On the Lusternik–Schnirelmann category of symmetric spaces of classical type

Mamoru Mimura Kei Sugata

We determine the Lusternik–Schnirelmann category of the irreducible, symmetric Riemann spaces SU(n)/SO(n) and SU(2n)/Sp(n) of type AI and AII respectively.

55M30

1 Introduction

For a topological space X, the Lusternik–Schnirelmann category, L-S category for short and denoted by cat(X), is defined to be the least integer n such that there exists an open covering $\{A_1, \ldots, A_{n+1}\}$ of X with each A_i contractible in X. This homotopy invariant is known to be related to various problems; for instance, some geometric applications can be found in Korbaš and Szűcs [5].

First of all we recall a theorem due to Singhof [7]:

Theorem cat(SU(n)) = n - 1

The purpose of this note is to prove the following theorem along the line of idea of the proof of Singhof's theorem.

Theorem 1.1

- (1) $\operatorname{cat}(SU(n)/SO(n)) = n-1$
- (2) $\operatorname{cat}(SU(2n)/Sp(n)) = n-1$

One can prove the following theorem by the entirely similar method.

Theorem 1.1'

- (1) cat(U(n)/O(n)) = n
- (2) $\operatorname{cat}(U(2n)/Sp(n)) = n$

Observe that (1) of Theorem 1.1 for n = 4 improves the estimate of the L-S category of the oriented Grassmann manifold $\tilde{G}_{6,3} = SO(6)/(SO(3) \times SO(3))$ given by Korbaš [4, Corollary C (a)].

Let
$$J = \begin{pmatrix} O - E_n \\ E_n & O \end{pmatrix} \in SU(2n)$$
, where E_n denotes the $n \times n$ identity matrix.

We need the following lemma to give a proof of our result.

Lemma 1.2 There are matrix representations: (1) $SU(n)/SO(n) = \{X \in SU(n) \mid {}^{t}X = X\}$ (2) $SU(2n)/Sp(n) = \{X \in SU(2n) \mid {}^{t}X = JX{}^{t}J\}$

By Lemma 1.2, we can regard SU(n)/SO(n) and SU(2n)/Sp(n) as subspaces of SU(n) and SU(2n) respectively.

The paper is organized as follows. In Section 2 we will prove (1) of Theorem 1.1. In Section 3 we will prove (2) of Theorem 1.1. In Section 4 we study the L-S category of the irreducible symmetric Riemann spaces of classical type other than AI and AII. We will give a proof of Lemma 1.2, which may be a folklore, in the Appendix just for completeness.

We thank J Korbaš for reading the manuscript, M Yasuo for giving information on these homogenous spaces and also N Iwase and T Nishimoto for useful conversations.

2 L-S category of SU(n)/SO(n)

In this section, we will prove (1) of Theorem 1.1. The mod 2 cohomology ring of SU(n)/SO(n) is given as follows (see for example Mimura and Toda [6]):

 $H^*(SU(n)/SO(n); \mathbb{Z}/2) = \Lambda(x_2, x_3, \dots, x_n),$

where Λ denotes exterior algebra. Since the cup-length gives a lower bound of the L-S category (see for example Whitehead [8]), we have

$$n-1 = \operatorname{cup}_{\mathbb{Z}/2}(SU(n)/SO(n)) \le \operatorname{cat}(SU(n)/SO(n)).$$

Thus in order to determine cat(SU(n)/SO(n)), it is sufficient to show the following proposition.

Proposition 2.1 $\operatorname{cat}(SU(n)/SO(n)) \le n-1$

Geometry & Topology Monographs, Volume 13 (2008)

324

Proof Let $\lambda_1, \lambda_2, ..., \lambda_n$ be different complex numbers with $|\lambda_r| = 1$ such that $\lambda_1 \lambda_2 \cdots \lambda_n \neq 1$. For $1 \le r \le n$ we define

$$A_r = \{X \in SU(n) / SO(n) \mid \lambda_r \text{ is not an eigenvalue of } X\}$$

Observe here that we regard $X \in SU(n)/SO(n)$ as a matrix in SU(n) by Lemma 1.2. Then the A_r 's are clearly open sets, and form a covering of SU(n)/SO(n), since the property $\lambda_1\lambda_2\cdots\lambda_n \neq 1$ implies that the λ_r 's cannot all appear as the eigenvalues of any matrix in SU(n)/SO(n).

Now we fix A_r and let B be a connected component of A_r . In order to show that A_r is contractible in SU(n)/SO(n), it is sufficient to show that B is so, since SU(n)/SO(n) is pathwise connected.

Next, let $\mathfrak{u}(n) = \{X \in M(n, \mathbb{C}) \mid X^* = -X\}$, and we will define a map log: $B \to \mathfrak{u}(n)$ as follows. Let $X \in B \subset A_r$ and $\lambda_r = e^{i\alpha}$, where $0 \le \alpha < 2\pi$. Then X can be diagonalized by a suitable matrix $P \in U(n)$ as $X = PD(e^{i\theta_1}, \ldots, e^{i\theta_n})P^*$, where $D(a_1, \ldots, a_n)$ denotes a diagonal matrix defined by

$$D(a_1,\ldots,a_n) = \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix},$$

and we may take $\alpha < \theta_j < \alpha + 2\pi$ for each *j*, since *X* does not have $\lambda_r = e^{i\alpha}$ as its eigenvalue. We define a function log: $B \to u(n)$ by

$$\log X = PD(i\theta_1, \dots, i\theta_n)P^*,$$

where it is easy to see that the definition does not depend on the choice of P, and the function log is clearly continuous. Since $X = \exp(\log X)$ by definition, we have

$$1 = \det X = \det(\exp(\log X)) = \exp(\operatorname{tr}(\log X)).$$

Since the maps tr: $M(n, \mathbb{C}) \to \mathbb{C}$, which is the trace function, and log: $B \to u(n)$ are continuous and since *B* is connected, there exists an integer *k* such that tr(log *X*) = $2\pi i k$ for all $X \in B$.

Now we define a constant matrix X_0 in SU(n)/SO(n) by

$$X_0 = \exp\left(\frac{2\pi i k}{n}\right) \cdot E_n$$

and we show that B is contractible to X_0 . In order to define a contracting homotopy, we use the fact that u(n) is a vector space, which allows us to construct linear homotopies.

We define a homotopy $F: B \times [0, 1] \rightarrow SU(n)/SO(n)$ by

$$F(X,s) = \exp\left((1-s)\log X + s\frac{2\pi ik}{n}E_n\right).$$

Clearly, the function F is continuous such that $F(X, 0) = \exp(\log X) = X$ and $F(X, 1) = X_0$ for all $X \in B$. Here we need to check that $F(X, s) \in SU(n)/SO(n)$ for all $X \in B$ and $s \in [0, 1]$. Since u(n) is the Lie algebra of U(n), we have $F(X, s) \in U(n)$. Hence it is sufficient to show that $\det(F(X, s)) = 1$ and that ${}^tF(X, s) = F(X, s)$. The former equality can be seen as follows:

$$det(F(X,s)) = det\left(\exp\left((1-s)\log X + s\frac{2\pi ik}{n}E_n\right)\right)$$
$$= \exp\left(tr\left((1-s)\log X + s\frac{2\pi ik}{n}E_n\right)\right)$$
$$= \exp\left((1-s)tr(\log X) + s\frac{2\pi ik}{n}tr(E_n)\right)$$
$$= \exp\left(2\pi ik(1-s) + 2\pi iks\right)$$
$$= \exp\left(2\pi ik\right)$$
$$= 1.$$

The latter equality can be seen as follows:

$${}^{t}F(X,s) = {}^{t}\exp\left((1-s)\log X + s\frac{2\pi ik}{n}E_{n}\right)$$
$$= \exp\left((1-s)\log^{t}X + s\frac{2\pi ik}{n}{}^{t}E_{n}\right)$$
$$= \exp\left((1-s)\log X + s\frac{2\pi ik}{n}E_{n}\right)$$
$$= F(X,s).$$

3 L-S category of SU(2n)/Sp(n)

In this section, we will prove (2) of Theorem 1.1. The integral cohomology ring of SU(2n)/Sp(n) is given as follows (see for example [6]):

$$H^*(SU(2n)/Sp(n);\mathbb{Z}) = \Lambda(x_5, x_9, \ldots, x_{4n-3}),$$

Geometry & Topology Monographs, Volume 13 (2008)

326

where Λ denotes exterior algebra. Since the cup-length gives a lower bound of the L-S category, we have

$$n-1 = \operatorname{cup}_{\mathbb{Z}}(SU(2n)/Sp(n)) \le \operatorname{cat}(SU(2n)/Sp(n)).$$

Thus in order to determine $\operatorname{cat}(SU(2n)/Sp(n))$, it is sufficient to show the following proposition.

Proposition 3.1 $\operatorname{cat}(SU(2n)/Sp(n)) \le n-1$

In order to prove Proposition 3.1, we need some lemmas.

Lemma 3.2 Let X be any matrix in SU(2n)/Sp(n). If λ is an eigenvalue of X, then

dim
$$W_{\lambda} \geq 2$$

where $W_{\lambda} \subset \mathbb{C}^{2n}$ denotes the corresponding eigenspace.

Proof There exists an eigenvector $v \neq 0$ in \mathbb{C}^{2n} such that $Xv = \lambda v$. Since X satisfies $XX^* = E_{2n}$ and ${}^tX = JX^tJ$, it follows by an easy calculation that $X(J\overline{v}) = \lambda(J\overline{v})$. Consequently we have that if v is an eigenvector of λ , so is $J\overline{v}$. Hence it is sufficient to prove that v and $J\overline{v}$ are linearly independent. If $av + bJ\overline{v} = 0$ $(a, b \in \mathbb{C})$, we have $a\overline{v} + \overline{b}Jv = 0$, and by solving the simultaneous equations, we see $(|a|^2 + |b|^2)v = 0$, which implies a = b = 0.

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be different complex numbers with $|\lambda_r| = 1$ such that $\lambda_1^2 \lambda_2^2 \cdots \lambda_n^2 \neq 1$. For $1 \le r \le n$ we define

$$A_r = \{X \in SU(2n)/Sp(n) \mid \lambda_r \text{ is not an eigenvalue of } X\}.$$

Lemma 3.3 A family $\{A_r\}_{1 \le r \le n}$ forms an open covering of SU(2n)/Sp(n):

$$SU(2n)/Sp(n) = \bigcup_{r=1}^{n} A_r.$$

Proof Let $X \in (SU(2n)/Sp(n)) \setminus \bigcup_{r=1}^{n} A_r = \bigcap_{r=1}^{n} \{(SU(2n)/Sp(n)) \setminus A_r\}$. Then *X* has λ_r as its eigenvalue. Furthermore we see by Lemma 3.2 that the multiplicity of the eigenvalue λ_r is 2 for each *r*. Consequently, *X* can be diagonalized by a suitable matrix $P \in U(2n)$:

$$X = PD(\lambda_1, \lambda_1, \ldots, \lambda_n, \lambda_n) P^*.$$

Therefore we have that det $X = \lambda_1^2 \lambda_2^2 \cdots \lambda_n^2 \neq 1$ which contradicts the fact $X \in SU(2n)$.

Proof of Proposition 3.1 By Lemma 3.3, it is sufficient to show that each A_r is contractible in SU(2n)/Sp(n); but since SU(2n)/Sp(n) is pathwise connected, it is sufficient to show that any connected component of A_r is contractible in SU(2n)/Sp(n). Now we fix A_r and let B be a connected component of A_r . We will show that B is contractible in SU(2n)/Sp(n).

In a similar way to that in Section 2, we can define a continuous function log: $B \to \mathfrak{u}(2n)$ such that $\exp(\operatorname{tr}(\log X)) = 1$ for $X \in B$. Then, as was seen before, there exists an integer k such that $\operatorname{tr}(\log X) = 2\pi i k$ for all $X \in B$.

Now define a constant matrix X_0 in SU(2n)/Sp(n) by

$$X_0 = \exp\left(\frac{\pi i k}{n}\right) \cdot E_{2n}$$

and a contracting homotopy $F: B \times [0, 1] \rightarrow SU(2n)/Sp(n)$ by

$$F(X,s) = \exp\left((1-s)\log X + s\frac{\pi i k}{n}E_{2n}\right).$$

Clearly, *F* is continuous such that $F(X, 0) = \exp(\log X) = X$ and $F(X, 1) = X_0$ for all $X \in B$. Here we need to check that $F(X, s) \in SU(2n)/Sp(n)$ for all $X \in B$ and $s \in [0, 1]$. Since u(2n) is the Lie algebra of U(2n), we have $F(X, s) \in U(2n)$. Hence it is sufficient to show that $\det(F(X, s)) = 1$ and that ${}^tF(X, s) = JF(X, s){}^tJ$. The former equality can be seen as follows:

$$det(F(X,s)) = det\left(\exp\left((1-s)\log X + s\frac{\pi ik}{n}E_{2n}\right)\right)$$
$$= \exp\left(tr\left((1-s)\log X + s\frac{\pi ik}{n}E_{2n}\right)\right)$$
$$= \exp\left((1-s)tr(\log X) + s\frac{\pi ik}{n}tr(E_{2n})\right)$$
$$= \exp\left(2\pi ik(1-s) + 2\pi iks\right)$$
$$= \exp\left(2\pi ik\right)$$
$$= 1.$$

The latter equality can be seen as follows:

$${}^{t}F(X,s) = {}^{t}\exp\left((1-s)\log X + s\frac{\pi ik}{n}E_{2n}\right)$$

$$= \exp\left((1-s)\log {}^{t}X + s\frac{\pi ik}{n}{}^{t}E_{2n}\right)$$

$$= \exp\left((1-s)\log(JX^{t}J) + s\frac{\pi ik}{n}E_{2n}\right)$$

$$= \exp\left((1-s)J(\log X)^{t}J + s\frac{\pi ik}{n}E_{2n}\right)$$

$$= \exp\left(J\left((1-s)\log X + s\frac{\pi ik}{n}E_{2n}\right){}^{t}J\right)$$

$$= J\exp\left((1-s)\log X + s\frac{\pi ik}{n}E_{2n}\right){}^{t}J$$

$$= JF(X,s){}^{t}J.$$

4 Lusternik–Schnirelmann category of the irreducible symmetric Riemann space of classical type

First let us recall a theorem due to Ganea (for a proof see [1]):

Proposition 4.1 If X is an (r-1)-connected CW-complex for $r \ge 1$, then

 $\operatorname{cat}(X) \leq \dim(X)/r.$

We show the following

Proposition 4.2 If V is a simply connected, complex d –manifold which admits a Kähler metric, then

$$\operatorname{cat}(V) = d$$
.

In fact, following James [3], it is proved as follows; we have $cat(V) \le d$ by Proposition 4.1, since V is simply connected. But with any Kähler metric, there exists a closed 2–form on V whose d th power is the volume element and so cannot be cohomologous to zero. Hence we have $cat(V) \ge d$, since the cup-length gives a lower bound of the L-S category.

According to Helgason [2, page 518], the irreducible symmetric Riemann spaces of classical type which has a Hermitian structure are known to be of type

A III, BDI(q = 2), BDII(n = 2), DIII, C I.

Now we also recall from Proposition 4.1 of [2] the following

Proposition 4.3 The Hermitian structure of a Hermitian symmetric space is Kählerian.

It follows from this proposition that the spaces of above type have Kähler metric. Hence we see the L-S category of these spaces by Proposition 4.2, since a Hermitian symmetric space is a complex manifold by definition (see [2, page 372]). Thus, with Theorem 1.1, the L-S category of the irreducible symmetric Riemann space of classical type, except that of type BDI($q \neq 2$), is determined as follows:

	G/K	Kähler	dimension	$\operatorname{cat}(G/K)$
AI	$SU(n)/SO(n) \ (n > 2)$	no	(n-1)(n+2)/2	n-1
AII	$SU(2n)/Sp(n) \ (n > 1)$	no	(n-1)(2n+1)	n - 1
AIII	$U(p+q)/(U(p) \times U(q))$	VAS	2 <i>pq</i>	pq
	$(p \ge q \ge 1)$	yes		
BDI	$SO(p+q)/(SO(p) \times SO(q))$	yes (q = 2)	pq	p(q = 2)
	$(p \ge q \ge 2, p+q \ne 4)$	no $(q \neq 2)$? $(q \neq 2)$
BDII	$SO(n+1)/SO(n) \ (n \ge 2)$	yes $(n = 2)$	п	1
		no $(n \neq 2)$		
DIII	$SO(2l)/U(l) \ (l \ge 4)$	yes	l(l-1)	l(l-1)/2
CI	$Sp(n)/U(n) \ (n \ge 3)$	yes	n(n + 1)	n(n+1)/2
CII	$Sp(p+q)/(Sp(p) \times Sp(q))$	no	4 <i>pq</i>	pq
	$(p \ge q \ge 1)$	110		

As for the remaining cases;

Firstly, the space of type BD II, the real Stiefel manifold SO(n + 1)/SO(n), is homeomorphic to S^n , and hence we have cat(SO(n + 1)/SO(n)) = 1.

Secondly, it is known that the space of type C II, the symplectic Grassmann manifold $Sp(p+q)/(Sp(p) \times Sp(q))$, is 3-connected. Hence by Proposition 4.1, we obtain an upper bound $cat(Sp(p+q)/(Sp(p) \times Sp(q))) \le 4pq/4 = pq$. It is also known that the cohomology ring of the symplectic Grassmann manifold $Sp(p+q)/(Sp(p) \times Sp(q))$ is similar to that of the complex Grassmann manifold $U(p+q)/(U(p) \times U(q))$ (see

for example [6]), so we have that $\operatorname{cup}(Sp(p+q)/(Sp(p) \times Sp(q))) = \operatorname{cup}(U(p+q)/(U(p) \times U(q)))$, which is given by pq, since the cup-length of $U(p+q)/(U(p) \times U(q))$ is equal to the L-S category of it. Hence we obtain a lower bound $\operatorname{cat}(Sp(p+q)/(Sp(p) \times Sp(q))) \ge pq$.

Concluding remark: the mod 2 cohomology of type BDI $(q \neq 2)$, $SO(p+q)/(SO(p) \times SO(q))$, $p \ge q > 2$, is not known yet.

Appendix A

Proof of Lemma 1.2

(1) Let $K_n = \{X \in SU(n) \mid {}^tX = X\}$ and define an action of $P \in SU(n)$ on K_n by

$$P \cdot X = P X^t P \quad (X \in K_n).$$

We will show that $X \in K_n$ is represented as follows:

$$X = P^t P = P E_n^t P \quad (P \in SU(n)).$$

Let $X \in K_n$. Since $X + \overline{X}$ and $i(X - \overline{X})$ are real symmetric matrices which commute with each other, they can be diagonalized by a suitable matrix $B \in SO(n)$:

$${}^{t}B(X+\overline{X})B = D(a_1,\ldots,a_n), \ {}^{t}Bi(X-\overline{X})B = D(b_1,\ldots,b_n).$$

Then we have

$${}^{t}BXB = D((a_1 - ib_1)/2, \dots, (a_n - ib_n)/2)$$

where $|(a_k - ib_k)/2| = 1$ for $1 \le k \le n$, since ${}^tBXB \in SU(n)$. Now we can take complex numbers c_1, \ldots, c_n such that $c_k{}^2 = (a_k - ib_k)/2$ and $c_1 \cdots c_n = 1$. Then we have ${}^tBXB = CC = C{}^tC$, where $C = D(c_1, \ldots, c_n) \in SU(n)$. By taking P = BC, we have

$$X = BC^{t}C^{t}B = P^{t}P \quad (P \in SU(n)),$$

which implies that the action is transitive.

On the other hand, the isotropy group at E_n is given by

$$\{P \in SU(n) \mid P^t P = E_n\} = \{P \in SU(n) \mid \overline{P} = P\} = SO(n).$$

Since SU(n) is compact, we obtain

$$SU(n)/SO(n) = \{X \in SU(n) \mid {}^{t}X = X\}.$$

(2) There is an embedding $c': Sp(n) \rightarrow SU(2n)$ defined by

$$c'(X) = \begin{pmatrix} A & -\overline{B} \\ B & \overline{A} \end{pmatrix} \quad (X = A + jB)$$

such that $Sp(n) = \{X \in SU(2n) \mid XJ^tX = J\}.$

Let $L_{2n} = \{X \in SU(2n) \mid {}^{t}X = -X\}$ and define an action of $P \in SU(2n)$ on L_{2n} by

$$P \cdot X = P X^t P \quad (X \in L_{2n}).$$

We will show that $X \in L_{2n}$ is represented as follows:

$$X = PJ^t P \ (P \in SU(2n)).$$

Let λ be an eigenvalue of $X \in L_{2n}$. Here observe that $|\lambda| = 1$, since $X \in SU(2n)$. There exists an eigenvector $v \in \mathbb{C}^{2n}$ such that $Xv = \lambda v$ and |v| = 1. Since X satisfies $XX^* = E_{2n}$ and ${}^tX = -X$, it follows by an easy calculation that $X\overline{v} = -\lambda\overline{v}$. Let W be the 2-dimensional subspace of \mathbb{C}^{2n} spanned by v and \overline{v} . By repeating this procedure to the orthogonal complement W^{\perp} of W, we can take consequently an orthonormal basis $\{v_1, \overline{v}_1, \dots, v_n, \overline{v}_n\}$ in \mathbb{C}^{2n} such that

$$Xv_k = \lambda_k v_k, \quad X\overline{v}_k = -\lambda_k \overline{v}_k \quad (k = 1, \dots, n),$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of X. Put

$$w_k = \frac{1}{\sqrt{2}}(v_k + \overline{v}_k), \ w_k' = \frac{-i}{\sqrt{2}}(v_k - \overline{v}_k) \ (k = 1, \dots, n).$$

Then $\{w_1, w_1', \dots, w_n, w_n'\}$ forms an orthonormal basis in \mathbb{R}^{2n} such that

$$Xw_k = i\lambda_k w_k', \quad Xw_k' = -i\lambda_k w_k \quad (k = 1, \dots, n).$$

Thus we have the following:

$${}^{t}BXB = \begin{pmatrix} O & -D(i\lambda_{1}, \dots, i\lambda_{n}) \\ D(i\lambda_{1}, \dots, i\lambda_{n}) & O \end{pmatrix}$$

where $B = (w_1, w_1', ..., w_n, w_n') \in O(2n)$. Observe that we can choose B in SO(2n) by replacing λ_1 with $-\lambda_1$, if necessary.

Now we take complex numbers c_1, \ldots, c_n such that $c_k^2 = i\lambda_k$ for each k, and let $C = D(c_1, \ldots, c_n, c_1, \ldots, c_n) \in U(2n)$. Then we have

$$^{t}BXB = CJC = CJ^{t}C.$$

We can choose C in SU(2n). In fact, since ${}^{t}BXB \in SU(2n)$, we have

$$\det({}^{t}BXB) = i^{2n}\lambda_1^2 \cdots \lambda_n^2 = (i^n\lambda_1 \cdots \lambda_n)^2 = 1,$$

so $i^n \lambda_1 \cdots \lambda_n = \pm 1$. Hence $\det(C) = c_1^2 \cdots c_n^2 = i^n \lambda_1 \cdots \lambda_n = \pm 1$. If $\det(C) = -1$, then replacing *C* with that multiplied by $\begin{pmatrix} D(0, 1, \dots, 1) \ D(1, 0, \dots, 0) \\ D(1, 0, \dots, 0) \ D(0, 1, \dots, 1) \end{pmatrix}$, we have $\det(C) = 1$.

By taking P = BC, we deduce by (A.1) that

$$X = BCJ^{t}C^{t}B = PJ^{t}P \quad (P \in SU(2n)),$$

which implies that the action is transitive.

On the other hand, the isotropy group at J is given by

$$\{P \in SU(2n) \mid PJ^{t}P = J\} = Sp(n)$$

Since SU(2n) is compact, we obtain

$$SU(2n)/Sp(n) = \{X \in SU(2n) \mid {}^{t}X = -X\}.$$

Further multiplying by J, we obtain

$$SU(2n)/Sp(n) = \{JX \in SU(2n) \mid {}^{t}X = -X\}$$

= $\{X \in SU(2n) \mid {}^{t}({}^{t}JX) = -{}^{t}JX\}$
= $\{X \in SU(2n) \mid {}^{t}XJ = JX\}$
= $\{X \in SU(2n) \mid {}^{t}X = JX{}^{t}J\}.$

References

- T Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967) 417–427 MR0229240
- [2] S Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, Providence, RI (2001) MR1834454 Corrected reprint of the 1978 original
- [3] IM James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978) 331–348 MR516214
- J Korbaš, Bounds for the cup-length of Poincaré spaces and their applications, Topology Appl. 153 (2006) 2976–2986 MR2248401
- [5] J Korbaš, A Szűcs, The Lyusternik-Shnirelman category, vector bundles, and immersions of manifolds, Manuscripta Math. 95 (1998) 289–294 MR1612062

- [6] M Mimura, H Toda, *Topology of Lie groups. I, II*, Translations of Mathematical Monographs 91, Amer. Math. Soc. (1991) MR1122592 Translated from the 1978 Japanese edition by the authors
- [7] W Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975) 111–116 MR0391075
- [8] G W Whitehead, *Elements of homotopy theory*, Graduate Texts in Mathematics 61, Springer, New York (1978) MR516508

Department of Mathematics, Faculty of Science, Okayama University Okayama 700-8530, Japan

mimura@math.okayama-u.ac.jp, sugata@math.okayama-u.ac.jp

Received: 18 February 2006 Revised: 4 September 2006

334