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Quasi-polynomials and the Bethe Ansatz

E MUKHIN

A VARCHENKO

We study solutions of the Bethe Ansatz equation related to the trigonometric Gaudin
model associated to a simple Lie algebra g and a tensor product of irreducible finite-
dimensional representations. Having one solution, we describe a construction of
new solutions. The collection of all solutions obtained from a given one is called
a population. We show that the Weyl group of g acts on the points of a population
freely and transitively (under certain conditions).

To a solution of the Bethe Ansatz equation, one assigns a common eigenvector (called
the Bethe vector) of the trigonometric Gaudin operators. The dynamical Weyl group
projectively acts on the common eigenvectors of the trigonometric Gaudin operators.
We conjecture that this action preserves the set of Bethe vectors and coincides with
the action induced by the action on points of populations. We prove the conjecture
for sl2 .

82B23; 17B67

1 Introduction

The Bethe Ansatz is a method to diagonalize a commuting family of linear operators,
usually called Hamiltonians. The method is applied to Hamiltonians of numerous
quantum integrable systems. Given a solution of a suitable system of equations (called
the Bethe Ansatz equation), the Bethe Ansatz produces an eigenvector (called the
Bethe vector). This paper is motivated by the Bethe Ansatz method applied to the
trigonometric Gaudin model, see Markov, Schechtman and the second author [5; 15],
and Section 5.

For the case of the trigonometric Gaudin model the Bethe Ansatz equation and the Bethe
vectors depend on an additional parameter, a generic g–weight �. The Bethe Ansatz
equation has the form (3). The Bethe vectors have the form (15), see Proposition 5.1.
The Bethe Ansatz equation (3) can be formulated as a system of suitable Wronskian
equations for a tuple of polynomials y D .y1; : : : ;yr / of one variable, where r is the
rank of g and the polynomials are labeled by simple roots of g, see Theorem 3.5.
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For example, let gD sl2 . The sl2 –weights can be identified with complex numbers.
Consider the trigonometric Gaudin model associated to the tensor product of irreducible
sl2 –modules with highest weights ƒj , located respectively at points zj . In this case,
the Bethe Ansatz equation with parameter � 2 C is an equation on one polynomial
y . The polynomial y satisfies the Bethe Ansatz equation, if and only if its roots are
simple and there exists another polynomial zy such that

y0.x�C1
zy/ � y.x�C1

zy/0 D x�
Y
j

.x� zj /
ƒj :

For a given y and a non-integer �, the polynomial zy is unique. One can show that for
almost all �, the roots of zy are simple. Moreover, if the roots of zy are simple, then
the polynomial zy also satisfy the Bethe Ansatz equation but with the new parameter
��� 2. Thus from one solution of the Bethe Ansatz equation with parameter � (the
polynomial y ) we obtain another solution with parameter ��� 2 (the polynomial zy ).
We call this procedure the simple reproduction procedure.

For an arbitrary simple Lie algebra g, there is a similar simple reproduction proce-
dure associated with every simple root of g. Consider an r –tuple y D .y1; : : : ;yr /

of polynomials forming a solution of the Bethe Ansatz equation associated with
a generic g–weight �. Then we have the i -th simple reproduction procedure for
i D 1; : : : ; r . The i -th simple reproduction procedure constructs a new tuple y .i/ D

.y1; : : : ;yi�1; zyi ;yiC1; : : : ;yr / under certain conditions.

We call an r –tuple of polynomials y D .y1; : : : ;yr / fertile with respect to � if the
i -th simple reproduction procedure is well-defined for i D 1; : : : ; r . In particular, if
y forms a solution of the Bethe Ansatz equation associated to �, then y is fertile
with respect to �. Moreover, if the i -th simple reproduction procedure results in a
generic (in an appropriate sense) r –tuple y .i/ , then y .i/ also forms a solution of the
Bethe Ansatz equation associated to the weight si ��, where si is the i -th elementary
reflection in the Weyl group of g. It follows that the r –tuple y .i/ is fertile with respect
to si ��.

We call an r –tuple of polynomials y super-fertile with respect to � if all iterations of
the simple reproduction procedures are well defined. We conjecture that if y forms a
solution of the Bethe Ansatz equation then y is super-fertile. We prove the conjecture
for simple Lie algebras of type Ar ;Br .

The set of all r –tuples obtained from a given super-fertile r –tuple by iterations of
simple reproduction procedures is called a population.

For simple Lie algebras, we prove that the population obtained from a super-fertile
r –tuple associated to a generic weight � contains exactly one r –tuple associated to
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every weight of the form w ��, where w runs through the elements of the Weyl group
of g. We also prove that the population does not contain any other r –tuples. This
one-to-one correspondence between the tuples of the population and the weights of
the form w � �, allows us to introduce a free and transitive action of the Weyl group
on points of the population. Then the action of simple reflections is given by the
simple reproduction procedures. The proof is based on the important fact that in the
case of Ar , the populations are in one-to-one correspondence with certain spaces of
quasi-polynomials, see Corollary 4.4.

If all elements of a population are generic and therefore correspond to solutions of
the Bethe Ansatz equation, then we have an action of the Weyl group on the set of
the solutions. In particular this defines an action of the Weyl group on the set of the
associated Bethe vectors, considered up to proportionality.

On the other hand, the dynamical Weyl group commutes with the trigonometric Gaudin
operators and projectively acts on eigenvectors of the trigonometric Gaudin operators,
see Tarasov and the second author [18] and Lemma 5.5.

We conjecture that the action of the dynamical Weyl group maps the Bethe vectors
to (scalar multiples of) the Bethe vectors and moreover, the two actions on the Bethe
vectors coincide. We prove this conjecture for gD sl2 .

The reproduction procedure exists for solutions of the Bethe Ansatz equations associated
with many quantum integrable models. In Sections 6, 7 we give two other examples of
the situation in which the corresponding Bethe Ansatz equation admits a reproduction
procedure and prove that the elements of the corresponding populations are also labeled
by the elements of the Weyl group. These examples are related to the quasi-periodic
Gaudin and XXX models. In joint work with Tarasov [7], we apply the results of
Sections 6 and 7 to study the Bethe Ansatz of .glN ;glM /–dual quasiperiodic Gaudin
and XXX models.

The notions of the reproduction procedure and populations for the Bethe Ansatz equation
of the Gaudin and XXX–type models were introduced in our papers [9; 13], see also
[8; 10]. The populations in that situation are shown to be isomorphic to the flag variety
of the Langlands dual algebra g_ for all simple Lie algebras in the case of the Gaudin
model by Frenkel [3] and the authors [11], and for the XXX–type model by the authors
[10].

The paper is constructed as follows. Section 2 contains notation and definitions. In
Section 3 we define the reproduction procedure and populations. In Section 4 we prove
that for simple Lie algebras, the Weyl group acts freely and transitively on the elements
of a population. In Section 5 we discuss two actions of the Weyl group on the Bethe
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vectors, the one given by the action of the dynamical Weyl groups and the one given
by the reproduction procedure. We compare them in the case of sl2 . In Sections 6 and
7 we describe two more examples of the situation in which the Bethe Ansatz admit
a reproduction procedure and the the Weyl group acts freely and transitively on the
elements of a population.

Acknowledgements We thank V Tarasov for many valuable discussions.

Research of EM is supported in part by NSF grant DMS-0601005. Research of AV is
supported in part by NSF grant DMS-0244579.

2 Master functions and critical points

2.1 Kac–Moody algebras

Let AD .aij /
r
i;jD1

be a generalized Cartan matrix, aiiD2, aij D0 if and only ajiD0,
aij 2 Z�0 if i ¤ j . We assume that A is symmetrizable, there is a diagonal matrix
D D diagfd1; : : : ; dr g with positive integers di such that B DDA is symmetric.

Let g D g.A/ be the corresponding complex Kac–Moody Lie algebra (see Kac [4,
Section 1.2]), h � g the Cartan subalgebra. The associated scalar product is non-
degenerate on h� and dim hD r C 2d , where d is the dimension of the kernel of the
Cartan matrix A.

Let ˛i 2 h� , ˛_i 2 h, i D 1; : : : ; r , be the sets of simple roots, coroots, respectively.
We have

.˛i ; j̨ /D di aij ;

h�; ˛_i i D 2.�; ˛i/=.˛i ; ˛i/; � 2 h�:

Let P D f� 2 h� j h�; ˛_i i 2 Zg and PC D f� 2 h� j h�; ˛_i i 2 Z�0g be the sets of
integral and dominant integral weights.

Fix � 2 h� such that h�; ˛_i i D 1, i D 1; : : : ; r . We have .�; ˛i/D .˛i ; ˛i/=2.

The Weyl group W 2 End.h*/ is generated by reflections si , i D 1; : : : ; r ,

si.�/D �� h�; ˛
_
i i˛i ; � 2 h�:

We use the notation

w ��D w.�C �/� �; w 2W; � 2 h�;

for the shifted action of the Weyl group.
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2.2 The definition of master functions and critical points

We fix a Kac–Moody algebra gD g.A/. We fix ƒD .ƒi/
n
iD1

, ƒi 2PC ; zD .zi/
n
iD1
2

Cn . We assume zi ¤ 0 and zi ¤ zj if i ¤ j . The parameters ƒ; z are always fixed
and we often do not stress the dependence of our objects on these parameters.

In addition we choose �2 h� and l D .l1; : : : ; lr /2Zr
�0

. The choice of l is equivalent
to the choice of the weight at infinity ƒ1 defined by the formula:

ƒ1 D

nX
sD1

ƒs �

rX
iD1

li˛i 2 P :(1)

The master function ˆ.tIƒ1; �/ is defined as follows (see Felder, Schechtman and
the second author [2; 15]):

ˆ.tIƒ1; �/D

rY
iD1

liY
jD1

.t
.i/
j /�.�;˛i /

rY
iD1

liY
jD1

nY
sD1

.t
.i/
j � zs/

�.ƒs ;˛i / �(2)

rY
iD1

Y
1�j<s�li

.t
.i/
j � t .i/s /.˛i ;˛i /

Y
1�i<j�r

liY
sD1

ljY
kD1

.t .i/s � t
.j/

k
/.˛i ; j̨ /:

The master function ˆ is a function of variables t D .t
.i/
j /

jD1;:::;li

iD1;:::;r
.

The master function ˆ is symmetric with respect to permutations of variables with the
same upper index.

A point t with complex coordinates is called a critical point associated to .ƒ; zIƒ1 ,
�/ (we often write just .ƒ1; �/) if the following system of algebraic equations is
satisfied

�
.�; ˛i/

t
.i/
j

�

nX
sD1

.ƒs; ˛i/

t
.i/
j � zs

C

X
s; s¤i

lsX
kD1

.˛s; ˛i/

t
.i/
j � t

.s/

k

C

X
s; s¤j

.˛i ; ˛i/

t
.i/
j � t

.i/
s

D 0;(3)

where i D 1; : : : ; r , j D 1; : : : ; li . In other words, a point t is a critical point if0@ˆ�1 @ˆ

@t
.i/
j

1A .tIƒ1; �/D 0; i D 1; : : : ; r; j D 1; : : : ; li :

Note that the product of symmetric groups Sl D Sl1
� � � � �Slr

acts on the critical set
of the master function permuting the coordinates with the same upper index. All orbits
have the same cardinality l1! : : : lr !. We make no distinction between critical points in
the same orbit.
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The system of equations (3) coincides with the Bethe Ansatz equation of the non-
homogeneous Gaudin model, see Reshetikhin and the second author [14] and Proposi-
tion 5.1.

Lemma 2.1 For almost all values of �, the set of critical points associated to .ƒ1; �/
is finite.

Proof The lemma follows from [9, Lemma 2.1].

3 Populations

3.1 The sl2 populations

In the case of sl2 the dominant integral weights are identified with non-negative integers
and the system of equations (3) takes the form:

�
�

tj
�

nX
sD1

ƒs

tj � zs
C

lX
k; k¤j

2

tj � tk
D 0;(4)

j D 1; : : : ; l , where ƒs 2 Z>0 and � 2 C. The weight ƒ1 is given by ƒ1 DPn
sD1ƒs � 2l .

We set

T .x/D

nY
sD1

.x� zs/
ƒs ; F D x

nY
sD1

.x� zs/:

Given a tuple tD .t1; : : : ; tl/ we represent it by the polynomial y.x/D
Ql

jD1.x� tj /.
We are interested in the zeros of y.x/ and therefore we make no distinction between
y.x/ and cy.x/, where c is a non-zero constant.

A polynomial y.x/ is called off-diagonal with respect to .ƒ; z/ if y.x/ has only
simple roots, y.0/¤ 0 and y.zs/¤ 0 for all s D 1; : : : ; n such that ƒs ¤ 0.

Since .ƒ; z/ is fixed, we often call polynomials y.x/ off-diagonal with respect to
.ƒ; z/ simply off-diagonal.

Lemma 3.1 (T J Stieltjes [17, Section 6.81]) A polynomial y of degree l represents
an sl2 critical point associated to .ƒ1; �/ if and only if y is off-diagonal and there
exists a polynomial C.x/ such that

F.x/y00�F.x/ ln0.x�T .x//y0.x/CC.x/y.x/D 0:(5)
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Proof Equation (4) can be reformulated as the statement that the function y00 �

ln0.x�T /y0 equals zero at xD tj for all j . Therefore (4) is equivalent to the divisibility
of the polynomial Fy00�F ln0.x�T /y0 by y.x/.

Note that the coefficients of y00;y0 , and y in (5) are polynomials of degree nC 1; n,
and at most n� 1, respectively.

Theorem 3.2 Let y represent an sl2 critical point associated to .ƒ; zIƒ1 , �/. Then
equation (5) has a solution of the form x�C1 zy.x/ where zy.x/ is a polynomial. If � is
not a negative integer, then such a polynomial zy.x/ is unique.

Moreover, there exists a finite set C.ƒ; zIƒ1/�C such that if � is not a negative inte-
ger, � 62 C.ƒ; zIƒ1/, and y represents an sl2 critical point associated to .ƒ; zIƒ1 ,
�/ then polynomial zy.x/ represents an sl2 critical point associated to .ƒ; zI �ƒ1 ,
��� 2/.

We call zy.x/ the immediate descendent of y.x/ with respect to �.

Proof Equation (5) is a Fuchsian differential equation, with singular points at 0; z1; : : : ;

zn; 1. At 0 the exponents of the equation are 0; �C 1. Therefore, around 0 there is
a solution of the form u.x/D x�C1 zy.x/ where zy.x/ is a function holomorphic and
non-vanishing at x D 0. Such a solution is unique if �C 1 62 Z�0 .

At a point zs the exponents are .0; ƒsC 1/. Since y.zs/¤ 0 and y is a polynomial
solution, there is no monodromy around zs , and thus zy.x/ is an entire function, cf
Scherbak [16, Lemma 7]. The function zy.x/ is a polynomial since equation (5) is
Fuchsian.

Denote W .f;g/D f 0g�fg0

the Wronskian of functions f and g . We have

W .y;x�C1
zy.x//D x�T .x/:(6)

Thus deg yC deg zy D
nX

sD1

ƒs :

The polynomial zy.x/ satisfies the equation

F.x/ zy00�F.x/ ln0.x���2T .x// zy0.x/C zC .x/ zy.x/D 0:

Thus if zy.x/ is off-diagonal, then the polynomial zy.x/ represents a critical point
associated to .ƒ; zI �ƒ1;��� 2/.
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Finally, we prove that for all but finitely many �, the polynomial zy.x/ is off-diagonal.
If zy.x/ is not off-diagonal, then zy.x/ has zero of order ƒsC 1 at at least one of zs .
We show that such a pair .y.x/; zy.x// is possible for at most finitely many �.

Consider a family of polynomials y�.x/D
Ql

j .x � tj ;�/ which algebraically depends
on � and such that y�.x/ represents a critical point corresponding to .ƒ1; �/ for all
but finitely many �.

We have a finite number of such families and for all but finitely many � every polynomial
representing a critical point belongs to such a family.

Let zy�.x/D
Qzl

jD1.x�ztj ;�/ be the descendent polynomial of y�.x/.

From (6) we get

�C 1

x
C

zlX
iD1

1

x�ztj ;�
�

lX
iD1

1

x� tj ;�
D

.�Czl � l/
Qn

jD1.x� zj /
ƒj

x
Qzl

iD1.x�ztj ;�/
Ql

iD1.x� tj ;�/
:

Let � tend to infinity. Comparing the main terms of asymptotics of the left and right
hand sides , we conclude that the limit of y� zy� is T . The polynomial T has zero of
order ƒs at zs and therefore zy� cannot have a zero of order ƒsC 1 at zs for all but
finitely many �. It follows that zy� has a zero at zs for only finitely many values of
�.

Corollary 3.3 A polynomial y.x/ represents an sl2 critical point associated to
.ƒ1; �/ if and only if deg y.x/ D l , y.x/ is off-diagonal with respect to .ƒ; z/

and there exists a polynomial zy.x/ such that W .y;x�C1 zy/D x�T .x/.

Note that if y.x/ represents a critical point associated to .ƒ1; �/ and if the descendent
polynomial zy.x/ is off-diagonal then zy.x/ represents a critical point associated to
.wƒ1; w ��/, where w ¤ id is the generator of the sl2 Weyl group.

The polynomials y.x/ and zy.x/ may coincide (up to a multiplicative constant). For
example, if there are no zs , if l D 0 and y.x/ D 1, then zy.x/ D 1=.�C 1/. The
polynomials y.x/ and zy.x/ are constant multiples of each other, but they represent
critical points associated to different weights .ƒ1 D 0; �/ and .ƒ1 D 0; ��� 2/,
respectively.

Assume that �2C is not an integer. Then the unordered pair f .y.x/; �/; .zy.x/;���
2/ g, is called the sl2 population originated at .y.x/; �/. Here y.x/; zy.x/ are consid-
ered up to a multiplicative constant.
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Lemma 3.4 Let � be not an integer. Let P D f .y.x/; �/; .zy.x/;���2/ g be the sl2
population originated at .y.x/; �/. Assume that zy.x/ is off-diagonal. Then y.x/ is a
descendent polynomial of zy.x/ with respect to ��� 2 and the population originated
at .zy.x/;��� 2/ coincides with P .

Proof We have

x���2T D .x���1/2x�T D .x���1/2W .y;x�C1
zy/DW .zy;�x���1y/;

cf the Wronskian identities in [9, Lemma 9.2].

3.2 The populations in the case of a general Kac–Moody algebra

Recall that we fixed a Kac–Moody algebra g D g.A/ of rank r , a non-negative
integer n 2 Z�0 , an n–tuple of g–weights ƒD .ƒi/

n
iD1

, ƒi 2 PC , and an n–tuple
zD .zi/

n
iD1
2 Cn such that zi ¤ 0 and zi ¤ zj if i ¤ j .

For i D 1; : : : ; r , we set

Ti.x/D

nY
sD1

.x� zs/
hƒs ;˛

_
i
i:(7)

Given a set of numbers tD .t
.i/
j /

jD1;:::;li

iD1;:::;r
, we represent it by the r –tuple of polynomials

y D .y1; : : : ;yr /, where yi.x/ D
Qli

jD1
.x � t

.i/
j /, i D 1; : : : ; r . We are interested

only in the roots of the polynomials yi , therefore we make no distinction between
tuples .y1; : : : ;yr / and .c1y1; : : : ; cr yr /, where ci are non-zero constants.

An r –tuple of polynomials y is called off-diagonal with respect to .ƒ; z/ if its roots
do not belong to the union of singular hyperplanes in (3). Namely y is off-diagonal if
for i D 1; : : : ; n, all roots of polynomial yi are simple, non-zero, different from the
roots of polynomials yj for all j such that . j̨ ; ˛i/¤ 0 and different from the roots
of polynomial Ti .

Since ƒ; z are fixed, we often call r –tuples of polynomials y which are off-diagonal
with respect to .ƒ; z/ simply off-diagonal.

An r –tuple of polynomials y is called fertile in the i -th direction, i 2 f1; : : : ; rg with
respect to � if there exists a polynomial zyi such that

W .yi ;x
h�C�;˛_

i
i
zyi/D xh�;˛

_
i
i Ti

Y
j ; j¤i

y
�aij

j :(8)

Then the tuple of polynomials y .i/ WD .y1; : : : ; zyi ; : : : ;yr / is called an immediate
descendent of y in the i -th direction with respect to �.
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Recall that si 2W are elementary reflections in the Weyl group of g.

We call an r –tuple of polynomials y .i1;i2;:::;im/ , where ik 2 f1; : : : ; rg, k D 1; : : : ;m,
a descendent of y with respect to � in the directions .i1; : : : ; im/ if there exist r –tuples
of polynomials y .i1;i2;:::;ik/ , kD 1; : : : ;m�1, such that for kD 1; : : : ;m, the r –tuple
y .i1;i2;:::;ik/ is an immediate descendent of y .i1;i2;:::;ik�1/ in the ik -th direction with
respect to .sik�1

: : : si2
si1
/ ��.

An r –tuple of polynomials y is called fertile with respect to � if it is fertile in all
directions i D 1; : : : ; r .

An r –tuple of polynomials y is called super-fertile with respect to � if it is fertile
with respect to � and all descendents y .i1;i2;:::;ik/ of y with respect to � are fertile
with respect to .sik

: : : si1
/ ��.

Theorem 3.5 Let g be a Kac–Moody algebra. An r –tuple y represents a g critical
point associated to .ƒ; zIƒ1; �/ if and only if deg yi D li , i D 1; : : : ; r , y is off-
diagonal with respect to .ƒ; z/ and fertile with respect to �. Moreover, if an immediate
descendent of y in the direction i , y .i/ D .y1; : : : ; zyi ; : : : ;yr /, is off-diagonal with
respect to .ƒ; z/ then it represents a g critical point associated to .ƒ; zI siƒ1; si ��/.

Proof The first part of the theorem follows immediately from the case of sl2 , see
Corollary 3.3.

To show the second part we show that roots of y .i/ satisfy system (3), where � is
changed to si ��. Let zt .i/j denote the roots of zyi .

The equations of system (3) corresponding to coordinates zt .i/j are satisfied by Theorem
3.2.

The equations of system (3) corresponding to coordinates zt .k/j such that aki D 0, are
satisfied because these equations are the same for zy and y .

For any k , such that k ¤ i and aik ¤ 0, choose a root t
.k/
j of the polynomial yk .

Setting x D t
.k/
j in the i -th equation of (8), we get

X
s

1

t
.k/
j � t

.i/
s

D

X
s

1

t
.k/
j �zt

.i/
s

C
h�C �; ˛_i i

t
.k/
j

:

This implies that the equation of system (3) corresponding to the coordinate zt .k/j is
satisfied as well.

Geometry & Topology Monographs, Volume 13 (2008)



Quasi-polynomials and the Bethe Ansatz 395

Note that if the tuple y .i/ is off-diagonal, then it is again fertile and we can find the
r –tuple of polynomials y .i;j/ . However, in general, we do not know if the tuple y .i/

is off-diagonal. It is true in the case of sl2 and almost all non-integral weights �, see
Theorem 3.2. We have the following conjecture.

Conjecture 3.6 An off-diagonal fertile tuple is super-fertile.

We prove this conjecture for the simple Lie algebras of types Ar ;Br , see Theorems
4.5 and 4.8.

For an r –tuple of polynomials y and a g weight �, let P .y ; �/ be the set of all
pairs of the form .y .i1;i2;:::;im/; .sim

: : : si2
si1
/ � �/, where ik 2 f1; : : : ; rg, m 2 Z�0 ,

k D 1; : : : ;m, and y .i1;i2;:::;im/ is a descendent of y with respect to � in directions
.i1; : : : ; im/.

We call the set P .y ; �/ the prepopulation originated at .y ; �/. If y is a super-fertile
r –tuple with respect to � then we call the set P .y ; �/ the population originated at
.y ; �/.

Lemma 3.7 Let y be super-fertile with respect to � and let P be the population
originated at .y ; �/. Let .zy ; z�/ 2 P . Then zy is super-fertile with respect to z� and the
population originated at .zy ; z�/ is also P . In particular, different populations do not
intersect.

Proof By Lemma 3.4 we obtain that if y .i/ is an immediate descendent of y in the
direction i , then y is also an immediate descendent of y .i/ in the direction i . The
lemma follows.

We call a weight � strongly non-integral if for any element of the Weyl group s 2W
and any i 2 f1; : : : ; rg the number hs ��; ˛_i i is not an integer.

Note that if � is strongly non-integral, then, in particular, the weights s � �, s 2W ,
do not belong to the reflection hyperplanes. Therefore the map W!W �� mapping
w 2W to w �� is bijective.

Lemma 3.8 Let � be strongly non-integral and let r –tuples y1 , y2 be descendents
of an r –tuple y with respect to � in the directions .i1; : : : ; im/. Then the r –tuples
y1 , y2 coincide.

Proof Lemma follows from the corresponding sl2 statement, see Theorem 3.2.

Geometry & Topology Monographs, Volume 13 (2008)



396 E Mukhin and A Varchenko

Let � be strongly non-integral. Let y be super-fertile with respect to �. Let P be
the population originated at .y ; �/. For i 2 f1; : : : ; rg, let ai W P ! P be the map
of the simple reproduction in the i -th direction which maps .zy ; z�/ to .zy .i/; si �

z�/.
According to Lemma 3.8, the map ai is well defined. By Lemma 3:4 we have a2

i D id .
In particular ai are invertible.

Let A be the subgroup of the group of all permutations of the elements in P generated
by ai , i D 1; : : : ; r .

Conjecture 3.9 There is an isomorphism of groups A!W which maps ai to si .

If .zy ; z�/ 2 P then zy is a descendent of y in some directions .i1; : : : ; im/ and we
have z�D w �� for some w 2W . Since � is strongly non-integral, such w is unique
and we have w D sim

: : : si1
. This defines a map

� W P !W;

.zy ; w ��/ 7! w:(9)

Since y is super-fertile, � is a surjective map. Conjecture 3.9 is true if and only if the
map � is a bijection for all populations P .

Note that the map � D �.y ; �/ depends on the choice of the element .y ; �/ 2 P .
However, if it is bijective for one element of the population, then it is clearly bijective
for all elements of this population.

Conjecture 3.9 for the case of sl2 is proved in Lemma 3.4.

Below we prove Conjecture 3.9 for simple Lie algebras.

4 Proof of Conjecture 3.9 for simple Lie algebras

4.1 The case of slN C1

We have roots ˛1; : : : ; ˛N with scalar products .˛i ; ˛i/D 2, .˛i ; ˛i˙1/D�1 and 0

otherwise.

We fix weights ƒ D .ƒ1; : : : ; ƒn/;ƒ1 , points z D .z1; : : : ; zn/. The weights ƒs ,
s D 1; : : : ; n, are dominant integral slNC1 weights and the points zs , s D 1; : : : ; n,
are non-zero, pairwise different complex numbers. We define polynomials Ti as in (7).

We also fix a strongly non-integral slNC1 weight �.
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For any N –tuple of functions y D .y1; : : : ;yN / and slNC1 weight �, we set yNC1D

1 and define the linear differential operator of order N C 1:

D.y ; �/D .@� ln0.
QN

sD1 x.�;˛s/Ts

yN

// : : : .@� ln0.
y2T1x.�;˛1/

y1

// .@� ln0.y1//

D

0 ! NY
i

 
@ � ln0

 
yNC1�i

QN�i
sD1 x.�;˛s/Ts

yN�i

!!
:(10)

For an N –tuple of polynomials y and an slNC1 weight �, let as before the prepopu-
lation P D P .y ; �/ be the set of all descendents of y paired with the corresponding
weight.

Lemma 4.1 Let y represent an slNC1 critical point associated to .ƒ1; �/. Then the
prepopulation P contains the elements

.y .i;i�1;:::;1/; .sisi�1:::s1/ ��/;

where i D 0; : : : ;N .

Proof Since y represents a critical point, it is fertile and none of yj has multiple roots.
Moreover we have the Bethe Ansatz equation (3) for each root of each polynomial yj .

In particular there exist polynomials zyi such that

W .yi ;x
.�C�;˛i / zyi/D x.�;˛i /yi�1yiC1Ti :

Note that if t
.i�1/
j is a root of yi�1 then either zyi.t

.i�1/
j /¤ 0 or zyi vanishes at t

.i�1/
j

to order 2. In the former case, in the same way as in Theorem 3.5, we see that the
Bethe Ansatz equation for the root t

.i�1/
j of yi�1 in the N –tuple y .i/ is still valid. In

addition the Bethe Ansatz equations for roots of y1; : : : ;yi�2 in the N –tuple y .i/ are
also satisfied since they are exactly the same as in the N –tuple y .

Consider the next equation for zyi�1 :

W .yi�1;x
.si ��C�;˛i�1/ zyi�1/D x.si ��;˛i�1/yi�2 zyiTi�1:

We have

x.si ��C�;˛i�1/ zyi�1 D yi�1

Z
x.si ��;˛i�1/yi�2 zyiTi�1

y2
i�1

dx:

We claim that the integrand does not have residues. Indeed, the residues could occur
only at the roots t

.i�1/
j of yi�1 . If zyi.t

.i�1/
j /D 0 then the integrand is holomorphic

at x D t
.i�1/
j . If zyi.t

.i�1/
j / ¤ 0 then the absence of the residue is equivalent to the
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Bethe Ansatz equation corresponding to t
.i�1/
j which is satisfied. Therefore zyi�1 is a

polynomial and there exists a descendent y.i;i�1/ .

Similarly, we prove that y .i;i�1;:::;i�m/ is a well-defined N –tuple of polynomials for
mD 2; : : : ; i � 1.

If .zy ; z�/ 2 P then we write

z�D w.z�/ ��D ��

NX
iD1

ai.z�/˛i ;

where w.z�/ 2W and ai.z�/ 2 R. Define the shifted prepopulation xP .y ; �/ as the
following set of N –tuples of functions:

xP D f.xa1.z�/ zy1;x
a2.z�/ zy2; : : : ;x

aN .z�/ zyN / j .zy ; z�/ 2 Pg:

Note that the shifted prepopulation xP .y ; �/ depends on the choice of an element
.y ; �/ 2 P . However, the difference is not very essential: if .zy; z�/ 2 P and xP .zy; z�/
is the corresponding shifted prepopulation then there exists ai 2 R such that the i -th
function in any N –tuples in xP .zy; z�/ is obtained via multiplication of the i -th function
of the corresponding N –tuple in xP .y ; �/ by xai .

Lemma 4.2 Let zy 2 xP .y ; �/. Then D.zy ; �/DD.y ; �/.

Proof Let .v; �/ 2 P and let .v.i/; si � �/ 2 P be the immediate descendent of
v with respect to � in the direction i . Then we have v.i/

k
D vk for k ¤ i and

W .vi ; v
.i/
i x.�C�;˛i //D x.�;˛i /vi�1viC1Ti . The last relation can be rewritten as

W .xai .�/vi ; v
.i/
i xai .si ��//D x.�;˛i / vi�1xai�1.�/ viC1xaiC1.�/Ti :(11)

Let

.xv; �/D ..xa1.�/v1; : : : ;x
aN .�/vN /; �/ 2 xP .y ; �/;

.xv.i/; si ��/D ..x
a1.si ��/v

.i/
1
; : : : ;xaN .si ��/v

.i/
N
/; si ��/ 2 xP .y ; �/:

Identity (11) reads W .xvi ; xv
.i/
i /D x.�;˛i /xvi�1xviC1Ti and therefore

� ln00.xvi/C ln0.xvi/.ln0.Tix
.�;˛i /xvi�1xviC1/� ln0.xvi//D

� ln00.xv.i/i /C ln0.xv.i/i /.ln0.Tix
.�;˛i /xv

.i/
i�1
xv
.i/
iC1

/� ln0.xv.i/i //:(12)

Compare D.xv/ with D.xv.i//. All factors but two successive ones in these operators
are the same. The products of the two middle factors are the same by (12)
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We call D.y ; �/DD the operator associated to the shifted prepopulation xP .y ; �/. It
follows from Lemma 4.2 if zy 2 xP .y ; �/ then D zy1 D 0.

We use the following notation for Wronskians and divided Wronskians:

W .u1; : : : ;ui/D det.u.j�1/

k
/ik;jD1;

W |.u1; : : : ;ui/D
W .u1; : : : ;ui/

.x.�;˛1/T1/i�1.x.�;˛2/T2/i�2 : : : .x.�;˛i�1/Ti�1/
;

i D 1; : : : ;N C 1, where u
.j�1/

k
denotes the .j � 1/st derivative of uk with respect

to variable x .

Lemma 4.3 Let y either represent an slNC1 critical point associated to .ƒ1; �/ or
be super-fertile with respect to �. Then there exist functions u1; : : : ;uNC1 such that
Dui D 0, yi DW |.u1; : : : ;ui/ for i D 1; : : : ;N C 1 and uix

�.�C�;˛1C���C˛i�1/ are
polynomials for i D 1; : : : ;N C 1.

Proof Let ui to be the first coordinate of the N –tuple in the element of xP .y ; �/
corresponding to y .i�1;i�2;:::;1/ which is a descendent of y with respect to � in
directions .i � 1; i � 2; : : : ; 1/. If y represents an slNC1 critical point with respect to
� then such an N –tuple exists by Lemma 4.1.

We have Dui D 0 by Lemma 4.2.

The condition W |.u1; : : : ;ui/D yi follows from the standard Wronskian identities,
cf [9, proof of Lemma 5.5].

Corollary 4.4 Let y be an N –tuple of polynomials and li D deg yi , i D 1; : : : ;N .
Let ƒ1 be given by (1). Let y represent an slNC1 critical point associated to .ƒ1; �/
or let y be super-fertile with respect to �. Then the kernel of the operator D.y ; �/ is
spanned by functions of the form

p0;p1x.�C�;˛1/; : : : ;pN x.�C�;˛1C���C˛N /;(13)

where pi is a polynomial of degree deg y1C .ƒ1; ˛1C � � � C ˛i/, pi.0/ ¤ 0. The
only singular points of the operator D.y ; �/ in C� are regular singular points located
at z1; : : : ; zn , and the exponents at zi , i D 1; : : : ; n, are

zi W 0; .ƒi C �; ˛1/; .ƒi C �; ˛1C˛2/; : : : ; .ƒi C �; ˛1C � � �C˛N /;(14)

Conversely, if a linear differential operator D of order N C1 has the kernel spanned by
functions of the form (13) and the only non-zero singular points of D in C� are regular
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singular points at z1; : : : ; zn with the exponents given by (14), then the N –tuple y

given by the divided Wronskians

yi DW |.p0;p1x.�C�;˛1/; : : : ;pi�1x.�C�;
Pi�1

jD1 j̨ //

is super-fertile with respect to � and satisfies deg yi D li , i D 1; : : : ;N .

Proof For i D 0; : : : ;N , we set

pi D uiC1x�.�C�;˛1C���C˛i /;

where u1; : : : ;uNC1 are as in Lemma 4.3. By Lemma 4.3, p0; : : : ;pN are polynomi-
als.

Now, the first part of Corollary 4.4 follows from Lemma 4.3 by standard Wronskian
identities, cf [9, Lemmas 5.8 and 5.10].

Conversely, let V be the kernel of the operator D . We have .N C1/! distinguished full
flags in V such that the divided Wronskians of all spaces which form the flags are of
the form xap.x/ where p.x/ is a polynomial. Namely, for a permutation w 2 SNC1

of the set f0; 1; : : : ;N g we have a full flag Fw such that the space of dimension i is
spanned by pw.0/x

.�C�/;˛w.0/ : : : ;pw.i�1/x
.�C�/;˛w.i�1/ .

For each such flag Fw , we have the corresponding element pw in xP .y ; �/. Each
element pw is obviously fertile and the immediate descendents of pw in the i -th
direction is p.i;iC1/w . Therefore, the N –tuple y is fertile with respect to �.

Theorem 4.5 Conjectures 3.6, 3.9 hold for the case of slNC1 .

Proof Conjecture 3.6 follows from Theorem 3.5 and Corollary 4.4.

Conjecture 3.9 in the case of slNC1 follows from the proof of the converse statement
of Corollary 4.4.

4.2 The case of B2

In the case of B2 we have two roots ˛1; ˛2 such that .˛1; ˛1/ D 4, .˛2; ˛2/ D 2,
.˛1; ˛2/D�2.

The key observation is that B2 populations can be embedded in sl4 populations.

Given a B2 weight ƒ, define the sl4 weight ƒA by

hƒA; .˛A
1 /
_
i D hƒA; .˛A

3 /
_
i D hƒ; ˛_1 i; hƒA; .˛A

2 /
_
i D hƒ; ˛_2 i;

where ˛A
i are roots of sl4 .

Note that if ƒ is strongly non-integral then ƒA is strongly non-integral.
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Lemma 4.6 A pair y D .y1;y2/ represents a B2 critical point associated to .z;ƒ;
ƒ1; �/ if and only if the triple yA D .y1;y2;y1/ represents an sl4 critical point asso-
ciated to .z;ƒA ; ƒA

1; �
A/. Moreover there is an embedding P .y ; �/!PA.yA; �A/

which sends ..zy1; zy2/; z�/ 2 P .y ; �/ to ..zy1; zy2; zy1/; z�
A/ 2 PA.yA; �A/.

Proof Follows immediately from the definitions.

Theorem 4.7 Conjecture 3.9 holds in the case of root system B2 .

Proof Recall the surjective maps � W P !W and �A W PA!WA , where W and
WA are the B2 and A3 Weyl groups, see (9). Then we clearly have .�.y/ � �/A D
�A.yA/ ��A . By Theorem 4.5, the map �A is injective.

Therefore � is injective and hence bijective.

Theorem 4.8 Conjecture 3.6 holds in the case of simple Lie algebras of type BN .

Proof Similarly to the case N D 2, the N –tuple .y1; : : : ;yN / represents a critical
point of type BN if and only if the .2N �1/–tuple .y1; : : : ;yN�1;yN ;yN�1; : : : ;y1/

represents a critical point of type A2N�1 , see also [9]. The tuple .y1; : : : ;yN / is super-
fertile in BN sense because the .2N � 1/–tuple .y1; : : : ;yN�1;yN ;yN�1; : : : ;y1/

is super-fertile in A2N�1 sense.

4.3 The case of the root systems of types B; C; D; E and F

From the sl2 , sl3 and B2 cases, we obtain the general case (except for G2 ).

Theorem 4.9 Conjecture 3.9 holds in the case of the root systems of types B;C;D;E

and F .

Proof Let g be a rank r simple Lie algebra of type B;C;D;E or F .

The Weyl group of g is a finite group described by the generators and relations:

W D< s1; : : : ; sr > =.s
2
i D .sisj /

�.˛i ; j̨ /C2
D 1; i; j D 1; : : : ; r; i ¤ j /:

Here < s1; : : : ; sr > denotes the free group with generators s1; : : : ; sr .

Note that in our case .˛i ; j̨ / takes values 2; 0;�1 or �2.

Let � be strongly non-integral, y represent a g–critical point associated to .ƒ1; �/
and let P D P .y ; �/ be the corresponding population.

We have the corresponding relations in the populations among descendents:
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� y .i;i/ D y ,

� y .i;j/ D y .j ;i/ if .˛i ; j̨ /D 0,

� y .i;j ;i/ D y .j ;i;j/ if .˛i ; j̨ /D�1,

� y .i;j ;i;j/ D y .j ;i;j ;i/ if .˛i ; j̨ /D�2.

The first relation follows from the case of sl2 , Lemma 3.4, the second relation is
obvious, the third relation follows from the case of sl3 , Theorem 4.5, and the fourth
relation follows from the case of B2 , Theorem 4.7.

Therefore, P has at most jWj elements.

4.4 The case of G2

In the case of G2 we have two roots ˛1; ˛2 such that .˛1; ˛1/ D 2, .˛2; ˛2/ D 6,
.˛1; ˛2/D�3.

The key observation is that G2 populations can be embedded in C3 populations.

Given a G2 weight ƒ, define the C3 weight ƒC by

hƒC ; .˛C
1 /
_
i D hƒC ; .˛C

3 /
_
i D hƒ; ˛_1 i; hƒC ; .˛C

2 /
_
i D hƒ; ˛_2 i;

where ˛C
i are roots of C3 .

Note that if ƒ is strongly non-integral then ƒC is strongly non-integral.

Lemma 4.10 A pair y D .y1;y2/ represents a G2 critical point associated to .ƒ; z;
ƒ1; �/ if and only if the triple yC D .y1;y2;y1/ represents a C3 critical point associ-
ated to .ƒC

i ; z; ƒC
1; �

C /. Moreover there is an embedding P .y ; �/! PC .yC ; �C /

which sends ..zy1; zy2/; z�/ 2 P .y ; �/ to ..zy1; zy2; zy1/; z�
C / 2 PC .yC ; �C /.

Proof Follows immediately from definitions.

Theorem 4.11 Conjecture 3.9 holds in the case of the root system G2 .

Proof Recall the surjective maps � W P !W and �C W PC !WC , where W and
WC are the G2 and C3 Weyl groups, see (9). Then we clearly have .�.y/ � �/C D
�C .yC / ��C . By Theorem 4.9, the map �C is injective.

To summarize, we have

Corollary 4.12 Conjecture 3.9 holds in the case of all simple Lie algebras.
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5 Weyl group actions on Bethe vectors

5.1 The trigonometric Gaudin operators and Bethe vectors

Let g be a simple complex Lie algebra of rank r with the Killing form . ; /. We
choose a Cartan subalgebra h, simple roots ˛i , i D 1; : : : ; r . We identify h with h�

using the Killling form on g. Let Fi , Ei , i D 1; : : : ; r , be the Chevalley generators of
g.

Let � be the root system, let �˙ be the sets of positive and negative roots and let
gD h˚

P
˛2� g˛ be the root decomposition. Let e˛ , ˛ 2�, be generators of g˛ such

that .e˛; e�˛/ D 1. Let fhj gjD1;:::;r be an orthonormal basis of the Cartan algebra
h� g.

Set

�0
D

1

2

rX
jD1

hj˝hj ; �CD�0
C

X
˛2�C

e˛˝e�˛; ��D�0
C

X
˛2�C

e�˛˝e˛:

The trigonometric R–matrix is defined by

r.z/D
�CzC��

z� 1
:

We fix z;ƒ; ƒ1; l ; � as in Section 2.2. Let L1; : : : ;Ln be irreducible g–modules
with highest weights ƒ1; : : : ; ƒn and let V D L1˝ � � �˝Ln . Let V Œ��� V be the
subspace of V of all vectors of weight �.

We write X .k/ for an operator X 2 g acting on the k -th factor. Similarly we write
X .k;l/ for an operator X 2 g˝ g acting on the k -th and l -th factors.

The trigonometric Gaudin operators Hi.�/, i D 1; : : : ; n, are defined by

Hi.�/D �
.i/
C

X
jD1;:::;n; j¤i

r .i;j/.zi=zj /:

The trigonometric Gaudin operators depend on � 2 h and act in V . The trigonometric
Gaudin operators all commute, ŒHi.�/;Hj .�/�D 0, i; j D 1; : : : ; n. The trigonometric
Gaudin operators commute with the action of h on V and therefore preserve every
weight subspace of V .

For a given �, common eigenvectors of the trigonometric Gaudin operators Hi.�/

in the weight subspace V Œƒ1� can be constructed by the Bethe Ansatz method as
follows.
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Let l D l1C � � �C ln . Let c be the unique non-decreasing function from f1; : : : ; lg to
f1; : : : ; rg such that ] c�1.i/D li , i D 1; : : : ; r .

Let P .l ; n/ be the set of sequences I D .i1
1
; : : : ; i1

j1
I : : : I in

1
; : : : ; in

jn
/ of integers in

f1; : : : ; rg such that for all i D 1; : : : ; r , the integer i appears in I precisely li times.
For I 2 P .l ; n/, and a permutation � 2 Sl set �1.i/ D �.i/ for i D 1; : : : ; j1 , and
�s.i/D �.j1C � � �C js�1C i/ for s D 2; : : : ; n and i D 1; : : : ; js . Define

S.I/ D f � 2 Sl j c.�s.j //D ij
s for s D 1; : : : ; n and j D 1; : : : ; js g :

For I 2 P .l ; n/ we define a vector in V Œƒ1� by the formula

FIv D Fi1
1
: : :Fi1

j1

v1˝ � � �˝Fin
1
: : :Fin

jn
vn:

For I 2 P .l ; n/, � 2 S.I/, we define a rational function of t D .t
.j/
i /

iD1;:::;lj
jD1;:::;r

by the
formula

!I;� .t/ D !�1.1/;:::;�1.j1/.z1I t/ � � � !�n.1/;:::;�n.jn/.znI t/;

where

!i1;:::;ij .zI t/ D
1

.ti1
� ti2

/ � � � .tij�1
� tij /.tij � z/

and .t1; : : : ; tl/D .t
.1/
1
; : : : ; t

.1/

l1
; t
.2/
1
; : : : ; t

.2/

l2
; : : : ; t

.r/
1
; : : : ; t

.r/

lr
/.

We define the weight function by

!.t/ D
X

I2P.l ;n/

X
�2S.I /

!I;� .t/ FIv :(15)

The weight function !.t/ is a rational function of t with values in V Œƒ1�.

Proposition 5.1 If t is a critical point of the master function (2) associated to .ƒ1; �/,
then !.t/ is a well defined vector of weight ƒ1 in V which is an eigenvector of the
operators Hi.�C �Cƒ1=2/, i D 1; : : : ; n.

Proof Proposition 5.1 follows from the corresponding fact for the rational Gaudin
operators, see [15] and the relation between rational and trigonometric Gaudin operators,
see [5, Appendix B].

The vector !.t/ is called the Bethe vector associated to the critical point t . It is
expected that for generic values of parameters, all critical points are non-degenerate
and the Bethe vectors form a basis in V . In particular, the number of orbits of critical
points and thus the number of populations should match the dimension of the subspace
of all vectors of weight ƒ1 in V .
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5.2 Counting slN C1 critical points

Let Lƒ denote the irreducible slNC1 module of highest weight ƒ.

Proposition 5.2 For almost all � the number of orbits of slNC1 critical points associ-
ated to .ƒ1; �/ and counted with multiplicity does not exceed the dimension of the
subspace of the weight ƒ1 in the tensor product Lƒ1

˝ � � �˝Lƒn
.

Proof By Lemma 2.1, for almost all �, the number of critical points associated to
.ƒ1; �/ is finite. Therefore, there is a Zariski open set O � xh� , such that the number
of orbits of slNC1 critical points associated to .ƒ1; �/ and counted with multiplicities
is the same for all � 2O .

If � is a dominant integral weight, then the number of orbits of critical points associated
to .ƒ1; �/ and counted with multiplicities is bounded from above by the multiplicity
of Lƒ1 in the tensor product L�˝Lƒ1

˝ � � �˝Lƒn
, see [9; 1].

For any integer M > 0, let CM be the set of all weights � 2 h� such that the scalar
products .�; ˛i/ are integers greater than M .

If � 2 CM and M is large enough, then any singular vector of weight ƒ1 in the
tensor product L� ˝Lƒ1

˝ � � � ˝Lƒn
is uniquely determined by its projection to

v�˝Lƒ1
˝ � � �˝Lƒn

, where v� is the highest weight vector of L� . Therefore, the
multiplicity of Lƒ1 in the tensor product L�˝Lƒ1

˝� � �˝Lƒn
equals the dimension

of the subspace of weight ƒ1 in the tensor product Lƒ1
˝ � � �˝Lƒn

.

For any M 2 Z�0 , the set CM is not contained in any proper algebraic subset in xh�

and thus the proposition follows.

Proposition 5.3 For almost all � and almost all .z1; : : : ; zn/ 2 Cn , all of the critical
points are non-degenerate and the number of orbits of sl2 critical points associated to
.ƒ1; �/ equals the dimension of the subspace of weight ƒ1 in the tensor product
Lƒ1
˝ � � �˝Lƒn

.

Proof For almost all � the number of orbits of sl2 critical points associated to .ƒ1; �/
is the same.

If � is dominant integral, then the number of orbits of critical points associated to
.ƒ1; �/ for generic z equals the multiplicity of Lƒ1 in the tensor product L�˝

Lƒ1
˝ � � �˝Lƒn

and all these orbits are non-degenerate, see [16, Theorem 1].

For dominant integral values of � which are large enough, the multiplicity of Lƒ1 in
the tensor product L�˝Lƒ1

˝ � � � ˝Lƒn
equals the dimension of the subspace of

weight ƒ1 in the tensor product Lƒ1
˝ � � �˝Lƒn

.
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In this case, almost all � means all but finitely many and therefore the proposition
follows.

5.3 Actions of the Weyl group on Bethe vectors

Let g be a simple Lie algebra, G the corresponding connected and simply connected
Lie group. The group G acts on any finite-dimensional irreducible representation
of g. Let h � g be a Cartan subalgebra, and T � G the corresponding torus. The
Weyl group of g can be described as N=T where N D fg 2 G j gTg�1 D T g. In
particular, this defines a projective action of the Weyl group on any tensor product of
finite-dimensional irreducible representations of g. The projective action becomes an
action in the zero weight subspace.

We fix our z;ƒ; ƒ1; l ; � as in Section 2.2. Let L1; : : : ;Ln be irreducible g–modules
with highest weights ƒ1; : : : ; ƒn and let V DL1˝� � �˝Ln . Let V Œ�� be the subspace
of all vectors in V of weight �. Let P .V /Df�; V Œ��¤ 0g be the set of all nontrivial
weights in V .

We define the dynamical Weyl group acting on V following [18].

Let M� denote the Verma module with highest weight �, v� a highest weight vector
in M� .

Let M�;M� be Verma modules. Two cases are possible:

a) Homg.M�;M�/D 0 or

b) Homg.M�;M�/ D C and every nontrivial homomorphism M� !M� is an
embedding.

Let M� be a Verma module with dominant weight �2PC . Then Homg.M�;M�/DC

if and only if there is w 2W such that �D w ��.

Let w D sik
: : : si1

be a reduced presentation of an element of the Weyl group W . Set
˛1 D ˛i1

and ˛j D .si1
: : : sij�1

/.˛ij / for j D 2; : : : ; k . Let nj D .�C �; .˛
j /_/.

For a dominant � 2PC , the numbers nj are positive integers. Define a singular vector
v�
w��
2M� by

v�w�� D
.E�˛ik

/nk

n1!
: : :

.E�˛i1
/n1

nk !
v� :(16)

This vector does not depend on the reduced presentation, see [18].

For all � 2 PC , w 2W , fix an embedding Mw�� ,!M� sending vw�� to v�
w��

.

We say that � 2 PC is generic with respect to V if
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� For any � 2 P .V / and any v 2 V Œ��, there exist a unique intertwining operator
ˆv
�
WM�!M��� ˝V such that ˆv

�
.v�/D v��� ˝ vC terms of lower weight

in the first factor.
� For any w;w0 2W; w ¤w0 , and any � 2 P .V /, the vector w ���w0 � .�� �/

does not belong to P .V /.

If �D
P

i �i!i , where !i are fundamental weights and �i are large enough positive
numbers then � is generic with respect to V .

Lemma 5.4 [18] Let � 2 PC be generic with respect to V . Let v 2 V Œ��. Consider
the intertwining operator ˆv

�
WM�!M��� ˝V . For w 2W , consider the singular

vector v�
w��
2M� . Then there exists a unique vector Aw.�/.v/ 2 V Œw.�/� such that

ˆv�.v
�
w��/D v

���
w�.���/˝Aw.�/.v/ C terms of lower weight in the first factor :

For generic � 2 PC , Lemma 5.4 defines a linear operator Aw.�/ W V ! V such that
Aw.�/.V Œ��/� V Œw.�/� for all � 2 P .V /. This operator is extended to other values
of � as a rational function of �.

The collection of rational functions Aw.�/, w 2W , is called the dynamical Weyl group
acting on V .

Introduce new linear operators Aw.�/ W V ! V for w 2 W . Namely, for any
w 2W; � 2 P .V /; v 2 V Œ��, set

Aw.�/ v DAw.�C �/ v :

We still have Aw.�/.V Œ��/� V Œw.�/� for all � 2 P .V /.

Lemma 5.5 [18]
� For any w1; w2 2W and � 2 P .V /, we have�

Aw1
.w2 ��/Aw2

.�/
�
jV Œ�� D cw1;w2;�;� Aw1w2

.�/ jV Œ�� ;

where cw1;w2;�;� is a constant depending on w1; w2; �; � .
� For any w;w1; w2 2W , � 2 P .V /, the limits

Aw.1/D lim
�!1

Aw.�/; cw1;w2;� D lim
�!1

cw1;w2;�;�

do exist. Therefore, we have

.Aw1
.1/Aw2

.1// jV Œ�� D cw1;w2;� Aw1w2
.1/ jV Œ��:

Moreover, the collection of operators Aw.1/; w 2 W , gives the canonical
projective action of W on V .
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� For any vector v 2 V Œ�� and w 2W , we have

Aw.�/ Hi

�
�C �C

�

2

�
v D Hi

�
w ��C �C

w.�/

2

�
Aw.�/ v :

Proof The first statement follows from [18, Theorems 8 and 10]. The second statement
is [18, Corollary 14]. The statement of [18, Lemma 18], which holds for any root
system, gives the last statement of our lemma.

According to this lemma, if ! is an eigenvector of the operators Hi.�C �C
�
2
/, then

Aw.�/ ! is an eigenvector of the operators Hi.w ��C �C
w.�/

2
/.

Let � be generic. Let t be a solution of the Bethe Ansatz equation associated to
.ƒ1; �/ and let y be the corresponding r –tuple of polynomials. Then !.t/ is an
eigenvector of the operators Hi.�C �Cƒ1=2/.

By Corollary 4.12, for each element w of the Weyl group, we have the descendent
wy of y obtained via the reproduction procedure. Let wy represent the tuple tw .
Moreover, if wy is off-diagonal, then tw is a critical point associated to .wƒ1; w ��/
and !.tw/ is an eigenvector of the operators Hi.w ��C �Cwƒ1=2/.

We conjecture that the action of the operator Aw.�/ coincides with the action of
the Weyl group, induced by the reproduction procedure (when the latter action is
well-defined). More precisely, we have

Conjecture 5.6 Let � be generic. Let t be a critical point of the master function (2)
associated to .ƒ1; �/ and let y be the corresponding r –tuple of polynomials. Let
!.t/ 2 V Œƒ1� be the corresponding Bethe vector. Let w 2W . Assume that wy is
off-diagonal. Let wy represent the tuple tw .

Then the vector Aw.�/ !.t/ is a scalar multiple of the Bethe vector !.tw/.

Below we prove this conjecture for sl2 , see Theorem 5.7.

5.4 The case of sl2

Let L1; : : : ;Ln be irreducible finite-dimensional sl2 modules of highest weights
ƒ1; : : : ; ƒn 2 Z�0 . Let v1; : : : ; vn be the corresponding highest weight vectors. Let
V D L1˝ � � � ˝Ln . We also fix an n–tuple of non-zero distinct complex numbers
zD .z1; : : : ; zn/ and l 2 Z�0 . We set ƒ1 D

Pn
sD1ƒs � 2l .
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In the case of sl2 the weight function !.t/ can be rewritten in the following form.
We say m D .m1; : : : ;mn/ 2 C.ƒ; ƒ1/ if ms 2 f0; : : : ; ƒig, s D 1; : : : ; n, andPn

sD1 ms D l . Set

!m.t/D .

nY
jD1

.mj !/�1/Sym

nY
sD1

m1C���CmsY
iDm1C���Cms�1C1

1

ti � zs
;

where Sym denotes the symmetrization with respect to t1; : : : ; tl . Let

Fmv WD Fm1v1˝ � � �˝Fmnvn:

Then we explicitly have

!.t/D
X

m2C.ƒ;ƒ1/

!m.t/F
mv:

Recall that if t is a critical point of the master function (2) then the vector !.t/ is
called the Bethe vector.

It follows from [16], that there exists a Zariski open set U1 D U.ƒ/ in Cn such
that for any z 2 U1 there exists a Zariski open set U2 D U2.ƒ; z/ in C such for
all � 2 U2.z/, the number of orbits of critical points of the sl2 master function (2)
associated to .ƒ1; �/ equals to the dimension of the subspace of V of vectors of
weight ƒ1 D

Pn
sD1ƒs � 2l . Moreover all critical points are non-degenerate and the

corresponding Bethe vectors form a basis in this subspace.

Theorem 5.7 Let w be the generator of the sl2 Weyl group. For z 2 U1 , there exists
a Zariski open set U3.z/ � C with the following property. Let � 2 U3.z/, let t be a
critical point associated to .ƒ1; �/ and let y be the corresponding polynomial. Let
tw be the tuple represented by the polynomial wy .

Then all roots of the polynomial wy are simple and the vector Aw.�/ !.t/ is a non-zero
scalar multiple of the Bethe vector !.tw/.

Proof In the sl2 case �; � 2 C, and the Casimir operator is given by C D h˝h=2C

e˝f Cf ˝ e .

We claim that the joint spectrum of Hk.�C � Cƒ1=2/, k D 1; : : : ; n, acting in
V Œƒ1�, is generically simple. Indeed, in the limit �!1 the main term is given by
the operators �h.k/ . The joint spectrum of commuting operators h.k/ , k D 1; : : : ; n,
is simple. Therefore Hk.�C �Cƒ1=2/, k D 1; : : : ; n, for generic � have a simple
joint spectrum as well.

It follows that the dynamical Weyl group maps the Bethe vectors to the Bethe vectors.
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Now we compare the two actions. We do it in the same limit �!1.

The common eigenvectors of operators h.i/ are monomial vectors Fmv . The Weyl
group of sl2 is generated by the element w , w2D id which acts on the weight vectors
by

w.Fm1v1˝ � � �˝Fmnvn/D cFƒ1�m1v1˝ � � �˝Fƒn�mnvn;(17)

where c is some non-zero constant depending on mi ; ƒi .

By Lemma 5.5, the limit �! 1, the dynamical Weyl group action on the Bethe
vectors coincides (up to a scalar) with the action of the Weyl group (17).

Let us consider the limit of the action defined in terms of the reproduction procedure.
It is shown in the proof of Theorem 3.2 that if y represents an sl2 critical point and zy
is the immediate descendent, then for almost all �, y; zy can be included in a family
of critical points ya , and their descendents zya and in the limit �a!1 the product
ya zya tends to T D

Qn
iD1.t � zi/

ƒi .

Finally we claim that if the polynomials ya of degree l D
Pn

iD1 mi , represent critical
points associated to �a and the limit of ya as �a tend to 1 is

Q
i.x� zi/

mi , then the
corresponding Bethe vectors tend to a scalar multiple of the monomial vector Fmv .

For i D 1; : : : ; l , let s.i/ 2 f1; : : : ; ng be such that the i -th root of y , ti , tends to zs.i/ .
Then we write ti.�/D zs.i/Cci=�Co.1=�/. The Bethe Ansatz equation for ti implies
that for any j D 1; : : : ; n, the set of fci j s.i/D j g satisfy the Bethe Ansatz equation
with nD 1:

�
ƒj

ci
C

X
k; k¤i; s.k/Ds.i/

2

ci � ck

D 1:

These equations are solved explicitly. The solutions are limits of [19, formulas (1.3.2)]
as ˇ!1. It follows that all ci with s.i/D j are different from zero and from each
other.

Now consider the limit of the corresponding Bethe vector. The dominant term is

�l
nY

jD1

.mj !/�1
lY

iD1

c�1
i Fmv:

This finishes the proof of the claim and the theorem.
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6 Exponential populations

We considered in detail the trigonometric Gaudin model, where the Bethe Ansatz
equation takes the form (3). There are other models, where the reproduction procedure
for the solutions of the Bethe Ansatz equation works in the same way and one obtains
a transitive and free Weyl group action on each population. One such model, the quasi-
periodic Gaudin model, is considered in this section, another one, the quasi-periodic
XXX model, is considered in Section 7.

We fix our g;ƒ; ƒ1; l ; � as in Section 2.2. Let z1; : : : ; zn be any distinct complex
numbers. Consider the master function with exponents

ˆexp.tIƒ1I�/D

rY
iD1

liY
jD1

e�.�;˛i /t
.i/

j

rY
iD1

liY
jD1

nY
sD1

.t
.i/
j � zs/

�.ƒs ;˛i / �(18)

rY
iD1

Y
1�j<s�li

.t
.i/
j � t .i/s /.˛i ;˛i /

Y
1�i<j�r

liY
sD1

ljY
kD1

.t .i/s � t
.j/

k
/.˛i ; j̨ /:

We call t D .t
.i/
j /

jD1:::li

iD1;:::;r
a critical point of the master function with exponents associ-

ated to .ƒ1; �/ if

� .�; ˛i/�

nX
sD1

.ƒs; ˛i/

t
.i/
j � zs

C

X
s; s¤i

lsX
kD1

.˛s; ˛i/

t
.i/
j � t

.s/

k

C

X
s; s¤j

.˛i ; ˛i/

t
.i/
j � t

.i/
s

D 0;(19)

for i D 1; : : : ; r , j D 1; : : : ; li .

We have analogs of Propositions 5.2 and 5.3.

Proposition 6.1 Let g D slNC1 . For almost all � the number of orbits of critical
points of the master function with exponents associated to .ƒ1; �/ and counted with
multiplicities does not exceed the dimension of the subspace of the weight ƒ1 in the
tensor product Lƒ1

˝ � � �˝Lƒn
.

Proof The number of critical points of the master function with exponents (18) is
finite for almost all �, see [6].

Replacing the factors e�.�;˛i /t
.i/

j in the master function (18) with .1C t
.i/
j =m/�.�;˛i /m

we obtain a master function of type (2). Therefore the function (18) is the limit of
master functions of type (2) as m!1. The proposition now follows from Proposition
5.2 and the fact that the number of orbits of isolated critical points of a function counted
with multiplicity does not change under small deformations of the function.
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A different proof of Proposition 6.1 which uses Schubert Calculus is given in [6].

Proposition 6.2 Let gD sl2 . For almost all � 2 C and almost all .z1; : : : ; zn/ 2 Cn ,
the number of orbits of critical points of the master function with exponents associated
to .ƒ1; �/ equals the dimension of the subspace of weight ƒ1 in the tensor product
Lƒ1
˝ � � �˝Lƒn

. Moreover all these points are non-degenerate.

Proof If � is a large positive integer then the proposition is proved by using methods
of [12]. The rest is similar to the proof of Proposition 5.3

Let g be a Kac–Moody algebra. As in Section 3.2 we represent a tuple tD .t
.i/
j /

jD1;:::;li

iD1;:::;r

by the r –tuple of polynomials y D .y1; : : : ;yr /, where yi D
Qli

jD1
.x � t

.i/
j /, i D

1; : : : ; r . We make no distinction between .y1; : : : ;yr / and .c1y1; : : : ; cr yr / where
c1; : : : ; cr are non-zero complex numbers. We introduce polynomials Ti , i D 1; : : : ; r ,
by formula (7).

We call an r –tuple of polynomials y exponentially off-diagonal if its roots do not
belong to the union of singular hyperplanes in (19). Namely y is exponentially off-
diagonal if for i D 1; : : : ; r , all roots of the polynomial yi are simple, different from
the roots of the polynomials yj for all j such that . j̨ ; ˛i/¤ 0 and different from the
roots of the polynomial Ti .

We have the corresponding exponential reproduction procedure. Namely, an r –tuple
of polynomials y is called exponentially fertile in the i -th direction with respect to �,
i 2 f1; : : : ; rg, if there exists a polynomial zyi such that

W .yi ; e
h�;˛_

i
ix
zyi/D eh�;˛

_
i
ixTi

rY
jD1;j¤i

y
�aij

j :

Then the r –tuple of polynomials y.i/ D .y1; : : : ; zyi ; : : : ;yr / is called an exponential
immediate descendent of y with respect to � in the direction i .

An r –tuple of polynomials is called exponentially fertile with respect to � if it is
exponentially fertile with respect to � in all directions i D 1; : : : ; r .

Theorem 6.3 Let g be a Kac–Moody algebra. An r –tuple of polynomials y repre-
sents a g critical point of the master function with exponents associated to .ƒ1; �/
if and only if deg yi D li , y is exponentially off-diagonal and exponentially fertile
with respect to �. Moreover, if y represents a critical point of the master function with
exponents associated to .ƒ1; �/ and if the immediate descendent of y with respect
� in the i -th direction, y.i/ D .y1; : : : ; zyi ; : : : ;yr /, is exponentially off-diagonal then

Geometry & Topology Monographs, Volume 13 (2008)



Quasi-polynomials and the Bethe Ansatz 413

y.i/ represents a critical point of the master function with exponents associated to
.siƒ1; si�/.

Proof The proof is similar to the proof of Theorem 3.5.

An r –tuple of polynomials y .i1;i2;:::;im/ , where ik 2 f1; : : : ; rg, k D 1; : : : ;m, is
called an exponential descendent of y with respect to � in the directions .i1; : : : ; im/
if there exist r –tuples of polynomials y .i1;i2;:::;ik/ , k D 1; : : : ;m� 1, such that for
k D 1; : : : ;m, the r –tuple y .i1;i2;:::;ik/ is an exponential immediate descendent of
y .i1;i2;:::;ik�1/ with respect to sik�1

: : : si2
si1
� in the ik -th direction.

An r –tuple of polynomials y is called exponentially super-fertile with respect to � if it
is exponentially fertile with respect to � and all exponential descendents y .i1;i2;:::;im/

of y with respect to � in the directions .i1; : : : ; im// are exponentially fertile with
respect to sim

: : : si1
�.

For any N –tuple of functions y and an slNC1 weight �, we set yNC1D 1 and define
the linear differential operator of order N C 1:

Dexp.y ; �/D

N ! 0Y
i

 
@ � ln0

 
yiC1

Qi
sD1 e.�;˛s/xTs

yi

!!
:

Proposition 6.4 Let y be an N –tuple of polynomials and li D deg yi , i D 1; : : : ;N .
Let ƒ1 be given by (1). Let y represent an slNC1 critical point of the master function
with exponents associated to .ƒ1; �/ or let y be exponentially super-fertile with
respect to �. Then the kernel of the operator Dexp.y ; �/ is spanned by functions of
the form

p0;p1e.�;˛1/x; : : : ;pN e.�;˛1C���C˛N /x;(20)

where pi is a polynomial of degree deg y1C .ƒ1; ˛1C � � �C˛i/. The only singular
points of the operator Dexp.y ; �/ in C are regular singular points located at z1; : : : ; zn ,
and the exponents at zi , i D 1; : : : ; n, are

zi W 0; .ƒi C �; ˛1/; .ƒi C �; ˛1C˛2/; : : : ; .ƒi C �; ˛1C � � �C˛N /;(21)

Conversely, if a linear differential operator D of order N C1 has the kernel spanned by
functions of the form (20) and the only singular points of D in C are regular singular
points at z1; : : : ; zn with the exponents given by (21), then the N –tuple y given by
the divided Wronskians

yi D
W .p0;p1e.�;˛1/x; : : : ;pi�1e.�;

Pi�1
jD1 j̨ /x/

e.�;
Pi�1

jD1.i�j/ j̨ /x
Qi�1

jD1 T
i�j

j

;
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i D 1; : : : ;N , is an N –tuple of polynomials which is exponentially super-fertile with
respect to � and satisfies deg yi D li , i D 1; : : : ;N .

Proof The proof is similar to the proof of Corollary 4.4.

Conjecture 6.5 If an r –tuple of polynomials y represents a critical point of the master
function with exponents associated to .ƒ1; �/ then y is exponentially super-fertile
with respect to �.

Theorem 6.6 Conjecture 6.5 holds for the case of simple Lie algebras of types AN

and BN .

Proof The proof is similar to the proof of Theorems 4.5, 4.8.

For an r –tuple of polynomials y and a g weight �, we denote P exp.y ; �/ the set of
all pairs of the form .y .i1;i2;:::;im/; sim

: : : si2
si1
�/, where m 2 Z�0 , ik 2 f1; : : : ; rg,

k D 1; : : : ;m, and y .i1;i2;:::;im/ is an exponential descendent of y with respect to �
in the directions .i1; : : : ; im/.

We call the set P exp.y ; �/ the exponential prepopulation originated at .y ; �/. Let an
r –tuple of polynomials y be exponentially super-fertile with respect to �. We call the
set P exp.y ; �/ the exponential population originated at .y ; �/.

Theorem 6.7 Let g be any simple Lie algebra and let � be a strongly non-integral
g–weight. Let an r –tuple of polynomials y be exponentially super-fertile with respect
to �. Then the map P exp.y ; �/!W� such that .zy ; z�/ 7! z� is a bijection of the
exponential population originated at .y ; �/ and of the orbit of the Weyl group.

Proof The proof is similar to the proof of Corollary 4.12.

7 Difference reproduction

In this section we describe the Bethe Ansatz equation corresponding to the quasi-
periodic XXX model. In this case the reproduction procedure works in a similar way
and one obtains a free and transitive Weyl group action on a population.

Let h 2C be a complex non-zero number. We fix g;ƒ; ƒ1; l ; � as in Section 2.2. Let
z1; : : : ; zn be any distinct complex numbers, subject to the conditions zi � zj 62 hZ for
all i; j 2 f1; : : : ; ng, i ¤ j .
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Consider the exponential XXX Bethe equation on variables t D .t
.i/
j /

jD1;:::;li

iD1;:::;r
:

eh�;˛
_
i
ih
D

nY
sD1

t
.i/
j � zsC .ƒs; ˛i/h=2

t
.i/
j � zs � .ƒs; ˛i/h=2

�(22)

Y
mD1;:::;r;

m¤i

0@ lmY
kD1

t
.i/
j � t

.m/

k
C h=2

t
.i/
j � t

.m/

k
� h=2

1A�aim Y
kD1;:::;li ;

k¤j

t
.i/
j � t

.i/

k
� h

t
.i/
j � t

.i/

k
C h

;

where i D 1; : : : ; r , j D 1; : : : ; li .

As in Section 3.2 we represent a tuple tD .t
.i/
j /

jD1;:::;li

iD1;:::;r
by the r –tuple of polynomials

y D .y1; : : : ;yr /, where yi D
Qli

jD1
.x� t

.i/
j /, i D 1; : : : ; r . We make no distinction

between .y1; : : : ;yr / and .c1y1; : : : ; cr yr / where c1; : : : ; cr are non-zero complex
numbers.

For i D 1; : : : ; r , set

T
.h/
i .x/D

nY
sD1

.ƒs ;˛i /Y
jD1

.x� zs � .ƒs; ˛i/h=2C j h/:

An r –tuple of polynomials y is called exponentially difference off-diagonal with
respect to .ƒ; zI h/ if for i D 1; : : : ; r the polynomial yi.x/ has only simple roots,
different from the roots of polynomials ym.xC h=2/, whenever .˛i ; ˛m/ ¤ 0, and
different from the roots of polynomials T

.h/
i , yi.xC h/.

A solution t of (22) is called off-diagonal if the corresponding r –tuple of polynomials
is exponentially difference off-diagonal.

Lemma 7.1 A polynomial y of degree l represents an sl2 off-diagonal solution of ex-
ponential XXX Bethe equation associated to .ƒ1; �/ if and only if y is exponentially
difference off-diagonal and there exists a polynomial B.x/ such that

y.xC h/eh�;˛
_ih

nY
sD1

.x� zs �
.ƒs; ˛/h

2
/

CB.x/y.x/Cy.x� h/

nY
sD1

.x� zsC
.ƒs; ˛/h

2
/D 0:

Proof The lemma is proved similarly to Lemma 3.1.

Geometry & Topology Monographs, Volume 13 (2008)



416 E Mukhin and A Varchenko

Proposition 7.2 Let gD slNC1 . For almost all � the number of orbits of off-diagonal
solutions of the exponential XXX Bethe Ansatz equations associated to .ƒ1; �/ does
not exceed the dimension of the subspace of the weight ƒ1 in the tensor product
Lƒ1
˝ � � �˝Lƒn

.

Proof The proof is similar to the proof of the Proposition 6.1 with the help of [8,
Corollary 4.15].

Proposition 7.3 [18] Let gD sl2 . For almost all � and almost all .z1; : : : ; zn/ 2Cn ,
the number of orbits of solutions t of the exponential XXX Bethe Ansatz equation
associated to .ƒ1; �/ such that ti ¤ tj equals the dimension of the subspace of
weight ƒ1 in the tensor product Lƒ1

˝ � � �˝Lƒn
. Moreover all such solutions are

non-degenerate.

We now describe the corresponding exponential difference reproduction procedure.

Denote Wh the discrete Wronskian:

Wh.f1; : : : ; fN / WD det.fi.xC .j � 1/h//i;jD1;:::;N :

An r –tuple of polynomials y is called exponentially difference fertile with respect to
� in the i -th direction, i 2 f1; : : : ; rg, if there exists a polynomial zyi such that

Wh.yi ; e
h�;˛_

i
ix
zyi/D eh�;˛

_
i
ix T

.h/
i .x/

rY
mD1; m¤i

.ym.xC h=2//�aim :

Then the r –tuple of polynomials y.i/ D .y1; : : : ; zyi ; : : : ;yr / is called an exponential
difference immediate descendent of y with respect to � in the i -th direction.

An r –tuple is called exponentially difference fertile with respect to � if it is exponen-
tially difference fertile with respect to � in all directions i D 1; : : : ; r .

Theorem 7.4 An r –tuple of polynomials y represents an off-diagonal solution of
the exponential XXX Bethe Ansatz equation associated to .ƒ1; �/ if and only if y

is exponentially difference off-diagonal, deg yi D li , i D 1; : : : ; r , and y is exponen-
tially difference fertile with respect to �. Moreover, if y represents an off-diagonal
solution of the exponential XXX Bethe Ansatz equation associated to .ƒ1; �/ and
if the exponential difference immediate descendent of y with respect � in the i -th
direction, y.i/ D .y1; : : : ; zyi ; : : : ;yr /, is exponentially difference off-diagonal then
y.i/ represents an off-diagonal solution of the exponential XXX Bethe Ansatz equation
associated to .siƒ1; si�/.
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Proof The proof is similar to the proof of Theorem 3.5, cf [10] and also [13; 8].

An r –tuple of polynomials y .i1;i2;:::;im/ , where m 2 Z�0 , ik 2 f1; : : : ; rg, k D

1; : : : ;m, is called an exponential difference descendent of y with respect to � in
the directions .i1; : : : ; im/ if there exist r –tuples of polynomials y .i1;i2;:::;ik/ , k D

1; : : : ;m� 1, such that for k D 1; : : : ;m, the r –tuple y .i1;i2;:::;ik/ is an exponential
difference immediate descendent of y .i1;i2;:::;ik�1/ with respect to sik�1

: : : si2
si1
� in

the ik -th direction.

An r –tuple of polynomials y is called exponentially difference super-fertile with
respect to � if it is exponentially difference fertile with respect to � and all exponential
descendents y .i1;i2;:::;im/ of y with respect to � in the directions .i1; i2; : : : ; im/ are
exponentially difference fertile with respect to sim

: : : si1
�.

For any N –tuple of functions y and an slNC1 weight �, we set yNC1D 1 and define
the linear difference operator:

D
exp

h
.y ; �/D

N!0Y
i

 
@h�

yiC1.xC .i C 2/h=2/

yiC1.xC ih=2/

yi.xC .i � 1/h=2/

yi.xC .i C 1/h=2/
�

iY
sD1

eh.�;˛s/Ts.xC .2i � sC 1/h=2/

Ts.xC .2i � s� 1/h=2/

!
;

where @h is the operator acting on functions of x by the formula @h.f .x//Df .xCh/.

Let V be a space spanned by functions of the type p0e�0x;p1e�1x; : : : ;pN e�N x

where pi , i D 0; : : : ;N , are polynomials and �i 2C, i D 0; : : : ;N . We say the space
V has no base points if for any z 2 C there exists f 2 V , such that f .z/¤ 0.

Assume V has no base points. For i D 2; : : : ;N , let Ui be the monic polynomial of the
greatest possible degree such that Wh.f1; : : : ; fi/=Ui is a holomorphic function for all
f1; : : : ; fi 2V . Following [8], we call an N –tuple of monic polynomials .T1; : : : ;TN /

a frame of space V if for i D 2; : : : ;N we have Ui D
Qi�1

jD1

Qi�j
sD1

Tj .xC .s� 1/h/.

Lemma 7.5 Let V be a space spanned by functions of the type

p0e�0x;p1e�1x; : : : ;pN e�N x :

Let V have no base points. Then there exists a unique frame of V .

Proof The proof is similar to the proof of [8, Lemma 4.9].
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Proposition 7.6 Let y be an N –tuple of polynomials and li D deg yi , i D 1; : : : ;N .
Let ƒ1 be given by (1). Let y represent an off-diagonal solution of slNC1 exponential
XXX Bethe Ansatz equation associated to .ƒ1; �/ or let y be exponentially difference
super-fertile with respect to �. Then the kernel of the operator D

exp

h
.y ; �/ is spanned

by functions of the form

p0;p1e.�;˛1/x; : : : ;pN e.�;˛1C���C˛N /x;(23)

where pi is a polynomial of degree deg y1 C .ƒ1; ˛1 C � � � C ˛i/. Moreover, the
N –tuple

.T
.h/
1
.x/;T

.h/
2
.xC h=2/; : : : ;T

.h/
N
.xC .N � 1/h=2//(24)

is the frame of the kernel of the operator D
exp

h
.y ; �/.

Conversely, if a linear difference operator D of order N C 1 has the kernel spanned by
functions of the form (23) with the frame (24) then the N –tuple y given by

yi D
Wh.p0;p1e.�;˛1/x; : : : ;pi�1e.�;

Pi�1
jD1 j̨ /x/

e.�;
Pi�1

jD1.i�j/ j̨ /x
Qi�j

sD1
T
.h/

j .xC .sC j=2� 3=2/h/
;

i D 1; : : : ;N , is an N –tuple of polynomials which is exponentially difference super-
fertile with respect to � and satisfies deg yi D li , i D 1; : : : ;N .

Proof The proof is similar to the proof of Corollary 4.4.

Conjecture 7.7 Let g be any simple Lie algebra. If an r –tuple of polynomials y

represents an off-diagonal solution of the exponential XXX Bethe Ansatz equation
associated to .ƒ1; �/ then y is exponentially difference super-fertile with respect to
�.

Theorem 7.8 Conjecture 7.7 holds for the case of simple Lie algebras of types AN

and BN .

Proof The proof is similar to the proof of Theorems 4.5, 4.8.

For an r –tuple of polynomials y we denote P
exp

h
.y ; �/ the set of all pairs of the form

.y .i1;i2;:::;im/; sim
: : : si2

si1
�/, where m 2 Z�0 , ik 2 f1; : : : ; rg, k D 1; : : : ;m, and

y .i1;i2;:::;im/ is an exponential difference descendent of y with respect to � in directions
.i1; : : : ; im/.

We call the set P
exp

h
.y ; �/ the exponential difference prepopulation originated at

.y ; �/. If an r –tuple of polynomials y is exponentially difference super-fertile with
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respect to �, then we call the set P
exp

h
.y ; �/ the exponential difference population

originated at .y ; �/.

Theorem 7.9 Let g be any simple Lie algebra and let � be a strongly non-integral
g–weight. Let an r –tuple of polynomials y be exponentially difference super-fertile
with respect to �. Then the map P

exp

h
.y ; �/!W� such that .zy ; z�/ 7! z� is a bijection

of the exponential difference population originated at .y ; �/ and of the orbit of the
Weyl group.

Proof The proof is similar to the proof of Corollary 4.12.
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