we set 
 WD �j�1�j�2 � � � �iC1 , we have Ai;j D 
�i

2
�1 , so that

�1.Ai;j /

D �1.
�i
2
�1/D �1.
 /C 
�1.�i

2/C 
�i
2�1.


�1/

D �1.
 /C 
�1.�i
2/C 
�1.


�1/D �1.1/C 
�1.�i
2/D 
�1.�i

2/

D 
 .�1.�i/C �i�1.�i//

D 
 .li ˝ .Xi ˝XiC1�XiC1˝Xi//C 
�i.li ˝ .Xi ˝XiC1�XiC1˝Xi//

D 
 ..li � liC1/˝ .Xi ˝XiC1�XiC1˝Xi//

D .li � lj /˝ .Xi ˝Xj �Xj ˝Xi/;

as was to be shown.

To prove the nontriviality of hn�1 on the group Bn , we recall some basic facts on the
cohomology of the pure braid group Pn . The space Yn is an Eilenberg–MacLane space
of type .Pn; 1/. The subspace Yn\fz1C � � �C zn D 0g is a deformation retract of the
space Yn and a Stein manifold of complex dimension n� 1. Hence the cohomological
dimension of the group Pn , cdPn , is not greater than n�1. Let A�.Yn/ be the algebra
of all the complex-valued differential forms on the space Yn . As was shown by Arnol’d
[1], the Z–subalgebra generated by the 1–forms

!i;j WD
1

2�
p
�1

dzi � dzj

zi � zj
; 1� i < j � n;

is isomorphic to the cohomology algebra H�.YnIZ/DH�.PnIZ/. Especially in the
case �D 1, fŒ!i;j �g1�i<j�n is a Z–free basis of H 1.PnIZ/, so that fŒAi;j �g1�i<j�n

is a Z–free basis of H1.PnIZ/D Pn
abel .
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Lemma 2.3

(1) k0
n
¤ 0 2H n.YnC1I

Vn
HQ/, where PnC1 D �1.YnC1/ is regarded as a sub-

group of cBn D �1.YnC1=Sn/.

(2) hn�1 ¤ 0 2H n�1.PnIHQ
�
˝
Vn

HQ/.

Proof (1) From (2–3) and (2–4) we have

k0.Ai;j /D

(
0; if i < j � n,

Xi ; if i < j D nC 1,

that is
k0 D

Xn

iD1
!i;nC1˝Xi 2H 1.YnC1IH /:

If we restrict the n–form

!1;nC1!2;nC1 � � �!n;nC1 D .1=2�
p
�1/n

Yn

iD1
.dzi � dznC1/=.zi � znC1/

to the subspace YnC1\fznC1D 0g, then we obtain the non-zero n–form .1=2�
p
�1/nQn

iD1.dzi=zi/. Hence the cohomology class

k0
n
D n!!1;nC1!2;nC1 � � �!n;nC1X1 ^X2 ^ � � � ^Xn 2H n.YnC1I

^n
HQ/

does not vanish, as was to be shown.

(2) Since cdPn � n� 1, the Gysin map of the extension

Fn
�
!PnC1

�
!Pn

gives an isomorphism

�]W H
n.PnC1IM /

Š
!H n�1.PnIH

�
˝M /

for any Pn –module M . Hence hn�1 D �]k0
n
¤ 0 by (1).

The map rnW HQ
�
˝
Vn

HQ!
Vn�1

HQ is an isomorphism because dimQ HQ D n.
Hence we obtain:

Lemma 2.4

hn�1 ¤ 0 2H n�1.PnI

^n�1
HQ/:
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3 Proof of Theorem 1

Our proof of Theorem 1 is based on Proposition 1.2 and Lemma 2.4. For q � n we
denote by Pn�q.q/ the set of all the non-negative partitions � D .�1 � �2 � � � � �

�n�q � 0/ of q into n� q parts. For �D .�1 � �2 � � � � � �n�q � 0/ 2 Pn�q.q/ we
introduce a cohomology class h� and a subgroup P� � Pn by

h� WD h�1
h�2
� � � h�n�q

2H q.BnI

^q
HQ/�H q.PnI

^q
HQ/; and

P� WD P�1C1 �P�2C1 � � � � �P�n�qC1 � Pn;

respectively. Here P0C1 D P1 is the trivial group f1g. Denote by ��W P� ,! Pn the
obvious inclusion map and $k W P� ! P�kC1 the obvious projection. Theorem 1
follows from:

Theorem 3.1 The cohomology classes fh�I � 2 Pn�q.q/g are linearly independent
in H q.PnI

Vq
HQ/.

In fact, when q � n=2, the set of all the non-negative partitions of q into n� q parts
does not depend on n.

Endow the partitions Pn�q.q/ with the lexicographic order. For example, .q � 0 �

� � � � 0/ is the maximal partition. Theorem 3.1 is reduced to the following

Assertions For any � and � 2 Pn�q.q/ we have:

(A) ��
�h� ¤ 0 2H q.P�I

Vq
HQ/

(B) If �‰ �, then ���h� D 0 2H q.P�I
Vq

HQ/.

In fact, assume we have a nontrivial linear relationX
�2Pn�q.q/

c�h� D 0 2H q.PnI

^q
HQ/:

Choose the minimum � satisfying c� ¤ 0. Applying ��� to the relation, we obtain
c���

�h� D 0 from Assertion (B). Assertion (A) implies c� D 0, which contradicts the
choice of �.

Proof of Assertion (A) Let b1 � b2 � � � � � b�1
> b�1C1 D 0 be the dual partition

of �. The number of �k ’s equal to p is bp � bpC1 . We abbreviate hp;k WD$k
�hp .

Since cd P�kC1� �k , we have hp;k D 0 if p>�k , or equivalently, k > bp . Moreover
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we have h�k ;khp;k D 0 for any p � 1 since H�kCp.P�kC1I
V�kCp

HQ/D 0. From
Proposition 1.2 we have

��
�hp D

Xn�q

kD1
hp;k 2H p.P�I

^p
H /;

so that

��
�h� D

n�qY
kD1

��
�h�k

D

�1Y
pD1

.��
�hp/

bp�bpC1

D

�1Y
pD1

.hp;1C hp;2C � � �C hp;n�q/
bp�bpC1

D

�1Y
pD1

.hp;1C hp;2C � � �C hp;bp
/bp�bpC1 D

�1Y
pD1

.hp;bpC1C1C � � �C hp;bp
/bp�bpC1

D

�1Y
pD1

.bp � bpC1/! hp;bpC1C1 � � � hp;bp

D

0@ �1Y
pD1

.bp � bpC1/!

1A h�1;1h�2;2 � � � h�n�q ;n�q:

Here the fifth equal sign comes from the equation h�k ;khp;k D 0. Clearly r� WDQ�1

pD1
.bp � bpC1/! is a positive integer. From Lemma 2.4 and the Künneth formula

h�1;1h�2;2 � � � h�n�q ;n�q ¤ 0 2H q.P�I
Vq

HQ/. This proves Assertion (A).

Proof of Assertion (B) Suppose �>� with respect to the lexicographic order, namely,
�1 D �1 � �2 D �2 � � � � � �h D �h � �hC1 > �hC1 for some h, 0 � h < n� q .
Let � WD .�1 � �2 � � � � � �h/ be the (truncated) partition of q0 WD �1C�2C� � �C�h

defined by �k WD �k D �k , k � h. From Assertion (A)

��
�.h�1

h�2
� � � h�h

/D r�h�1;1h�2;2 � � � h�h;h 2H q0.P�I
^q0

H /:

In fact, from �h > �hC1 , we have h�i ;j D 0 if i < j . Since �hC1 ‰ �k for any
k � hC 1, we have

��
�.h�1

� � � h�h
h�hC1

/D r�h�1;1 � � � h�h;h.h�hC1;1C � � �C h�hC1;h/D 0

Hence ���.h�/D 0, as was to be shown.

This completes the proof of Theorem 3.1 and Theorem 1.
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4 Concluding remarks

We conclude this note by giving some remarks on the twisted cohomology of the
automorphism group Aut.Fn/ and the braid group Bn .

The IA–automorphism group IAn is defined to be the kernel of the action of the
group Aut.Fn/ on the homology group H D Fn

abel . We have an extension of groups
IAn! Aut.Fn/! GL.H /. The map ��

1
restricted to IAn gives an isomorphism of

the abelianization of the group IAn onto the module H�˝
V2

H

�1W IAn
abel Š
! H�˝

^2
H

(Cohen and Pakianathan [5], Farb [6], Kawazumi [12]). Here we embed
V2

H into
H˝2 by Xi ^ Xj 7! Xi ˝ Xj � Xj ˝ Xi for 1 � i; j � n. Lemma 2.2 implies
��W H 1.IAnIZ/!H 1.PnIZ/ is surjective. From the result of Arnol’d [1] quoted in
Section 2, the cohomology algebra H�.PnIZ/ is generated by the first cohomology
classes. Hence we obtain:

Corollary 4.1 The algebra homomorphism

��W H�.IAnIZ/!H�.PnIZ/

induced by the homomorphism �W Pn! IAn is surjective.

It should be remarked that it does not imply that the map ��W H�.Aut.Fn/IM /!

H�.BnIM / is surjective for a QŒGL.H /�–module M . In fact, the quotient groups
Aut.Fn/=IAn D GL.H / and Bn=Pn DSn differ from each other.

Fred Cohen [4, Lemma 7.2, page 261] described the action of the symmetric group Sn

on the integral cohomology of the group Pn , H�.PnIZ/. Later Lehrer and Solomon
[14] gave another explicit description of the QŒSn�–module H�.PnIQ/. Moreover
Cohen [4, Theorem 3.1, page 225] computed the twisted cohomology H�.BnIH

˝m˝

F/ for any field F and any m � 0. It would be interesting if one could describe
the submodule of H�.BnIM / generated by all the possible algebraic combinations
coming from the twisted Morita–Mumford classes hp ’s in an explicit manner. Here we
should remark the Sn –invariant inner product �W H˝H!Z defined by Xi �Xj D ıi;j ,
1� i; j � n, gives a Bn –isomorphism H ŠH� .

As was stated in Introduction, the algebra H�.Mg;1I
V�

HQ/ is stably isomorphic to
the polynomial algebra in the twisted Morita–Mumford classes mi;j ’s. The intersection
pairing of the surface †g;1 , H˝2! Z, gives an isomorphism H Š H� of Mg;1 –
modules, so that the cocycle ��

1
restricted to Mg;1 can be regarded as a cocycle
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��
1
WMg;1!H˝3 . As was proved by Kawazumi and Morita in [13], for any twisted

Morita–Mumford class mi;j we have an Mg;1 –homomorphism C W .H˝3/˝.2iCj�2/

! Z obtained from the intersection pairing such that C�Œ�
�
1
�2iCj�2 Dmi;j . In other

words, the natural map

..
^�

H 1.Ig;1IQ//˝M /Sp.H /
!H�.Mg;1IM /

is stably surjective for any finite dimensional QŒSp.H /�–module M . Here Ig;1 is the
Torelli group, i.e, the kernel of the action of Mg;1 on the homology H .

Recently Galatius [7] proved the rational reduced cohomology eH �.Aut.Fn/IQ/ van-
ishes in a stable range. It would be very interesting to know whether a similar result
holds also for twisted coefficients.

Expectation 4.2 For a finite dimensional QŒGL.H /�–module M , the natural map

..
^�

H 1.IAnIQ//˝M /GL.H /
!H�.Aut.Fn/IM /

is surjective in some stable range.

In the case M is the trivial module Q, this expectation is exactly the fact thateH �.Aut.Fn/IQ/ vanishes in some stable range, which Galatius [7] proved. A result
of Hatcher and Wahl [8] tells us it holds also for M D .H�/˝m for any m� 1.

Acknowledgements The author would like to thank Fred Cohen, Hiroaki Terao, Hi-
rofumi Yamada and Youichi Shibukawa for inspiring discussions. He would also like
to thank Fred Cohen (once again), Benson Farb, Soren Galatius and Nathalie Wahl for
giving him information about their own published/unpublished works.

References
[1] V I Arnol’d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969)

227–231 MR0242196

[2] E Artin, Theorie der Zopfe, Hamburg Abh. 4 (1925) 47–72

[3] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies,
Princeton University Press (1974) MR0375281

[4] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes
in Mathematics 533, Springer, Berlin (1976) MR0436146

[5] F Cohen, J Pakianathan, On automorphism groups of free groups, and their nilpotent
quotients, in preparation

Geometry & Topology Monographs, Volume 13 (2008)

http://www.ams.org/mathscinet-getitem?mr=0242196
http://www.ams.org/mathscinet-getitem?mr=0375281
http://www.ams.org/mathscinet-getitem?mr=0436146


306 Nariya Kawazumi

[6] B Farb, The Johnson homomorphisms for Aut.Fn/ , in preparation

[7] S Galatius, Stable homology of automorpism groups of free groups arXiv:
math.AT/0610216

[8] A Hatcher, N Wahl, Stabilization for the automorphisms of free groups with bound-
aries, Geom. Topol. 9 (2005) 1295–1336 MR2174267

[9] N Kawazumi, On the stable cohomology algebra of extended mapping class groups for
surfaces, Hokkaido University Preprint Series in Mathematics, 311 (1995) Available at
http://eprints.math.sci.hokudai.ac.jp/archive/00000473/

[10] N Kawazumi, Certain cohomology classes on the automorphism groups of free groups,
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