Determination of the order of the *P* –image by Toda brackets

JUNO MUKAI

The present paper gives a proof of the author's paper [14] on the orders of Whitehead products of ι_n with $\alpha \in \pi^n_{n+k}$, $(n \ge k+2, k \le 24)$ and improves and extends it. The method is to use composition methods in the homotopy groups of spheres and rotation groups.

55M35, 55Q52; 57S17

Introduction

This paper is a sequel to [5] by Golasiński and the author in the stable case. The methods are to use those of [5]. In particular, the EHP sequence, the method and result of Toda [18, Chapter 11] and the result of Nomura [15] are essentially used. Let π_{n+k}^n denote the 2 primary component of the homotopy group $\pi_{n+k}(S^n)$ of the n dimensional sphere S^n . Let ι_n be the identity class of S^n and $\alpha \in \pi_{n+k}^n$ for $n \ge k+2$. Then our result about the order of the Whitehead product $[\iota_n, \alpha] = P(E^{n-1}\alpha)$ is as follows:

Theorem 1 (Main Theorem) Let $n \ge k + 2$ and α be an element of π_{n+k}^n . Then, the order of the Whitehead product $[\iota_n, \alpha]$ for $n \equiv r \pmod{8}$ with $0 \le r \le 7$ is as given in Tables 1 and 2 except as otherwise noted.

1 Results from [5]

In this section, we shall collect the result of [5] that we need. We denote by SO(n) the n-th rotation group and by $\Delta \colon \pi_k(S^n) \to \pi_{k-1}(SO(n))$ the connecting homomorphism. The notation $n \equiv i \pmod k$ is often written $n \equiv i \pmod k$. From the fact that $\pi_{4n+3}(SO(4n+3)) \cong \mathbb{Z}$ [7], we have $\Delta \eta_{4n+3} = 0$.

We recall $[\iota_n, \eta] = 0$ if and only if $n \equiv 3$ (4) or n = 2, 6; $[\iota_n, \eta^2] = 0$ if and only if $n \equiv 2, 3$ (4) or n = 5.

Published: 19 March 2008 DOI: 10.2140/gtm.2008.13.355

Table 1

αr	0	1	2	3	4	5	6	7
η	2	2	2	1	2	2	2	1
η^2	2	2	1	1	2	2	1	1
ν	8	2	4	2	8	$ \begin{array}{ccc} 2, & \neq 2^i - 3 \\ 1, & = 2^i - 3 \end{array} $	4	1
v^2	2	2	2	$ \begin{array}{ccc} 2, & \neq 2^i - 5 \\ 1, & = 2^i - 5 \end{array} $	1	1	2	1
σ	16	2	16	2	16	2	16	2, 7(16) 1, 15(16)
ησ	2	2	2	1	2	2	$ \begin{array}{r} 1, & \neq 22(32) \\ $	1
ε	2	2	1	1	2	2	2	1
$\overline{\nu}$	2	2	2	1	2	2	2	1
$\eta^2\sigma$	2	$ 2, \neq 2^{i} - 7 \\ 1, = 2^{i} - 7 $	1	1	2	1, $\neq 53(64)$ 2, $\equiv 53(64)$ ≥ 117	1	1
ηε	2	1	1	1	2	1, $\not\equiv 53(64)$ 2, $\equiv 53(64)$ ≥ 117	1	1
ν^3	2	$ \begin{array}{ccc} 2, & \neq 2^i - 7 \\ 1, & = 2^i - 7 \end{array} $	1	1	1	1	1	1
μ	2	2	2	1	2	2	2	1
$\eta \mu$	2	2	1	1	2	2	1	1
ζ	8	1	4	$ \begin{array}{r} 1, & \neq 115(128) \\ 2, & \equiv 115(128) \\ & \geq 243 \end{array} $	8	1	4	1
σ^2	2, 0(16)	2, 1(16) 1, 9(16)	2	2, 3(16) 1, 11(16)	2	2	2	1, 15(16)
κ	2	2	2	2	2	2	2	1

For example, $\{ \begin{array}{l} 2, \ \neq 2^i-3 \\ 1, \ = 2^i-3 \end{array} \}, \{ \begin{array}{l} 2, \ 7(16) \\ 1, \ 15(16) \end{array} \} \ \ {\rm and} \ \ \{ 2, 0(16) \} \ \ {\rm mean} \ \ \{ \begin{array}{l} 2, \ \ {\rm for} \ n \neq 2^i-3 \geq 5 \\ 1, \ \ {\rm for} \ n = 2^i-3 \geq 5 \end{array} \}, \\ \{ \begin{array}{l} 2, \ \ {\rm for} \ n \equiv 7 \ ({\rm mod} \ 16) \geq 23 \\ 1, \ \ {\rm for} \ n \equiv 15 \ ({\rm mod} \ 16) \geq 15 \end{array} \} \ \ {\rm and} \ \ \{ \begin{array}{l} 2, \ \ {\rm for} \ n \equiv 0 \ ({\rm mod} \ 16) \geq 16 \\ {\rm unsettled}, \ \ {\rm for} \ n \equiv 8 \ ({\rm mod} \ 16) \geq 24 \end{array} \}, {\rm respectively}.$

Here η and η^2 mean exactly $\eta_n \in \pi^n_{n+1}$ and $\eta^2_n \in \pi^n_{n+2}$, respectively. Hereafter we deal with the 2 primary components. Denote by $\sharp \alpha$ the order of α in a group. We recall

$$\sharp[\iota_n, \nu] = \begin{cases} 8 & \text{if } n \equiv 0 \ (4) \ge 8, \ n \ne 12; \\ 4 & \text{if } n \equiv 2 \ (4) \ge 6, n = 4, 12; \\ 2 & \text{if } n \equiv 1, 3, 5 \ (8) \ge 9, \ n \ne 2^i - 3; \\ 1 & \text{if } n \equiv 7 \ (8), \ n = 2^i - 3 > 5. \end{cases}$$

We also recall

$$\Delta(v_{8n+k}^2) = 0$$
 if $n \ge 0$ and $k = 4, 5$.

The following is one of the main results in [5]:

Theorem 1.1 $[\iota_n, \nu^2] = 0$ if and only if $n \equiv 4, 5, 7$ (8) or $n = 2^i - 5$ for $i \ge 4$.

Geometry & Topology Monographs, Volume 13 (2008)

Table 2

αr	0	1	2	3	4	5	6	7
ηκ	2	1	1	1	2	2	1	1
ρ	32	2	32	2	32	2	32	а
ηρ	2	2	2	1	2	2	1, $\neq 2^9 - 18(2^9)$ 2, $\equiv 2^9 - 18(2^9)$ $\geq 2^{10} - 18$	1
η^*	2	2	2	1	2	2	2,14(16)	1
$\eta\eta^*$	2	2	1	1	2	2, 13(16)	1	1
$\eta^2 \rho$	2	2	1	1	2	$ \begin{array}{l} 1, & \neq 2^{10} - 19(2^{10}) \\ 2, & \equiv 2^{10} - 19(2^{10}) \\ & \geq 2^{11} - 19 \end{array} $	1	1
νκ	2	1	2	2	2	1	1	1
$\bar{\mu}$	2	2	2	1	2	2	2	1
$\eta \bar{\mu}$	2	2	1	1	2	2	1	1
ν*	8	2	4	2	8 or 4		4	1
ξ	8	1	4	$ \begin{array}{ll} 1, & \neq 2^{1I} - 2I(2^{II}) \\ 2, & \equiv 2^{1I} - 2I(2^{II}) \\ & \geq 2^{12} - 2I \end{array} $	8	1	4	1
$\bar{\sigma}$	2	2	2	2		1, 5(16)	1, 6(16)	1
$\overline{\kappa}$	8	2	8 or 4	2	4	2	4	1
σ^3	1, 8(16)	1, 9(16)	2	1, 11(16)	1	1	2	1
$\eta \overline{\kappa}$	2	2	2	1	2	2	1	1
$\eta^2 \overline{\kappa}$	2	2	1	1	2	1	1	1
$\nu \bar{\sigma}$	2{*}			1, 3(16)	1	1	1	1
$\eta^*\sigma$	2	2	1	1	2	2	1, 6(16)	1
$\nu \overline{\kappa}$	8 or 4		4	2	4	1	4	1
$\overline{ ho}$	16	2	16	2	16	2	16	b
$\eta \overline{ ho}$	2	2	2	1	2	2	$ \begin{array}{ll} 1, & \neq 2^{13} - 26(2^{13}) \\ 2, & \equiv 2^{13} - 26(2^{13}) \\ & \geq 2^{14} - 26 \end{array} $	1
$\eta \eta^* \sigma$	2	1	1	1	2	1, 5(16)	1	1
$\mu_{3,*}$	2	2	2	1	2	2	2	1
$\eta^2 \overline{ ho}$	2	2	1	1	2	1, $\not\equiv 2^{14} - 27(2^{14})$ 2, $\equiv 2^{14} - 27(2^{14})$ $\geq 2^{15} - 27$	1	1
$\eta \mu_{3,*}$	2	2	1	1	2	2	1	1
$v^2 \overline{\kappa}$		1	2	1	1	1	2	1
ζ _{3,*}	8	1	4	$ \begin{array}{ll} 1, & \neq 2^{15} - 29(2^{15}) \\ 2, & \equiv 2^{15} - 29(2^{15}) \\ & \geq 2^{16} - 29 \end{array} $	8	1	4	1

Let $n \equiv 7$ (16) ≥ 23 . Then, there exists an element $\delta_{n-7} \in \pi_{2n-8}^{n-7}$ satisfying

(1-1)
$$[l_n, l] = E^7 \delta_{n-7}$$
 and $H \delta_{n-7} = \sigma_{2n-15}$ if $n \equiv 7$ (16) ≥ 23 .

We recall

$$\sharp[\iota_n,\sigma] = \begin{cases} 16 & \text{if } n \equiv 0 \ (2) \ge 10; \\ 8 & \text{if } n = 8; \\ 2 & \text{if } n \equiv 1 \ (2) \ge 9, \ n \ne 11, \ n \not\equiv 15 \ (16); \\ 1 & \text{if } n = 11, \ n \equiv 15 \ (16). \end{cases}$$

We also recall the elements $\tau_{2n} \in \pi_{4n}^{2n}$ and $\overline{\tau}_{4n} \in \pi_{8n+2}^{4n}$, which are the J images of the complex and symplectic characteristic elements, respectively. They satisfy the following.

Lemma 1.2

- (1) $E\tau_{2n} = [\iota_{2n+1}, \iota], 2\tau_{4n+2} = [\iota_{4n+2}, \eta] \text{ and } H\tau_{2n} = (n+1)\eta_{4n-1};$
- (2) $E^2 \overline{\tau}_{4n} = \tau_{4n+2}$ and $H \overline{\tau}_{4n} = \pm (n+1) \nu_{8n-1}$.

About the group structure of the stable k-stem π_k^s for $23 \le k \le 29$, we recall from [11] and [16] the following: $\pi_{23}^s = \{\overline{\rho}, \nu\overline{\kappa}, \eta^*\sigma\} \cong \mathbb{Z}_{16} \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_2$; $\pi_{24}^s = \{\eta\overline{\rho}, \eta\eta^*\sigma\} \cong (\mathbb{Z}_2)^2$; $\pi_{25}^s = \{\eta^2\overline{\rho}, \mu_{3,*}\} \cong (\mathbb{Z}_2)^2$; $\pi_{26}^s = \{\eta\mu_{3,*}, \nu^2\overline{\kappa}\} \cong (\mathbb{Z}_2)^2$; $\pi_{27}^s = \{\zeta_{3,*}\} \cong \mathbb{Z}_8$; $\pi_{28}^s = \{\varepsilon\overline{\kappa}\} \cong \mathbb{Z}_2$; $\pi_{29}^s = 0$.

By Lemma 1.2(1) and the property of the Whitehead product,

$$[\iota_{4n+2}, \eta \alpha] = 0$$
 if $2\alpha = 0$.

Especially, for the elements $\beta = \nu, \zeta, \nu^*, \overline{\zeta}, \nu \overline{\kappa}, \zeta_{3,*}$, we know the relations $4\beta = \eta^3, \eta^2 \mu, \eta^2 \eta^*, \eta^2 \overline{\mu}, \eta^3 \overline{\kappa}, \eta^2 \mu_{3,*}$. By the fact that $H[\iota_{4n+2}, 2\beta] = 4\beta$, we obtain

(1-2)
$$\sharp [\iota_{4n+2}, \beta] = 4 \ (\beta = \nu, \zeta, \nu^*, \overline{\zeta}, \nu \overline{\kappa}, \zeta_{3,*}).$$

Let $n \equiv 3$ (4) ≥ 7 . Then, by the fact that $\Delta \iota_n \circ \eta_{n-1} = \Delta \eta_n = 0$ and $2\eta_{n-1} = 0$, a Toda bracket $\{\Delta \iota_n, \eta_{n-1}, 2\iota\} \subset \pi_{n+1}(SO(n))$ is defined. The following result in [5] is useful to show the triviality of the Whitehead product $[\iota_n, \alpha]$:

Lemma 1.3 Let $n \equiv 3 \ (4) \ge 7$. Then,

- (1) $\{\Delta \iota_n, \eta_{n-1}, 2\iota\} = 0$;
- (2) $\Delta(E\{\eta_{n-1}, 2\iota_n, \alpha\}) = 0$, if $\alpha \in \pi_k(S^n)$ is an element satisfying $2\iota_n \circ \alpha = 0$.

By Lemma 1.3,

$$\Delta \alpha = 0$$
 for $\alpha = \varepsilon_m$, μ_m , $\overline{\mu}_m$, $\mu_{3,m}$ $(m = 4n + 3 \ge 3)$; $\Delta \eta^*_{4n+3} = 0$ $(n \ge 4)$ and so,

 $[\iota_{4n+3}, \alpha] = 0 \text{ for } \alpha = \varepsilon, \mu, \overline{\mu}, \mu_{3,*} \ (n \ge 0); \ [\iota_{4n+3}, \eta^*] = 0 \ (n \ge 4).$

By [10],

$$\sharp [\iota_n, \mu] = \begin{cases} 2 & \text{if } n \equiv 0, 1, 2 \ (4) \ge 4; \\ 1 & \text{if } n \equiv 3 \ (4). \end{cases}$$

By [3], [4] and [10],

$$\sharp[\iota_n,\zeta] = \begin{cases} 8 & \text{if } n \equiv 0 \ (4) \ge 8; \\ 4 & \text{if } n \equiv 2 \ (4) \ge 6; \\ 2 & \text{if } n \equiv 115 \ (128) \ge 243; \\ 1 & \text{if } n \equiv 1 \ (2) \ge 5, \ n \ne 115 \ (128). \end{cases}$$

The results for the other elemens in the J-image and μ -series are stated in the table.

2 Concerning Toda's results [18, Chapter 11]

We denote by \mathbf{P}^n the real n dimensional projective space and set $\mathbf{P}^n_k = \mathbf{P}^n/\mathbf{P}^{k-1}$ for $k \leq n$. Let $i_k^{m,n} \colon \mathbf{P}^m_k \hookrightarrow \mathbf{P}^n_k$ and $p_{m,k}^n \colon \mathbf{P}^n_k \to \mathbf{P}^n_m$ for $0 \leq k \leq m \leq n$ be the canonical inclusion and collapsing maps, respectively. We set $i_k^n = i_k^{n-1,n}$ and $p_k^n = p_{n-1,k}^n$ for $k \leq n-1$. We also set $i_k^{m,n} = i_1^{m,n}$, $p_m^n = p_{m,1}^n$. We write simply i for $i_k^{k,n}$, i_k^n and p for p_k^n , unless otherwise stated.

Let $i \le 4n + k - 4$. We consider the exact sequence induced from a pair $(E^{n-1}P_n^{n+k}, E^{n-1}P_n^{n+k-1})$ [18, (11.11)]:

$$\pi_i(E^{n-1}\mathsf{P}_n^{n+k-1}) \xrightarrow{i_*} \pi_i(E^{n-1}\mathsf{P}_n^{n+k}) \xrightarrow{I_k'} \pi_{i+k}(S^{2n+2k-1}) \xrightarrow{\Delta_k} \pi_{i-1}(E^{n-1}\mathsf{P}_n^{n+k-1}),$$

where I_k' and Δ_k are defined by the following commutative diagram:

We denote by

$$\gamma_{n,k} \colon S^n \to \mathbf{P}_k^n$$

the characteristic map of the (n+1)-cell $e^{n+1} = P_k^{n+1} - P_k^n$ for $k \le n$. We set

$$\lambda_{n,k} = E^{n-1} \gamma_{n+k-1,n}.$$

By [18, Lemma 11.8],

$$\Delta_k(E^{k+1}\alpha) = \lambda_{n,k} \circ \alpha \ (\alpha \in \pi_{i-1}(S^{2n+k-2})) \quad \text{if} \quad i \le 4n+k-4.$$

We denote by $\phi(s) = \sharp \{1 \le i \le s \mid i \equiv 0, 1, 2, 4 \ (8)\}$. By use of [18, Lemma 11.8, Proposition 11.9], we obtain:

Proposition 2.1

(1) Let $k \ge 1$ and $i \le 4n + k - 4$. Assume that

$$\lambda_{n,k} \circ \alpha = i * \beta \quad in \quad \pi_{i-1}(E^{n-1}P_n^{n+k-1})$$

for $\alpha \in \pi_{i-1}^{2n+k-2}$ and $\beta \in \pi_{i-1}^{2n-1}$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^{k+3}\alpha) = E^{k-1}\delta$ and $H\delta = \pm E^2\beta$.

(2) Let $k \ge 2, l \ge 0, n \equiv l \pmod{2^{\phi(k)}}$ and $i \le 4n + k - 4$. Assume that

$$\lambda_{n,k} \circ \alpha = i_* \beta$$
 in $\pi_{i-1}(E^{n-1}P_n^{n+k-1})$

for $\alpha \in \pi_{i-1}^{2n+k-2}$ and $\beta \in \pi_{i-1}^{2n-1}$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^{k+3}\alpha) = E^{k-1}\delta$ and $H\delta = \pm E^2\beta$.

Although (2) is a special case of (1), it is useful in the later arguments. Hereafter Proposition 2.1(2) is written Proposition 2.1[n;k,l]. We investigate the case $4 \le k \le 8$.

For $n \ge 2$, we set $M^n = E^{n-2} \mathrm{P}^2$. Let $\overline{\eta}_n \in [M^{n+2}, S^n] \cong \mathbb{Z}_4$ and $\widetilde{\eta}_n \in \pi_{n+2}(M^{n+1}) \cong \mathbb{Z}_4$ for $n \ge 3$ be an extension and a coextension of η_n , respectively. We know the following relations in the stable groups $\{\mathrm{P}^2, S^0\}$ and $\pi_3^s(\mathrm{P}^2)$: $2\overline{\eta} = \eta^2 p$ and $2\widetilde{\eta} = i \eta^2$. We use the relations

$$\overline{\eta}\widetilde{\eta} = \pm 2\nu = \langle \eta, 2\iota, \eta \rangle.$$

Toda brackets are often expressed as the stable forms.

From the fact that $E^2\mathrm{P}^3=M^4\vee S^5$, we take $E^2\gamma_3=2s_1\pm (E^2i^{2,3})\widetilde{\eta}_3$, where $s_1\colon S^5\hookrightarrow E^2\mathrm{P}^3$ is the canonical inclusion. Since $E^2p_3^4\circ (E^2i^{3,4}\circ s_1)=E^4i^{1,2}$, we regard $E^2i^{3,4}\circ s_1$ as a coextension of $E^3i^{1,2}\in\pi_4(M^5)\cong\mathbb{Z}_2$. Set $\widetilde{\imath}_5=E^2i^{3,4}\circ s_1$. Then, by the relation

$$2(E^2i^{3,4}\circ s_1) = \pm (E^2i^{2,4})\widetilde{\eta}_3,$$

we obtain $\pi_5(E^2\mathrm{P}^4) = \{\tilde{\imath}_5\} \cong \mathbb{Z}_8$, where $2\tilde{\imath}_5 = \pm (E^2i^{2,4})\tilde{\eta}_3$ [13]. We set $\tilde{\imath}_{n+3} = E^{n-2}\tilde{\imath}_5 \in \pi_{n+3}(E^n\mathrm{P}^4) \cong \mathbb{Z}_8$ $(n \ge 2)$. We use the relation in the stable case:

$$(2-1) 2\tilde{\imath} = \pm i^{2,4} \tilde{\eta}.$$

Notice that Proposition 2.1[n-2;2,l] for l=2,3 coincides with [18, Proposition 11.10] and Proposition 2.1[n-3;3,l] for l=1,3 does with [18, Proposition 11.11], respectively. In these cases, $\lambda_{n-k,k} \in \pi_{2n-k-2}(E^{n-k-1}P_{n-k}^{n-1})$ is taken as follows:

$$\lambda_{n-2,2} = \begin{cases} i \eta + 2\iota & (n \equiv 0 \ (4)); \\ i \eta & (n \equiv 1 \ (4)); \end{cases}$$

$$\lambda_{n-3,3} = \begin{cases} 2s_1 \pm i^{2,3} \widetilde{\eta} & (n \equiv 0 \ (4)); \\ \gamma_{5,3} \in \langle j, \eta, 2\iota \rangle & (n \equiv 2 \ (4)), \end{cases}$$

where $i=E^{n-3}i_{n-2}^{n-1}$ and $j=E^{n-4}i_{n-3}^{n-3,n-1}$. By use the last part of this formula, we have $\lambda_{n-3,3}\circ\alpha=j_*\beta$ if $\beta\in\langle\eta,2\iota,\alpha\rangle$. So, [18, Proposition 11.11.ii)] is exactly interpreted as follows:

Remark Let $i \le 4n-2$ and n = 3 (4). Assume that $2\alpha = 0$ for $\alpha \in \pi_{i-2}^{2n}$ and $\{\eta_{2n+1}, 2\iota, E^2\alpha\} \ni \beta$, then $P(E^7\alpha) = E^2\beta$.

Hereafter we use [18, Proposition 11.11.ii)] in this version.

We use the cell structures

$$(\mathcal{P}^4) \qquad \mathbf{P}^4 = \mathbf{P}^2 \cup_{\widetilde{\eta}p} CM^3; \qquad (\mathcal{P}_2^4) \qquad \mathbf{P}_2^4 = S^2 \cup_{\eta p} CM^3.$$

By (\mathcal{P}_2^4) , we obtain $\pi_3^s(P_2^4) = \{\widetilde{\imath}'\} \cong \mathbb{Z}_4$ and $\pi_4^s(P_2^4) = \{\widetilde{\imath}'\eta\} \cong \mathbb{Z}_2$, where $\widetilde{\imath}' = p\widetilde{\imath}$ and $2\widetilde{\imath}' = i\eta$. Notice that $\gamma_4 = \widetilde{\imath}\eta$ and $\gamma_{4,2} = \widetilde{\imath}'\eta$.

Now, consider the case k = 4. P_{n-4}^{n-1} has the following cell structures:

$$\mathbf{P}_{n-4}^{n-1} = \begin{cases} \mathbf{P}_0^3 = S^0 \vee \mathbf{P}^2 \vee S^3 & (n \equiv 0 \text{ (4)}); \\ \mathbf{P}^4 = \mathbf{P}^2 \cup_{\widetilde{\eta}p} CM^3 & (n \equiv 1 \text{ (4)}); \\ \mathbf{P}_2^5 = \mathbf{P}_2^4 \cup_{\widetilde{t}'\eta} e^5 & (n \equiv 2 \text{ (4)}); \\ \mathbf{P}_3^6 = \mathbf{P}_3^3 \cup_{\gamma_{5,3}} e^6 & (n \equiv 3 \text{ (4)}). \end{cases}$$

The following cell structure is also useful:

$$(\mathcal{P}_3^6) \qquad \qquad \mathbf{P}_3^6 = M^4 \cup_{i\bar{\eta}} CM^5.$$

In general, we have

$$(2-2) \gamma_{2n+1,k} \in \langle i, \gamma_{2n,k}, 2\iota \rangle.$$

We obtain the following:

$$\pi_3^s(P_0^3; 2) = \{\iota, \widetilde{\eta}, \nu\} \cong \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_8; \ \pi_4^s(P^4) = \{\widetilde{\iota}\eta, i\nu\} \cong (\mathbb{Z}_2)^2;$$
$$\pi_5^s(P^5) = \{\gamma_5\} \cong \mathbb{Z}; \ \pi_5^s(P_2^5) = \{\gamma_{5,2}, i\nu\} \cong \mathbb{Z} \oplus \mathbb{Z}_2;$$

$$\pi_5^s(\mathbf{P}_3^5) = \{\gamma_{5,3}, i'\widetilde{\eta}\} \cong \mathbb{Z} \oplus \mathbb{Z}_2$$

where

$$(2-3) \gamma_5 \in \langle i^{4,5}\widetilde{\iota}, \eta, 2\iota \rangle,$$

 $\gamma_{5,2} \in \langle i''\widetilde{\imath}', \eta, 2\iota \rangle \text{ and } \gamma_{5,3} \in \langle i'i, \eta, 2\iota \rangle \ (i' = i_3^5, i'' = i_2^5). \text{ We also obtain}$ $\pi_{5}^{s}(\mathbf{P}_{2}^{6}) = \{i_{2}^{4,6}\widetilde{\eta}\eta, i\nu\} \cong (\mathbb{Z}_{2})^{2}.$

Remark The indeterminacy of the bracket $\langle i'', \tilde{\imath}'\eta, 2\iota \rangle$ is $\{i_2^{2,5}v\} + 2\pi_5^s(P_2^5) \cong \mathbb{Z}_2 \oplus 2\mathbb{Z}$. Since the squaring operation $Sq^4 \colon \tilde{H}^2(P_2^6; \mathbb{Z}_2) \to \tilde{H}^6(P_2^6; \mathbb{Z}_2)$ is trivial, we take simply $\gamma_{5,2} \in \langle i''\tilde{\imath}', \eta, 2\iota \rangle$, whose indeterminacy is $2\pi_5^s(P_2^5)$.

Notice that $P_4^7 = S^4 \vee M^6 \vee S^7$. Let $s_2 \colon S^7 \hookrightarrow P_4^7$ and $t \colon M^6 \hookrightarrow P_4^7$ are the canonical inclusions, respectively. The cell structure of P_{n-4}^n is given as follows:

$$(\mathcal{P}_4^8) \qquad \qquad \mathbf{P}_4^8 = \mathbf{P}_4^7 \cup_{\gamma_{7,4}} e^8 \ (n \equiv 0 \ (8)),$$

where

(2-4)
$$\gamma_{7,4} = 2s_2 \pm t \widetilde{\eta} + i \nu;$$

$$(\mathcal{P}_5^9) \qquad \qquad P_5^9 = P_5^8 \cup_{\gamma_8, 5} e^9 \ (P_5^8 = E^4 P^4, \ n \equiv 1 \ (8)),$$

where

(2-5)
$$\gamma_{8,5} = \tilde{\imath}\eta + i\nu;$$

$$P_{6}^{10} = P_{6}^{9} \cup_{\gamma_{5,2} + i\nu} e^{10} (P_{6}^{9} = E^{4}P_{2}^{5}, n \equiv 2 (8));$$

$$(\mathcal{P}_{7}^{11}) \qquad \qquad P_{7}^{11} = P_{7}^{10} \cup_{i\nu} e^{11} (P_{7}^{10} = E^{4}P_{3}^{6}, n \equiv 3 (8));$$

$$P_{0}^{4} (n \equiv 4 (8)); P_{5}^{5} = P_{7}^{4} \cup_{\tilde{\imath}\eta} e^{5} (n \equiv 5 (8));$$

$$P_{2}^{6} = P_{2}^{5} \cup_{\gamma_{5,2}} e^{6} (n \equiv 6 (8)); P_{3}^{7} = P_{3}^{6} \vee S^{7} (n \equiv 7 (8)).$$

Notice that (\mathcal{P}_7^{11}) is obtained from the triviality of $\gamma_{10,8} \colon S^{10} \to P_8^{10} = E^8 P_0^2$

Let x(n) be an integer such that it is odd or even according as n is even or odd. Then we can set

$$\lambda_{n-4,4} = \begin{cases} 2\iota \pm i \frac{n-2}{n-3} \widetilde{\eta} + x(\frac{n}{4}) i \nu & (n \equiv 0 \ (4)); \\ \widetilde{\iota} \eta + x(\frac{n-1}{4}) i \nu & (n \equiv 1 \ (4)); \\ \gamma_{5,2} + x(\frac{n-2}{4}) i \nu & (n \equiv 2 \ (4)); \\ x(\frac{n-3}{4}) i \nu & (n \equiv 3 \ (4)). \end{cases}$$

Remark In the case $n \equiv 0$ (4), exactly,

$$\lambda_{n-4,4} = \begin{cases} 2s_2 \pm t\tilde{\eta} + i\nu & (n \equiv 0 \ (8)); \\ 2s_1 \pm i^{2,3}\tilde{\eta} & (n \equiv 4 \ (8)). \end{cases}$$

By Proposition 2.1, we obtain the following.

Proposition 2.2 Let $i \leq 4n$ and $\alpha \in \pi_{i-1}^{2n+2}$.

- (1) Let $n \equiv 0 \pmod{4}$ and assume that $\tilde{\eta}_{2n} \circ \alpha = 2\alpha = 0$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^7\alpha) = E^3\delta$ and $H\delta = x(\frac{n+4}{4})v_{2n+1}(E^2\alpha)$.
- (2) Let $n \equiv 1 \pmod{4}$ and assume that $\tilde{\iota}_{2n+1}\eta_{2n+1} \circ \alpha = 0$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^7\alpha) = E^3\delta$ and $H\delta = x(\frac{n+3}{4})\nu_{2n+1}(E^2\alpha)$.
- (3) Let $n \equiv 2 \pmod{4}$ and assume that $E^{2n-3}\gamma_{5,2} \circ \alpha = 0$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^7\alpha) = E^3\delta$ and $H\delta = x(\frac{n+2}{4})\nu_{2n+1}(E^2\alpha)$.
- (4) Let $n \equiv 3 \pmod{4}$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^7\alpha) = E^3\delta$ and $H\delta = x(\frac{n+3}{4})\nu_{2n+1}(E^2\alpha)$.

Notice the following: In Proposition 2.2(1),(3), the assumptions $\tilde{\eta}_{2n}\alpha = 0$ and $E^{2n-3}\gamma_{5,2}\circ\alpha = 0$ imply the relations $\eta_{2n}\alpha' = 0$ and $2\iota_{2n+1}\circ\alpha' = 2\alpha' = 0$ respectively, where $E\alpha' = \alpha$.

For the case k = 8, we obtain:

Proposition 2.3 Let $n \equiv l \pmod{8}$ and $i \leq 4n + 4$. Let $\alpha \in \pi_{i-1}^{2n+6}$.

- (1) Assume that $\pi_{2n+6}(E^{n-1}P_n^{n+7}) \circ \alpha = 0$. Then, $P(E^{11}\alpha)$ desuspends eight dimensions.
- (2) Assume that $(\pi_{2n+6}(E^{n-1}P_n^{n+7}) \{i \circ \sigma\}) \circ \alpha = 0$ for $\alpha \in \pi_{i-1}^{2n+6}$. Then there exists an element $\delta \in \pi_{i+1}^{n+1}$ such that $P(E^{11}\alpha) = E^7\delta$ and $H\delta = x\sigma_{2n+1}(E^2\alpha)$, where x is even or odd according as $n \equiv l \pmod{16}$ or $n \equiv l + 8 \pmod{16}$.

Hereafter Proposition 2.3(2) is written Proposition 2.3[[n;8,r]] for r = l or l + 8. We introduce some notation. If $[l_n, \alpha]$ for $\alpha \in \pi_m^n$ desuspends k dimensions with Hopf

invariant $\theta \in \pi_{n+m-k-1}^{2n-2k-1}$, that is, if there exists an element $\delta \in \pi_{n+m-k-1}^{n-k}$ satisfying $E^k \delta = [\iota_n, \alpha]$ and $H \delta = \theta$, we write

$$H(E^{-k}[\iota_n,\alpha])=\theta.$$

Then, immediately we obtain $P\theta = [l_{n-k-1}, E^{-(n-k)}\theta] = 0$. δ is written

$$\delta = \delta(\theta) = E^{-k}[\iota_n, \alpha].$$

By the fact that $\sharp[\iota_n, [\iota, \iota]] = 2 + (-1)^n \ (n \ge 3)$ and [2, Corollary 7.4], $[\iota_n, \alpha \circ \beta] = [\iota_n, \alpha] \circ E^{n-1}\beta$ for $\beta \in \pi_I^m$ and so,

(2-6)
$$H(E^{-k}[\iota_n, \alpha \circ \beta]) = H(E^{-k}[\iota_n, \alpha]) \circ E^{n-k-1}\beta.$$

If $[\iota_n, \alpha] \neq 0$, we write

$$H(E^{-k}[\iota_n,\alpha]_{\neq 0}) = \theta.$$

By Lemma 1.2 and by abuse of notation for α , we obtain

Example 2.4

- (1) $H(E^{-1}[\iota_{2n+1},\alpha]) = (n+1)\eta_{4n-1}\alpha \ (\delta = \tau_{2n}\alpha), [\iota_{4n-1},\eta\alpha] = 0.$
- (2) $H(E^{-3}[\iota_{4n+3},\alpha]) = \pm (n+1)\nu_{8n-1}\alpha \ (\delta = \overline{\iota}_{4n}\alpha), \ [\iota_{8n-1},\nu\alpha] = 0.$

Notice that Example 2.4(1) induces [18, Proposition 11.10.ii)] and Example 2.4(2) does Proposition 2.2(4).

First of all, we write up the results obtained from [18, Proposition 11.10].

Proposition 2.5

- (1) Let $n \equiv 0, 1$ (4). Then, $H(E^{-1}[\iota_n, \alpha_1]_{\neq 0}) = \eta \alpha_1$ for $\alpha_1 = \eta, \eta \sigma, \overline{\nu}, \varepsilon, \mu, \kappa, \eta \rho, \eta^*, \overline{\mu}, \eta \overline{\kappa}, \eta^* \sigma, \mu_{3,*}$ and $H(E^{-1}[\iota_n, \alpha_2]) = 0$ for $\alpha_2 = \eta \varepsilon, \eta^2 \sigma, \sigma^2, \eta \kappa, \eta^2 \rho, \overline{\sigma}, \nu \overline{\sigma}, \eta \eta^* \sigma, \eta^2 \overline{\rho}$.
- (2) $H(E^{-1}[\iota_{4n},\beta]_{\neq 0}) = \eta\beta$ for $\beta = \eta^2, \eta\mu, \eta\eta^*, \eta\overline{\mu}, \eta^2\overline{\kappa}, \eta\mu_{3,*}$.
- (3) $H(E^{-1}[\iota_{4n+1}, \delta_1]_{\neq 0}) = \eta \delta_1 \text{ for } \delta_1 = \sigma, \rho, \overline{\kappa}, \overline{\rho} \text{ and } H(E^{-1}[\iota_{4n+1}, \delta_2]) = 0 \text{ for } \delta_2 = \nu, \xi, \nu^*, \overline{\xi}, \nu \overline{\kappa}, \zeta_{3,*}.$
- (4) If $\sharp [\iota_{4n}, \nu^*] = 8$, then $[\iota_{4n+1}, \eta \eta^*] \neq 0$.

Proof We prove (1) for κ . By [18, Proposition 11.10], $H(E^{-1}[\iota_n, \kappa]) = \eta \kappa$. Assume that $[\iota_n, \kappa] = 0$. Then, by the EHP sequence, $\delta \in P\pi_{2n+14}^{2n-1} = \{[\iota_{n-1}, \eta \kappa], [\iota_{n-1}, \rho]\}$ for $\delta = E^{-1}[\iota_n, \kappa]$. Applying the Hopf homomorphism $H: \pi_{2n+12}^{n-1} \to \pi_{2n+12}^{2n-3}$ to this relation implies $\eta \kappa = 0$ for $n \equiv 0 \pmod{4}$ and $\eta \kappa \in \{2\rho\}$ for $n \equiv 1 \pmod{4}$. This is a contradiction.

Next, we prove (2) for $\eta \eta^*$. Let $n \equiv 0$ (4). By [18, Proposition 11.11], $H(E^{-1}[\iota_n, \eta \eta^*]) = \eta^2 \eta^* = 4\nu^*$. The assumption $[\iota_n, \eta \eta^*] = 0$ induces $\delta \in P\pi_{2n-19}^{2n-1}$ and a contradictory relation $4\nu^* = 0$ for $\delta = E^{-1}[\iota_n, \eta \eta^*]$. The proof of (3) is similarly obtained.

Finally, we show (4). Assume that $[\iota_{4n+1}, \eta \eta^*] = 0$. From the fact that $[\iota_{4n+1}, \eta \eta^*] = E(\tau_{4n}\eta\eta^*)$ and the assumption $\sharp[\iota_{4n}, \nu^*] = 8$, we have $\tau_{4n}\eta\eta^* \in \{4[\iota_{4n}, \nu^*], [\iota_{4n}, \eta\bar{\mu}]\}$. This implies a contradictory relation $4\nu^* = 0$, and hence (4) follows.

Hereafter, "the assumption $[\iota_n, \alpha] = 0$ " is written " $\mathcal{A}SM[\alpha]$ " and "a contradictory relation $\beta \in B$ " is written " $\mathcal{C}DR[\beta \in B]$ ". As an application of [18, Proposition 11.11], we show:

Proposition 2.6

- (1) $H(E^{-2}[\iota_{4n+2},\alpha]) \in \langle \eta, 2\iota, \alpha \rangle$ if $2\alpha = 0$, $H(E^{-2}[\iota_{4n+2},\alpha_1]_{\neq 0}) \in \langle \eta, 2\iota, \alpha_1 \rangle$ for $\alpha_1 = \nu^2, 8\sigma, \sigma^2, 16\rho, \sigma^3, 8\overline{\rho}, \nu^2\overline{\kappa}$ and $H(E^{-2}[\iota_{4n+2},\alpha_2]) = 0$ for $\alpha_2 = \eta\sigma, \overline{\nu}, \varepsilon, \nu^3, \eta\rho, \overline{\sigma}, \eta\overline{\rho}$.
- (2) $H(E^{-2}[\iota_{4n}, \beta_1]_{\neq 0}) \in \langle 2\iota, \eta, \beta_1 \rangle \text{ for } \beta_1 = \eta \kappa, \eta^2 \rho, \eta \eta^* \sigma.$
- (3) $H(E^{-2}[\iota_{4n}, \beta_2]) = 0$ for $\beta_2 = 4\nu, 8\sigma, 4\zeta, \sigma^2, 16\rho, 4\overline{\zeta}, \overline{\sigma}, 4\overline{\kappa}, 4\nu\overline{\kappa}, 8\overline{\rho}, 4\zeta_{3,*}$.

Proof Let $n \equiv 2$ (4). The first part of (1) is a direct consequence of [18, Proposition 11.11.ii)]. By the fact that $\langle \eta, 2\iota, \sigma^2 \rangle \ni \eta^* \pmod{\eta \rho}$ and [18, Proposition 11.11.ii)],

$$H(E^{-2}[\iota_n, \sigma^2]) = \eta^*.$$

 $\mathcal{A}SM[\sigma^2]$ induces $E\delta\in P\pi_{2n+14}^{2n-1}=\{[\iota_{n-1},\alpha]\}=\{E(\tau_{n-2}\alpha)\}$ (Lemma 1.2(1)) and δ (mod $\tau_{n-2}\rho,\tau_{n-2}\eta\kappa)\in P\pi_{2n+13}^{2n-3}$, where $\delta=E^{-2}[\iota_n,\sigma^2]$ and $\alpha=\rho,\eta\kappa$. Hence, $\mathcal{C}DR[\eta^*$ (mod $\eta\rho)=0]$ and the second part of (1) for σ^2 follows. Next we prove the second part of (1) for $v^2\overline{\kappa}$. By the fact that $\langle \eta,2\iota,v^2\rangle\ni\varepsilon$ (mod $\eta\sigma$) and [18, Proposition 11.11.ii)], $H(E^{-2}[\iota_n,v^2])=\varepsilon$ and $H(E^{-2}[\iota_n,v^2\overline{\kappa}])=\varepsilon\overline{\kappa}$ by (2–6). $\mathcal{A}SM[v^2\overline{\kappa}]$ induces $E(\delta\overline{\kappa})\in\{[\iota_{n-1},\zeta_{3,*}]\}$ and $\delta\overline{\kappa}$ (mod $\tau_{n-2}\zeta_{3,*})\in P\pi_{2n+25}^{2n-3}$, where $\delta=E^{-2}[\iota_n,v^2]$. By the relation $\eta\zeta_{3,*}=0$, we obtain $\mathcal{C}DR[\varepsilon\overline{\kappa}=0]$.

The third part of (1) follows from [18, Proposition 11.11.ii)] and the fact that $\langle \eta, 2\iota, \alpha_2 \rangle \ni$ 0. By [18, Proposition 11.11.i)],

$$(\diamond) H(E^{-2}[\iota_{4n}, \eta \kappa]) = \langle 2\iota, \eta, \eta \kappa \rangle = \nu \kappa.$$

 $\mathcal{A}SM[\eta\kappa] \text{ implies } E\delta \in P\pi_{2n+15}^{2n-1} = \{E(\tau_{n-2}\eta\rho), E(\tau_{n-2}\eta^*)\} \text{ and } \delta \pmod{\tau_{n-2}\eta\rho, \tau_{n-2}\eta^*} \in P\pi_{2n+14}^{2n-3}, \text{ where } \delta = E^{-2}[\iota_n, \eta\kappa]. \text{ Hence, } \mathcal{C}DR[\nu\kappa \pmod{\eta^2\rho, \eta\eta^*} = 0] \text{ and the first part of (2) follows. By the parallel argument, the rest of the assertion follows. We use the following facts: <math>\langle 2\iota, \eta, \beta_2 \rangle = 0; \ \langle \eta, 2\iota, 16\rho \rangle \ni \overline{\mu} \pmod{\eta^2\rho, \eta\eta^*}; \ \langle \eta, 2\iota, \sigma^3 \rangle \ni \eta^*\sigma \pmod{\eta^3\overline{\kappa}}; \ \langle 2\iota, \eta, \eta^2\rho \rangle \ni \overline{\xi} \pmod{2\overline{\zeta}}; \ \langle 2\iota, \eta, \eta\eta^*\sigma \rangle = \nu^2\overline{\kappa} \text{ [6].}$

By Proposition 2.6(2), we obtain

$$[\iota_{4n+1}, \nu \kappa] = 0$$

and
$$[\iota_{4n+1}, \nu^2 \overline{\kappa}] = 0.$$

Here we summarize Toda brackets in $\pi_*^s(P^2)$ needed in the subsequent arguments. Since $\pi_7^s(P^2) = \{i\nu^2\} \cong \mathbb{Z}_2$ and $\pi_5^s(P^2) = \{\widetilde{\eta}\eta^2\} \cong \mathbb{Z}_2$, the indeterminacy of the bracket $\langle i\overline{\eta}, \widetilde{\eta}, \nu \rangle \subset \pi_8^s(P^2)$ is $i\overline{\eta} \circ \pi_7^s(P^2) + \pi_5^s(P^2) \circ \nu = 0$. We set $\widetilde{\nu^2} = \langle i\overline{\eta}, \widetilde{\eta}, \nu \rangle$, which is a coextension of ν^2 . Let $\widetilde{\sigma^2} \in \langle i, 2\iota, \sigma^2 \rangle \subset \pi_{16}^s(P^2)$ be a coextension of σ^2 and $\overline{i\nu} \in \{M^5, P^2\}$ an extension of $i\nu \in \pi_4^s(P^2)$. Then, we show:

Lemma 2.7

- (1) $\langle i\overline{\eta}, \widetilde{\eta}, \nu^* \rangle \ni \widetilde{\sigma^2} \sigma \pmod{i\eta^2 \overline{\kappa}, i\nu \overline{\sigma}}.$
- (2) $\langle i v, 2\iota, \sigma^2 \rangle = i v^*$.
- (3) $\langle i\nu, 2\iota, 16\rho \rangle = i\overline{\xi}$.
- (4) $\langle i \nu, 2\iota, \eta^* \rangle = 0$.
- (5) $\langle \overline{i \nu}, \widetilde{\eta}, 4\iota \rangle = \pi_7^s(\mathbf{P}^2).$
- (6) $\langle \tilde{\eta} p, \tilde{\eta} \eta^2, \eta \rangle = 0.$
- (7) $\langle \widetilde{\eta} p, \widetilde{\eta} \eta^2, \sigma^2 \rangle \ni 0 \pmod{\widetilde{\eta} \eta \overline{\mu}}$.
- (8) $\langle i\eta\overline{\eta}, \widetilde{\eta}, \nu \rangle = \widetilde{\nu^2}\eta = i\varepsilon, \ \widetilde{\nu^2}\sigma = 0 \ \text{ and } \ \widetilde{\nu^2} = \langle \widetilde{\eta}, \nu, \eta \rangle.$
- (9) $\langle \tilde{\eta}, \nu, \nu^3 \rangle = i \eta \kappa$.
- (10) $\widetilde{v^2} \eta \eta^* = i \eta \eta^* \sigma$ and $\langle \widetilde{\eta} p, \widetilde{\eta} \eta^2, v^* \rangle \ni i \eta \eta^* \sigma \pmod{\widetilde{\eta} \eta^2 \overline{\kappa}}$.

Proof Since $\langle p, i \overline{\eta}, \widetilde{\eta} \rangle = \pm \nu$ and $\nu \nu^* = \sigma^3$, we have $p \circ \langle i \overline{\eta}, \widetilde{\eta}, \nu^* \rangle = \sigma^3$. This leads to (1). By the fact that $\nu^* \in \langle \nu, 2\sigma, \sigma \rangle$ and $\nu \circ \pi_{15}^s = 0$, we see that

$$\langle i\nu, 2\iota, \sigma^2 \rangle \subset \langle i\nu, 2\sigma, \sigma \rangle \ni i\nu^* \pmod{i\nu \circ \pi_{15}^s + \pi_{12}^s(P^2) \circ \sigma} = \{\widetilde{\eta}\mu\sigma\}\}.$$

We have $p \circ \langle i\nu, 2\iota, \sigma^2 \rangle = \langle p, i\nu, 2\iota \rangle \circ \sigma^2 \subset \pi_3^s \circ \sigma^2 = 0$, $p(i\nu^*) = 0$ and $p(\widetilde{\eta}\mu\sigma) = \eta\mu\sigma = \eta^2\rho$. This leads to (2).

We obtain

$$\langle i\nu, 2\iota, 16\rho \rangle \subset \langle i\nu, 8\iota, 4\rho \rangle \supset i \circ \langle \nu, 8\iota, 4\rho \rangle \ni i\overline{\zeta}$$

 $(\text{mod } i\nu \circ \pi_{16}^s + \pi_5^s(P^2) \circ 4\rho = 0).$

We get that

$$\langle i\nu, 2\iota, \eta^* \rangle \subset \langle i, 2\nu, \eta^* \rangle \supset \langle i, 2\iota, 0 \rangle \ni 0 \pmod{i_* \pi_{20}^s + \pi_5^s(P^2) \circ \eta^*}.$$

Since $\tilde{\eta}\eta^2\eta^* = 4\tilde{\eta}\nu^* = 0$, the indeterminacy is $\{i\bar{\kappa}\}\$. Hence, (4) follows from the fact that $\langle \bar{\eta}, i\nu, 2\iota \rangle \subset \pi_5^s = 0$ and $\bar{\eta} \circ i\bar{\kappa} = \eta\bar{\kappa}$.

The indeterminacy of $\langle \overline{iv}, \widetilde{\eta}, 4\iota \rangle$ contains $\overline{iv} \circ \pi_4^s(P^2) = \{iv^2\} = \pi_7^s(P^2)$.

We obtain

$$\langle \widetilde{\eta} p, \widetilde{\eta} \eta^2, \eta \rangle \subset \langle \widetilde{\eta}, 4\nu, \eta \rangle \supset \langle 0, \nu, \eta \rangle \ni 0 \text{ (mod } \widetilde{\eta} \circ \pi_5^s + \pi_7^s(P^2) \circ \eta = 0).$$

We see that

$$\langle \widetilde{\eta} p, \widetilde{\eta} \eta^2, \sigma^2 \rangle \subset \langle \widetilde{\eta}, 4\nu, \sigma^2 \rangle \ni 0 \pmod{\widetilde{\eta} \circ \pi_{18}^s + \pi_7^s(P^2) \circ \sigma^2},$$

where $\pi_7^s(P^2) \circ \sigma^2 = 0$ and $\tilde{\eta}\nu^* = 0$ because $\langle 2\iota, \eta, \nu^* \rangle \subset \{2\overline{\kappa}\}$. This leads to (7).

By the equality $\langle \eta \overline{\eta}, \widetilde{\eta}, \nu \rangle = \varepsilon$ [5, Lemma 4.2], $i \overline{\eta} v^2 \in i \langle \eta \overline{\eta}, \widetilde{\eta}, \nu \rangle = i \varepsilon$. This implies $\overline{\eta} v^2 = \varepsilon$. We have $i \varepsilon \in \langle i \eta \overline{\eta}, \widetilde{\eta}, \nu \rangle$ (mod $i \eta \overline{\eta} \circ \pi_7^s(P^2) + \pi_6^s(P^2) \circ \nu = 0$) and $v^2 \eta \in i \langle 2\iota, \nu^2, \eta \rangle \ni i \varepsilon$ (mod $i \eta \sigma$). Composing $\overline{\eta}$ on the left to this relation yields $v^2 \eta = i \varepsilon$. We have $v^2 \sigma = \langle i \overline{\eta}, \widetilde{\eta}, \nu \rangle \circ \sigma = i \overline{\eta} \circ \langle \widetilde{\eta}, \nu, \sigma \rangle = 0$. Since $p \circ \langle \widetilde{\eta}, \nu, \eta \rangle = v^2$, we can set $\langle \widetilde{\eta}, \nu, \eta \rangle = v^2 + ai \sigma$ for $a \in \{0, 1\}$. By the fact that $\eta \overline{\eta} \circ \langle \widetilde{\eta}, \nu, \eta \rangle = \langle \eta \overline{\eta}, \widetilde{\eta}, \nu \rangle \circ \eta = \eta \varepsilon$ and $\eta \overline{\eta} (v^2 + ai \sigma) = \eta \varepsilon + a\eta^2 \sigma$, we have a = 0.

By the relations $v^3 = \eta \overline{v}$, $\langle 2\iota, v^2, \overline{v} \rangle \ni \eta \kappa \pmod{2\rho}$ and (8),

$$\langle \widetilde{\eta}, \nu, \nu^3 \rangle \supset \langle \widetilde{\eta}, \nu, \eta \rangle \circ \overline{\nu} = \widetilde{\nu^2} \overline{\nu} \in i \langle 2\iota, \nu^2, \overline{\nu} \rangle = i \eta \kappa$$

$$(\text{mod } \widetilde{\eta} \circ \pi_{13}^s + \pi_7^s(P^2) \circ \nu^3 = 0).$$

By (8) and [11, (6.3)], $\widetilde{\nu^2} \eta \eta^* = i \varepsilon \eta^* = i \eta \eta^* \sigma$. By the fact that $2\widetilde{\eta} \overline{\eta} = \widetilde{\eta} \eta^2 p = i \eta \overline{\eta} \circ i \overline{\eta}$, $p_* \pi_{24}^s(\mathbf{P}^2) = \pi_{22}^s = \{\eta^2 \overline{\kappa}, \nu \overline{\sigma}\} \cong (\mathbb{Z}_2)^2$ and (1),

$$\langle \widetilde{\eta} p, \widetilde{\eta} \eta^2, \nu^* \rangle \supset \langle \widetilde{\eta} \eta^2 p, \widetilde{\eta}, \nu^* \rangle \supset i \eta \overline{\eta} \circ \langle i \overline{\eta}, \widetilde{\eta}, \nu^* \rangle \ni i \eta \eta^* \sigma$$

$$\pmod{\widetilde{\eta} p \circ \pi_{24}^s(\mathbf{P}^2) + \pi_7^s(\mathbf{P}^2) \circ \nu^* = \{\widetilde{\eta} \eta^2 \overline{\kappa}\}.$$

This leads to (10).

We recall from [12] that $\{P^4, S^0\} = \{\overline{\eta}'\} \cong \mathbb{Z}_8$ and

(2-8)
$$\overline{\eta}'\widetilde{\imath} = \nu$$
, where $\overline{\eta}' \in \langle \overline{\eta}, \widetilde{\eta}p, p_{4,2} \rangle$.

We obtain the following.

Lemma 2.8

(1)
$$\pi_7^s(P^4) = \{\widetilde{\eta}\eta^2, i\nu^2\} \cong (\mathbb{Z}_2)^2 \text{ and } \pi_7^s(P^6) = \{\widetilde{\eta}', i\nu^2\} \cong \mathbb{Z}_8 \oplus \mathbb{Z}_2, \text{ where } \widetilde{\eta}\eta^2 \in \langle i^{2,4}, \widetilde{\eta}p, \widetilde{\eta}\eta^2 \rangle, \ \widetilde{\eta}' \in \langle i^{4,6}, \widetilde{\iota}\overline{\eta}, \widetilde{\eta} \rangle \text{ and } 4\widetilde{\eta}' \equiv i^{4,6}\widetilde{\widetilde{\eta}}\eta^2 \pmod{i\nu^2}.$$

(2)
$$\pi_7^s(P_3^6) = {\widetilde{\eta}''} \cong \mathbb{Z}_8$$
, where ${\widetilde{\eta}''} = p_3^6 {\widetilde{\eta}'}$.

(3)
$$\pi_7^s(P^4) \circ \eta = \pi_7^s(P^4) \circ \sigma^2 = 0$$
 and $\pi_7^s(P^6) \circ \sigma^2 = \pi_7^s(P_3^6) \circ \sigma^2 = 0$.

Proof (1) is just [12, Proposition 4.1]. (2) is obtained by use of the cell structure (\mathcal{P}_3^6) and (1). The first two equalities in (3) are obtained by Lemma 2.7(6),(7) and the relation $i^{2,4}\widetilde{\eta}p = 0 \in \{M^3, P^4\}$. To show the next two equalities in (3), it suffices to prove $\langle \widetilde{\iota\eta}, \widetilde{\eta}, \sigma^2 \rangle \ni 0$. By (2–1), the relation $\langle \widetilde{\eta}, \nu, \sigma \rangle = 0$ and the second equality in (3),

$$\langle \widetilde{\imath} \eta, \widetilde{\eta}, \sigma^2 \rangle \subset \langle \widetilde{\imath}, 2\nu, \sigma^2 \rangle \supset \langle i^{2,4} \widetilde{\eta}, \nu, \sigma \rangle \circ \sigma \ni 0 \pmod{\widetilde{\imath} \circ \pi_{18}^s}.$$

We have $2\tilde{\imath}\nu^* = i^{2,4}\tilde{\eta}\nu^* = 0$. By the fact that $\{M^6, S^0\} = \{\nu^2 p\} \cong \mathbb{Z}_2$, (2–8) and (1), $\overline{\eta}' \circ \tilde{\imath}\nu^* = \sigma^3$, $\overline{\eta}' \circ \langle \tilde{\imath}\overline{\eta}, \tilde{\eta}, \sigma^2 \rangle = \langle \overline{\eta}', \tilde{\imath}\overline{\eta}, \tilde{\eta} \rangle \circ \sigma^2$ and $8\langle \overline{\eta}', \tilde{\imath}\overline{\eta}, \tilde{\eta} \rangle = \langle 8\iota, \overline{\eta}', \tilde{\imath}\overline{\eta} \rangle \circ \tilde{\eta} \subset \{M^6, S^0\} \circ \tilde{\eta} = 0$. This implies $\langle \overline{\eta}', \tilde{\imath}\overline{\eta}, \tilde{\eta} \rangle \subset 2\pi_s^s$ and $\overline{\eta}' \circ \langle \tilde{\imath}\overline{\eta}, \tilde{\eta}, \sigma^2 \rangle = 0$.

We show:

Lemma 2.9

(1) $H(E^{-3}[\iota_{4n},\alpha]) = \frac{1+(-1)^n}{2}\nu\alpha$ for $\alpha = 4\nu, \nu^2, 8\sigma, \nu^3, 4\zeta, 16\rho$, $\nu\kappa, 4\nu^*, 4\overline{\zeta}, \overline{\sigma}, 4\overline{\kappa}, 4\nu\overline{\kappa}, 8\overline{\rho}$. In particular, $H(E^{-3}[\iota_{8n},\alpha]) = \nu\alpha$ for $\alpha = \nu^2, \nu\kappa$, $\overline{\sigma}, 4\overline{\kappa}$.

(2)
$$H(E^{-7}[\iota_{8n}, \beta]) = 0 \text{ for } \beta = 8\sigma, 16\rho, 8\overline{\rho}.$$

(3)
$$H(E^{-7}[\iota_{8n}, \sigma^2]) = 0 \text{ or } \sigma^3.$$

Proof (1) is a direct consequence of Proposition 2.2(1). Let $n \equiv 0$ (8). We have $P_{n-8}^{n-1} = E^{n-8}P_0^7$ and $\gamma_{n-1,n-8} \in 2\pi_7^s(S^7) \oplus \pi_7^s(P^6) \oplus \pi_7^s$. By Lemma 2.8(1), $\lambda_{n-8,8} \circ \beta = 0$. Hence, by Proposition 2.3[[n-8;8,0]], $[\iota_n, \beta]$ desuspends eight dimensions. Similarly, by Lemma 2.8(3) and Proposition 2.3[[n-8;8,0]], $\lambda_{n-8,8} \circ \sigma^2 = 0$ or $i\sigma^3$. \square

By Lemma 2.9(1),

$$[\iota_{8n+4}, \nu \overline{\sigma}] = 0.$$

We need the following.

Lemma 2.10
$$H(E^{-5}[\iota_{8n+6},\alpha]) = 0$$
 for $\alpha = \eta, \varepsilon, \overline{\nu}, \mu, \kappa, \eta^*, \nu \kappa, \overline{\mu}, \overline{\sigma}, \eta \overline{\kappa}, \nu \overline{\sigma}, \mu_{3,*}$.

Proof We show the assertion for $\alpha = \eta, \varepsilon, \mu, \kappa, \eta^*, \overline{\sigma}$. Let $n \equiv 6$ (8). In Proposition 2.1[n-6;6,0], $P_{n-6}^{n-1} = E^{n-6}P_0^5$. We take $\lambda_{n-6,6} = \gamma_5$. By (2–3) and (2–1), $\gamma_5 \eta = \pm i^{2,5} \widetilde{\eta} \nu = 0$. We obtain $\gamma_5 \varepsilon = 0$, because $\langle \eta, 2\iota, \varepsilon \rangle = \{\eta \varepsilon\}$. By the fact that $\langle \eta, 2\iota, \mu \rangle = \pm 2\zeta$ and $\langle 2\iota, \eta, \zeta \rangle = 0$,

$$\gamma_5 \mu \in i^{4,5} \widetilde{\imath} \circ \langle \eta, 2\iota, \mu \rangle = i^{2,5} \widetilde{\eta} \zeta = 0.$$

By the relation $\langle \eta, 2\iota, \eta^* \rangle \ni \pm 2\nu^*$ (mod $\eta \overline{\mu}$), we have $\gamma_5 \eta^* = i^{2,5} \widetilde{\eta} \nu^* = 0$. By the fact that $\langle \eta, 2\iota, \kappa \rangle \ni 0$ (mod $\eta \rho$) and $\langle \eta, 2\iota, \overline{\sigma} \rangle \ni 0$ (mod $\eta \overline{\kappa}$), we obtain $\gamma_5 \kappa = \gamma_5 \overline{\sigma} = 0$. By the parallel argument and (2–6), the assertion holds for the other elements. \square

Immediately,

$$(2-10) P\pi_{16n+29}^{16n+13} \subset E^6\pi_{16n+21}^{8n}.$$

Hereafter we use the following convention.

Convention

In the EHP sequence arguments:

- (1) Higher suspended elements in a relation are omitted. For example, in a relation $E^k \delta \in \{[\iota_{n-1}, \beta], [\iota_{n-1}, \gamma]\}$, if $[\iota_{n-1}, \gamma] = E^l \gamma'$ for some element γ' and $l \ge k+1$, then $[\iota_{n-1}, \gamma]$ is omitted.
- (2) Elements of order 2 having independent Hopf invariants in a relation are omitted, if other elements are suspended. For example, in a relation $E^k\delta$ (mod δ_1) \in { $[\iota_n, \beta]$ } ($k \ge 1$), if $2\delta_1 = 0$, $H\delta_1 \ne 0$ and $H[\iota_n, \beta] = 0$, then δ_1 disappears in the relation.

Now, we show the following:

Proposition 2.11 (1)
$$H(E^{-3}[\iota_{8n+3}, \alpha]) = 0$$
 if $\nu \alpha = 0$.

(2)
$$H(E^{-3}[\iota_{8n+3}, \beta]_{\neq 0}) = \nu \beta \text{ for } \beta = \kappa, \nu^*, \overline{\sigma}, \overline{\kappa}, \nu \overline{\kappa}.$$

$$(3)\ H(E^{-3}[\iota_{8n+3},\nu\kappa]_{\neq 0})=4\overline{\kappa}\ if\ \sharp[\iota_{8n},\overline{\kappa}]=8.$$

Proof By Example 2.4(2), it suffices to prove the non-triviality in (2) and (3). We show it for ν^* . Let $n \equiv 3$ (8). By Lemma 1.2(2), $[\iota_n, \nu^*] = E^3(\overline{\tau}_{n-3}\nu^*)$. $\mathcal{A}SM[\nu^*]$ and (1–2) for $\overline{\zeta}$ induce $E^2(\overline{\tau}_{n-3}\nu^*) \in \{[\iota_{n-1}, \overline{\sigma}]\} \subset E^3\pi_{2n+13}^{n-4}$ (Proposition 2.6(1)), $E(\overline{\tau}_{n-3}\nu^*) \in P\pi_{2n+17}^{2n-3} = \{E(\tau_{n-3}\overline{\kappa})\}, \overline{\tau}_{n-3}\nu^* \pmod{\tau_{n-3}\overline{\kappa}} \in P\pi_{2n+16}^{2n-5}$ and hence, $\mathcal{C}DR[\sigma^3 \pmod{\eta\overline{\kappa}} = 0]$. By the parallel argument, (2) for the other elements follows. We show (3). Assume that $E^3(\overline{\tau}_{8n}\nu\kappa) = [\iota_{8n+3}, \nu\kappa] = 0$. Then, $E^2(\overline{\tau}_{8n}\nu\kappa) \in \{[\iota_{8n+2}, 4\nu^*], [\iota_{8n+2}, \eta\overline{\mu}]\} = 0$ and $E(\overline{\tau}_{8n}\nu\kappa) \in \{[\iota_{8n+1}, \overline{\zeta}], [\iota_{8n+1}, \overline{\sigma}]\} = \{E(\tau_{8n}\overline{\zeta}), E(\tau_{8n}\overline{\sigma})\}$. This and the assumption $\sharp[\iota_{8n}, \overline{\kappa}] = 8$ imply $\overline{\tau}_{8n}\nu\kappa + a\tau_{8n}\overline{\zeta} + b\tau_{8n}\overline{\sigma} \in \{4[\iota_{8n}, \overline{\kappa}]\}$. Since $\eta\overline{\zeta} = \eta\overline{\sigma} = 0$, we get $\mathcal{C}DR[\nu^2\kappa = 0]$.

Immediately,

$$[\iota_{8n+7},\sigma^3]=0.$$

By Proposition 2.2(3), we have:

Lemma 2.12 $H(E^{-3}[\iota_{4n+2},\alpha]) = \frac{1+(-1)^n}{2}\nu\alpha$ for $\alpha = \overline{\nu}, \varepsilon, \kappa, \nu\kappa, \nu^2\kappa, \overline{\sigma}, \nu\overline{\sigma}$. In particular, $H(E^{-3}[\iota_{8n+2},\alpha]) = \nu\alpha$ for $\alpha = \kappa, \nu\kappa, \nu^2\kappa, \overline{\sigma}$.

Immediately,

(2-11)
$$[\iota_{8n+6}, \nu_{\kappa}] = 0$$
 and
$$[\iota_{8n+6}, \nu_{\overline{\sigma}}] = 0.$$

We need the following:

Lemma 2.13

- (1) $H(E^{-3}[\iota_{4n+1},\alpha]) = \frac{1+(-1)^n}{2} \nu \alpha$ for $\alpha = \nu, \nu^2, \nu \kappa, \nu^*, \overline{\sigma}, \nu^2 \kappa$, $\nu \overline{\sigma}, \nu \overline{\kappa}$ and $H(E^{-3}[\iota_{4n+1},\beta_1]) = H(E^{-3}[\iota_{4n+1},\eta\beta_2]) = 0$ for $\beta_1 = \zeta, \overline{\zeta}, \zeta_{3,*};$ $\beta_2 = \mu, \overline{\mu}, \mu_{3,*}$. In particular, $H(E^{-3}[\iota_{8n+1},\alpha]) = \nu \alpha$ for $\alpha = \nu, \nu^2, \nu \kappa, \nu^*, \overline{\sigma}, \nu^2 \kappa, \nu \overline{\kappa}$.
- (2) $H(E^{-4}[\iota_{8n+5}, \delta_1]) = 0$ for $\delta_1 = \eta^2, \nu, \eta^2 \sigma, \eta \varepsilon, \eta^2 \rho, \nu \kappa, \eta \mu, \eta \eta^*, \eta \overline{\mu}$.
- (3) $H(E^{-4}[\iota_{8n+1}, \delta_2]) = 0$ for $\delta_2 = \nu^3, \eta^2 \sigma, \sigma^2, \eta^2 \rho, \nu \overline{\sigma}, \eta \eta^* \sigma, \eta^2 \overline{\rho}, \nu^2 \overline{\kappa}$.
- (4) $H(E^{-6}[\iota_{8n+5}, \eta^2 \delta_3]) = 0 \text{ for } \delta_3 = \rho, \overline{\rho}.$

Proof (1) is a direct consequence of Proposition 2.2(2). Let $n \equiv 5$ (8). Then, $P_{n-5}^{n-1} = E^{n-5}P_0^4$ and we can take $\lambda_{n-5,5} = \tilde{\iota}\eta$. By the relations $\eta\delta_1 = 0$, $4\tilde{\iota} = i\eta^2$ (2–1) and $\eta\delta = 0$ ($\delta = \nu, \zeta, \nu^*, \overline{\zeta}$), we have $\lambda_{n-5,5} \circ \delta_1 = 0$. Hence, Proposition 2.1[n-8;5,0] leads to (2).

In Proposition [n-5;5,4], $P_{n-5}^{n-1} = E^{n-9}P_4^8$ for $n \equiv 1$ (8). By (\mathcal{P}_4^8) , we have

$$(*) \qquad \pi_8^s(\mathsf{P}_4^8) = i_*'' \pi_8^s(\mathsf{P}_4^7) = \{i''s_2\eta, i''ti\nu\} \cong (\mathbb{Z}_2)^2 \ (i = i_4^{4,7}, i'' = i_4^8).$$

So, we take

$$(2-12) \gamma_{8,4} = i''(s_2\eta + ti\nu)$$

and $\lambda_{n-5,5} \circ \delta_2 = 0$.

In Proposition 2.1[n-7;7,6], $P_{n-7}^{n-1} = E^{n-13}P_6^{12}$ for $n \equiv 5$ (8). Since $P_6^{12}/P_6^7 = P_8^{12} = E^8P_0^4$, we have $p_{8,6*}^{12}(\lambda_{n-7,7}\circ\eta^2)\in\pi_4^s(P^4)\circ\eta^2=0$ and $\lambda_{n-7,7}\circ\eta^2\in i_6^{7,12}*\pi_{14}^s(P_6^7)$. Hence, by the fact that $\pi_{14}^s(P_6^7)\cong\pi_8^s\oplus\pi_7^s$ and $\pi_8^s\circ\delta_3=\pi_7^s\circ\delta_3=0$, we obtain $\lambda_{n-7,7}\circ\eta^2\delta_3=0$.

By Lemma 2.13(1), we obtain

$$[\iota_{8n+5}, \sigma^3] = 0,$$
$$[\iota_{8n+5}, \nu \overline{\sigma}] = 0$$

and

(2-14)
$$P\pi_{8n+21+k}^{8n+3} \subset E^3\pi_{8n+16+k}^{4n-2} \ (k=0,1).$$

We also note the following.

Remark $H(E^{-3}[\iota_{8n+1}, \nu \kappa]) = \nu^2 \kappa$, while $[\iota_{8n+1}, \nu \kappa] = 0$ (2–7).

3 Concerning Nomura's results [15]

In this section, we recollect Nomura's results [15], prove a part of them by using Proposition 2.1 and add results needed in the next section. By use of the cell structures of P_{n-k}^{n-1} , we determine some group structures of $\pi_{n-1}^s(P_{n-k}^{n-1})$ for $4 \le k \le 8$, which overlap with [17, Section 3]. First we show the result including the known one [15, 4.10;18].

Lemma 3.1
$$H(E^{-7}[\iota_{16n+3}, \sigma]) = \sigma^2$$
 and $H(E^{-7}[\iota_{16n+k}, \sigma^2]) = \sigma^3$ for $k = 0, 1, 3, 7$.

Proof Let
$$n \equiv 0$$
 (16). By (1–1), $[\iota_n, \sigma^2] = \sigma_n \circ [\iota_{n+7}, \iota] = E^7(\sigma_{n-7}\delta_n)$ and $H(\sigma_{n-7}\delta_n) = \sigma_{2n-15}^3$. Let $n \equiv 7$ (16). By (1–1), $[\iota_n, \sigma^2] = E^7(\delta_{n-7}\sigma)$ and

 $H(\delta_{n-7}\sigma)=\sigma_{2n-15}^3$. Let $n\equiv 1$ (16). We have $P_{n-8}^{n-1}=E^{n-17}P_9^{16}$ and $P_{n-8}^{n-2}=E^{n-17}P_9^{15}=E^{n-9}P^7=E^{n-9}P^6\vee S^{n-2}$. By inspecting [12, Proposition 4.3],

$$\pi_8^s(\mathbf{P}^6) = \{\widetilde{\eta}'\eta, \widetilde{i\nu}, i^{2,6}\widetilde{\nu^2}, i\sigma\} \cong (\mathbb{Z}_2)^4$$

where $\widetilde{i\nu} \in \langle i^{4,6}\widetilde{\imath}, \overline{\eta}, i\nu \rangle$ and $\widetilde{i\nu} \circ \sigma \in \langle i^{4,6}\widetilde{\imath}, \overline{\eta}, i\nu \rangle \circ \sigma = i^{4,6}\widetilde{\imath} \circ \langle \overline{\eta}, i\nu, \sigma \rangle = 0$. So, by Lemma 2.7(8), $\pi_8^s(P^6) \circ \sigma^2 = \{i\sigma^3\}$. Since $p_* : \pi_{16}^s(P_9^{16}) \to \pi_{16}^s(S^{16})$ is trivial, $\pi_{16}^s(P_9^{16}) = i_*\pi_{16}^s(P_9^{15})$. This implies $(\pi_{16}^s(P_9^{16}) - \{i\sigma\}) \circ \sigma^2 = 0$ and hence, by Proposition 2.3[[n-8;8,9]], the assertion follows.

Next, let $n\equiv 3$ (16). In Proposition 2.3[[n-8;8,11]], $P_{n-8}^{n-1}=E^{n-11}P_3^{10}$. Since $\{EP^4,P^2\}=\{i\overline{\eta}',\widetilde{\eta}\overline{\eta}p_3^4,i\nu p\}\cong (\mathbb{Z}_2)^3$, $P_3^7=P_3^6\vee S^7$ and Sq^4 is trivial on $\widetilde{H}^3(P_3^8;\mathbb{Z}_2)$, we can take $P_3^8=M^4\cup_{i\overline{\eta}'}C(E^3P^4)$. From the relations $\overline{\eta}'\widetilde{\iota}\eta=0$ and $\overline{\eta}'\widetilde{\iota}\nu=\nu^2$ (2–8), we obtain $\pi_8^s(P_3^8)=\{\widetilde{\iota}\eta,\widetilde{\iota}\nu'\}$ and $\pi_9^s(P_3^8)=\{\widetilde{\iota}\eta\eta\}\cong\mathbb{Z}_2$, where

$$\widetilde{i\eta} \in \langle i', \overline{\eta}', \widetilde{i\eta} \rangle$$
 and $\widetilde{iv}' \in \langle i', \overline{\eta}', iv \rangle \ (i' = i_3^{3,8}).$

By (2-5), we obtain

$$\gamma_{8,3} = \widetilde{i}\widetilde{\eta} + \widetilde{i}\widetilde{\nu}'.$$

By the fact that $\pi_6^s(P^4) = \{\tilde{\imath}\nu\} \cong \mathbb{Z}_2$ and (2–8), we obtain $\langle \overline{\eta}', i\nu, \eta \rangle = \pi_6^s = \{\nu^2\}$ and $\widetilde{\imath}\nu'\eta \in i' \circ \langle \overline{\eta}', i\nu, \eta \rangle = \{i'\nu^2\} = 0$. Hence,

$$\gamma_{8,3}\eta = \widetilde{\widetilde{\imath}}\eta\eta$$

and $\pi_{10}^s(P_3^{10}) = i_*'''\pi_{10}^s(P_3^8) = i_*'''i_*''\pi_{10}^s(M^4) = \{i'''i''\widetilde{v^2}, i\sigma\} \ (i''' = i_3^{8,10}, i'' = i_3^{4,8}).$ Therefore, by Lemma 2.7(8), $(\pi_{10}^s(P_3^{10}) - \{i\sigma\}) \circ \sigma = 0$. This implies $H(E^{-7}[\iota_n, \sigma]) = \sigma^2$ and $H(E^{-7}[\iota_n, \sigma^2]) = \sigma^3$ (2–6).

Immediately, $[\iota_{16n+11}, \sigma^2] = 0$, $[\iota_{16n+k}, \sigma^3] = 0$ (k = 8, 11, 15)

and

$$[\iota_{16n+9}, \sigma^3] = 0.$$

Next, we show the following [15, Table 2, 4.15;16].

Lemma 3.2

- (1) $H(E^{-4}[\iota_{8n+4}, 16\rho]) = \overline{\zeta}$.
- (2) $H(E^{-5}[\iota_{8n+3}, \nu\kappa]) = \eta^2 \overline{\kappa}$
- (3) $H(E^{-6}[\iota_{8n}, v^3]) = \eta \kappa$.

Proof Let $n \equiv 4$ (8). In Proposition 2.1[n-5;5,7], $P_{n-5}^{n-1} = E^{n-12}P_7^{11}$. Let $\widetilde{2\iota} \in \langle i', i\nu, 2\iota \rangle$ $(i = i_7^{7,10}, i' = i_7^{11})$ be a coextension of 2ι in (\mathcal{P}_7^{11}) . By Lemma 2.8, we can take

$$\gamma_{11,7} = \widetilde{2\iota} + i_7^{11} \widetilde{\eta}''.$$

By Lemma 2.7(3), $\lambda_{n-5,5} \circ 16\rho \in i' \circ \langle i\nu, 2\iota, 16\rho \rangle = i\overline{\xi}$.

In Proposition 2.1[n-6;6,1], $P_{n-6}^{n-1}=E^{n-11}P_5^{10}$ for $n\equiv 3$ (8). By the cell structure (\mathcal{P}^4) , we obtain $\{M^5,P^4\}=\{\widetilde{\imath\eta},i^{2,4}\overline{\imath\nu}\}\cong\mathbb{Z}_4\oplus\mathbb{Z}_2$, where $2\widetilde{\imath\eta}=\widetilde{\imath\eta}^2p$. Since Sq^k on $\widetilde{H}^{9-k}(P_5^{10};\mathbb{Z}_2)$ is non-trivial for k=2,4,

$$(\mathcal{P}_{5}^{10}) \qquad P_{5}^{10} = P_{5}^{8} \cup_{\widetilde{\imath}\overline{n} + i^{2.4}\overline{i}\overline{\nu}} CM^{9} \ (P_{5}^{8} = E^{4}P^{4}).$$

From the natural isomorphisms $\pi_{10}^s(P_5^{10}) \cong \pi_{10}^s(P_5^8) \cong \pi_6^s(P^4) = \{\tilde{\imath}\nu\} \cong \mathbb{Z}_2$, we obtain

$$\pi_{10}^{s}(P_5^{10}) = \{i'\tilde{\imath}\nu\} \cong \mathbb{Z}_2 \ (i' = i_5^{8,10}),$$

$$(3-3) \gamma_{10.5} = i'\tilde{\imath}\nu$$

and

$$(\mathcal{P}_5^{11}) \qquad \qquad P_5^{11} = P_5^{10} \cup_{i'\tilde{\imath}\nu} e^{11}.$$

Hence, by the relation $4\overline{\kappa} = v^2 \kappa$ and (2–1), $\lambda_{n-6,6} \circ v \kappa = 4i' \overline{i} \overline{\kappa} = i \eta^2 \overline{\kappa}$.

In Proposition 2.1[n-7;7,1], $P_{n-7}^{n-1} = E^{n-8}P^7$ for $n \equiv 0$ (8). Let $s_3: S^7 \hookrightarrow P^7 = P^6 \vee S^7$ be the canonical inclusion. Then, we take

$$(3-4) \gamma_7 = 2s_3 + i^{6,7} \widetilde{\eta}'.$$

By Lemma 2.8(1), $\tilde{\eta}' \circ v^3 \in i_{4,6} \circ \langle \tilde{\imath} \tilde{\eta}, \tilde{\eta}, v^3 \rangle$. By (2–1) and Lemmas 2.7(6),(9), 2.8(3),

$$\langle \widetilde{\imath} \overline{\eta}, \widetilde{\eta}, \nu^3 \rangle \subset \langle \widetilde{\imath}, 2\nu, \nu^3 \rangle \supset i^{2,4} \circ \langle \widetilde{\eta}, \nu, \nu^3 \rangle = i \eta \kappa$$

$$(\bmod \widetilde{\iota} \circ \pi_{13}^s + \pi_7^s(P^4) \circ \eta \overline{\nu} = 0).$$

Hence, $\lambda_{n-7,7} \circ \nu^3 = i \eta \kappa$.

Immediately,

$$[\iota_{8n+7}, \overline{\zeta}] = [\iota_{8n+5}, \eta^2 \overline{\kappa}] = [\iota_{8n+1}, \eta \kappa] = 0.$$

By the way, the argument in [5, Section 4] implies that $\Delta_{\mathbb{H}}$: $\pi_{8n+10}(S^{8n+7}) \to \pi_{8n+9}(Sp(2n+1))$ is trivial on the 2 primary component and

$$\Delta(\eta_{8n+5}^2\overline{\kappa}) = 4i_*\Delta_{\mathbb{H}}(\overline{\kappa}_{8n+7}) = i_*\Delta_{\mathbb{H}}(\nu_{8n+7})\nu\kappa = 0,$$

Geometry & Topology Monographs, Volume 13 (2008)

where $\Delta_{\mathbb{H}}$ is the the symplectic connecting map and $i: Sp(2n+1) \hookrightarrow SO(8n+7)$ the canonical inclusion.

The non-triviality of $[\iota_{8n}, \nu^3]$ is proved in [5].

Now we show the following result overlapping with [15, 4.12].

Lemma 3.3
$$H(E^{-4}[\iota_{8n+4}, \sigma^2]) = v^* \text{ and } H(E^{-5}[\iota_{8n+5}, \sigma^2]) = \overline{\sigma}.$$

Proof In Proposition 2.1[n-5;5,7], $P_{n-5}^{n-1} = E^{n-12}P_7^{11}$ for $n \equiv 4$ (8). By Lemmas 2.7(2), 2.8(3) and (3–2), $\lambda_{n-5,5} \circ \sigma^2 = i'\langle i\nu, 2\iota, \sigma^2 \rangle = i\nu^*$.

In Proposition 2.1[n-6;6,7], $P_{n-6}^{n-1} = E^{n-13}P_7^{12}$ for $n \equiv 5$ (8). We see that $\{M^7, P_3^6\} = \{i'\overline{i\nu}, i'\overline{\eta}\overline{\eta}, \widetilde{\eta}''p\} \cong (\mathbb{Z}_2)^3$ $(i' = i_3^{4,6})$. By (\mathcal{P}_7^{11}) , we have

$$(\mathcal{P}_{7}^{12})$$
 $P_{7}^{12} = P_{7}^{10} \cup_{i' \overline{i\nu} + \widetilde{n}'' \, p} CM^{11}$

and $\pi_{12}^s(\mathsf{P}_7^{12}) = \{\widetilde{i\eta}, i''\widetilde{i\nu}\} \cong (\mathbb{Z}_2)^2$, where $\widetilde{i\eta} \in \langle i'', i'\overline{i\nu} + \widetilde{\eta}'' p, i\eta \rangle$ $(i'' = i_7^{10,12})$ and $\widetilde{i\nu} \in \langle i', \overline{\eta}, i\nu \rangle \in \pi_{12}^s(\mathsf{P}_7^{10})$. Since $\langle i'', i'\overline{i\nu} + \widetilde{\eta}'' p, i\eta \rangle \supset \langle i'', (i'\overline{i\nu} + \widetilde{\eta}'' p) \circ i, \eta \rangle = \langle i'', i'i\nu, \eta \rangle \supset \langle i''i', \nu, \eta \rangle$, we can choose $\widetilde{i\eta}$ such that

$$(3-5) \hspace{1cm} \widetilde{i\,\eta} \in \langle i^{\prime\prime\prime}, \nu, \eta \rangle \; (i^{\prime\prime\prime} = i^{\prime\prime}i^\prime i = i_7^{7,12}).$$

From the fact that Sq^4 is trivial on $\widetilde{H}^9(P_7^{13}; \mathbb{Z}_2)$, we take $\gamma_{12,7} = \widetilde{i}\eta$ and

$$\widetilde{i\eta} \circ \sigma^2 \in i''' \circ \langle v, \eta, \sigma^2 \rangle = i''' \overline{\sigma} \pmod{0}.$$

This implies $\lambda_{n-6,6} \circ \sigma^2 = i'''\overline{\sigma}$.

Immediately,

$$[\iota_{8n+7}, \nu^*] = [\iota_{8n+7}, \overline{\sigma}] = 0.$$

Next, we prove the following [15, 4.13;14;16, Table 2].

Lemma 3.4

- (1) $H(E^{-5}[\iota_{8n+2}, \eta]) = v^2$.
- (2) $H(E^{-6}[\iota_{8n+1}, \eta^2]) = \varepsilon$.
- (3) $H(E^{-5}[\iota_{8n+2}, \eta^*]) = \sigma^3$.
- (4) $H(E^{-6}[\iota_{8n+1}, \eta \eta^*]) = \eta^* \sigma.$
- (5) $H(E^{-6}[\iota_{8n+6},\kappa]) = \overline{\kappa}$.

Proof In Proposition 2.1[n-6;6,6], $P_{n-6}^{n-1} = E^{n-10}P_4^9$ for $n \equiv 2$ (8), $\pi_9^s(P_4^9) \cong \pi_9^s(P_5^9) \cong \mathbb{Z}$ (\mathcal{P}_5^9) and $\gamma_{9,4} \circ \eta^* \in i''' \circ \langle \gamma_{8,4}, 2\iota, \eta^* \rangle$ ($i''' = i_4^9$) (2–2). By the relations $\langle p, i, 2\iota \rangle = \pm \iota$, $\langle i \, \nu, 2\iota, \eta \rangle = 0$, (2–4) and (2–12), we have $2i''s_2 = i''(i\nu \pm t\widetilde{\eta})$ ($i'' = i_4^8$) and

$$\langle \gamma_{8,4}, 2\iota, \eta \rangle \subset \langle i''s_2\eta, 2\iota, \eta \rangle + \langle i''ti\nu, 2\iota, \eta \rangle \ni \pm 2i''s_2\nu = i\nu^2$$

$$\pmod{i''(s_2\eta + ti\nu) \circ \pi_2^s + \pi_9^s(P_4^8) \circ \eta}.$$

The indeterminacy is trivial, because $\pi_9^s(P_4^8) = \{i''s_2\eta^2\} \cong \mathbb{Z}_2$ and $i''s_2\eta^3 = 4i''s_2\nu = 0$. This implies $\lambda_{n-6,6} \circ \eta = i\nu^2$.

In Proposition 2.1[n-7;7,2], $P_{n-7}^{n-1}=E^{n-9}P_2^8$ for $n\equiv 1$ (8). We obtain $\{M^5,P_2^4\}=\{\widetilde{\iota}'\overline{\eta},i\nu\}\cong\mathbb{Z}_4\oplus\mathbb{Z}_2$, $\pi_6^s(P_2^6)=\{i'\widetilde{\iota}'\nu\}\cong\mathbb{Z}_2$ $(i'=i_2^{4,6})$ and $\pi_7^s(P_2^6)=\{\widetilde{\eta}'''\}\cong\mathbb{Z}_8$, where $\widetilde{\eta}'''\in\langle i',\widetilde{\iota}'\overline{\eta},\widetilde{\eta}\rangle$ and $2\widetilde{\eta}'''\in\langle i',i\eta\overline{\eta},\widetilde{\eta}\rangle$ $(i=i_2^{2,4})$. We also obtain $\{M^7,P_2^6\}=\{i'\overline{\widetilde{\iota}'\nu},\widetilde{\eta}'''p\}\cong(\mathbb{Z}_2)^2$. By the cell structures

$$P_2^6 = P_2^4 \cup_{\tilde{i}'\bar{\eta}} CM^5$$
 and $P_2^8 = P_2^6 \cup_{\tilde{\eta}'''p} CM^7$,

we have $\pi_8^s(\mathsf{P}_2^6) = \{\widetilde{\eta}'''\eta, \widetilde{iv}'', i'\widetilde{\imath}v^2\} \cong (\mathbb{Z}_2)^3$ and $\pi_8^s(\mathsf{P}_2^8) = \{\widetilde{\imath}'''\eta\} \oplus i_*''\pi_8^s(\mathsf{P}_2^6)$, where $\widetilde{iv}'' \in \langle i'\widetilde{\imath}', \overline{\eta}, iv \rangle$, $\widetilde{\imath}''' \in \langle i'', \widetilde{\eta}'''p, i \rangle$ ($i'' = i_2^{6,8}$) and $2\widetilde{\imath}''' = i''\widetilde{\eta}'''$ [12, Proposition 4.2]. We can take $\gamma_{8,2} \equiv \widetilde{\imath}'''\eta$ (mod $i_*''\pi_8^s(\mathsf{P}_2^6)$). Since $\widetilde{iv}'' \circ \eta \in i'\widetilde{\imath}' \circ \langle \overline{\eta}, iv, \eta \rangle = i'\widetilde{\imath}'v^2$, we obtain $\widetilde{iv}'' \circ \eta^2 = 0$. By Lemma 2.7(8), $\gamma_{8,2} \circ \eta^2 = 2i''\widetilde{\eta}'''v \in i''i' \circ \langle i\eta\overline{\eta}, \widetilde{\eta}, v \rangle = i\varepsilon$.

By the same argument as (1) and by Lemma 2.7(4), $\lambda_{n-6,6} \circ \eta^* = i\sigma^3$. By the same argument as (2) and by Lemma 2.7(1), $\gamma_{8,2}\eta\eta^* = i\eta^*\sigma$.

Since $\langle \eta, 2\iota, \kappa \rangle \ni 0$, we can choose a coextension $\widetilde{\kappa} \in \pi_{16}^s(\mathsf{P}^2)$ satisfying $\overline{\eta}\widetilde{\kappa} = 0$. Notice that $\langle \nu, \eta, \eta \kappa \rangle = \pm 2\overline{\kappa}$ and $\langle \nu, \overline{\eta}, \widetilde{\kappa} \rangle = \pm \overline{\kappa}$. In Proposition 2.1[n-7;7,7], $\mathsf{P}_{n-7}^{n-1} = E^{n-14}\mathsf{P}_7^{13}$ for $n \equiv 6$ (8). By use of (\mathcal{P}_7^{12}) , we get that

$$\pi_{13}^{s}(\mathbf{P}_{7}^{12}) = \{\widetilde{i\eta}\eta, i'\widetilde{\eta}''\eta^{2}, i\nu^{2}\} \cong (\mathbb{Z}_{2})^{3} \ (i' = i_{7}^{10,12}).$$

We obtain $\widetilde{i\eta}\eta\kappa\in i'''\circ\langle\nu,\eta,\eta\kappa\rangle=2i\overline{\kappa}=0$. By (3–5), there exists an extension $\widetilde{i\eta}\in\langle i''',\nu,\overline{\eta}\rangle$ of $\gamma_{12,7}=\widetilde{i\eta}$. By (2–2), we obtain $\gamma_{13,7}\circ\kappa\in i_7^{13}\circ\langle\gamma_{12,7},2\iota,\kappa\rangle\ni i_7^{13}\widetilde{i\eta}\widetilde{\kappa}\pmod{i_7^{13}}_*\pi_{13}^s(P_7^{12})\circ\kappa=0$). We obtain $\widetilde{i\eta}\widetilde{\kappa}\in i'''\circ\langle\nu,\overline{\eta},\widetilde{\kappa}\rangle=i\overline{\kappa}\pmod{i''\circ\{M^6,S^0\}\circ\widetilde{\kappa}=\{i''\nu^2\kappa\}=0}$ and hence, $\lambda_{n-7,7}\circ\kappa=i\overline{\kappa}$.

Immediately,

$$[\iota_{8n+4}, \sigma^3] = [\iota_{8n+2}, \eta^* \sigma] = [\iota_{8n+7}, \overline{\kappa}] = 0.$$

Given an element $\alpha \in \pi_k(S^n)$, a lift $[\alpha] \in \pi_k(SO(n+1))$ of α is an element satisfying $p_{n+1}(\mathbb{R})[\alpha] = \alpha$, where $p_{n+1}(\mathbb{R})$: $SO(n+1) \to S^n$ is the projection. A lift $[\alpha]$ exists

if and only if $\Delta \alpha = 0 \in \pi_{k-1}(SO(n))$. Let $n \equiv 7$ (8). We know $\Delta \nu_n = 0$ [9]. Note the fact that $\Delta \kappa_n = 0$ [5, Section 5] is obtained by constructing a lift of κ_n is given by

$$[\kappa_n] \in \{ [\nu_n], \overline{\eta}, \widetilde{\nu} \} \subset \pi_{n+14}(SO(n+1)) \ (\widetilde{\overline{\nu}} : \text{a coextension of } \overline{\nu}).$$

By the parallel argument, lifts of $\overline{\sigma}_n$ and $\overline{\kappa}_n$ are taken as follows:

$$[\overline{\sigma}_n] \in \{ [\nu_n], \eta, \sigma^2 \} \subset \pi_{n+19}(SO(n+1));$$

$$[\overline{\kappa}_n] \in \{[\nu_n], \overline{\eta}, \widetilde{\kappa}\} \subset \pi_{n+20}(SO(n+1)).$$

Hence,

$$\Delta \overline{\sigma}_{8n+7} = \Delta \overline{\kappa}_{8n+7} = 0.$$

We need the following result overlapping with [15, 4.14].

Lemma 3.5

- (1) $H(E^{-6}[\iota_{8n+3}, \alpha]) = 0$ if $\nu \alpha = 0$.
- (2) $H(E^{-6}[\iota_{8n+4k}, 4\nu^*]) = \eta \eta^* \sigma \text{ or } 0 \text{ according as } k = 0 \text{ or } 1.$

Proof In Proposition 2.1[n-7;7,4], $P_{n-7}^{n-1} = E^{n-11}P_4^{10}$ for $n \equiv 3$ (8). We have $\{P^4, S^1\} = \{\eta \overline{\eta} \, p_3^4, \nu p\} \cong (\mathbb{Z}_2)^2 \, (p = p_4^4), \, \eta \overline{\eta} \, p_3^4 \circ (\overline{\imath} \overline{\eta} + i^{2,4} \overline{\imath} \overline{\nu}) = \eta^2 \overline{\eta} \, \text{and} \, p \circ (\overline{\imath} \overline{\eta} + i^{2,4}) \overline{\imath} \overline{\nu}) = 0$. So, by the fact that $\{M^5, S^0\} = 0$ and $(\mathcal{P}_5^{10}), \, p$ is extendible on $\overline{p} \in \{P_5^{10}, S^8\} \, \text{and} \, \{P_5^{10}, S^5\} = \{\nu \, \overline{p}\} \cong \mathbb{Z}_2$. Hence,

$$EP_4^{10} = S^5 \cup_{\nu \,\overline{p}} CP_5^{10}$$
.

Since $(\widetilde{\imath\eta}+(i^{2,4})\overline{i\nu})\circ i\nu=i\nu^2$, we have $i'i\nu^2=0$ in $\pi_{11}^s(P_5^{10})$ $(i'=i_5^{8,10})$. By Lemma 2.7(5), $\langle i^{2,4}\overline{i\nu},\widetilde{\eta},4\iota\rangle\supset i^{2,4}\circ\langle\overline{i\nu},\widetilde{\eta},4\iota\rangle=\{i\nu^2\}$. So, by (\mathcal{P}_5^{10}) and Lemma 2.8(1), $\pi_{11}^s(P_5^{10})=\{\widetilde{\eta}^{IV}\}\cong\mathbb{Z}_8$, where $\widetilde{\eta}^{IV}\in\langle i',\widetilde{\imath\eta}+i^{2,4}\overline{i\nu},\widetilde{\eta}\rangle$ and $4\widetilde{\eta}^{IV}=i'\widetilde{\widetilde{\eta}\eta^2}$. By the fact that $\langle p',i\overline{\eta},\widetilde{\eta}\rangle=\pm\nu$ $(p'=p_2^2)$ and

$$\langle p, i^{2,4}\overline{i\nu}, \widetilde{\eta} \rangle \subset \langle p', 0, \widetilde{\eta} \rangle \ni 0 \pmod{p' \circ \pi_5^s(\mathbf{P}^2) + \{\mathbf{P}^2, S^0\} \circ \widetilde{\eta} = \{2\nu\}\},$$

we obtain $\overline{p} \circ \widetilde{\eta}^{IV} = \pm \nu$. So, by (3–3) and the relation $\overline{p} \circ i'\widetilde{\imath} = 0$ $(i'\widetilde{\imath} \in \pi_7^s(P_5^{10}))$, we conclude that $\pi_{10}^s(P_4^{10}) = \{\widetilde{i'\widetilde{\imath}}\nu\} \cong \mathbb{Z}_2$ and $\gamma_{10,4} = \widetilde{i'\widetilde{\imath}}\nu$, where $\widetilde{i'\widetilde{\imath}} \in \pi_7^s(P_4^{10})$ is a coextension of $i'\widetilde{\imath}$. This leads to (1).

In Proposition 2.1[n-7;7,1], $P_{n-7}^{n-1} = E^{n-8}P^7$ for $n \equiv 0$ (8). By (3–4) and Lemma 2.7(10), $\lambda_{n-7,7} \circ 4\nu^* = i^{4,7} \widetilde{\eta} \eta^2 \nu^* = i^{2,7} \circ \langle \widetilde{\eta} p, \widetilde{\eta} \eta^2, \nu^* \rangle = i \eta \eta^* \sigma$. Hence, $\lambda_{n-7,7} \circ 4\nu^* = i \eta \eta^* \sigma$.

In Proposition 2.1[n-7;7,5], $P_{n-7}^{n-1} = E^{n-12}P_5^{11}$ for $n \equiv 4 \pmod{8}$. By use of (\mathcal{P}_5^{11}) , we can take

(3-6)
$$\gamma_{11,5} = i''\widetilde{\eta}^{IV} + \widetilde{2}\iota, \text{ where } \widetilde{2}\iota \in \langle i''', \widetilde{\iota}\nu, 2\iota \rangle \ (i'' = i_5^{11}, i''' = i_5^{8,11}).$$

By Lemma 2.7(10), $\widetilde{\eta}^{IV} \circ 4\nu^* = i'\widetilde{\widetilde{\eta}\eta^2} \circ \nu^* = i\eta\eta^*\sigma$. By the relation $\widetilde{2\iota} \circ \eta \in i''' \circ \langle \widetilde{\iota}\nu, 2\iota, \eta \rangle$ and Lemmas 2.7(8),2.8(3),

$$\langle \widetilde{\iota} \nu, 2\iota, \eta \rangle \subset \langle \widetilde{\iota}, 2\nu, \eta \rangle \supset \langle i' \widetilde{\eta}, \nu, \eta \rangle \ni i^{2,4} \widetilde{\nu^2} \pmod{\pi_7^s(\mathsf{P}^4) \circ \eta = 0}.$$

Hence,
$$\widetilde{2\iota} \circ \eta = i'''i^{2,4}\widetilde{\nu^2}$$
 and $\widetilde{2\iota} \circ 4\nu^* = i'''i^{2,4}\widetilde{\nu^2}\eta\eta^* = i\eta\eta^*\sigma$ by Lemma 2.7(10). Thus, by (3–6), $\lambda_{n-7,7} \circ 4\nu^* = 0$. This leads to (2).

Immediately,

$$[\iota_{8n+1}, \eta \eta^* \sigma] = 0.$$

Finally, we need the following [15, 4.8;9;10;11;16;17;18].

Lemma 3.6

- (1) $H(E^{-6}[\iota_{8n+5}, \eta \kappa]) = \eta \overline{\kappa}$.
- (2) $H(E^{-6}[\iota_{8n+4}, \nu \kappa]) = \nu \overline{\kappa}$.
- (3) $H(E^{-6}[\iota_{8n+2}, 4\overline{\kappa}]) = v^2\overline{\kappa}$.
- (4) $H(E^{-7}[\iota_{16n+14}, \eta^*]) = \eta^* \sigma$ and $H(E^{-7}[\iota_{16n+13}, \eta \eta^*]) = \eta \eta^* \sigma$.
- (5) $H(E^{-11}([\iota_{16n+5}, \nu]) = \sigma^2$.
- (6) $H(E^{-13}[\iota_{16n+3}, \nu^2]) = \overline{\sigma}$, $H(E^{-11}[\iota_{16n+2}, \eta \sigma]) = \overline{\sigma}$ and $H(E^{-13}[\iota_{16n+1}, \nu^3]) = \nu \overline{\sigma}$.

Immediately,

$$[\iota_{8n+6}, \eta \overline{\kappa}] = [\iota_{8n+5}, \nu \overline{\kappa}] = [\iota_{8n+3}, \nu^2 \overline{\kappa}] = [\iota_{16n+9}, \sigma^2] = 0,$$
$$[\iota_{16n+5}, \overline{\sigma}] = [\iota_{16n+6}, \overline{\sigma}] = [\iota_{16n+3}, \nu \overline{\sigma}] = [\iota_{16n+6}, \eta^* \sigma] = [\iota_{16n+5}, \eta \eta^* \sigma] = 0.$$

4 Completion of the proof of Theorem 1

First we show:

Proposition 4.1 $[\iota_n, \sigma^2] \neq 0$ for $n \equiv 4, 5$ (8) or $n \equiv 0, 1, 3$ (16).

Proof By Lemma 3.1, we can set $[\iota_n, \sigma^2] = E^7 \delta$ and $H \delta = \sigma^3$. Let $n \equiv 0$ (16). By [1], $[\iota_{n-1}, \iota]$ desuspends seven dimensions. So, $ASM[\sigma^2]$ implies $E^5 \delta \in P\pi_{2n+13}^{2n-3} \subset E^6\pi_{2n+5}^{n-8}$ (2–10) and $E^4 \delta \in P\pi_{2n+12}^{2n-5}$. By Lemma 2.13(2), $[\iota_{n-3}, \alpha]$ for $\alpha = \eta\eta^*, \eta^2\rho$, νκ desuspends five dimensions. Hence, by the relation $H(E^{-1}[\iota_{n-3}, \overline{\mu}]) = \eta\overline{\mu}$, we have $E^3 \delta \in \{[\iota_{n-4}, 4\nu^*], [\iota_{n-4}, \eta\overline{\mu}]\}$. By Lemma 2.9(1), $[\iota_{n-4}, 4\nu^*]$ desuspends four dimensions. Therefore, by the relation $H(E^{-1}[\iota_{n-4}, \eta\overline{\mu}]) = 4\overline{\zeta}$ (Proposition 2.5(2)), $E^2 \delta \in \{[\iota_{n-5}, \overline{\zeta}], [\iota_{n-5}, \overline{\sigma}]\} \subset E^3\pi_{2n+5}^{n-8}$ (Proposition 2.11(2)). Hence, $E\delta \in \{[\iota_{n-6}, 4\overline{\kappa}]\} \subset E^2\pi_{2n+5}^{n-8}$ (Proposition 2.6(1)), $\delta \in P\pi_{2n+8}^{2n-13}$ and $CDR[\sigma^3 = 0]$. Let $n \equiv 1$ (16). $ASM[\sigma^2]$ implies $E^6 \delta \in \{[\iota_{n-1}, \eta\kappa], [\iota_{n-1}, 16\rho]\}$. By Lemma 2.9(2), $[\iota_{n-1}, 16\rho]$ desuspends eight dimensions and $E^5 \delta$ (mod $E\beta$) ∈ $P\pi_{2n+13}^{2n-3} = 0$ for $\beta = E^{-2}[\iota_{n-1}, \eta\kappa]$. So, by (⋄) $E^4 \delta \in P\pi_{2n+12}^{2n-5} \subset E^6\pi_{2n+4}^{n-9}$ (Lemma 2.10), $E^3 \delta \in P\pi_{2n+11}^{2n-7} \subset E^4\pi_{2n+5}^{n-8}$ (Lemma 2.13(1)), $E^2 \delta \in \{[\iota_{n-5}, 4\overline{\zeta}], [\iota_{n-5}, \overline{\sigma}]\}$ $\subset E^3\pi_{2n+5}^{n-8}$ (Proposition 2.6(3)), $E\delta \in \{[\iota_{n-6}, \overline{\kappa}]\} \subset E^3\pi_{2n+4}^{n-9}$ (Proposition 2.11(2)) and hence, $CDR[\delta \in P\pi_{2n+8}^{2n-13}]$.

Let $n \equiv 3$ (16). $\mathcal{A}SM[\sigma^2]$ implies $E^6\delta \in \{[\iota_{n-1}, 16\rho]\}$. Since $H(E^{-2}[\iota_{n-1}, 16\rho])$ $= \overline{\mu}$ by Proposition 2.6(1), $E^5\delta$ (mod $E\beta_1$) $\in P\pi_{2n+13}^{2n-3} = \{E(\tau_{n-3}\eta\rho), E(\tau_{n-3}\eta^*)\}$ for $\beta_1 = E^{-2}[\iota_{n-1}, 16\rho]$. So, $E^4\delta \in \{[\iota_{n-3}, \alpha]\}$ for $\alpha \in \pi_{17}^s$. We obtain $H(E^{-1}[\iota_{n-3}, \overline{\mu}]) = \eta \overline{\mu}$ (Proposition 2.5(1)), $H(E^{-1}[\iota_{n-3}, \eta\eta^*]) = \eta^2\eta^*$ (Proposition 2.5(2)), $H(E^{-2}[\iota_{n-3}, \eta^2\rho]) = x\overline{\zeta}$ (x: odd) (Proposition 2.6(2)) and $H(E^{-3}[\iota_{n-3}, \nu\kappa]) = \nu^2\kappa$ (Lemma 2.9(1)). This induces $E^3\delta$ (mod $E\beta_2$, $E^2\delta_1$) $\in P\pi_{2n+11}^{2n-7} = 0$ for $\beta_2 = E^{-2}[\iota_{n-3}, \eta^2\rho]$ and $\delta_1 = E^{-3}[\iota_{n-3}, \nu\kappa]$. Hence, by (1–2) for ζ , $E^2\delta$ (mod $E\delta_1$) $\in \{[\iota_{n-5}, \overline{\sigma}]\} \subset E^6\pi_{2n+2}^{n-11}$ (Lemma 2.10), $E\delta \in \{E(\tau_{n-7}\overline{\kappa})\}$ and $\mathcal{C}DR[\delta$ (mod $\tau_{n-7}\overline{\kappa}$) $\in P\pi_{2n+8}^{2n-13}$].

Let $n \equiv 4$ (8). Lemma 3.3 and $\mathcal{A}SM[\sigma^2]$ imply $E^3\delta \in P\pi_{2n+14}^{2n-1} = \{[\iota_{n-1}, \rho]\} \subset E^4\pi_{2n+8}^{n-5}$ (Proposition 2.11(1)), for $\delta = \delta(\nu^*) = E^{-4}[\iota_n, \sigma^2]$. By Proposition 2.6(1), $H(E^{-2}[\iota_{n-2}, \eta^*]) = 2\nu^*$ and $[\iota_{n-2}, \eta\rho]$ desuspends three dimensions. This induces $E\delta$ (nod $E\delta_1$) $\in \{[\iota_{n-3}, \alpha]\}$, where $\delta_1 = \delta(2\nu^*) = E^{-2}[\iota_{n-2}, \eta^*]$ and $\alpha = \eta^2\rho, \eta\eta^*, \nu\kappa, \overline{\mu}$. Hence, δ (mod $\delta_1, \tau_{n-4}\alpha$) $\in \{[\iota_{n-4}, \nu^*], [\iota_{n-4}, \eta\overline{\mu}]\}$ and $\mathcal{C}DR[\nu^* \pmod{\eta\overline{\mu}} \in \{2\nu^*\}]$.

Let $n \equiv 5$ (8). Lemma 3.3 and $\mathcal{A}SM[\sigma^2]$ induce $E^4\delta \in \{[\iota_{n-1}, \eta\kappa], [\iota_{n-1}, 16\rho]\}$, where $\delta = \delta(\overline{\sigma}) = E^{-5}[\iota_n, \sigma^2]$. By (\$\phi\$) and Lemma 3.2(1), $E^3\delta$ (mod $E\delta_1, E^3\delta_2$) $\in P\pi_{2n+13}^{2n-3} = 0$ and $E^2\delta$ (mod $E^2\delta_2$) $\in \{[\iota_{n-3}, \nu\kappa], [\iota_{n-3}, \overline{\mu}]\}$, where $\delta_1 = \delta(\nu\kappa) = E^{-2}[\iota_{n-1}, \eta\kappa]$ and $\delta_2 = \delta(\overline{\zeta}) = E^{-4}[\iota_{n-1}, 16\rho]$. By Proposition 2.6(1), $[\iota_{n-3}, \nu\kappa]$ desuspends three dimensions and $H(E^{-2}[\iota_{n-3}, \overline{\mu}]) = 2\overline{\zeta}$. Hence, for $\delta_3 = \delta(2\overline{\zeta}) = E^{-2}[\iota_{n-3}, \overline{\mu}]$, we have $E\delta$ (mod $E\delta_2, E\delta_3$) $\in P\pi_{2n+11}^{2n-7} = \{E(\tau_{n-5}\nu^*), E(\tau_{n-5}\eta\overline{\mu})\}$, δ (mod $\delta_2, \delta_3, \tau_{n-5}\nu^*, \tau_{n-5}\eta\overline{\mu}$) $\in P\pi_{2n+10}^{2n-9}$ and $\mathcal{C}DR[\overline{\sigma} \pmod{\overline{\zeta}} \in \{2\overline{\zeta}\}]$.

Next we show the following:

Proposition 4.2 $H(E^{-3}[\iota_{8n}, \nu^2 \kappa]_{\neq 0}) = 4\nu \overline{\kappa} \text{ and } H(E^{-3}[\iota_{8n+2}, \nu \kappa]_{\neq 0}) = 4\overline{\kappa}.$

Proof Let $n \equiv 0$ (8). By Lemma 2.9(1) and (2–6), $H(E^{-3}[\iota_n, \nu^2 \kappa]) = \nu^3 \kappa = 4\nu \overline{\kappa}$ ($\delta \kappa = E^{-3}[\iota_n, \nu^2 \kappa]$) for $\delta = E^{-3}[\iota_n, \nu^2]$. Then, $\mathcal{A}SM[\nu^2 \kappa]$ induces $E^2(\delta \kappa) \in P\pi_{2n+20}^{2n-1} = 0$, $E(\delta \kappa) \in P\pi_{2n+19}^{2n-3} = \{[\iota_{n-2}, \nu \overline{\sigma}]\} \subset E^6\pi_{2n+11}^{n-8}$ (Lemma 2.10), and hence $\delta \kappa \in P\pi_{2n+18}^{2n-5}$ and $\mathcal{C}DR[4\nu \overline{\kappa} = 0]$.

Next, let $n \equiv 2$ (8). By Lemma 2.12, there exists an element $\delta \in \pi_{2n+13}^{n-3}$ such that $[\iota_n, \nu\kappa] = E^3\delta$ and $H\delta = \nu^2\kappa$. Hence, $\mathcal{A}SM[\nu\kappa]$ and (2–14) induce $E\delta \in \{[\iota_{n-2}, 4\overline{\zeta}], [\iota_{n-2}, \overline{\sigma}]\} \subset E^2\pi_{2n+12}^{n-4}$ (Proposition 2.6(3)) and $\mathcal{C}DR[\delta \in P\pi_{2n+15}^{2n-5} = 0]$.

By Propositions 2.11(3), 4.2 and the properties of Whitehead products,

$$\sharp [\iota_{8n}, \overline{\kappa}] = 8 \quad \text{and} \quad \sharp [\iota_{8n}, \nu \kappa] = \sharp [\iota_{8n+3}, \nu \kappa] = \sharp [\iota_{8n+2}, \kappa] = 2.$$

We show:

Proposition 4.3 $\sharp [\iota_{8n+6}, \kappa] = \sharp [\iota_{8n+5}, \eta \kappa] = \sharp [\iota_{8n+4}, \nu \kappa] = 2.$

Proof Let $n \equiv 6$ (8). Lemma 3.4(5) and $\mathcal{A}SM[\kappa]$ imply $E^5\delta \in \{[\iota_{n-1}, \rho], [\iota_{n-1}, \eta\kappa]\}$ for $\delta = \delta(\overline{\kappa}) = E^{-6}[\iota_n, \kappa]$. By the relation $H(\tau_{n-2}\rho) = \eta\rho$ and Lemma 3.6(1), $E^4\delta \in \{[\iota_{n-2}, \eta\rho], [\iota_{n-2}, \eta^*]\}$. By Proposition 2.5(1),

$$(\star) H(E^{-1}[\iota_{n-2}, \eta \rho]) = \eta^2 \rho; \ H(E^{-1}[\iota_{n-2}, \eta^*]) = \eta \eta^*.$$

Therefore, $E^3\delta \in P\pi_{2n+12}^{2n-5} = \{E^3(\overline{\tau}_{n-6}\nu\kappa)\}$. By the fact that $[\iota_{n-4}, \eta\overline{\mu}] = [\iota_{n-4}, \eta^2\eta^*] = 0$ and (2–14), $E^2\delta$ (mod $E^2(\overline{\tau}_{n-6}\nu\kappa)$) = 0, $E\delta$ (mod $E(\overline{\tau}_{n-6}\nu\kappa)$) $\in P\pi_{2n+10}^{2n-9} \subset E^3\pi_{2n+5}^{n-8}$, δ (mod $\overline{\tau}_{n-6}\nu\kappa$) $\in \{[\iota_{n-6}, \overline{\kappa}]\}$ and hence, $CDR[\overline{\kappa} \in \{2\overline{\kappa}\}]$.

Let $n \equiv 5$ (8). Lemma 3.6(1) and $\mathcal{A}SM[\eta\kappa]$ imply $E^5\delta \in \{[\iota_{n-1},\eta\rho], [\iota_{n-1},\eta^*]\}$ for $\delta = \delta(\eta\overline{\kappa}) = E^{-6}[\iota_n,\eta\kappa]$. By (\star) , $E^4\delta \in P\pi^{2n-3}_{2n+14} = \{[\iota_{n-2},\nu\kappa]\} \subset E^5\pi^{n-7}_{2n+7}$ (Lemma 3.2(2)), $E^3\delta \in \{[\iota_{n-3},4\nu^*], [\iota_{n-3},\eta\overline{\mu}]\} = 0$, $E^2\delta \in P\pi^{2n-7}_{2n+12} \subset E^3\pi^{n-7}_{2n+7}$ (2-14) and $E\delta \in \{[\iota_{n-5},4\overline{\kappa}]\} \subset E^3\pi^{n-10}_{2n+9}$ (Proposition 2.6(3)). Hence, $\mathcal{C}DR[\delta \in P\pi^{2n-11}_{2n+10} = 0]$.

Let $n \equiv 4$ (8). $E^5\delta \in \{E^3(\overline{\tau}_{n-4}\nu^*)\}$ for $\delta = \delta(\nu \overline{\kappa}) = E^{-6}[\iota_n, \nu \kappa]$. By the relation $H(E^{-3}[\iota_{n-2}, \overline{\sigma}]) = \nu \overline{\sigma}$ (Lemma 2.12) and (1–2) for $\overline{\zeta}$, $E^4\delta$ (mod $E^2(\overline{\tau}_{n-4}\nu^*)) \in \{E^3\delta_1\}$ and $E^3\delta$ (mod $E(\overline{\tau}_{n-4}\nu^*), E^2\delta_1$) $\in \{E(\tau_{n-4}\overline{\kappa})\}$, where $\delta_1 = \delta(\nu \overline{\sigma}) = E^{-3}[\iota_{n-2}, \overline{\sigma}]$. From the relations $H(\overline{\tau}_{n-4}\nu^*) = \sigma^3$, $H(\tau_{n-4}\overline{\kappa}) = \eta \overline{\kappa}$ and $H(E^{-1}[\iota_{n-4}, \eta \overline{\kappa}]) = \eta^2 \overline{\kappa}$ (Proposition 2.5(1)), we obtain $E^2\delta$ (mod $E\delta_1$) $\in \{[\iota_{n-4}, \sigma^3]\} \subset E^7\pi_{2n+5}^{n-11}$ (Lemma 2.9(3)), $E\delta \in P\pi_{2n+13}^{2n-9} = 0$, $\delta \in P\pi_{2n+12}^{2n-11}$ and hence, $CDR[\nu \overline{\kappa} \in 2\pi_{23}^{s}]$.

Since $[\iota_{8n+4}, \nu^2] = 0$, $[\iota_{8n+6}, \nu\kappa] = 0$ (2–11) and $H[\iota_{2n}, \overline{\kappa}] = \pm 2\overline{\kappa}$, we have

$$\sharp [\iota_{8n+k}, \overline{\kappa}] = 4 \text{ for } k = 4, 6.$$

Similarly,

$$\sharp [\iota_{8n+4}, \nu \overline{\kappa}] = 4.$$

Now, we show:

Proposition 4.4 $\sharp [\iota_{8n+2}, \eta^*] = \sharp [\iota_{8n+1}, \nu^*] = \sharp [\iota_{8n}, 4\nu^*] = 2.$

Proof Let $n \equiv 2$ (8). By (2–7) and Lemma 3.4(2);(3), $[\iota_{n-1}, \alpha] \in E^6\pi_{2n+8}^{n-7}$ for $\alpha = \nu \kappa, \eta^2 \rho$ and $\eta \eta^*$. So, $\mathcal{A}SM[\eta^*]$ induces $E^4\delta \in \{E(\tau_{n-2}\overline{\mu})\}$ and $E^3\delta \in \{[\iota_{n-2}, 4\nu^*], [\iota_{n-2}, \eta\overline{\mu}]\}$ for $\delta = \delta(\sigma^3) = E^{-5}[\iota_n, \eta^*]$. By the fact that $H(E^{-1}[\iota_{n-2}, \eta\overline{\mu}]) = 4\overline{\zeta}$ (Proposition 2.5(2)) and $[\iota_{n-2}, 4\nu^*] \in E^6\pi_{2n+7}^{n-8}$ (Lemma 3.5(2)), $E^2\delta \in P\pi_{2n+12}^{2n-7} = 0$, $E\delta \in \{[\iota_{n-4}, 4\overline{\kappa}]\} = 0$ and $\mathcal{C}DR[\delta \in P\pi_{2n+12}^{2n-9}]$.

Let $n \equiv 1$ (8). Lemma 2.13(1) and $\mathcal{A}SM[\nu^*]$ imply $E^2\delta \in \{[\iota_{n-1}, 4\overline{\zeta}], [\iota_{n-1}, \overline{\sigma}]\} \subset E^4\pi^{n-5}_{2n+12}$ (Lemma 2.9(1)), where $\delta = \delta(\sigma^3) = E^{-3}[\iota_n, \nu^*]$. Hence, $E\delta \in P\pi^{2n-3}_{2n+17} = 0$ and $CDR[\delta \in P\pi^{2n-7}_{2n+14}]$.

Let $n \equiv 0$ (8). Lemma 3.5(2) and $\mathcal{A}SM[4\nu^*]$ imply $E^5\delta \in P\pi_{2n+18}^{2n-1} = 0$ and $E^4\delta \in \{[\iota_{n-2}, 4\overline{\kappa}]\} = 0$ (2-11) for $\delta = \delta(\eta\eta^*\sigma) = E^{-6}[\iota_n, 4\nu^*]$. Therefore, by (2-13), $E^3\delta \in \{E(\tau_{n-4}\eta\overline{\kappa})\}$ and $E^2\delta \in \{[\iota_{n-4}, \eta^2\overline{\kappa}], [\iota_{n-4}, \nu\overline{\sigma}]\}$. By the relation $H(E^{-1}[\iota_{n-4}, \eta^2\overline{\kappa}]) = 4\nu\overline{\kappa}$ (Proposition 2.5(2)) and (2-9), $E\delta \in \{[\iota_{n-5}, \nu\overline{\kappa}], [\iota_{n-5}, \overline{\rho}]\} \subset E^3\pi_{2n+9}^{n-8}$, $\delta \in P\pi_{2n+13}^{2n-11}$ and $CDR[\eta\eta^*\sigma = 0]$.

By Propositions 2.5(4) and 4.4,

$$[\iota_{8n+1}, \eta \eta^*] \neq 0.$$

We show:

Proposition 4.5 $\sharp [\iota_{16n+14}, \eta^*] = \sharp [\iota_{16n+13}, \eta \eta^*] = 2.$

Proof We use Lemma 3.6(4). Let *n* ≡ 14 (16). By Lemma 2.13(4), $[ι_{n-1}, η^2 ρ]$ desuspends seven dimensions. So, by the relation $[ι_{n-1}, \overline{μ}] = E(τ_{n-2}\overline{μ})$, (2–7) and $ASM[η^*]$, $E^5 δ ∈ \{[ι_{n-2}, 4ν^*], [ι_{n-2}, η\overline{μ}]\}$ for $δ = δ(η^*σ) = E^{-7}[ι_n, η^*]$. By the relation $H(E^{-1}[ι_{n-2}, η\overline{μ}]) = 4\overline{ξ}$ and Lemma 3.5(2), $E^4 δ ∈ \{[ι_{n-3}, \overline{ξ}], [ι_{n-3}, \overline{σ}]\}$. By the relation $ν\overline{ξ} = 0$ and Lemma 3.5(1), $E^3 δ \pmod{E^2(\overline{τ}_{n-6}\overline{σ})} ∈ \{[ι_{n-4}, 4\overline{κ}]\}$. By (3–1), $E^2 δ \pmod{E(\overline{τ}_{n-6}\overline{σ})}, E^2 δ_1) ∈ \{E(τ_{n-6}η\overline{κ})\}$, where $δ_1 = δ(4ν\overline{κ}) = [ι_{n-4}, 4\overline{κ}]$. This induces $Eδ \pmod{Eδ_1} ∈ Pπ_{2n+11}^{2n-11} = \{Eδ_2, [ι_{n-6}, ν\overline{σ}]\}$, where $Eδ_2 = [ι_{n-6}, η^2\overline{κ}]$, $Hδ_2 = 4ν\overline{κ}$ and $[ι_{n-6}, ν\overline{σ}] ⊂ E^2π_{2n+7}^{n-8}$ (Proposition 2.5(1)). Hence, $δ \pmod{δ_1, δ_2} ∈ Pπ_{2n+10}^{2n-13}$ and $CDR[η^*σ ∈ 2π_{23}^s]$.

Next, let $n \equiv 13$ (16). $\mathcal{A}SM[\eta\eta^*]$ implies $E^6\delta \in \{[\iota_{n-1}, 4\nu^*], [\iota_{n-1}, \eta\overline{\mu}]\}$ for $\delta = \delta(\eta\eta^*\sigma) = E^{-7}[\iota_n, \eta\eta^*]$. By the relation $H(E^{-1}[\iota_{n-1}, \eta\overline{\mu}]) = \eta^2\overline{\mu}$ and Lemma 3.5(2), $E^5\delta \in \{[\iota_{n-2}, \overline{\zeta}], [\iota_{n-2}, \overline{\sigma}]\}$. By Lemmas 3.5(1) and 3.6(3), $E^4\delta$ (mod $E^2(\overline{\tau}_{n-5}\overline{\sigma})$) $\in \{[\iota_{n-3}, 4\overline{\kappa}]\} \subset E^6\pi^{n-9}_{2n+7}$ and $E^3\delta$ (mod $E(\overline{\tau}_{n-5}\overline{\sigma})$) $\in \{[\iota_{n-4}, \eta\overline{\kappa}], [\iota_{n-4}, \sigma^3]\}$. From the fact that $[\iota_{n-4}, \eta\overline{\kappa}] = E(\tau_{n-5}\eta\overline{\kappa})$ and (3–1), $E^2\delta \in \{[\iota_{n-5}, \eta^2\overline{\kappa}], [\iota_{n-5}, \nu\overline{\sigma}]\}$. Since $H(E^{-1}[\iota_{n-5}, \eta^2\overline{\kappa}]) = 4\nu\overline{\kappa}$ and $H(E^{-3}[\iota_{n-5}, \nu\overline{\sigma}]) = \nu^2\overline{\sigma} = 0$ (Lemma 2.9(1),[16]), $E\delta \in P\pi^{2n-11}_{2n+12} \subset E^7\pi^{n-13}_{2n+3}$ (1–1), $\delta \in P\pi^{2n-13}_{2n+11}$ and $\mathcal{C}DR[\eta\eta^*\sigma = 0]$.

We show the following:

Proposition 4.6 $H(E^{-3}[\iota_{8n+k}, \bar{\sigma}]_{\neq 0}) = \nu \bar{\sigma} \text{ for } k = 0, 1, 2.$

Proof Let $n \equiv 0$ (8). By Lemmas 2.9(1), 2.12 and 2.13, there exists an element $\delta(k) \in \pi_{2n+2k+15}^{n+k-3}$ such that $[\iota_{n+k}, \overline{\sigma}] = E^3 \delta(k)$ and $H\delta(k) = \nu \overline{\sigma}$. For k = 0, $\mathcal{A}SM[\overline{\sigma}]$ induces $E^2 \delta(0) \in P\pi_{2n+19}^{2n-1} = 0$, $E\delta(0) \in P\pi_{2n+18}^{2n-3} \subset E^2\pi_{2n+14}^{n-4}$ (Proposition 2.6(1)) and $\mathcal{C}DR[\delta(0) \in P\pi_{2n+17}^{2n-5}]$. By the parallel argument to Proposition 4.4 for ν^* , the assertion follows for k = 1. For k = 2, $\mathcal{A}SM[\overline{\sigma}]$ induces $E^2\delta(2) \in \{E(\tau_n \overline{\kappa})\}$ and $E\delta(2) \in \{[\iota_n, \eta \overline{\kappa}], [\iota_n, \sigma^3]\}$. Since $[\iota_n, \sigma^3] \subset E^7\pi_{2n+13}^{n-7}$ (Lemma 2.9(3)), we obtain $\delta(2)$ (mod β) = 0 and $\mathcal{C}DR[\nu \overline{\sigma} \pmod{\eta^2 \overline{\kappa}} = 0]$, where $\beta = \delta(\eta^2 \overline{\kappa}) = E^{-1}[\iota_n, \eta \overline{\kappa}]$ (Proposition 2.5(1)).

We show the following:

Proposition 4.7
$$H(E^{-5}[\iota_{8n+2}, \eta \overline{\kappa}]_{\neq 0}) = \nu^2 \overline{\kappa} \text{ and } H(E^{-6}[\iota_{8n+1}, \eta^2 \overline{\kappa}]_{\neq 0}) = \varepsilon \overline{\kappa}.$$

Proof Let $n \equiv 2$ (8). By Lemma 3.4(1) and (2–6), $H(E^{-5}[\iota_n, \eta \overline{\kappa}]) = \nu^2 \overline{\kappa}$. We set $\delta = \delta(\nu^2) = E^{-5}[\iota_n, \eta]$. $ASM[\eta \overline{\kappa}]$ induces $E^4(\delta \overline{\kappa}) \in P\pi_{2n+21}^{2n-1} \subset E^5\pi_{2n+14}^{n-6}$ (Lemmas 2.13(3),3.4(2)) and $E^3(\delta \overline{\kappa}) \in \{[\iota_{n-2}, 4\nu \overline{\kappa}], [\iota_{n-2}, 8\overline{\rho}], [\iota_{n-2}, \eta^*\sigma]\}$. By Lemma 2.9(1), the first two Whitehead products desuspend four dimensions, respectively. Hence, by the relation $H(E^{-1}[\iota_{n-2}, \eta^*\sigma]) = \eta \eta^*\sigma$, we obtain $E^2(\delta \overline{\kappa}) = 0$, $E(\delta \overline{\kappa}) \in P\pi_{2n+18}^{2n-7} \subset E^2\pi_{2n+14}^{n-6}$ (Proposition 2.6(1)), $\delta \overline{\kappa} \in P\pi_{2n+17}^{2n-9}$ and $CDR[\nu^2 \overline{\kappa} = 0]$.

Next, let $n \equiv 1$ (8). By Lemma 3.4(2), $H(E^{-6}[\iota_n,\eta^2\overline{\kappa}]) = \varepsilon\overline{\kappa}$. $\mathcal{A}SM[\eta^2\overline{\kappa}]$ implies $E^5(\delta\overline{\kappa}) \in \{[\iota_{n-1},4\nu\overline{\kappa}],[\iota_{n-1},8\overline{\rho}],[\iota_{n-1},\eta^*\sigma]\}$ for $\delta=\delta(\varepsilon)=E^{-6}[\iota_n,\eta^2]$. By Lemma 2.9(2), $[\iota_{n-1},8\overline{\rho}]$ desuspends eight dimensions. By Lemma 3.2(3), $[\iota_{n-1},4\nu\overline{\kappa}]=[\iota_{n-1},\nu^3]\kappa$ desuspends six dimensions. So, by the relation $H(E^{-1}[\iota_{n-1},\eta^*\sigma])=\eta\eta^*\sigma$, we have $E^4(\delta\overline{\kappa}) \in P\pi_{2n-27}^{2n-3}=0$, $E^3(\delta\overline{\kappa}) \in \{[\iota_{n-3},\mu_{3,*}]\} \subset E^6\pi_{2n+12}^{n-9}$ (Lemma 2.10), $E^2(\delta\overline{\kappa}) \in \{[\iota_{n-4},\eta\mu_{3,*}]\} \subset E^4\pi_{2n+13}^{n-8}$ (Lemma 2.13(1)), $E(\delta\overline{\kappa}) \in \{[\iota_{n-5},4\zeta_{3,*}]\} \subset E^3\pi_{2n+7}^{n-8}$ (Proposition 2.6(3)), $\delta\overline{\kappa} \in P\pi_{2n+17}^{2n-11}$ and hence, $\mathcal{C}DR[\varepsilon\overline{\kappa}=0]$.

According to Mahowald [8], the following seems to be true.

Conjecture 4.8 $\langle \nu, \eta, \overline{\sigma} \rangle = \langle \overline{\nu}, \sigma, \overline{\nu} \rangle = \eta \eta^* \sigma$.

By use of the Jacobi identity for Toda brackets, Conjecture 4.8 and the relations $\langle \eta, \nu, \eta \rangle = \nu^2, \sigma \overline{\sigma} = 0$ [16], we obtain

$$\langle 2\iota, \nu^2, \overline{\sigma} \rangle = \langle 2\iota, \eta, \eta \eta^* \sigma \rangle = \nu^2 \overline{\kappa}.$$

By this fact, we can show

$$[\iota_{8n}, \nu \overline{\sigma}] \neq 0.$$

Proof Let $n \equiv 0$ (8). In Proposition 2.1[n-5;5,3], $P_{n-5}^{n-1} = E^{n-8}P_3^7$ and $\gamma_{7,3} = 2s_4 + i_3^7 \tilde{\eta}''$, where $s_4 = p_3^7 s_3$ (3–4). By Lemma 2.7(8),

$$\widetilde{\eta}''\circ \nu\overline{\sigma}\in i_3^{4,6}\circ \langle i\,\overline{\eta},\widetilde{\eta},\nu\rangle\circ\overline{\sigma}=i\circ \langle 2\iota,\nu^2,\overline{\sigma}\rangle=i\,\nu^2\overline{\kappa}.$$

This shows

$$H(E^{-4}[\iota_n, \nu \overline{\sigma}]) = \nu^2 \overline{\kappa}.$$

For $\delta = \delta(\nu^2 \overline{\kappa}) = E^{-4}[\iota_n, \nu \overline{\sigma}]$, $\mathcal{A}SM[\nu \overline{\sigma}]$ implies $E^3 \delta = 0$ and $E^2 \delta \in P\pi^{2n-3}_{2n+21}$ $\subset E^3\pi^{n-5}_{2n+16}$ (Proposition 2.6(1)), $E\delta \in \{[\iota_{n-3}, \eta^2 \overline{\rho}], [\iota_{n-3}, \mu_{3,*}]\}$, $\delta \pmod{\tau_{n-4}\eta^2 \overline{\rho}, \tau_{n-4}\mu_{3,*}} \in P\pi^{2n-7}_{2n+19}$ and hence, $\mathcal{C}DR[\nu^2 \overline{\kappa} \pmod{\eta\mu_{3,*}} = 0]$. \square

Finally, by Proposition 2.6(1) and Lemma 2.13(1), we note the following.

Remark
$$H(E^{-2}[\iota_{8n+2}, 4\overline{\kappa}]) = \varepsilon \kappa = \eta^2 \overline{\kappa} \text{ and } H(E^{-3}[\iota_{8n+1}, \nu \overline{\kappa}]) = \nu^2 \overline{\kappa}.$$

References

- [1] **JF Adams**, *Vector fields on spheres*, Ann. of Math. (2) 75 (1962) 603–632 MR0139178
- [2] **W D Barcus**, **M G Barratt**, *On the homotopy classification of the extensions of a fixed map*, Trans. Amer. Math. Soc. 88 (1958) 57–74 MR0097060
- [3] MG Barratt, JDS Jones, ME Mahowald, *The Kervaire invariant and the Hopf invariant*, from: "Algebraic topology (Seattle, Wash., 1985)", Lecture Notes in Math. 1286, Springer, Berlin (1987) 135–173 MR922925
- [4] **S Feder**, **S Gitler**, **K Y Lam**, Composition properties of projective homotopy classes, Pacific J. Math. 68 (1977) 47–61 MR0515518
- [5] M Golasiński, J Mukai, Gottlieb groups of spheres, preprint

- [6] **Y Hirato**, **J Mukai**, *Some Toda bracket in* $\pi_{26}^S(S^0)$, Math. J. Okayama Univ. 42 (2000) 83–88 (2002) MR1887549
- [7] **MA Kervaire**, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960) 161–169 MR0113237
- [8] **M Mahowald**, *e-mail*, (20 May 2005)
- [9] **M Mahowald**, Some Whitehead products in Sⁿ, Topology 4 (1965) 17–26 MR0178467
- [10] **M Mahowald**, *The metastable homotopy of* S^n , Memoirs of the American Mathematical Society 72, American Mathematical Society (1967) MR0236923
- [11] M Mimura, M Mori, N Oda, Determination of 2-components of the 23- and 24-stems in homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. Ser. A 29 (1975) 1–42 MR0375300
- [12] **J Mukai**, On the stable homotopy of the real projective space of even low dimension, Publ. Res. Inst. Math. Sci. 22 (1986) 81–95 MR834349
- [13] **J Mukai**, Some homotopy groups of the double suspension of the real projective space **RP**⁶, Mat. Contemp. 13 (1997) 235–249 MR1630638 10th Brazilian Topology Meeting (São Carlos, 1996)
- [14] **J Mukai**, Orders of Whitehead products of ι_n with $\alpha \in \pi_{n+k}^n$ $(n \ge k + 2, k \le 24)$, Proceeding of the International Conference on Homotopy Theory and Related Topics at Korea University (2005)
- [15] Y Nomura, On the desuspension of Whitehead products, J. London Math. Soc. (2) 22 (1980) 374–384 MR588284
- [16] N Oda, Unstable homotopy groups of spheres, Bull. Inst. Adv. Res. Fukuoka Univ. (1979) 49–152 MR781607
- [17] **Y Saito**, On the homotopy groups of Stiefel manifolds, J. Inst. Polytech. Osaka City Univ. Ser. A. 6 (1955) 39–45 MR0085504
- [18] **H Toda**, *Composition methods in homotopy groups of spheres*, Annals of Mathematics Studies 49, Princeton University Press (1962) MR0143217

Shinshu University, Matsumoto 390-8621, Japan

mukai@orchid.shinshu-u.ac.jp

Received: 24 May 2006 Revised: 21 November 2006