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On the Lusternik–Schnirelmann category of symmetric
spaces of classical type

MAMORU MIMURA

KEI SUGATA

We determine the Lusternik–Schnirelmann category of the irreducible, symmetric
Riemann spaces SU.n/=SO.n/ and SU.2n/=Sp.n/ of type AI and AII respectively.

55M30

1 Introduction

For a topological space X , the Lusternik–Schnirelmann category, L-S category for
short and denoted by cat.X /, is defined to be the least integer n such that there exists an
open covering fA1; : : : ;AnC1g of X with each Ai contractible in X . This homotopy
invariant is known to be related to various problems; for instance, some geometric
applications can be found in Korbaš and Szűcs [5].

First of all we recall a theorem due to Singhof [7]:

Theorem cat.SU.n//D n� 1

The purpose of this note is to prove the following theorem along the line of idea of the
proof of Singhof’s theorem.

Theorem 1.1
.1/ cat.SU.n/=SO.n//D n� 1

.2/ cat.SU.2n/=Sp.n//D n� 1

One can prove the following theorem by the entirely similar method.

Theorem 1:10

.1/ cat.U.n/=O.n//D n

.2/ cat.U.2n/=Sp.n//D n
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324 M Mimura and K Sugata

Observe that (1) of Theorem 1.1 for nD 4 improves the estimate of the L-S category of
the oriented Grassmann manifold zG6;3 D SO.6/=.SO.3/�SO.3// given by Korbaš
[4, Corollary C (a)].

Let J D

�
O �En

En O

�
2 SU.2n/, where En denotes the n� n identity matrix.

We need the following lemma to give a proof of our result.

Lemma 1.2 There are matrix representations:
.1/ SU.n/=SO.n/D fX 2 SU.n/ j tX DX g

.2/ SU.2n/=Sp.n/D fX 2 SU.2n/ j tX D JX tJ g

By Lemma 1.2, we can regard SU.n/=SO.n/ and SU.2n/=Sp.n/ as subspaces of
SU.n/ and SU.2n/ respectively.

The paper is organized as follows. In Section 2 we will prove (1) of Theorem 1.1. In
Section 3 we will prove (2) of Theorem 1.1. In Section 4 we study the L-S category
of the irreducible symmetric Riemann spaces of classical type other than AI and AII.
We will give a proof of Lemma 1.2, which may be a folklore, in the Appendix just for
completeness.

We thank J Korbaš for reading the manuscript, M Yasuo for giving information on
these homogenous spaces and also N Iwase and T Nishimoto for useful conversations.

2 L-S category of SU.n/=SO.n/

In this section, we will prove (1) of Theorem 1.1. The mod 2 cohomology ring of
SU.n/=SO.n/ is given as follows (see for example Mimura and Toda [6]):

H�.SU.n/=SO.n/IZ=2/Dƒ.x2;x3; : : : ;xn/;

where ƒ denotes exterior algebra. Since the cup-length gives a lower bound of the L-S
category (see for example Whitehead [8]), we have

n� 1D cupZ=2.SU.n/=SO.n//� cat.SU.n/=SO.n//:

Thus in order to determine cat.SU.n/=SO.n//, it is sufficient to show the following
proposition.

Proposition 2.1 cat.SU.n/=SO.n//� n� 1
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Proof Let �1; �2; : : : ; �n be different complex numbers with j�r j D 1 such that
�1�2 � � ��n ¤ 1. For 1� r � n we define

Ar D fX 2 SU.n/=SO.n/ j �r is not an eigenvalue of X g:

Observe here that we regard X 2 SU.n/=SO.n/ as a matrix in SU.n/ by Lemma 1.2.
Then the Ar ’s are clearly open sets, and form a covering of SU.n/=SO.n/, since the
property �1�2 � � ��n ¤ 1 implies that the �r ’s cannot all appear as the eigenvalues of
any matrix in SU.n/=SO.n/.

Now we fix Ar and let B be a connected component of Ar . In order to show that Ar is
contractible in SU.n/=SO.n/, it is sufficient to show that B is so, since SU.n/=SO.n/

is pathwise connected.

Next, let u.n/DfX 2M.n;C/ jX �D�X g, and we will define a map logW B! u.n/

as follows. Let X 2 B � Ar and �r D ei˛ , where 0 � ˛ < 2� . Then X can be
diagonalized by a suitable matrix P 2 U.n/ as X D PD.ei�1 ; : : : ; ei�n/P� , where
D.a1; : : : ; an/ denotes a diagonal matrix defined by

D.a1; : : : ; an/D

 
a1 : : :

an

!
;

and we may take ˛ < �j < ˛C 2� for each j , since X does not have �r D ei˛ as its
eigenvalue. We define a function logW B! u.n/ by

log X D PD.i�1; : : : ; i�n/P
�;

where it is easy to see that the definition does not depend on the choice of P , and the
function log is clearly continuous. Since X D exp.log X / by definition, we have

1D det X D det.exp.log X //D exp.tr.log X //:

Since the maps trW M.n;C/! C, which is the trace function, and logW B! u.n/ are
continuous and since B is connected, there exists an integer k such that tr.log X /D

2� ik for all X 2 B .

Now we define a constant matrix X0 in SU.n/=SO.n/ by

X0 D exp
�

2� ik

n

�
�En;

and we show that B is contractible to X0 . In order to define a contracting homotopy, we
use the fact that u.n/ is a vector space, which allows us to construct linear homotopies.
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We define a homotopy F W B � Œ0; 1�! SU.n/=SO.n/ by

F.X; s/D exp
�
.1� s/ log X C s

2� ik

n
En

�
:

Clearly, the function F is continuous such that F.X; 0/ D exp.log X / D X and
F.X; 1/DX0 for all X 2B . Here we need to check that F.X; s/2SU.n/=SO.n/ for
all X 2B and s2 Œ0; 1�. Since u.n/ is the Lie algebra of U.n/, we have F.X; s/2U.n/.
Hence it is sufficient to show that det.F.X; s//D 1 and that tF.X; s/D F.X; s/. The
former equality can be seen as follows:

det.F.X; s//D det
�

exp
�
.1� s/ log X C s

2� ik

n
En

��
D exp

�
tr
�
.1� s/ log X C s

2� ik

n
En

��
D exp

�
.1� s/ tr.log X /C s

2� ik

n
tr.En/

�
D exp .2� ik.1� s/C 2� iks/

D exp .2� ik/

D 1:

The latter equality can be seen as follows:

tF.X; s/D texp
�
.1� s/ log X C s

2� ik

n
En

�
D exp

�
.1� s/ log tX C s

2� ik

n
tEn

�
D exp

�
.1� s/ log X C s

2� ik

n
En

�
D F.X; s/:

3 L-S category of SU.2n/=Sp.n/

In this section, we will prove (2) of Theorem 1.1. The integral cohomology ring of
SU.2n/=Sp.n/ is given as follows (see for example [6]):

H�.SU.2n/=Sp.n/IZ/Dƒ.x5;x9; : : : ;x4n�3/;
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where ƒ denotes exterior algebra. Since the cup-length gives a lower bound of the L-S
category, we have

n� 1D cupZ.SU.2n/=Sp.n//� cat.SU.2n/=Sp.n//:

Thus in order to determine cat.SU.2n/=Sp.n//, it is sufficient to show the following
proposition.

Proposition 3.1 cat.SU.2n/=Sp.n//� n� 1

In order to prove Proposition 3.1, we need some lemmas.

Lemma 3.2 Let X be any matrix in SU.2n/=Sp.n/. If � is an eigenvalue of X ,
then

dim W� � 2;

where W� � C2n denotes the corresponding eigenspace.

Proof There exists an eigenvector v¤ 0 in C2n such that XvD�v . Since X satisfies
XX � DE2n and tX D JX tJ , it follows by an easy calculation that X.Jxv/D �.Jxv/.
Consequently we have that if v is an eigenvector of �, so is Jxv . Hence it is sufficient
to prove that v and Jxv are linearly independent. If avCbJxvD 0 .a; b 2 C/, we have
xaxvC xbJv D 0, and by solving the simultaneous equations, we see .jaj2Cjbj2/v D 0,
which implies aD b D 0.

Let �1; �2; : : : ; �n be different complex numbers with j�r j D 1 such that
�2

1
�2

2
� � ��2

n ¤ 1. For 1� r � n we define

Ar D fX 2 SU.2n/=Sp.n/ j �r is not an eigenvalue of X g:

Lemma 3.3 A family fAr g1�r�n forms an open covering of SU.2n/=Sp.n/:

SU.2n/=Sp.n/D

n[
rD1

Ar :

Proof Let X 2 .SU.2n/=Sp.n//n
Sn

rD1 Ar D
Tn

rD1f.SU.2n/=Sp.n//nAr g. Then
X has �r as its eigenvalue. Furthermore we see by Lemma 3.2 that the multiplicity of
the eigenvalue �r is 2 for each r . Consequently, X can be diagonalized by a suitable
matrix P 2 U.2n/:

X D PD.�1; �1; : : : ; �n; �n/P
�:

Therefore we have that det X D�2
1
�2

2
� � ��2

n¤1 which contradicts the fact X 2SU.2n/.
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Proof of Proposition 3.1 By Lemma 3.3, it is sufficient to show that each Ar is con-
tractible in SU.2n/=Sp.n/; but since SU.2n/=Sp.n/ is pathwise connected, it is suf-
ficient to show that any connected component of Ar is contractible in SU.2n/=Sp.n/.
Now we fix Ar and let B be a connected component of Ar . We will show that B is
contractible in SU.2n/=Sp.n/.

In a similar way to that in Section 2, we can define a continuous function logW B!u.2n/

such that exp.tr.log X // D 1 for X 2 B . Then, as was seen before, there exists an
integer k such that tr.log X /D 2� ik for all X 2 B .

Now define a constant matrix X0 in SU.2n/=Sp.n/ by

X0 D exp
�
� ik

n

�
�E2n

and a contracting homotopy F W B � Œ0; 1�! SU.2n/=Sp.n/ by

F.X; s/D exp
�
.1� s/ log X C s

� ik

n
E2n

�
:

Clearly, F is continuous such that F.X; 0/D exp.log X /DX and F.X; 1/DX0 for
all X 2 B . Here we need to check that F.X; s/ 2 SU.2n/=Sp.n/ for all X 2 B and
s 2 Œ0; 1�. Since u.2n/ is the Lie algebra of U.2n/, we have F.X; s/ 2U.2n/. Hence
it is sufficient to show that det.F.X; s// D 1 and that tF.X; s/ D JF.X; s/tJ . The
former equality can be seen as follows:

det.F.X; s//D det
�

exp
�
.1� s/ log X C s

� ik

n
E2n

��
D exp

�
tr
�
.1� s/ log X C s

� ik

n
E2n

��
D exp

�
.1� s/ tr.log X /C s

� ik

n
tr.E2n/

�
D exp .2� ik.1� s/C 2� iks/

D exp .2� ik/

D 1:
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The latter equality can be seen as follows:

tF.X; s/D texp
�
.1� s/ log X C s

� ik

n
E2n

�
D exp

�
.1� s/ log tX C s

� ik

n
tE2n

�
D exp

�
.1� s/ log.JX tJ /C s

� ik

n
E2n

�
D exp

�
.1� s/J.log X /tJ C s

� ik

n
E2n

�
D exp

�
J

�
.1� s/ log X C s

� ik

n
E2n

�
tJ

�
D J exp

�
.1� s/ log X C s

� ik

n
E2n

�
tJ

D JF.X; s/tJ:

4 Lusternik–Schnirelmann category of the irreducible sym-
metric Riemann space of classical type

First let us recall a theorem due to Ganea (for a proof see [1]):

Proposition 4.1 If X is an .r � 1/–connected CW–complex for r � 1, then

cat.X /� dim.X /=r:

We show the following

Proposition 4.2 If V is a simply connected, complex d –manifold which admits a
Kähler metric, then

cat.V /D d:

In fact, following James [3], it is proved as follows; we have cat.V /� d by Proposition
4.1, since V is simply connected. But with any Kähler metric, there exists a closed
2–form on V whose d th power is the volume element and so cannot be cohomologous
to zero. Hence we have cat.V /� d , since the cup-length gives a lower bound of the
L-S category.

According to Helgason [2, page 518], the irreducible symmetric Riemann spaces of
classical type which has a Hermitian structure are known to be of type
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A III, BD I (q D 2), BD II (nD 2), D III, C I.

Now we also recall from Proposition 4.1 of [2] the following

Proposition 4.3 The Hermitian structure of a Hermitian symmetric space is Kählerian.

It follows from this proposition that the spaces of above type have Kähler metric.
Hence we see the L-S category of these spaces by Proposition 4.2, since a Hermitian
symmetric space is a complex manifold by definition (see [2, page 372]). Thus, with
Theorem 1.1, the L-S category of the irreducible symmetric Riemann space of classical
type, except that of type BD I (q ¤ 2/, is determined as follows:

G=K Kähler dimension cat.G=K/

A I SU.n/=SO.n/ .n> 2/ no .n� 1/.nC 2/=2 n� 1

A II SU.2n/=Sp.n/ .n> 1/ no .n� 1/.2nC 1/ n� 1

A III
U.pC q/=.U.p/�U.q//

.p � q � 1/
yes 2pq pq

BD I
SO.pC q/=.SO.p/�SO.q//

.p � q � 2; pC q ¤ 4/

yes .q D 2/

no .q ¤ 2/
pq

p .q D 2/

? .q ¤ 2/

BD II SO.nC 1/=SO.n/ .n� 2/
yes .nD 2/

no .n¤ 2/
n 1

D III SO.2l/=U.l/ .l � 4/ yes l.l � 1/ l.l � 1/=2

C I Sp.n/=U.n/ .n� 3/ yes n.nC 1/ n.nC 1/=2

C II
Sp.pC q/=.Sp.p/�Sp.q//

.p � q � 1/
no 4pq pq

As for the remaining cases;

Firstly, the space of type BD II, the real Stiefel manifold SO.nC 1/=SO.n/, is home-
omorphic to Sn , and hence we have cat.SO.nC 1/=SO.n//D 1.

Secondly, it is known that the space of type C II, the symplectic Grassmann manifold
Sp.pCq/=.Sp.p/�Sp.q//, is 3–connected. Hence by Proposition 4.1, we obtain an
upper bound cat.Sp.pCq/=.Sp.p/�Sp.q///�4pq=4Dpq . It is also known that the
cohomology ring of the symplectic Grassmann manifold Sp.pCq/=.Sp.p/�Sp.q//

is similar to that of the complex Grassmann manifold U.pC q/=.U.p/�U.q// (see
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for example [6]), so we have that cup.Sp.pC q/=.Sp.p/� Sp.q/// D cup.U.pC
q/=.U.p/�U.q///, which is given by pq , since the cup-length of U.pCq/=.U.p/�

U.q// is equal to the L-S category of it. Hence we obtain a lower bound cat.Sp.pC

q/=.Sp.p/�Sp.q///� pq .

Concluding remark: the mod 2 cohomology of type BD I (q¤2/, SO.pCq/=.SO.p/�

SO.q//, p � q > 2, is not known yet.

Appendix A

Proof of Lemma 1.2

.1/ Let KnD fX 2 SU.n/ j tX DX g and define an action of P 2 SU.n/ on Kn by

P �X D PX tP .X 2Kn/:

We will show that X 2Kn is represented as follows:

X D P tP D PEn
tP .P 2 SU.n//:

Let X 2Kn . Since XC xX and i.X � xX / are real symmetric matrices which commute
with each other, they can be diagonalized by a suitable matrix B 2 SO.n/:

tB.X C xX /B DD.a1; : : : ; an/;
tBi.X � xX /B DD.b1; : : : ; bn/:

Then we have
tBXB DD..a1� ib1/=2; : : : ; .an� ibn/=2/;

where j.ak � ibk/=2j D 1 for 1 � k � n, since tBXB 2 SU.n/. Now we can take
complex numbers c1; : : : ; cn such that ck

2D .ak� ibk/=2 and c1 � � � cnD 1. Then we
have tBXB D C C D C tC , where C DD.c1; : : : ; cn/ 2 SU.n/. By taking P DBC ,
we have

X D BC tC tB D P tP .P 2 SU.n//;

which implies that the action is transitive.

On the other hand, the isotropy group at En is given by

fP 2 SU.n/ j P tP DEng D fP 2 SU.n/ j xP D Pg D SO.n/:

Since SU.n/ is compact, we obtain

SU.n/=SO.n/D fX 2 SU.n/ j tX DX g:
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.2/ There is an embedding c0W Sp.n/! SU.2n/ defined by

c0.X /D

�
A � xB

B xA

�
.X DAC jB/

such that Sp.n/D fX 2 SU.2n/ jXJ tX D J g.

Let L2n D fX 2 SU.2n/ j tX D�X g and define an action of P 2 SU.2n/ on L2n

by
P �X D PX tP .X 2L2n/:

We will show that X 2L2n is represented as follows:

X D PJ tP .P 2 SU.2n//:

Let � be an eigenvalue of X 2L2n . Here observe that j�j D 1, since X 2 SU.2n/.
There exists an eigenvector v 2C2n such that XvD �v and jvj D 1. Since X satisfies
XX � D E2n and tX D �X , it follows by an easy calculation that X xv D ��xv . Let
W be the 2–dimensional subspace of C2n spanned by v and xv . By repeating this
procedure to the orthogonal complement W ? of W , we can take consequently an
orthonormal basis fv1; xv1; : : : ; vn; xvng in C2n such that

Xvk D �kvk ; X xvk D��kxvk .k D 1; : : : ; n/;

where �1; : : : ; �n are eigenvalues of X . Put

wk D
1
p

2
.vk Cxvk/; wk

0
D
�i
p

2
.vk � xvk/ .k D 1; : : : ; n/:

Then fw1; w1
0; : : : ; wn; wn

0g forms an orthonormal basis in R2n such that

Xwk D i�kwk
0; Xwk

0
D�i�kwk .k D 1; : : : ; n/:

Thus we have the following:

tBXB D

�
O �D.i�1; : : : ; i�n/

D.i�1; : : : ; i�n/ O

�
;

where BD .w1; w1
0; : : : ; wn; wn

0/2O.2n/. Observe that we can choose B in SO.2n/

by replacing �1 with ��1 , if necessary.

Now we take complex numbers c1; : : : ; cn such that ck
2 D i�k for each k , and let

C DD.c1; : : : ; cn; c1; : : : ; cn/ 2 U.2n/. Then we have

(A.1) tBXB D CJC D CJ tC:
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We can choose C in SU.2n/. In fact, since tBXB 2 SU.2n/, we have

det.tBXB/D i2n�2
1 � � ��

2
n D .i

n�1 � � ��n/
2
D 1;

so in�1 � � ��n D˙1. Hence det.C /D c2
1
� � � c2

n D in�1 � � ��n D˙1. If det.C /D�1,

then replacing C with that multiplied by
�

D.0; 1; : : : ; 1/D.1; 0; : : : ; 0/

D.1; 0; : : : ; 0/D.0; 1; : : : ; 1/

�
, we have

det.C /D 1.

By taking P D BC , we deduce by (A.1) that

X D BCJ tC tB D PJ tP .P 2 SU.2n//;

which implies that the action is transitive.

On the other hand, the isotropy group at J is given by

fP 2 SU.2n/ j PJ tP D J g D Sp.n/:

Since SU.2n/ is compact, we obtain

SU.2n/=Sp.n/D fX 2 SU.2n/ j tX D�X g:

Further multiplying by J , we obtain

SU.2n/=Sp.n/D fJX 2 SU.2n/ j tX D�X g

D fX 2 SU.2n/ j t.tJX /D�tJX g

D fX 2 SU.2n/ j tXJ D JX g

D fX 2 SU.2n/ j tX D JX tJ g:
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