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Determination of the order of the P —image
by Toda brackets

JUNO MUKAI

The present paper gives a proof of the author’s paper [14] on the orders of Whitehead
products of ¢, with o € ”r’zl+k’ (n >k + 2,k < 24) and improves and extends it.
The method is to use composition methods in the homotopy groups of spheres and
rotation groups.

55M35, 55Q52; 57517

Introduction

This paper is a sequel to [5] by Golasifiski and the author in the stable case. The
methods are to use those of [5]. In particular, the EHP sequence, the method and
result of Toda [18, Chapter 11] and the result of Nomura [15] are essentially used. Let
) 4 denote the 2 primary component of the homotopy group 7,4 (S") of the n
dimensional sphere S". Let ¢, be the identity class of S" and « € 7, forn >k +2.
Then our result about the order of the Whitehead product [t,, o] = P(E" ') is as
follows:

Theorem 1 (Main Theorem) Letn >k +2 and « be an element of 7, +x- Then, the
order of the Whitehead product [, «] for n = r (mod 8) with 0 <r <7 is as given
in Tables 1 and 2 except as otherwise noted.

1 Results from [5]

In this section, we shall collect the result of [5] that we need. We denote by SO(n)
the n-th rotation group and by A: 74 (S") — m,_1(SO(n)) the connecting homomor-
phism. The notation n =i (mod k) is often written n = i (k). From the fact that
Tan+3(SO@n + 3)) = 7 [7], we have Angy43 =0.

We recall [tn,n] =0if and only if n =3 (4) orn = 2, 6;
[tn.n*]=0if and only if n = 2,3 (4) orn = 5.
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356 Juno Mukai
Table 1
[o\r T 0 ] I [ 2] 3 4] 5 6 [ 7 |
n 2 2 2 1 2 2 2 1
n? 2 2 1 1 2 2 1 1
2, £2—3
v 8 2 4 2 8 A 4 1
2, £2—5
2 ’ .
v 2 2 2 L L3l 1 1 2 1
2, 7(16)
o 16 2 16 2 16 2 16 1 15016)
1, #22(32)
> 54
no 2 2 2 1 2 2 2, =22(32) 1
> 54
e 2 2 1 1 2 2 2 1
v 2 2 2 1 2 2 2 1
. 1, £53(69)
n’o 2 f f;_; 1 1 2 | 2, =53(69) 1 1
> > 117
1, £53(69)
ne 2 1 1 1 2 | 2, =53(64) 1 1
> 117
2, #£2—7
3 s
v 2 L lai |1 1 1 1 1 1
m 2 2 2 1 2 2 2 1
m 2 2 1 1 2 2 1 1
1, £115(128)
¢ 8 1 4 | 2, =115(128) | 8 1 4 1
> 243
2, 1(16) 2, 3(16)
2
o 2,0(16) 1 936) 2 . 11U6) 2 2 2 1,15(16)
P 2 2 2 2 2 2 2 1
) 2, #21-3 2, 7(16) | ) 2, forn#2'—3>5
For example, { 1 =2i—3 A 1. 15(16) } and {2,0(/6)} mean { 1 forn=2—3>5 1,
{2, forn =7 (mod 16) > 23 } and { 2, for n = 0 (mod 16)216} ectivel
1, forn=15(mod 16) > 15"+ ™ » frespectively.

Here 1 and n? mean exactly 1, € ©
deal with the 2 primary components. Denote by flae the order of « in a group. We

recall

‘We also recall

fltn, vl =

A(g,ip) =0ifn>=0and k =4,5.

— N B~

ifn=0(4)>8, n#12;
ifn=24)>6,n=4,12;

n
n+

2
pand n, €m

unsettled, forn =8 (mod 16) > 24

n
n+2°

ifn=1,3,5(08)>9, n#2 —3;
ifn="7(8), n=2"-3>5.

The following is one of the main results in [5]:

Theorem 1.1 [i,,v2]=0ifand only ifn =4,5,7 (8) orn =2! —5 fori > 4.
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Table 2
[e\r [0 L[ 2 ] 3 [ 4 ] 5 [ 6 [7]
nK 2 1 1 1 2 2 1 1
0 32 2 32 2 32 2 32 a
1, £2°—18(2°)
np 2 2 2 1 2 2 2, =22—18(2% | 1
>210-18
n* 2 2 2 1 2 2 2,14(16) 1
nn* 2 2 1 1 2 2,13(16) 1 1
1, £27—1927)
n%p 2 2 1 1 2 2, =210—719(2%) 1 1
>21—79
VK 2 1 2 2 2 1 1 1
i 2 2 2 1 2 2 2 1
nit 2 2 1 1 2 2 1 1
V¥ B 2 4 2 8or4 4 1
B 1, #2M—21(2™)
¢ 8 1 4 2, =211—-212'") 8 1 4 1
>212 2]
o 2 2 2 2 1,5(16) 1, 6(16) 1
K B 2 8 or 4 2 4 2 4 1
o3 1,8(16) | 1,9(16) 2 1, 11(16) 1 1 2 1
nk 2 2 2 1 2 2 1 1
n%ic 2 2 1 1 2 1 1 1
Vo 203 1,3(16) 1 1 1 1
n¥o 2 2 1 1 2 2 1, 6(16) 1
vk 8 or 4 4 2 4 1 4 1
D 16 2 16 2 16 2 16 b
1, #27-26(02F)
np 2 2 2 1 2 2 2, =23-26(2%) | 1
>2/4—26
nn*o 2 1 1 1 2 1,5(16) 1 1
W3, 2 2 2 1 2 2 2 1
1, £27-272")
n’p 2 2 1 1 2 2, =211-27(2") 1 1
>205—-27
Nik3 2 2 1 1 2 2 1 1
V2K 1 2 1 1 1 2 1
1, #£2°—29(2P)
&34 8 1 4 2, =21-29(2") 8 1 4 1
> 21629

{*} The result holds if (v,0,V) =nn*o.

-

1, n#£28—-17(28);

2, n=28-17(28)>2%-17,

b={ 1, n#£212-25(0212);

2, n=212-250212)>213 —25,

Let n =7 (16) = 23. Then, there exists an element 6,_7 € ”371_—78 satisfying

(I-1)
We recall

flin. 0] =

—_— N OO0

6 ifn=0(2)>10:;
ifn=8;
ifn=1(2)>9, n#11, n# 15 (16);
ifn=11, n =15 (16).
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We also recall the elements 7,, € nf,'l’ and T4, € né‘,',’ 2o which are the J images
of the complex and symplectic characteristic elements, respectively. They satisfy the
following.

Lemma 1.2

(1) Etan =[tan+1.t], 2Tan+2 = [tan+2.nl and Hrop = (n+ DNap—1;
(2) E*T4n = tan42 and HTyy = £(n + 1)vg,—_;.
About the group structure of the stable k—stem 7 for 23 <k <29, we recall from [11]

and [16] the following: 75, = {p,vic,n*0} = 716 ® Zg ® Z5; 75, = {np.nn*o} =

(ZZ)Z; 7'[55 = {772,57 M3,*} = (22)2; 7T§6 = {7’“3’*’ UZE} ~ (ZZ)Z;
7T57 = {é‘?’,*} = ZS9 7[58 = {SE} = Zz, ]7,’59 =0.

By Lemma 1.2(1) and the property of the Whitehead product,
[tanta,na]=0 if 2a=0.

Especially, for the elements f = v, ¢, v*, , VK, {3,%, we know the relations 48 =
n n?w, 0 n? [, n°K, n? s « . By the fact that Higy42,28] = 4B, we obtain

(1-2) flan+2. B1 =4 (B =v. L v L VR §30).

Let n =3 (4) = 7. Then, by the fact that At, on,—; = An, =0 and 2n,—1 =0, a
Toda bracket {Aty, n,—1, 2t} C 7,y41(SO(n)) is defined. The following result in [5]
is useful to show the triviality of the Whitehead product [i5, ]:

Lemma 1.3 Letn =3 (4) > 7. Then,

(D {Atn, Np—1,203 = 0;

2) AE{nn—1,2tn,a}) =0, if @ € 13 (S") is an element satistying 21, oo = 0.

By Lemma 1.3,
Aa =0 for o = em, b, B 3 (M =4n+3>3); Ay, ;=0 (1> 4)
and so,
[tant3.a] =0 fora =&, pu, [, w35 (n>0): [tant3.7*]1=0 (n > 4).

By [10],
(2 ifn=0,1,2 (4) > 4
m‘”’“]_{l ifn=3(4).
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By [3], [4] and [10],

ifn=0(4)>8;
ifn=2(4)>6;

if n =115 (128) > 243;
ifn=1(2)>5 n#115(128).

flen. C1=

— N b~

The results for the other elemens in the J—image and p—series are stated in the table.

2 Concerning Toda’s results [18, Chapter 11]

We denote by P" the real n dimensional projective space and set Py =P"/ Pk=1 for
k <n.Leti”": P}" < P} and P g Py = Py for 0 <k <m < n be the canonical
inclusion and collapsing maps, respectively. We set i}/ = iZ_l’n and py = p;_, . for
k<n—1. We also set i"™" = i;"’", D = p;’“. We write simply i for i,];’",i,? and
p for py, unless otherwise stated.

Let i < 4n + k — 4. We consider the exact sequence induced from a pair
(Em—tprtk pr=tpntk=1y (18 (11.11)]:

i I/, AL
7Ti(En_lpz—i_k_l)l—>7Ti(En_lPZ+k)—k)7Ti+k(S2n+2k_l)—kﬂfi—l(En_IPZ—HC_l)’
where [ ,/( and Ay are defined by the following commutative diagram:

Jx

a
Ni(En_IPZ+k) Ni(En_IPZ+k, En—lpz+k—1) il (En_IPZ+k_1)

A/

= EkE =
Y I Y
ni(En71PZ+k) K R 7Ti+k(S2n+2k_1) jTi_l(EnflP:+k71).
We denote by
Ynj: S" =P

the characteristic map of the (n 4 1)—cell ¢! = PZH — P} for k <n. We set

—1
)\n,k = E" Yn+k—1,n-

Geometry & Topology Monographs, Volume 13 (2008)
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By [18, Lemma 11.8],
A(EF ey = hypoa (@ em (SPTF72)) if i <4n+k—4.
We denote by ¢(s) = {1 <i <s|i=0,1,2,4(8)}. By use of [18, Lemma 11.8,
Proposition 11.9], we obtain:
Proposition 2.1
(1) Letk>1andi <4n+ k —4. Assume that
Apgoa=ixf in m_(E"TIPITETL)
2n+k—2
1

for o € 7
P(E¥t3q) = E*¥=1§ and HS = + E2B.

and B € nl.z_”l_l . Then there exists an element § € nl.”jll such that

() Letk>2,1>0,n=1[(mod 2¢®) and i < 4n + k —4. Assume that
Agoa=ixf in mi_ (E"TIPITAL

fora € nl.z_"ka_z and B € nl.z_”l_l . Then there exists an element § € nl.”jll such that

P(E¥t3q) = E*¥=1§ and HS = + E2B.

Although (2) is a special case of (1), it is useful in the later arguments. Hereafter
Proposition 2.1(2) is written Proposition 2.1[n;k,1]. We investigate the case 4 <k <8§.

Forn>2,weset M" = E""2P2 Let 7, €[M"2,S"| =74 and 7, € 1y o (M 1) =
Z4 for n = 3 be an extension and a coextension of 7, respectively. We know the
following relations in the stable groups {P?, S°} and 3 (P2): 2n=n?p and 27 =in>.
We use the relations

N = +2v =(n, 2, n).
Toda brackets are often expressed as the stable forms.
From the fact that E2P3 = M* Vv S5, we take E2y; = 251 £ (E2i%3)73, where
s1: S° < E?P3 is the canonical inclusion. Since Eng1 o(E2%i**o0s)) = E* 12, we
regard E2i%** 05, as a coextension of E3i12 € my(M?) = 7,. SetTs = E%i3*os;.
Then, by the relation

2(E%i** osy) = £(E%i*h7;,

we obtain 75(E?P*) = {I5} = Zg, where 275 = +(EZ%i>*)7j; [13]. We set 7,43 =
E" 275 € w1 3(E"P*) = Zg (n > 2). We use the relation in the stable case:

(2-1) 27 = +i >4

Geometry € Topology Monographs, Volume 13 (2008)
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Notice that Proposition 2.1[n-2;2,l] for / = 2, 3 coincides with [18, Proposition 11.10]
and Proposition 2.1[n-3;3,/] for / = 1, 3 does with [18, Proposition 11.11], respectively.
In these cases, A,_x x € nZn_k_z(E”_k_lPZ:}() is taken as follows:

5 _fin+2t (n=0(4));
TR i =104

A ‘{2ﬁiﬂﬁﬁ (n=0 (4):
"3 ysa e (on20) (n=2(4)),
where i = E"73"") and j = E”_4i:l’:33’"_1. By use the last part of this formula,
we have A,_330a = jxB if B € (n,2t,a). So, [18, Proposition 11.11.ii)] is exactly

interpreted as follows:

Remark Leti <4n—2 and n = 3 (4). Assume that 2o = 0 for « € nl?f2 and
{N2n+1,2t, EZ(X} > B, then P(E7O() = EZIB.
Hereafter we use [18, Proposition 11.11.i1)] in this version.
We use the cell structures
(PY)  P*=P?Uz,CM?; (P}  Pi=S%u,,CM>.
By (P;), we obtain ng(P‘Z‘) ={"} =~ 74 and ni(Pg) ={'n} = 7Z,, where 7" = pT
and 27" = in. Notice that y4 =7 and y4» =7'1.
Now, consider the case k = 4. PZ:}1 has the following cell structures:

P2=S°VvP2VvS? (n=0(4):
P4 =P2Uz,CM? (n=1(4));
P; = P; U'i‘/n 65 (I’l =2 (4)),
PS=PjUy e®  (n=3(4).

n—1 __
Pn—4 -

The following cell structure is also useful:
(P3) PS = M*U;7 CMS.
In general, we have
(2-2) Yan+1,k € (L. Vank, 20).
We obtain the following:
TPy 2) = (LT 2 Z D2y & Zg; mi(PY) = {Tn,iv} = (Zy)*;

mi(P) = {ys} = Z; ni(P)) = {ys2.iv} = Z D Zs;

Geometry & Topology Monographs, Volume 13 (2008)
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T3P ={ys3. i =2 @ 7,

where
(2-3) ys € (i*T,n, 20),
¥s.2 € (i"T,n,20) and ys 3 € (i'i,n,20) (i’ =i3,i” =1i;). We also obtain
4,6~ .y L
me(P§) = {iy 7. iv} = (Z5).
Remark The indeterminacy of the bracket (i”,7'n, 2t) is {izz’sv} +2ri(PY) =27, ®

27. Since the squaring operation Sq*: H?(P$: Z,) — HO(PS: Z,) is trivial, we take
simply s € (i”T, n,21), whose indeterminacy is 275 (P3).

Notice that PZ =S*vMOvST. Letsy: ST — PZ and t: M© f—>PZ are the canonical
inclusions, respectively. The cell structure of P”_, is given as follows:

n—4
(P3) Py =PiUy e’ (n=0(8)).
where
(2-4) V7.4 =282 £t +iv;
(PJ) Py =P, e’ (PE=E*P* n=1(3)),
where
(2-5) Y8,s =1nN+iv;

P’ =P; Uy, ,+ive'® (P = E*P;, n =2 (8));
(P7h P =P0uU;e!! (PIY = E*PS, n=3(8));
Py (n=4(8)); P> =P* Uy e’ (n=5(8)):
PS =P Uy ,e® (n=68)); P;=PivS7 (n=17(8)).
Notice that (7771 1) is obtained from the triviality of Y10,8: S 10 _, Péo =F SP%.

Let x(n) be an integer such that it is odd or even according as # is even or odd. Then
we can set

20+ i”_3277'+ x(Piv (n=0 (4));

n—

. B Tn+x(%)iv (I’l =1 (4));
n—4,4 = V5.2 + x(%)iv (n=2(4));
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Remark In the case n =0 (4), exactly,

N 25y £tn+iv (n=0(8));
AT 28 2023 (n=4(8)).

By Proposition 2.1, we obtain the following.

Proposition 2.2 Leti <4n and a € ni2”1+ 2,

(1) Let n =0 (mod 4) and assume that 1), o« = 200 = 0. Then there exists an
element § € nf:II such that P(E’o) = E3§ and

HS = x("*)vant1(E2a).

(2) Letn =1 (mod 4) and assume that 73,4+102,+1 ©@ = 0. Then there exists an
element § € n;l_:rll such that P(E’o) = E3§ and

H§ = x(")vang1(E*a).

(3) Let n =2 (mod 4) and assume that E*"3ys ; oa = 0. Then there exists an

element § € n;l_:rll such that P(E’o) = E3§ and

H8 = x("2)vppi 1 (E2).

(4) Letn =3 (mod 4). Then there exists an element § € ni”:ll such that P(E"a) =
E38 and HS = x (") vpp41(E%a).

Notice the following: In Proposition 2.2(1),(3), the assumptions 7,,&¢ = 0 and
E?"=3ys 0 =0 imply the relations 7,0’ =0 and 2t5,+1 00’ = 2a’ = 0 respectively,
where Ea’ = a.

For the case k = 8, we obtain:

Proposition 2.3 Letn=1[ (mod 8) andi <4n+4. Let«a € nl.zfl"'6.

(1) Assume that my,4+6(E" 'P"*7)oa = 0. Then, P(E''a) desuspends eight
dimensions.

(2) Assume that (72,4+6(E" 'P!T7) —{ioo})oa =0 fora € nl.z_";r6. Then there
exists an element § € nl.”_:rll such that P(E''a) = E7§ and HS = x03,41(E?%a),
where x is even or odd according as n = (mod 16) orn =/ + 8 (mod 16).

Hereafter Proposition 2.3(2) is written Proposition 2.3[[n;8,r]] for r =/ or / + 8. We
introduce some notation. If [i,, a] for « € 7}, desuspends k dimensions with Hopf

Geometry & Topology Monographs, Volume 13 (2008)
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invariant 6 € nrf_’i’_;z_k]:_ll , that is, if there exists an element § € &

E¥§ =[i,,a] and H§ = 0, we write

n—k

mtm—k_1 satisfying

H(E [, a]) = 6.
Then, immediately we obtain PO = [1,_g—1, E-#06] = 0. § is written
§ =8(0) = E *[tn, ).

By the fact that [t,, [¢, ()] =2+ (=1)" (n > 3) and [2, Corollary 7.4], [y, 0 B] =
[tn,a]o E"1B for B € 7" and so,

(2-6) H(E_k[tn, aof]) = H(E_k[tn, a)o En—k—lﬁ.

If [tn, ] # 0, we write
H(E™*tn, a]0) = 6.

By Lemma 1.2 and by abuse of notation for ¢, we obtain

Example 2.4

() H(E izpg1.a)) = (14 Dnan—1 (§ = 12,0). [tan—1. n] = 0.

(2) H(E  [tants.a]) = £(n+ Dvgp_io (8 = Tana), [tgn—1,va] =0.

Notice that Example 2.4(1) induces [18, Proposition 11.10.i1)] and Example 2.4(2)
does Proposition 2.2(4).

First of all, we write up the results obtained from [18, Proposition 11.10].

Proposition 2.5

(1) Letn=0,1(4). Then, H(E_I[Ln,al]?go) =noy foray=n,n0,v,¢, u, kK, np,n*,
I, nk,n*o, 3 « and H(E_I[Ln,az]) =0 for ay = ne, 172(7, o2, nk, 172,0,6, vo, nn*o,
n*p.

(2) H(E™'tan. Blxo) = nB for B =n*. nu.nn* N, n*K, i3 « .

(3) H(E™'[tant1.81]0) = nd1 for §; = 0, p,k, p and H(E™'[tan+1,65]) = 0 for
§2 =, 8, v*, L, vk, {3 4.

(4) If fi[tan, v*] =8, then [tap+1, n0*] # 0.

Geometry € Topology Monographs, Volume 13 (2008)
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Proof We prove (1) for k. By [18, Proposition 11.10], H(E ™ ![t,,«]) = n«. Assume
that [t,, k] = 0. Then, by the EHP sequence, § € Pngg;h = {[tn—1, k], [th—1, pI}

for § = E~ i, k]. Applying the Hopf homomorphism H: ”gn_ilz — ”22;114:?2 to this
relation implies nxk = 0 for n =0 (mod 4) and nk € {2p} for n =1 (mod 4). This

is a contradiction.

Next, we prove (2) for nn*. Let n=0 (4). By [18, Proposition 11.11], H(E ™[, nn*])
= n?n* =4v*. The assumption [t,, 7*] =0 induces § € P7r3"~ |, and a contradictory

relation 4v* = 0 for § = E~![1,,, nn*]. The proof of (3) is similarly obtained.

Finally, we show (4). Assume that [t4,41, 11*] = 0. From the fact that [t4,41, nn*] =
E(t4,nn™) and the assumption f{[t4,, v*] =8, we have t4,nn* € {4[t4n., v*], [tan. niL]}.
This implies a contradictory relation 4v* = 0, and hence (4) follows. |

Hereafter, “the assumption [t,, @] = 0” is written “ASM[«]” and “a contradictory
relation § € B” is written “CDR[B € B]”. As an application of [18, Proposition 11.11],
we show:

Proposition 2.6

(1) H(E?[t4p2.a]) € (0,20, a) if 20 =0,
H(E*[tany2.@1]0) € (1. 2t, 1) for oy =2, 80,0%,16p,0°,8p, %K and
H(E ?[tang2. 2]) = 0 for oy = 0o, v, e,v3,9p, 3, 1p.

(2) H(E [tan. B1lo) € (2t.m, 1) for By = nk, n*p.nn*o.
(3) H(E [i4n, B2]) =0 for B2 = 4v,80,4¢,02, 16p,4L, 5, 4K, 4vK, 80, 403 4.

Proof Let n =2 (4). The first part of (1) is a direct consequence of [18, Proposition
11.11.ii)]. By the fact that (n,2¢,02) > n* (mod np) and [18, Proposition 11.11.ii)],

H(E_Z[Lmaz]) ="

ASM|o?] induces E§ € PJTZZIZ’_l__i4 = {[tn—1,2]} = {E(tp—20a)} (Lemma 1.2(1))

and § (mod 7,—5p, Tp—2nK) € P”zzr',:fy where § = E72[1,,0%] and o = p, nk.
Hence, CDR[n* (mod np) = 0] and the second part of (1) for 0% follows. Next we
prove the second part of (1) for v2k. By the fact that (n,2¢,v%) 3 ¢ (mod no)
and [18, Proposition 11.11.ii)], H(E ?[ty,v?]) = & and H(E2[tn, v?k]) = &k
by (2-6). ASM[v?k] induces E(8K) € {[tn—1,¢3.+]} and 8k (mod t,—283.4) €
P”zzgjrgs’ where § = E~2[1,, v2]. By the relation 73 « = 0, we obtain

CDR[ex = 0].
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The third part of (1) follows from [18, Proposition 11.11.ii)] and the fact that (7, 2¢, @)
0. By [18, Proposition 11.11.1)],

(©) H(E?[tan, nk]) = (24,1, k) = k.
AS M nk] implies E6 € P”zzr’zl-l_-is ={E(ty—2np), E(ty—2n*)} and

§ (mod 1,—7np, Ty—2n*) € P”zzr',l-;_-fm where § = E~2[1,, nk]. Hence,

CDR[vk (mod n%p,nn*) = 0] and the first part of (2) follows. By the parallel ar-
gument, the rest of the assertion follows. We use the following facts: (2¢, 7, 8,2) =

05 (1.2¢,16p) 3 f (mod n*p,nn*); (n.2t,6°) 3 n*o (mod 7’K); (2t.n.7*p) 2
¢ (mod 28); (2t,n,nn*o) = v2k [6]. O

By Proposition 2.6(2), we obtain

(2-7) [tan+1,vE] =0

and [tan+1, %K) = 0.

Here we summarize Toda brackets in 75 (P?) needed in the subsequent arguments.
Since ng(Pz) = {iv?} = 7, and ng(Pz) = {in?} = Z,, the indetegninacy of the
bracket (i7,7,v) C 7§ (P?) is iﬁoler(Pz) + m$(P?)ov =0. We set v2 = (i7,7,v),
which is a coextension of v2. Let 02 € (i,2t,02) C nf6(P2) be a coextension of o2
and iv € {M7>,P?} an extension of iv € nj(Pz). Then, we show:

Lemma 2.7

(1) (i, 7,v*) 5 020 (mod in?%,iv5)

(2) (iv,2t,0%) =iv*.

(3) (iv,2t,16p) =il.

4 (iv,2t,n*) =0.

(5) (iv.ii.40) = 75(P).

©) (iip.im*.n) =0

(M) ({iip, 7>, 0*) 3 0 (mod 7ini).

®) (inn,7,v)= v~2n=i8, V26 =0 and v? = (M,v,n).
Q) (7, v,v3) =ink.

(10) v2yp* =iny*o and (7p. 7% v*) > iny*o (mod inFe).
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Proof Since (p,i7,7) =4v and vv* =03, we have po(i7, 7, v*) =03, This leads
to (1). By the fact that v* € (v,20,0) and voxj; =0, we see that

(iv,21,0%) C (iv,20,0) 3 iv* (mod ivonis+ i, (P?) oo = {fjuc}).
We have po(iv,2t,02) = (p,iv,21)00% C 3 002 =0, p(iv*) =0 and p(fuo) =
nuo = n?p. This leads to (2).

We obtain B
(iv,2¢,16p) C (iv,8t,4p) Dio(v,8,4p)2iC

(mod ivoni, + xi(P?)odp = 0).
We get that
(iv,20,n*) C (i,2v,7*) D (i,2¢,0) 3 0 (mod ix75, + 75(P*) o n*).
Since 7n?n* = 47jv* = 0, the indeterminacy is {ik}. Hence, (4) follows from the fact
that (7,iv,2t) C s =0 and Noik =K.
The indeterminacy of (iv,7,4t) contains 7v o 7§ (P?) = {iv?} = w5(P?).
We obtain
(fp. 7. 1) € (7. 4v. 1) D {0, v. ) 0 (mod Fo 3 +75(P?) o = 0).

We see that

({@p.m?,0%) C (7,4v,0%) 30 (mod Fons, + S (P?)oc?)

’ ’ ? ’ 18 7 ’

where 75(P?) 0% =0 and 7v* = 0 because (2¢,n,v*) C {2k}. This leads to (7).
By the equality (17,7, v) = ¢ [5, Lemma 4.2], iﬁlf)\i €i(nn,n,v) =ie. This implies
mv2 =¢e. We have ie € (in7.7,v) (mod inqonS(P?) + mi(P*)ov =0) and v2n e

i(20,v2, n) >ie (mod ino). Composing 7 on the left to this relation yields vinp=ie.

2 2

We have vZo = (i7,7,v) oo = ino (7, v,0) = 0. Since po (7, v,n) = v, we can set

(.v.n) = v2 +aio for a € {0, 1}. By the fact that njo (7, v, n) = (9.7, v)on =ne
and n7(v2 +aio) = ne +an’o, we have a = 0.

By the relations v3 = nv, (21,12, 7) 3 nk (mod 2p) and (8),
{@ v, D ([ v.n)ov = V27 € i(20,v2,9) = ink
(mod 7o i, + w5 (P*)ov® =0).

By (8) and [11, (6.3)], 02 nn* =ien* =inn*o. By the fact that 257 = ijn? p = innoin,
px134(P?) = 73, = {n°K,vG} = (Z2)* and (1),

(Fp,in*,v*) D (n*p. 7, v*) Dinio (in, 7,v*) 3 inn*o
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(mod 7p om3, (P?) + 5(P?) ov* = {fn’k}).
This leads to (10). O

We recall from [12] that {P*, SO} = {77’} = Zg and

(2-8) NT=v, where 7 €(7,7p, ps2).
We obtain the following.

Lemma 2.8

(D n?(P“) = {7n?,iv?} = (Z,)?* and n?(P6) i{/’ﬁ’, iv2} = 7g®7,, where 1n? e
(i, p,m?), 7 € (i*°,70,7) and 47 = i*°7n? (mod iv?).

2 ni(Pg) ={"} = 7Zg, where " = pg’ﬁ’.

3) JT;(P“) on= JT;(P“) 00? =0 and Jr;(PG) oo? = ng(Pg) 00?2 =0.

Proof (1) is just [12, Proposition 4.1]. (2) is obtained by use of the cell structure
(7336) and (1). The first two equalities in (3) are obtained by Lemma 2.7(6),(7) and the
relation i 247 p =0 € {M3,P*}. To show the next two equalities in (3), it suffices to

prove (i7,7,02) 3 0. By (2-1), the relation (7}, v,0) = 0 and the second equality in
3),

(@, 7,0%) C {T,2v,0%) D (i**F,v,0) 00 20 (mod Torly).
We have 27v* = i2#7jv* = 0. By the fact that {M®, S} = {v2p} = Z,, (2-8) and
(1), ' oTv* =0, 7o (i, 7,0%) = (if, 77, 7) o0 and 8(7', 7, 7) = (8,7, 70) o7 C
{M®, S o= 0. This implies (77,777, 7) C 275 and 7 o (17,7, 0%) = 0. o
We show:

Lemma 2.9

(1) H(E iy, a]) = WUa for a = 4v,v?%, 80,13, 4¢,16p,

vk, 4v* 4,5, 4k, 4vi, 8p. In particular, H(E 3[ig,, a]) = va for a = v, vk,
o,4k.

(2) H(E [ign,B]) =0 for B =80, 16p,8p.

(3) H(E [ign,0%))=0o0ro?.

Proof (1) is a direct consequence of Proposition 2.2(1). Let n = 0 (8). We have
Pt = E"8P] and y,_1 55 € 275(S7) @73 (P®) @ 7S. By Lemma 2.8(1), A,—g 50
B = 0. Hence, by Proposition 2.3[[n-8;8,01], [tr, B] desuspends eight dimensions.

Similarly, by Lemma 2.8(3) and Proposition 2.3[[n-8;8,0]], A,,—g.s oo?2=0o0ric?. O
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By Lemma 2.9(1),
(2_9) [L8n+4» V&] =0.
We need the following.

Lemma 2.10 H(E [igpt6.a]) =0 fora =n,e,7, .k, n*, v, L, &, 1Kk, v5,
M3 ,% -

Proof We show the assertion for @« = n,¢, u,k,n*,6. Let n = 6 (8). In Propo-

sition 2.1[n-6;6,0], P~} = E""°P). We take A,_g,6 = y5. By (2-3) and (2-1),

Y5 = :l:l.z,sﬁv = 0 We Obtain Y5 = O’ because (n’ 2[,8) — {ng} By the faCt that
(n,2t, u) = £2¢ and (2¢,n,¢) =0,

ysp€i* o (n, 20, u) =235 =0.

By the relation (1, 2¢, n*) > £2v* (mod njx), we have ysn* = i2357v* = 0. By the
fact that (n, 2¢,k) 20 (mod np) and (n,2¢,5) >0 (mod nk), we obtain ysk = ys6 =
0. By the parallel argument and (2—6), the assertion holds for the other elements. O
Immediately,

(2-10) P et S CESmy o

Hereafter we use the following convention.

Convention
In the EHP sequence arguments:

(1) Higher suspended elements in a relation are omitted. For example, in a relation
E*§ € {{tur, Bl [tne1, Y1} if [ta—1, Y] = E'y’ for some element y’ and [ >k + 1,
then [t,—1, y] is omitted.

(2) Elements of order 2 having independent Hopf invariants in a relation are omitted, if
other elements are suspended. For example, in a relation EX§ (mod 8;) € {[tn, B} (k >
1),if 261 =0, H§; # 0 and H|[i,, B] = 0, then §; disappears in the relation.

Now, we show the following:

Proposition 2.11 (1) H(E3[igp43.0a]) =0 if va = 0.
(2) H(E[ign13.Blso) = vp for p =k, v*,5.Kk,vK.
(3) H(E [tgp+43. VK]s0) = 4K if i[tg,. K] = 8.

Geometry & Topology Monographs, Volume 13 (2008)



370 Juno Mukai

Proof By Example 2.4(2), it suffices to prove the non-triviality in (2) and (3).
We show it for v*. Let n = 3 (8). By Lemma 1.2(2), [tp,v*] = E3(Ty—3v%).
ASM|[v*] and (1-2) for ¢ induce E2(T,—3v*) € {[ty—1,0]} C E3n£’n__ﬁl3 (Proposition
2.6(1)), E(Ty—3v*) € P33, = {E(ta—3K)}, Ty—3v* (mod 7, 3k) € Pry" 7
and hence, CDR[o® (mod nk) = 0]. By the parallel argument, (2) for the other
elements follows. We show (3). Assume that E3(Tg,vk) = [tgn43. vk] = 0. Then,
E?(Tgnvic) € {[tgn+2.4v™]. [tgn+2. njl} = 0 and

E(tgnvi) € {[tsn+1, 8] [tsn+1, 0]} = {E(t8n&), E(t3,0)}. This and the assumption

flign. K] = 8 imply Tg,vk 4+ atgnl + b1gno € {4[ign, K]}. Since n¢ = ng = 0, we get
CDR[vZk = 0]. o

Immediately,
[l'8n+7? 03] =0.
By Proposition 2.2(3), we have:

Lemma 2.12 H(E_3[t4n+2,0t]) = wa for @« = Vv, ¢ k,vk,v2k,5,v05. In
particular, H(E_3[L8n+2, «]) = va for o =k, vk, vk, 5.

Immediately,

(2-11) [t8n+6, VK] =0

and [tgn+6,va]=0.

We need the following:

Lemma 2.13

— n —
(D) H(E_3[L4,,+1,cx]) = %va fora =v,v% vk, v*, 5, 0%k,

vo, vk and H(E_3[L4,,+1,,31]) = H(E_3[l4n+1’ nB2]) =0 for By =¢, E {355

B2 =, [, i3 . In particular, H(E 3[igns1,a]) = va fora = v,v2, vk, v*, 7,

V2K, VK.

(2) H(E *[tgnts.81]) =0 for §; = n*, v, n%0, ne, n*p, vic, nu, nm*, nji.
(3) H(E *[tgnt1.62]) = 0 for § = v3 00,02, n%p,v3, nn*o, n*p. vk,
4) H(E %[tgny5.7*83]) = 0 for 83 = p. p.

Proof (1) is a direct consequence of Proposition 2.2(2). Let n = 5 (8). Then,
PZ:; = E”_SPg and we can take A,_s 5 =17. By the relations né; = 0,47 = in?

(2-1) and 76 =0 (6 = v, ¢, v*,{), we have A,_s5508; = 0. Hence, Proposition
2.1[n-8;5,0] leads to (2).
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In Proposition [n-5;5,4], PZ:; = E”_gPi forn=1(8). By (732), we have

(%) 7S (PS) = il mS(P]) = {i"sam,i"tiv} = (Zn)* (i =i}, i" = i)
So, we take
(2-12) 8,4 =1"(san 4 tiv)

and )‘n—S,S 082 =0.

In Proposition 2.1[n-7;7,6], P*~} = E"~13P? for n =5 (8). Since P{?/P} = P{* =
ESPg, we have pé?G*()\n_7,7 on?) e Ty (P*)on?=0and Ap_770n% € 1.67,12*7{{4(132).
Hence, by the fact that nf4(Pg) =~ 73 @ 75 and 73 0 d3 = 73 03 = 0, we obtain

An—7,701*83 = 0. O

By Lemma 2.13(1), we obtain
(2-13) [t8nts.0°] =0,

[tgn+5.v0] =0

and

8n+3 3_4n—2 _
2-14) Prgy ok CE Tgyyiosn (kK =0.1).

We also note the following.

Remark H(E3[i3,41,vk]) = v2k, while [1g,41, vk] = 0 (2-7).

3 Concerning Nomura’s results [15]

In this section, we recollect Nomura’s results [15], prove a part of them by using
Proposition 2.1 and add results needed in the next section. By use of the cell structures
of PZ:}C, we determine some group structures of 77 _, (PZ:}C) for 4 < k <8, which
overlap with [17, Section 3]. First we show the result including the known one [15,
4.10;18].

Lemma 3.1 H(E '[ti6p43.0]) = 0% and H(E " [t16p4k.0%]) = o3 for k =
0,1,3,7.

Proof Let n = 0 (16). By (1-1), [tn,02%] = 0y 0 [tas7.1] = E”(0,4_78,) and
H(o,_76,) = 023n_15. Let n = 7 (16). By (1-1), [tn,0?] = E7(8§,_70) and
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H(8,—70) = 05, 5. Let n =1 (16). We have P""} = E""!"Pl¢ and P"~2 =
E™™ 17P15 E"°P7 = E"-9Pb v §"72 By 1nspect1ng [12, Prop0s1t10n43]

7 (PS) = {7/, iv,i %602 o} = (Z,)*,

where iv € (i*°7,7,iv) and iv oo € (i*®7,7,iv) oo = i*5To (7,iv,0) = 0. So,
by Lemma 2.7(8), §(P®) o 0% = {io?}. Since ps: 75 (P3¢) — 7§ (S'6) is trivial,
nf6(P;6) = i*nf6(P;5). This implies (ﬂf6(P;6) —{io})o0? = 0 and hence, by
Proposition 2.3[[n-8;8,9]], the assertion follows.

Next, let n = 3 (16). In Proposition 2.3[[n-8;8,11]], PZ:; = E”‘”P;O. Since
{EP* P2} = {i7f.qmp3.ivp} = (Z»)*, P] = P§ Vv S7 and S¢* is trivial on
P~I3(P8;Zz), we can take Pg = M* Ui C(E3*P*). From the relations 775 = 0
and 7'7v = v? (2-8), we obtain ﬂg(Pg) = {17, i~v/} and g (Pg) ={inn} =7,, where

Tne(i’,7.Ty) and v e (i’ 7.iv) (i’ —133 5.
By (2-5), we obtain _
Y8,3 =110+ v
By the fact that né(P“) = {Tv} = 7, and (2-8), we obtain (7', iv,n) = 7§ = {v2} and
ivnei'o (i, iv,n) ={i'v?} = 0. Hence,

V8,31 =111
and 7.[10(1)10) — l/// s (PS) — l;”lgﬂfo(M‘l) — {i/”i”\ﬂ)\é,ia} (l-/// _ 138 10’ i 13 )
Therefore, by Lemma 2.7(8), (5o (P3®)—{io})oo =0. This implies H(E ™[t 0]) =
02 and H(E |1, 02%]) =03 (2-6). o
Immediately, [ti6ns11.0%] =0, L16n+k- 031=0(k =8,11,15)
and
3-1) t16n+9.0°] = 0.

Next, we show the following [15, Table 2, 4.15;16].

Lemma 3.2

(1) H(E™*[t3n44.16p]) = .
(2) H(E[ign43.vK]) = n°K.
(3) H(E%[ign, v?]) = ni.
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Proof Let n =4 (8). In Proposition 2.1[n-5:5,7], P"~1 = E"~12Pl!. Let 21 €
.. . .7,10 ., .11 . . 11

(i',iv,21) (i =i;""",i" =i;') be a coextension of 2¢ in (P;'). By Lemma 2.8, we

can take

(3-2) iy =20+,
By Lemma 2.7(3), Ay—s,5016p € i’ o (iv, 21, 16p) =i{.

In Proposition 2.1[n-6;6,1], PZ:% = E”‘“P%O for n = 3 (8). By the cell structure
(P*), we obtain {M 3 P*} = {i7,i>*iv} = Z4 ® Z,, where 27 =Tn?p. Since Sq*
on HOk (P;O; Z,) is non-trivial for k = 2,4,

(P19 P =PYUL um CM® (P = E4PY).
From the natural isomorphisms 7§, (P;O) =5 (Pg) =% (P*) = {Tv} = Z,, we obtain

7o (PL0) = {i'Tv} = 7, (i = i$').

(3-3) Y105 =i'Tv

and
(Psh P! =P Ui el

Hence, by the relation 4k = vk and (2-1), An—g,6 0 vk = 4i'Tk = in*k.

In Proposition 2.1[n-7;7,1], P*~1 = E"8P7 for n =0 (8). Let 53: " <P’ =PSv S’
be the canonical inclusion. Then, we take

(3-4) yr =253 +i%77.
By Lemma 2.8(1), 7' o v3e ig,60(IN, 7, v3). By (2-1) and Lemmas 2.7(6),(9), 2.8(3),
.7, c @ 2v,v3) Di%* o (7,v,03) =ink
(mod 7o}, + 75 (P*) o v = 0).

3

Hence, Ay—770V° =ink. m]

Immediately,

[t8nt7.§] = [tsnts. n°F] = [tgn+1. 16] = 0.
By the way, the argument in [5, Section 4] implies that Ay: g, 10(S8"17) —
78n+9(Sp(2n 4 1)) is trivial on the the 2 primary component and

ANy 5K) = 4ix An(Ksnt7) = ix An(vgn7)vE =0,
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where Ay is the the symplectic connecting map and i: Sp(2n+ 1) — SO@n +7)
the canonical inclusion.

The non-triviality of [tg,, v?] is proved in [5].

Now we show the following result overlapping with [15, 4.12].

Lemma 3.3 H(E *[ign14.0%]) =v* and H(E [igps5.02]) =5.

Proof In Proposition 2.1[n-5;5,7], PZ:; = E”_IZP;1 for n = 4 (8). By Lemmas
2.7(2), 2.8(3) and (3-2), Ay—s 5002 =i'(iv,2t,02) = iv*.

In Proposition 2.1[n-6;6,7], PZ:% = E”_13P%2 for n=5 (8). We see that {M 7, Pg} =
(T, i, 7 py = (Z)® (i' = i5°%). By (P11), we have

12 12 _ pl0 . 11
(P7 ) P7 —P7 Ui/iv-}—ﬁ//p CM

and 73, (P12) = {in,i"iv} = (Z,)?, where in € (i",i'tv + 7" p,in) (" = i;>'?)
and iv € (i’,7,iv) en$,(P10). Since (i”,i"iv+7"p,in) D (i”. (iI'Tv+7"p)oi,n) =
(i”,i'iv,n) D (i"i’'i, v, n), we can choose in such that

(3-5) ine (@ v,y (" =i"i'i =i"'?).
From the fact that S¢* is trivial on I:i9(P%3; Z,), we take y12,7 = 177 and
inoo?ei”o(v,n,02) =i"g (mod 0).
This implies A,—¢ 6002 =i"'5. O
Immediately,
[t8n+7, V"] = [tgn+7,0] =0,
Next, we prove the following [15, 4.13;14;16,Table 2].
Lemma 3.4
(1) H(E™[tgn2. 1) = v*.
(2) H(E *[ign+1.7°) =¢.
(3) H(E[ignt2.0*) =0°.
@) H(E™ligns1.01*]) = n*0.
(5) H(E °lignt6.k]) =F.
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Proof In Proposition 2.1[n-6;6,6], PZ:% = E”_IOPz for n = 2 (8), n;(PZ) ~
m§(PY) =7 (PJ) and yos0n* €i” o (ys.4.2t,0*) (i =1i;) (2-2). By the relations
(p.i,20) ==, (iv,20,7) =0, (2-4) and (2-12), we have 2i"s, =i"(iv£t7) (i =i})
and

(V8.4 20, 1) C (i"sam, 20, 1) + (i"tiv, 20, ) 3 £2i" 570 = iv?

(mod " (syn +tiv)oms + nS(Pfi) on).

The indeterminacy is trivial, because 7§ (P3) = {i”s2n*} = Z5 and i"s,1n> =4i"s,v =
2

0. This implies A,—¢ 60N =1iv~.
In Proposition 2.1[n-7;7,2], PZ:; = E”_9P§ for n =1 (8). We obtain {M5,Pg}
= {7 iV} = 2y @ Ly, ni(PS) = {i'Tv} = Z, (i' = iy’®) and wS(PS) = {ij""} = Zs,
where 7" € (i’,77,7) and 257" € (i’,inn, 7)) (i = z'22’4). We also obtain {M7,PS} =
{i'Tv, 7" p} = (Z,)*. By the cell structures

Pg =Pg U’l‘/ﬁCMS and Pg =Pg Uﬁ///p CM7,

we have 7§ (P$) = {7, v, i'"Tv?} = (Z,)3 and mS(PY) ={T"n} @i ms(PS), where
v e (', i), T e (i”. 7" p,i) (" =i26’8) and 27" =i"7%"" [12, Proposition 4.2].

12

7”5 (mod i}/7§(PS)). Since v onei'To(d,iv,n)=i"Tv?, we

We can take yg 2 =1

s O 2 2 A ) g =~ _
obtain v on® = 0. By Lemma 2.7(8), ys 2 0on* =2i"5""v €i”i" o (inn, n,v) =ie.
By the same argument as (1) and by Lemma 2.7(4), A,—¢,6 0 n* = io3. By the same
argument as (2) and by Lemma 2.7(1), ys 2nn* =in*o.

p——l

Since (n,2t,x) > 0, we can choose a coextension k¥ € thG(Pz) satisfying nk = 0.
Notice that (v, n, nk) = 2« and (v, 7, k) = k. In Proposition 2.1[n-7;7,7], P}~
E”_l“P%3 for n = 6 (8). By use of (73712), we get that

1
7
~ : . .10,12
iy (PY) = {inn, '’ ivi = (Z2)® (' =i)>"?).
We obtain 17777/( €i”o(v,n,nk) = 2ix = 0. By (3-5), there exists an extension
ine(i"”,v,n) of y12,7 =in. By (2-2), we obtain y370k € i713 o (y12,7.2t,k) >
i1k (mod 33 s§,(P}?) ok =0). We obtain (77K € i" o (v,7,k) =ik (mod i” o
{M® S% ok = {i"v*k} = 0) and hence, A,—77 0k =ik. O

Immediately,

[tsnta.0°] = [tgnt2.10] = [tgnt7. %] = 0.
Given an element o € 77 (S"), alift [¢] € 7 (SO(n+ 1)) of « is an element satisfying
Pn+1(R)[e] = o, where p,41(R): SO(n+ 1) — S” is the projection. A lift [] exists
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if and only if Aa =0 € m3_1(SO(m)). Let n =7 (8). We know Av, =0 [9]. Note
the fact that Ak, = 0 [5, Section 5] is obtained by constructing a lift of «, is given by

[kn] € {[va], 1, Aﬁ/} C y4+14(SO(n+ 1)) (¥ : a coextension of ).
By the parallel argument, lifts of 6, and k, are taken as follows:
[0n] € {[va]. 1, 02} C p4+19(SO(n + 1));

[Kn] € {[val, 1, K} C 7y420(SO(n + 1)).
Hence,
AGgp 7 = Akgpy7 =0.

We need the following result overlapping with [15, 4.14].

Lemma 3.5
(1) H(E %igne3.a]) =0 if va =0.

(2) H(E %[igniak.4v*]) = nn*o or 0 according as k =0 or 1.

Proof In Proposition 2.1[n-7;7,4], P”_1 = E”_“P10 for n = 3 (8). We have

(P, S} = {niip3. vp} = (Z2)* (p = p}). nnp30F+124IV)—n 7 and po @+
(i2*)iv) = 0. So, by the fact that {M5, S% =0 and (7310), p is extendible on
pE {P;O, S8 and {P1° S3} = {vp} = Z,. Hence,

10 10
EP,’ =S’ U, CPL.
Since (i + (i>*)iv)oiv = iv?, we hﬁ/e i'iv: =0 in 7$ (P30) (i’ = i?’lo). By
Lemma 2.7(5), (i%*iv,7,41) D 12 4o (iv,7,41) = {iv2}. So, by (77510) and Lemma
2.8(1), w8, (P10) = {1V} = Zg, where 71V € (i’ Tij+ i%*iv.7) and 477" = i'fin? .
By the fact that (p’,i7,7) = +v (p' = p3) and
(p.i*%iv,7) C(p'.0,7) 30 (mod p'om§(P?)+{P>, S} o7 = {2v}),

we obtain po !V = +v. So, by (3-3) and the relation p 0i'T=0 (z 1€ JTS(PIO))
we conclude that nlO(Plo) = {l Tv} = 75 and y19,4 = i'Tv, where i'T € nS(Plo) is
a coextension of i’7. This leads to (1).

In Proposition 2.1[n-7;7,1], P*~} = E"8P7 for n = 0 (8). By (3-4) and Lemma

2.7(10). Ay—g7 0dv* = i%7iin2v* = i>7 o (fp.iin’.v*) = inn*o. Hence, Ay_7,70
4* =inn*o.
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In Proposition 2.1[n-7;7,5], P~} = E"~12P{! for n = 4 (mod 8). By use of (Pi}),
we can take

(3-6) yirs = 1" 4 20, where 2t € (i",Tv,20) (i = idl,i" = i58’11).

By Lemma 2.7(10), 7V o 4v* = i’% o v* = inn*o. By the relation 2t oy €
i"” o (Tv,2t,n) and Lemmas 2.7(8),2.8(3),

(Tv,20,n) C (T,2v,1n) D (i'f,v,n) > i2402 (mod n§(P4)on =0).
Hence, 2ton = i”i2402 and 2t 0 dv* = i”’i2’4172nr]* =inn*o by Lemma 2.7(10).

Thus, by (3-6), Ap—7,7 04v* = 0. This leads to (2). O

Immediately,
[t8n+1. 1M 0] = 0.
Finally, we need the following [15, 4.8;9;10;11;16;17;18].

Lemma 3.6
(1) H(E ®[ignts5. n]) = 7K.
(2) H(E ®lignts. vk]) = VK.
(3) H(E %[ignt2.4K]) = vk,
4) H(E [tignt14. 1)) = n*0 and H(E™[t16n+13. 10*]) = nn*o.
() H(E "(ti6n+s.v]) = 0>
(6) H(E " [ti6n+3,v%) =7, H(E~"[ti6n+2,10]) =G and
H(E™Pgnt1,v’]) = 3.
Immediately,
[t8n+6. K] = [tgn+5. VE] = [tgn43. VK] = [t16nt9.0°] =0,

[t16n+5.0) = [t16n+6,0) = [t16n+3, VO] = [t16n+6, 17 0] = [t16n+5. N0 0] = 0.

4 Completion of the proof of Theorem 1

First we show:

Proposition 4.1 [1,,0%]#0 forn=4,5(8) orn=0,1,3 (16).
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Proof By Lemma 3.1, we can set [t,,02] = E’§ and H§ =03. Let n =0 (16). By
[1], [ta—1. ] desuspends seven dimensions. So, ASM[o?] implies E°§ € Pr3! 3, C

ESn} 3 (2-10) and E*S € Pn3l7,. By Lemma 2.13(2), [ty—3.] for o =

nn*,n?p, vk desuspends five dimensions. Hence, by the relation H(E~[1,_3, i]) =
nit, we have E3§ € {[ty—4,4v*], [tn—s. nz]}. By Lemma 2.9(1), [tn—a,4v™] desus-
pends four dimensions. Therefore, by the relation H(E “i,—4, njt]) = 4¢ (Propo-

sition 2.5(2)), E?8 € {[tu—s. ], [tu—s.01} C E*n}, 35 (Proposition 2.11(2)). Hence,

E§ € {[tn—.4k]} C E*m}, s (Proposition 2.6(1)), § € Pm37 ¢ and CDR[o* = 0].
Let n = 1 (16). ASM]|o?] implies E®S € {[tu_1,nk],[tn—1,16p]}. By Lemma

2.9(2), [tu—1,16p] desuspends eight dimensions and E>§ (mod EB) € Pﬂ%}’fﬁ’3

=0 for B = E"?[1,_1.nk]. So, by (¢) E*§ € Pnzzl’g_fz C E6715’n__$4 (Lemma

2.10), E*8 € Pr3lil, C E*n}, s (Lemma 2.13(1)), E*§ € {tnzs. 4] [tn—s. T}

C E’nl s (Proposition 2.6(3)), E8 € {[tn—6.¥]} C E>x}, 7, (Proposition 2.11(2))

and hence, CDR[§ € Pﬂ%’l? .

Let n =3 (16). ASM[o?] implies ES§ € {[t,—1.16p]}. Since H(E2[t,_1,16p])

= j by Proposition 2.6(1), E°§ (mod Efy) € Pry7 13 = {E(ta—31p). E(tn—31*)}

for B1 = E"*[t,_1,16p]. So, E*§ € {[iy_3.a]} for a € mi,. We obtain

H(E~[ty—3. 2]) = nja (Proposition 2.5(1)), H(E~'[t,—3,17*]) = n*n* (Proposition
2.5(2)), H(E™?[tp—3,n?p]) = x (x : 0dd) (Proposition 2.6(2)) and H(E ~3[t,—3, vk])

= 12k (Lemma 2.9(1)). This induces E38 (mod EB,, E?§;) € Pnzzl’l’_ﬂl = 0 for

B = E72[t,_3.n%p] and 8; = E~3[1,,_3,vk]. Hence, by (1-2) for ¢, E%§ (mod

E81) € {[tn—s.0]} C E®n}, ) (Lemma 2.10), ES € {E(t,—7K)} and CDR[S (mod
—13].

Ty—7K) € P7r22;’

+8
Let n = 4 (8). Lemma 3.3 and ASM[o?] imply E§ € Pryii 1, = {{tn1.pl} C
E4n£’njf8 (Proposition 2.11(1)), for § = §(v*) = E~*[1,, o2]. By Proposition 2.6(1),

H(E™?[ty—5,1n*]) = 2v* and [,_», np] desuspends three dimensions. This induces
E§ fmod E8)) € {[ty_3.a]}, where 8§ = 682v*) = E *[i,_5,.17*] and
o =n?p,nn*, vk, ji. Hence, § (mod 81, Ty—sct) € {[tn—a, V*], [tn—a, nit]} and
CDR[v* (mod npu) € {2v*}].

Let n = 5 (8). Lemma 3.3 and ASM[o?] induce E*8 € {[t—1, 1k, [tu—1, 16p]},
where § = §(G) = E 15, 02]. By (¢) and Lemma 3.2(1), E3§ (mod E§;, E38,) €
Pnzzl’;:_% =0 and E?§ (mgd E?8,) € {[tn—3, vk, [tu—s. ]}, where §; = 8(vk) =
E7?[t,_1.n«] and 8, = 8(¢) = E~*[1,—1.16p]. By Proposition 2.6(1), [t,_3, VK]
desuspends three dimensions and H (E~2[t,_3, ji]) = 2¢. Hence, for §3 = §(2¢) =
E~2[1,_3, 1], wehave E§ (mod E§,, E§3) € P”%::;Zl ={E(ty—5v*), E(ty—snit)},

§ (mod 65,683, T,—5v™, T,_5nL) € Pnzzlz’;?o and CDR[o (mod ) € {2¢}]. O
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Next we show the following:
Proposition 4.2 H(E[tg,, v?k].20) = 4vk and H(E [igp42. vK]0) = 4K.

Proof Let n = 0 (8). By Lemma 2.9(1) and (2-6), H(E [ty v?k]) = v3k =
4vic 8k = E7 31y, v3k]) for 8§ = E~3[1,,, v?]. Then, ASM[v?k] induces EZ(8k) €
Pryno =0, E@dk) € Pr3" 30 = {ltn—2.v3]} C E®n}, % (Lemma 2.10), and

hence 8k € Pm3!'7¢ and CDR[4vi = 0].

Next, let n = 2 (8). By Lemma 2.12, there exists an element § € 77, _i13 such
that [1,, vk] = E3§ and HS = v2?k. Hence, ASM|[vk] and (2-14) induce E§ €

{ltn—2.4¢].[tn—2. 51} C E*ml 7}, (Proposition 2.6(3)) and CDR[§ € Pr3! 7 = 0].
O

By Propositions 2.11(3), 4.2 and the properties of Whitehead products,

flesn, k] =8 and  Hlign, vi] = tltgn+3, vi] = tlign+2, k] = 2.

We show:

Proposition 4.3 fltgn+6. k] = fltsn+s, nk] = fltsnt4, ve] = 2.

Proof Let n=6 (8). Lemma 3.4(5) and AS M [k] imply E>8 € {[ty—1. p]. [tn—1. n&]}
for § = §(k) = E~°[1,,«]. By the relation H(t,—,p) = np and Lemma 3.6(1),
E*8 € {[ta_2,1pP). [tn—2. n*]}. By Proposition 2.5(1),

(*) H(E ™ [ty—2, np)) = 1°p; H(E™'[ta—2, ™D = 11",
Therefore, E3§ Pn%}’f;fz ={E3(T,_¢vK)}. By the fact that [t,,_4, njt] = [tn—a., n*n*]

=0 and (2-14), E%§ (mod E?(T,—¢vk)) =0, E§ (mod E(T,_gvk)) € Pn2" % C

2n+10
E3n£’n__ff5, 8 (mod 7,—6vk) € {[tn—s¢, K]} and hence, CDR[k € {2k}].

Let n =5 (8). Lemma 3.6(1) and ASM [nk] imply E38 € {[tu—1.np]. [tn—1.n*]} for
§=38(nic) = E~ 1y, nk]. By (»), E*S€ P23 ={[ty_s, vk]} C E°x” ] (Lemma

2n+14 2n+7
3.2(2)), E38 € {[tn—3.4v*], [tn—3. 0]} =0, E*6 € Pry ], C E’x}, 7. (2-14) and
ES € {[tn—s. 4]} C E*x}, 13 (Proposition 2.6(3)). Hence, CDR[S € Pr3! (¢ = 0].

Let n =4 (8). E38 € {E*(Ty_4v*)} for § = §(vk) = E~ %1y, vk]. By the relation
H(E *[1y—»,5]) = vo (Lemma 2.12) and (1-2) for ¢, E*S (mod E2(T,_4v*)) €
{E38,} and E38 (mod E(T,—sv*), E?8)) € {E(t,—4K)}, Where §; = §(vo) =
E73[iy—p,0]. From the relations H(T,—sv*) = o3, H(ty_sk) = nk and
H(E Yty—4,n€]) = n*k (Proposition 2.5(1)), we obtain E2§ (mod E§;) €
{[tnes. 03} € E7n27 11 (Lemma 2.93)), E§ € Pn2" 2, =0, § € Pn2" 1] and

L Ton+ts 2n+13 2n+12
hence, CDR[vk € 273,]. m|
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Since [tgn4.v2] =0, [tgnie. vk] =0 (2—11) and H][iy,, K] = %2k, we have

ﬂ[Lgn_l_k, E] =4 fork = 4, 6.
Similarly, fltgnta, vE] = 4.

Now, we show:
Proposition 4.4 fi[ig, 42, n*] = fligns1. v*] = filtgn. 4v*] = 2.

Proof ILet n =2 (8). By (2-7) and Lemma 3.4(2);(3), [ty—1,] € E6n£’njzs for
o = vi,n*p and nn*. So, ASM|n*] induces E*§ € {E(t,_oft)} and E3§ €
{[tn2,40*), [thea, nia]} for 8§ = 8(0%) = E°[1,,n*]. By the fact that
H(E ™ Y[1y—p, nf]) = 4¢ (Proposition 2.5(2)) and [t,—s, 4v*] € E6n£’n_ﬁ7 (Lemma

3.5(2)), E*§ € Pn3l ], =0, ES €{[tn—_4.4k]} = 0 and CDR[S € Pr3! 7,1

Let n =1 (8). Lemma 2.13(1) and ASM[v*] imply E2§ € {[tp—1, 4], [tn—1.5]} C
E*7x=> _ (Lemma2.9(1)), where § =8(03) = E~3[1,, v*]. Hence, E§ € Pn2" 3 =

2n+12 2n+17 —
0 and CDR[S € Pr3"],].
Let n = 0 (8). Lemma 3.5(2) and ASM[4v*] imply E°§ € Pnyi 1 = 0 and

E*S € {[ty_s,4K]} = 0 (2-11) for § = 8(yn*0) = E Y1y, 4v*]. Therefore, by
(2-13), E3§ € {E(ty_4nx)} and E2%8 € {[tp—4,nK], [tn—sa, vT]}. By the relation
H(E " Yi,—4, n?k]) =4vi (Proposition 2.5(2)) and (2-9), E§ € {[tn—s, VK], [tn—s. p]} C
E3n£’n_f9, se Pnzzi’j;g and CDR[nn*o = 0]. O

By Propositions 2.5(4) and 4.4,

[tgnt1.00"] # 0.
‘We show:

Proposition 4.5 f[t16,+14. 77] = lt16n+13. 0% = 2.

Proof We use Lemma 3.6(4). Let n = 14 (16). By Lemma 2.13(4), [t,—1.7°p]
desuspends seven dimensions. So, by the relation [t,—1, it] = E(ty—21t), (2-7) and
ASMn*], E’8 € {[ty—2, 4v*], [tu—z., nia]} for § = 8(n*0) = E~"[1n, n*]. By the re-
lation H(E [t,—2. nia]) = 4¢ and Lemma 3.5(2), E*8 € {[ty—3. ¢], [tn—3.5]}. By the
relation v¢ = 0 and Lemma 3.5(1), E3§ (mod E2(T,—65)) € {[tu—s. 4%]}. By 3-1),
E?8 (mod E(T,—¢0), E281) € {E(tp—¢nk)}, where §; = §(4vk) = [t,,—4, 4k]. This
induces E§ (mod E8;) € Pr2" 11 = {E§;, [ty—6, vT]}, where ESy = [1,—¢, n%k],

2n+11
Hgy =4vk and [1,—¢, V0] C Ezné’n_f7 (Proposition 2.5(1)). Hence, § (mod 8;,6,) €
Pnzzl’ﬁ_{g and CDR[n*o € 2m3,].
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Next, let n = 13 (16). ASM|[nn*] implies E®S € {[t,_1,4v*],[th—1. ]} for § =
§(nn*o) = E~"[ty, nn*]. By the relation H(E " '[t,—1, nji]) = n*i and Lemma 3.5(2),
E58 € {{ty—z.¢],[tn—2.5]}. By Lemmas 3.5(1) and 3.6(3), E*§ (mod E2(7,_55)) €
{[tn—3,4x]} C E6n£’n__?7 and E38 (mod E(T,_50)) € {[th—a.nK], [tn_4.03]}. From
the fact that [1,—4, nk] = E(t,—snk) and (3-1), E2§ € {[ty—s. n*k], [tu—s, vT]}. Since
H(E™ Yi,_5,n%*k]) = 4vik and H(E 3[1,_s5,v5]) = v2G = 0 (Lemma 2.9(1),[16]),
ESe Prylily C ETxl 13 (1-1), 8 € Px3ii 1] and CDR[nn*o =0]. O

We show the following:
Proposition 4.6 H(E 3[igy4k,0]£0) = vG fork =0,1,2.

Proof Let n=0 (8). By Lemmas 2.9(1), 2.12 and 2.13, there exists an element §(k) €

n;’:_fz_k3+15 such that [1,4%.5] = E38(k) and H§(k) = v5. For k = 0, ASM|[5]

induces E28(0) € P2} =0, E§(0) e Pr2" 3 C E*n~#  (Proposition 2.6(1))

2n+19 2n+18 2n+14
and CDR[5(0) € Pnfé’;%]. By the parallel argument to Proposition 4.4 for v*, the

assertion follows for k = 1. For k = 2, ASM|[5] induces E28(2) € {E(t,k)} and
ES8(2) € {[tn. k], [tn, 0%]}. Since [tn, 03] C E7JT£’n__Zl3 (Lemma 2.9(3)), we obtain
§(2) (mod B) = 0 and CDR[vG (mod n%k) = 0], where 8 = §(n*k) = E~ iy, nKk]

(Proposition 2.5(1)). O
We show the following:
Proposition 4.7 H(E[igy42.7k]t0) = vk and H(E ®[ign41.1%*K]£0) = K.

Proof Let n=2(8). By Lemma 3.4(1) and (2-6), H(E [t nk]) = v?k. We set § =
§(v?) = E731p, n]. ASM|[nk] induces E* (k) € Pnzzr’l’lél C E57rgn__ﬁl4 (Lemmas
2.13(3),3.4(2)) and E3(8%) € {[tn_2.4VK], [tn—2. 8P], [tn—2. n*c]}. By Lemma 2.9(1),
the first two Whitehead products desuspend four dimensions, respectively. Hence, by
the relation H(E™'[t,_»,n*0]) =nn*o, we obtain E2(§k) =0, E(8k) e Pn2" 7. C

2n+18
E?7}. 5, , (Proposition 2.6(1)), 6k € Px3) 7, and CDR[v*k = 0].

Next, let n = 1 (8). By Lemma 3.4(2), H(E™%[t,,, n’k]) = ek. ASM [n?k] implies
E’(8%) € {[tn—1,4VK], [tn—1. 8P], [tn—1, n* 0]} for § = 8(¢) = E~°[1,, n?]. By Lemma
2.9(2), [tyn—1.8p] desuspends eight dimensions. By Lemma 3.2(3), [t;,—1,4vk] =
[tu—1, 3]k desuspends six dimensions. So, by the relation H(E ~[i,—1, n*c]) =nn*o,
we have E*4(8k) € P23 =0, E3(8k) € {[ty—3, 43.4]} C EO=?2 _ (Lemma 2.10),

2n—27 2n+12
E?(8%) € {[tn—a. i3 ]} € E*nf 5 (Lemma 2.13(1)), E(8K) € {[tn—s.483,4]} C
E3ql 8. (Proposition 2.6(3)), §k € Pr3". 1} and hence, CDR[ek = 0]. O
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According to Mahowald [8], the following seems to be true.
Conjecture 4.8 (v,n,0) = (v,0,v) =nn*o.

By use of the Jacobi identity for Toda brackets, Conjecture 4.8 and the relations
(n,v,n) =v?%, 05 =0 [16], we obtain

(20,v2,5) = (21, 9.nn*0) = v2k.

By this fact, we can show
[t8n, vO] # 0.

Proof Let n =0 (8). In Proposition 2.1[n-5;5,3], P’_1 = E"®P] and y;3 =
254 + i;'ﬁ”, where 54 = p;S3 (3-4). By Lemma 2.7(8),

7 ovg eiy®olin,fjv)os =io(20,v%,5) = iv’k,

This shows

H(E *[t,,v5]) = v2k.
For § = 8(v?k) = E~*[1,,,v5], ASM[v5] implies E38 =0 and E?§ € P”zng:;]
C E37Tn_5 (PropOSition 26(1))’ ES € {[Ll’l—3s nzll—)]v [‘n—3’ /’L3,*]}’

2n+16

8 (mod T,—40°D, Ty—a/i3 %) € Pnzzg_ﬂg and hence, C DR[v?k (mod npu3 ) =0]. O

Finally, by Proposition 2.6(1) and Lemma 2.13(1), we note the following.

Remark H(E ™ 2[1g,42.,4K]) = ek = n’k and H(E3[igy41,vk]) = v?k.
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