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On the Lusternik—Schnirelmann category of symmetric
spaces of classical type

MAMORU MIMURA
KEI SUGATA

We determine the Lusternik—Schnirelmann category of the irreducible, symmetric
Riemann spaces SU(n)/SO(n) and SU(2n)/Sp(n) of type Al and All respectively.

55M30

1 Introduction

For a topological space X, the Lusternik—Schnirelmann category, L-S category for
short and denoted by cat(X), is defined to be the least integer # such that there exists an
open covering {A1, ..., Ay4+1} of X with each A4; contractible in X . This homotopy
invariant is known to be related to various problems; for instance, some geometric
applications can be found in Korba$ and Szfics [5].

First of all we recall a theorem due to Singhof [7]:
Theorem cat(SU(n)) =n—1

The purpose of this note is to prove the following theorem along the line of idea of the
proof of Singhof’s theorem.

Theorem 1.1
(1) cat(SUmn)/SOn))=n—1
(2) cat(SU(2n)/Sp(n)) =n—1

One can prove the following theorem by the entirely similar method.
Theorem 1.1’

(1) cat(U(n)/On)) =n
(2) cat(U(2n)/Sp(n)) =n
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324 M Mimura and K Sugata

Observe that (1) of Theorem 1.1 for n = 4 improves the estimate of the L-S category of
the oriented Grassmann manifold G¢,3 = SO(6)/(SO(3) x SO(3)) given by Korbas
[4, Corollary C (a)].

Let J = (E? _g") € SU(2n), where E, denotes the n x n identity matrix.
n

We need the following lemma to give a proof of our result.

Lemma 1.2 There are matrix representations:
() SUm)/SO(n)={Xe€SUMmn)|'X =X}
(2) SU2n)/Sp(n)={X e SUQ2n) |'X =JX'J}

By Lemma 1.2, we can regard SU(n)/SO(n) and SU(2n)/Sp(n) as subspaces of
SU(n) and SU(2n) respectively.

The paper is organized as follows. In Section 2 we will prove (1) of Theorem 1.1. In
Section 3 we will prove (2) of Theorem 1.1. In Section 4 we study the L-S category
of the irreducible symmetric Riemann spaces of classical type other than Al and AlI.
We will give a proof of Lemma 1.2, which may be a folklore, in the Appendix just for
completeness.

We thank J Korba$ for reading the manuscript, M Yasuo for giving information on
these homogenous spaces and also N Iwase and T Nishimoto for useful conversations.

2 L-S category of SU(n)/SO(n)

In this section, we will prove (1) of Theorem 1.1. The mod 2 cohomology ring of

SU(n)/SO(n) is given as follows (see for example Mimura and Toda [6]):
H*(SUn)/SO(n);Z2/2) = A(x2,X3,...,Xn),

where A denotes exterior algebra. Since the cup-length gives a lower bound of the L-S
category (see for example Whitehead [8]), we have

n—1=cupy/,(SU(n)/SO(n)) =< cat(SU(n)/SO(n)).

Thus in order to determine cat(SU(n)/SO(n)), it is sufficient to show the following
proposition.

Proposition 2.1 cat(SU((n)/SO(n)) <n-—1
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Proof Let A{,As,...,A, be different complex numbers with |A,| = 1 such that
AAy Ay # 1. For 1 <r <n we define

A, ={X € SU(n)/SO(n) | A, is not an eigenvalue of X}.

Observe here that we regard X € SU(n)/SO(n) as a matrix in SU(n) by Lemma 1.2.
Then the A4, ’s are clearly open sets, and form a covering of SU(n)/SO(n), since the
property AqAs--- A, # 1 implies that the A, ’s cannot all appear as the eigenvalues of
any matrix in SU((n)/SO(n).

Now we fix A, and let B be a connected component of A, . In order to show that A4, is
contractible in SU(n)/SO(n), itis sufficient to show that B is so, since SU(n)/SO(n)
is pathwise connected.

Next, let u(n) ={X € M(n,C) | X* = —X}, and we will define a map log: B — u(n)
as follows. Let X € B C A, and A, = ¢!*, where 0 < o < 27. Then X can be
diagonalized by a suitable matrix P € U(n) as X = PD(e'f, ... ei)P* where
D(ay,...,ay,) denotes a diagonal matrix defined by

ai
D(ay,...,ay) = ,
dn

and we may take o < 6; < a + 27 for each j, since X does not have A, = e’® as its
eigenvalue. We define a function log: B — u(n) by

log X = PD(i0y,...,i6,) P,

where it is easy to see that the definition does not depend on the choice of P, and the
function log is clearly continuous. Since X = exp(log X) by definition, we have

1 =det X = det(exp(log X)) = exp(tr(log X)).

Since the maps tr: M (n, C) — C, which is the trace function, and log: B — u(n) are
continuous and since B is connected, there exists an integer & such that tr(log X) =
2nik forall X € B.

Now we define a constant matrix Xy in SU(n)/SO(n) by
(2nik)
Xo =exp -Ey,
n

and we show that B is contractible to X . In order to define a contracting homotopy, we

use the fact that u(n) is a vector space, which allows us to construct linear homotopies.
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We define a homotopy F: B x[0,1]— SU(n)/SO(n) by

2rik
F(X,s)zexp((l—s)logX—i—s ! En)
n

Clearly, the function F is continuous such that F(X,0) = exp(log X) = X and
F(X,1)= X, forall X € B. Here we need to check that F(X,s) € SU(n)/SO(n) for
all X € B and s €10, 1]. Since u(n) is the Lie algebra of U(n), we have F(X,s)eU(n).
Hence it is sufficient to show that det(F(X,s)) = 1 and that ‘F(X,s) = F(X,s). The
former equality can be seen as follows:

det(F(X, s)) = det (exp ((1 —s)log X + 527; ik E))

= exp (tr ((1 —s)log X +s2ﬂlkEn))
n

2rwik
n

= exp ((1 —s)tr(log X) + s
=exp uik(1—s)+2mwiks)
=exp (2mwik)

=1.

tr(En))

The latter equality can be seen as follows:

ik
'F(X,s) = exp ((1—S)10gX+s ! En)
n

ik
:exp((l—s)loth+s ! ’E,,)
n

2mik
= exp ((1 —s)log X + , En)
= F(X,s). m|
3 L-S category of SU(2n)/Sp(n)

In this section, we will prove (2) of Theorem 1.1. The integral cohomology ring of
SU(2n)/Sp(n) is given as follows (see for example [6]):

H*(SU(zn)/Sp(n)7 Z) = A(x5’ X9, ...y x4n—3)’
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where A denotes exterior algebra. Since the cup-length gives a lower bound of the L-S
category, we have

n—1=-cup;(SU2n)/Sp(n)) <cat(SU(2n)/Sp(n)).

Thus in order to determine cat(SU(2n)/Sp(n)), it is sufficient to show the following
proposition.

Proposition 3.1 cat(SU(22n)/Sp(n)) <n-—1
In order to prove Proposition 3.1, we need some lemmas.

Lemma 3.2 Let X be any matrix in SU(2n)/Sp(n). If A is an eigenvalue of X,
then
dim W) > 2,

where W, C C?" denotes the corresponding eigenspace.

Proof There exists an eigenvector v # 0 in C2” such that Xv = Av. Since X satisfies
XX* = E,, and 'X = JX'J, it follows by an easy calculation that X (Jv) = A(J ).
Consequently we have that if v is an eigenvector of A, so is Jv. Hence it is sufficient
to prove that v and Jv are linearly independent. If av +bJv =0 (a,b € C), we have
av+ bJv = 0, and by solving the simultaneous equations, we see (|a|? + |b|*)v = 0,
which implies ¢ = b = 0. |

Let A{,As,...,A; be different complex numbers with |A,| = 1 such that
AIA3-+-A2 #1.For 1 <r <n we define

A, ={X € SUQ2n)/Sp(n) | A, is not an eigenvalue of X}.

Lemma 3.3 A family {4, }1<,<, forms an open covering of SU(2n)/Sp(n):

SU@n)/Spn) = J 4.
r=1

Proof Let X € (SU22n)/Spm)\Ur—; Ar =(y=1{(SUQ2n)/Sp(n))\ A,}. Then
X has A, asits eigenvalue. Furthermore we see by Lemma 3.2 that the multiplicity of
the eigenvalue A, is 2 for each r. Consequently, X can be diagonalized by a suitable
matrix P € U(2n):
X = PD(A1,A1s. ..y Any An) P¥.
Therefore we have that det X = k%)\g -++ A2 # 1 which contradicts the fact X € SU(2n).
O
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Proof of Proposition 3.1 By Lemma 3.3, it is sufficient to show that each A4, is con-
tractible in SU(2n)/Sp(n); but since SU(2n)/Sp(n) is pathwise connected, it is suf-
ficient to show that any connected component of A4, is contractible in SU(2n)/Sp(n).
Now we fix 4, and let B be a connected component of 4,. We will show that B is
contractible in SU(2n)/Sp(n).

In a similar way to that in Section 2, we can define a continuous function log: B —u(2n)
such that exp(tr(log X)) = 1 for X € B. Then, as was seen before, there exists an
integer k such that tr(log X)) = 2wik for all X € B.

Now define a constant matrix Xy in SU(2n)/Sp(n) by

wik
Xo = exp n ~Eap

and a contracting homotopy F: B x [0, 1] - SUQ2n)/Sp(n) by
ik
F(X,s) =exp ((1 —s)log X +s—E2n) .
n

Clearly, F is continuous such that F(X,0) =exp(log X) = X and F(X, 1) = X for
all X € B. Here we need to check that F(X,s) € SU(2n)/Sp(n) for all X € B and
s €10, 1]. Since u(2n) is the Lie algebra of U(2n), we have F(X,s) € U(2n). Hence
it is sufficient to show that det(F(X,s)) = 1 and that ‘F(X,s) = JF(X,s)'J. The
former equality can be seen as follows:

det(F(X, s)) = det (exp ((1 —s)log X + SMEZ,,))
n
wik
= exp (tr ((1 —s)log X +S—E2n))
n

= exp ((1 —s)tr(log X) + S]T;—.k tr(EZn))

=exp Quik(l1—s)+2mwiks)
=exp 2nwik)
=1.
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The latter equality can be seen as follows:

[k
'F(X, s) = exp ((1 —s)log X + lez,,)
n

 k
= exp ((1 —s)log’X 4 ’Ez,,)
n

'k
exp ((1 —s)log(JX'J) + S%Ezn)

 k
exp ((1 —s)J(logX)tJ—I-lez,,)
n
wik /
=exp|J|(Q—=5)]logX +s—E», )'J
n

ke
— Jexp ((1 —$)log X +le2n) ty
n

=JF(X,s)"J. m|

4 Lusternik—Schnirelmann category of the irreducible sym-
metric Riemann space of classical type

First let us recall a theorem due to Ganea (for a proof see [1]):

Proposition 4.1 If X is an (r — 1)—connected CW-complex for r > 1, then

cat(X) < dim(X)/r.
We show the following

Proposition 4.2 If V is a simply connected, complex d —manifold which admits a
Kéhler metric, then
cat(V) =d.

In fact, following James [3], it is proved as follows; we have cat(V') < d by Proposition
4.1, since V is simply connected. But with any Kéhler metric, there exists a closed
2—form on V' whose d th power is the volume element and so cannot be cohomologous
to zero. Hence we have cat(V) > d, since the cup-length gives a lower bound of the
L-S category.

According to Helgason [2, page 518], the irreducible symmetric Riemann spaces of
classical type which has a Hermitian structure are known to be of type

Geometry & Topology Monographs, Volume 13 (2008)



330 M Mimura and K Sugata

ATll, BDI(¢ =2), BDII(r=2), DIII, CIL.
Now we also recall from Proposition 4.1 of [2] the following
Proposition 4.3 The Hermitian structure of a Hermitian symmetric space is Kahlerian.

It follows from this proposition that the spaces of above type have Kihler metric.
Hence we see the L-S category of these spaces by Proposition 4.2, since a Hermitian
symmetric space is a complex manifold by definition (see [2, page 372]). Thus, with
Theorem 1.1, the L-S category of the irreducible symmetric Riemann space of classical
type, except that of type BDI(g # 2), is determined as follows:

G/K Kihler dimension cat(G/K)
Al SUn)/SO(n) (n>2) no mn—1)(n+2)/2 n—1
Al | SU(2n)/Sp(n) (n>1) no mn—1)Q2n+1) n—1
Al Ulp+q)/(U(p)xU(q)) es 24 4
(pzqgz1l
BDI SO(p+¢q)/(SO(p) x SO(q)) | yes (¢ =2) plg=2)
Pq
(Pzqz22, p+q#4 no (¢ #2) 7(q #2)
yes (n =2)
BDII| SO(n+1)/SO(n) (n>2) n 1
no (n #2)
DIl | SORH/UI) (I =4) yes I(1-1) I1-1/2
CI Sp(n)/U(n) (n>3) yes n(n+1) nn+1)/2
cl Sp(p+q)/(Sp(p) x Sp(q)) o 4pg v
(pzqgz1

As for the remaining cases;

Firstly, the space of type BD I, the real Stiefel manifold SO(n + 1)/SO(n), is home-
omorphic to §”, and hence we have cat(SO(n +1)/SO(n)) = 1.

Secondly, it is known that the space of type CII, the symplectic Grassmann manifold
Sp(p+q)/(Sp(p) xSp(q)), is 3—connected. Hence by Proposition 4.1, we obtain an
upper bound cat(Sp(p+¢q)/(Sp(p)xSp(q))) <4pq/4= pq. Itis also known that the
cohomology ring of the symplectic Grassmann manifold Sp(p +¢)/(Sp(p) x Sp(q))
is similar to that of the complex Grassmann manifold U(p + q)/(U(p) x U(q)) (see
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for example [6]), so we have that cup(Sp(p + ¢)/(Sp(p) x Sp(q))) = cup(U(p +
q)/(U(p)xU(q))), which is given by pgq, since the cup-length of U(p 4+ ¢)/(U(p) X
U(q)) is equal to the L-S category of it. Hence we obtain a lower bound cat(Sp(p +

q9)/(Sp(p) xSp(q))) = pq.

Concluding remark: the mod 2 cohomology of type BDI(g #2), SO(p+¢q)/(SO(p)x
SO(q)), p = ¢q > 2, is not known yet.

Appendix A

Proof of Lemma 1.2
(1) Let K, ={X € SU(n)|’X = X} and define an action of P € SU(n) on K, by
P.-X = PX'P (X € Kp).
We will show that X € K, is represented as follows:
X =P'P=PE, P (PeSU®n)).

Let X € K. Since X + X and i (X — X) are real symmetric matrices which commute
with each other, they can be diagonalized by a suitable matrix B € SO(n):

'‘B(X +X)B = D(ay,....an), 'Bi(X —X)B = D(by....,by).
Then we have
tBXB = D((Cll _lbl)/z’ ceey (an _lbn)/z)a

where |(ax —ibg)/2| =1 for 1 <k <n, since 'BXB € SU(n). Now we can take
complex numbers ¢y, ..., ¢, such that cx? = (ay —iby)/2 and ¢y -+ ¢, = 1. Then we
have ‘BXB = CC = C!C, where C = D(cy,...,cy) € SU(n). By taking P = BC,
we have

X = BC'C'B= P'P (P eSU(®n)),
which implies that the action is transitive.
On the other hand, the isotropy group at Ej is given by
{PeSU®n)|P'P=E,)={PeSU@m)|P=P}=S0®n).
Since SU(n) is compact, we obtain

SU@m)/SO(n)={X e SUn) |'X = X}.
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(2) There is an embedding ¢’: Sp(n) — SU(2n) defined by
oo (A —B _ ,
c(X)_(B i (X =A4+jB)
such that Sp(n) = {X € SUQ2n) | XJ'X = J}.

Let Ly, ={X € SU22n) | 'X = —X} and define an action of P € SU(2n) on L,,
by
P.-X = PX'P (X € L,,).

We will show that X € L, is represented as follows:
X = PJ'P (P eSU(22n)).

Let A be an eigenvalue of X € L,,. Here observe that |A| = 1, since X € SU(2n).
There exists an eigenvector v € C2” such that Xv = Av and |v| = 1. Since X satisfies
XX* = E,, and 'X = —X, it follows by an easy calculation that Xv = —Av. Let
W be the 2—dimensional subspace of C2” spanned by v and v. By repeating this
procedure to the orthogonal complement W+ of W, we can take consequently an
orthonormal basis {v{, vy, ..., Un, s} in C>" such that

Xvp = Mg, X =AM (k=1,...,n),
where A1, ..., A, are eigenvalues of X . Put
—i

1 _ ] _
wy = —=k +0), wi' = —=r—) (k=1,...,n).

V2 V2

Then {wy, wy’, ..., ws, w,'} forms an orthonormal basis in R?” such that
Xwy =irewy', Xwy' = —idgwy (k=1,...,n).

Thus we have the following:

0 —D(iA, .. ridn)
t _ n
BXB‘(D(iM,...,iAn) 0 )

where B = (wy,w{’,..., wy, w,") € O(2n). Observe that we can choose B in SO(2n)
by replacing A; with —Aq, if necessary.

Now we take complex numbers c;, ..., ¢, such that ¢z> = iAy for each k, and let
C=D(,....cn,C1,...,cp) € U(2n). Then we have

(A.1) 'BXB=CJC =CJ'C.
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We can choose C in SU(2n). In fact, since ‘BXB € SU(2n), we have
det(BXB) = i?"A2 .- A2 = (i"A; -+ An)2 =1,

s0 i"Aq-+- Ay = £1. Hence det(C) =612~~-C,% =i"Ay-- Ay = £1.If det(C) = —1,

D(O,1,...,1)D(1v0v""0)) we have

then replacing C with that multiplied by ( D(1.0 0) D(0. 1 1

det(C) =1.
By taking P = BC, we deduce by (A.1) that
X = BCJ'C'B= PJ'P (PecSU?2n)),
which implies that the action is transitive.
On the other hand, the isotropy group at J is given by
{(PeSUQR2n)| PJ'P =J}= Sp(n).
Since SU(2n) is compact, we obtain
SU2n)/Sp(n) ={X e SU2n) |'X = -X}.
Further multiplying by J, we obtain
SU@2n)/Sp(n) ={JX e SUQ2n) |'X = —X}
={XeSUQ2n)|'(JX)=-"JX}
={XeSUQ2n)|'XJ =JX}
={X e SUQn) |'X =JX"J}. O
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