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Energy of knots and the infinitesimal cross ratio

JUN O’HARA

This is a survey article on two topics. The Energy E of knots can be obtained by
generalizing an electrostatic energy of charged knots in order to produce optimal
knots. It turns out to be invariant under Möbius transformations. We show that
it can be expressed in terms of the infinitesimal cross ratio, which is a conformal
invariant of a pair of 1–jets, and give two kinds of interpretations of the real part of
the infinitesimal cross ratio.

57M25; 53A30

1 Introduction

This is a survey article on two topics, the energy E of knots and the infinitesimal cross
ratio which can give a conformal geometric interpretation of the energy.

In the first part of this paper we give an introduction to the theory of energy of knots.
Energy of knots is a functional on the space of knots which blows up as a knot
degenerates to a singular knot with double points. It was introduced to produce optimal
knots. The first example, the energy E , was obtained by the author by generalizing
an electrostatic energy of charged knots [15]. Later on, it was proved to be invariant
under Möbius transformations (Freedman, He and Wang [6]).

The second part of this paper is a survey and an announcement of a part of the joint
work with Rémi Langevin [13; 14]. We give a new interpretation from a viewpoint of
conformal geometry. The infinitesimal cross ratio is the cross ratio of x;xC dx;y ,
and yC dy , where these four points are considered complex numbers by identifying a
sphere through them with the Riemann sphere C[f1g. It can be considered a complex
valued 2–form on K �K n�. It is the unique conformal invariant of a pair of 1–jets
of a given curve up to multiplication by a constant. We show that the energy E can be
expressed as the integration of the difference of the absolute value and the real part of
the infinitesimal cross ratio. We then show that the real part of the infinitesimal cross
ration can be interpreted in two ways: as the canonical symplectic form of the cotangent
bundle of S3 and as a signed area element with respect to the pseudo-Riemannian
structure of the set of oriented 0–spheres in S3 .
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2 Energy of knots

2.1 Motivation

Just like a minimal surface is modeled on the “optimal surface” of a soap film with a
given boundary curve, one can ask whether we can define an “optimal knot”, a beautiful
knot which represents its knot type. The notion of energy of knots was introduced for
this purpose. The basic philosophy is as follows.

Suppose there is a non-conductive knotted string which is charged uniformly in a
non-conductive viscous fluid. Then it might evolve itself to decrease its electrostatic
energy without intersecting itself because of Coulomb’s repulsive force until it comes
to a critical point of the energy. Then we might be able to define an “optimal knot”
by an embedding that attains the minimum energy within its isotopy class. Thus our
motivational problem, which was proposed by Fukuhara and Sakuma independently,
can be stated as:

Problem 2.1 (Fukuhara [7] and Sakuma [20]) Give a functional e (which we will
call an energy) on the space of knots K which satisfies the following conditions:

(1) Let ŒK� denote an isotopy class which contains a knot K . Define the energy of
an isotopy class by e.ŒK�/D inf

K 02ŒK �
e.K0/.

(2) If a knot K0 attains the minimum value of the functional e within its isotopy
class, ie, if e.K0/D e.ŒK0�/; we call K0 an e–minimizer of the isotopy class
ŒK0�.

(3) There is an e–minimizer in each isotopy class.

Our strategy can be illustrated conceptually in Figures 1–2.

Let I be the set of immersions from a circle into R3 (or S3 ) and D the set of
immersions that are not embeddings. Sometimes this set D is called the discriminant
set, and an element of D is called a singular knot. Let K be the complement of D in
I , ie the space of knots. We will always assume that I is endowed with C 2 –topology.
Two knots K and K0 can be joined by a continuous path in the space of the knots K
if and only if K and K0 are isotopic. Therefore each “cell” (an arcwise connected
component) of K corresponds to an isotopy class.

Given a knot K (Figure 1 (a)). Suppose it can be evolved along the negative gradient
flow of e (Figure 1 (b)). Assume that it converges to an e–minimizer K0 as time goes
to infinity.
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Figure 1

If K0 is isotopic to the original knot K then the problem is settled. As the isotopy
class of a knot might be changed by a crossing change, it should be avoided while the
knot is being evolved. Thus we are lead to the condition below.

Definition 2.2 We call a functional eW K ! R a self-repulsive energy of knots, or
simply, an energy of knots, if e.K/ blows up as K degenerates to a singular knot with
double points (Figure 2).

If eW K! R is a self-repulsive energy of knots then each isotopy class is surrounded
by infinitely high energy walls.

2.2 Renormalizations of electrostatic energy

The first example of such an energy, E
.2/
ı , was defined as the renormalization of a

“modified” electrostatic energy of uniformly charged knots. The electrostatic energy of

a charged knot K is given by “E”.K/D
ZZ

K�K

dxdy

jx�yj
which turns out to be C1

for any knot, as it blows up at the diagonal ��K�K . We use a trick of subtacting a
function which blows up in the same order at the diagonal to produce a finite valued
functional E.1/ . But E.1/

� �K �
does not blow up for a singular knot �K with double

points, ie, it is not a self-repulsive energy of knots. We obtain a self-repulsive energy if
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e

e D1

Figure 2: Our energy should blow up on the discriminant set.

we make the power of jx�yj in the integrand bigger than or equal to 2. Let us first
study the case when it is equal to 2. It means that we consider the “modified” energy
under the assumption that the magnitude of Coulomb’s repulsive force between a pair
of point charges of distance r is proportional to r�3 .

Definition 2.3 (O’Hara [15]) Let dK .x;y/ denote the (shorter) arc-length between
x and y (Figure 3).

E
.2/
ı .K/D lim

"!0

�“
fdK .x;y/�"g�K�K

dxdy

jx�yj2
�

2

"

�
(1)

D�4C

“
K�K

�
1

jx�yj2
�

1

dK .x;y/2

�
dxdy ;(2)

where we assumed that the length of the knot K is equal to 1 in (1).

Geometry & Topology Monographs, Volume 13 (2008)



Energy of knots and the infinitesimal cross ratio 425

K

x

y

dK .x;y/

jx�yj

Figure 3: The arc-length
and the chord length

K

x
"

"

charged

Figure 4: The subarc
fy 2K j dK .x;y/� "g

The term
Z
fdK .x;y/�"g

dy

jx�yj2
in (1) expresses the “voltage” at point x when the

subarc fy 2KjdK .x;y/ � "g is charged (Figure 4). The renormalization in (2) can
be interpreted as taking the difference of the “extrinsic energy” based on the distance
in the ambient space (chord length) and the “intrinsic energy” based on the distance
in the knot (arc-length). If �ı denotes a round circle then E

.2/
ı .�ı/D 0. It gives the

smallest value of E
.2/
ı among all knots.

If �K is an open long knot, ie, the embedded line in R3 which tends asymptotically to
a straight line at the both ends, its energy can be defined by dropping off the constant
�4 (Freedman, He and Wang [6]):

E
.2/
ı .�K/D“

zK� zK

 
1

jx�yj2
�

1

d �K .x;y/2
!

dxdy:

If ��ı is a straight line then E
.2/
ı .��ı/D 0.

2.3 Conformal invariance of E
.2/
ı and E

.2/
ı –minimizers

The value of E
.2/
ı is invariant under rescaling or reparametrization. A Möbius trans-

formation is a transformation of R3[ f1g which can be obtained as the composition
of inversions in spheres (Figure 5).

Theorem 2.4 [6] Let K be a knot in R3 and T a Möbius transformation of R3[f1g.
Then E

.2/
ı .T .K//DE

.2/
ı .K/. It holds even when T .K/ is an open long knot.

We remark that the 2–form
dxdy

jx�yj2
on K �K n�, which is an essential part of the

integrand of (2) of the definition of E.2/.K/, is invariant under Möbius transformations,
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Figure 5: An inversion in a sphere

in other words, if K D f .S1/ then

f �
�

T �
�

dxdy

jx�yj2

��
D f �

�
dxdy

jx�yj2

�
:

Using the conformal invariance Freedman, He, and Wang gave a partial affirmative
answer to the motivational problem:

Theorem 2.5 [6] There exists an E
.2/
ı –minimizer for any isotopy class of a prime

knot.

Conjecture 2.6 On the other hand, Kusner and Sullivan [12] conjectured through
numerical experiments that there would be no E

.2/
ı –minimizers in any isotopy class of

a composite knot ŒK1]K2�, because both tangles representing ŒK1� and ŒK2� would
“pull tight” to points if the knot evolves itself to decrease its energy (Figure 6).

Figure 6: “Pull-tight”

They also conjecture that

E
.2/
ı .ŒK1]K2�/DE

.2/
ı .ŒK1�/CE

.2/
ı .ŒK2�/:

This can be explained as follows. Consider an open long knot by an inversion in a
sphere with center on the knot. If a knot pulls tight then the two tangles in the open long
knot corresponding to ŒK1� and ŒK2� move in the opposite ways so that they become
more and more distant from each other (Figure 7). As the distance between the two
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Figure 7: “Pull-tight” in open long knots

tangles tends to C1 the interaction between them in the integral of E
.2/
ı tends to 0.

In the case of prime knots, the pull-tight can be avoided as follows. Suppose fKng is
a sequence of knots in an isotopy class of a prime knot ŒK� with lim

n!1
E
.2/
ı .Kn/D

E
.2/
ı .ŒK�/. Applying Möbius transformations if necessary, we can obtain a new se-

quence of “relaxed ” knots fK0ng � ŒK� so that the pull-tight does not occur and hence
lim

n!1
K0n belongs to the same isotopy class ŒK�. As E

.2/
ı .K0n/DE

.2/
ı .Kn/ the limit

lim
n!1

K0n is an E
.2/
ı –minimizer of ŒK� (Figure 8).

Here are some remarks:

(1) Z-X He [9] showed that E
.2/
ı –minimizers are smooth.

(2) Suppose K is an E
.2/
ı –minimizer of an isotopy class ŒK�. Then, for any Möbius

transformation T , at least one of T .K/ and its mirror image T .K/� belongs to
ŒK�. Since E

.2/
ı .T .K// D E

.2/
ı .T .K/�/ D E

.2/
ı .K/ it follows that T .K/ or

T .K/� is an E
.2/
ı –minimizer of ŒK�. Therefore, there are uncountably many

E
.2/
ı –minimizers for each isotopy class of a non-trivial prime knot.

(3) The (cardinal) number of E
.2/
ı –minimizers of an isotopy class of a prime knot

modulo the action of the Möbius group is not known.

(4) It is not known whether there exists an E
.2/
ı –critical unknot which is not a

round circle. If not, it implies Hatcher’s results [8] that the set of unknots in S3

deformation retracts onto the set of great circles.
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K1 K2 K1

If the knot is prime E
.2/
ı is continuous

wrt C 2–topology

Figure 8: In the case of an isotopy class of a prime knot

Numerical experiments show that E
.2/
ı can untie Ochiai’s unknot (Kauffman,

Huang and Greszczuk [10]) and “Freedman’s unknot” (Kusner and Sullivan
[12]); see Figure 9.

(a) (b)

Figure 9: (a) Ochiai’s unknot (b) Freedman’s unknot

(5) Using numerical experiments, Kusner and Sullivan conjecture that there exist
unstable critical points in the isotopy class of a .p; q/ torus knot if both p and
q are greater than 2.

(6) There are no known minimum values of E
.2/
ı of an isotopy class of a non-trivial

knot which are obtained theoretically, like 6�2 .

(7) It is an open problem whether E
.2/
ı –minimizers are isolated in Emb.S1;R3/=�,

where � is generated by Möbius transformations and reparametrizations.

Various kinds of generalization of E
.2/
ı have been studied.
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(1) E
.2/
ı can be defined for a link L D K1 [ � � � [ Kn [6]. We do not need

renormalization for the cross term E.Ki ;Kj /D

Z
x2Ki

Z
y2Kj

dxdy

jx�yj2
.i ¤ j /.

(2) Similar energies are studied by Buck, Orloff and Simon [4; 5]. The integrands
are the products of the 2–form dxdy

jx�yj2
and functions which kill the explosion of

the integral at the diagonal.

(3) A conformally invariant energy for surfaces was studied by Auckly and Sadun
[1].

(4) A conformally invariant energy for hypersurfaces using conformally defined
angles was studied in Kusner and Sullivan [12].

(5) Fixing a knot K ,
“

K�K

jx � yjsdxdy can be considered a complex valued

function of a complex variable s (Brylinski [3]).

2.4 Generalization to produce energy minimizers

Conjecture 2.6 implies that E
.2/
ı does not give a completely affirmative solution to our

motivational Problem 2.1. We have two ways to generalize E
.2/
ı so that all the isotopy

classes have energy minimizers.

One is to make the power of jx �yj in the integrand bigger than 2, and the other is
to change the metric of the ambient space. In each case, our energies are no longer
conformally invariant.

Definition 2.7 Let K be a knot with total length 1. Put

E.˛/.K/D

ZZ
K�K

�
1

jx�yj˛
�

1

dK .x;y/˛

�
dxdy:

Theorem 2.8 (O’Hara [16; 17]) E.˛/ is well-defined if ˛ < 3, and is self-repulsive
if ˛ � 2. There exists an E.˛/–minimizer for any isotopy class if ˛ > 2.

Let M be a Riemannian manifold. Define

dM .x;y/D inffLength of path joining x and yg;

E
.˛/
M
.K/D

ZZ
K�K

�
1

dM .x;y/˛
�

1

dK .x;y/˛

�
dxdy:

Theorem 2.9 (O’Hara [18]) Let M be a compact manifold. Then there exists an
E
.˛/
M

–minimizer for any isotopy class if ˛ > 2.

We conjecture that the Theorem above also holds for ˛ D 2 if M D S3 .
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2.5 Related topics

Energy of knots gave rise to geometric knot theory, in which we study functionals
to measure how complicated a knot is embedded and look for “optimal knots” with
respect to those functionals.

One of the functionals which are intensively studied recently is the rope length
(Cantarella, Kusner, Sullivan, Stasiak, et al.), which measures how long a rope of
unit diameter is needed to make a given knot, or its equivalents, thickness (Buck,
Rawdon, Simon, et al.) and global radius of curvature (Gonzalez, Maddocks, Smutny).

3 A viewpoint from conformal geometry

This is joint work with Rémi Langevin.

We can give a new interpretation of E
.2/
ı using what is invariant under Möbius trans-

formations, such as circles, spheres, and angles.

3.1 Minkowski space

The Minkowski space R5
1

is R5 with the non-degenerate indefinite quadratic form with
index 1:

hx ; xiD�x0
2
Cx1

2
C � � �Cx4

2:

The set of linear isomorphisms which preserve the Lorentz metric is called the Lorentz
group:

O.4; 1/D
n
A 2GL.5;R/

ˇ̌̌
tAJ 5

1 AD J 5
1

o
; where J 5

1 D

0BBB@
�1

1
O

: : :

O 1

1CCCA :
A non-zero vector v in R5

1
is called spacelike if hv ; vi > 0, lightlike if hv ; vi D 0

and v ¤ 0 , and timelike if hv ; vi < 0. The set of lightlike vectors and the origin
V D

˚
v 2 R5

1

ˇ̌
hv ; vi D 0

	
is called the light cone. The hyperquadric � D fv 2

R5
1
jhv ; vi D 1g is called the de Sitter space. The 3–sphere S3 can be realized in R5

1

as the set of lines through the origin in the light cone V D fhv ; vi D 0g. We will
denote it by S3.1/. It can also be identified with the intersection of the light cone
and the hyperplane fx 2 R5

1
jx0 D 1g:

S3.1/D
n
.1;x1;x2;x3;x4/

ˇ̌̌
x1

2
Cx2

2
Cx3

2
Cx4

2
D 1

o
:
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Figure 10

The Lorentz group O.4; 1/ acts on V and �. It also acts transitively on S3 as the
action on the set of lines in the light cone. This action is called a Möbius transformation.

3.2 de Sitter space as the set of spheres

Put S.2; 3/ D f˙ j an oriented 2–sphere in S3g. Then there is a bijection between
S.2; 3/ and the de Sitter space �. Let ˙ be an oriented 2–sphere in S3 . In the
Minkowski space R5

1
, ˙ can be realized as the intersecton of S3 and an oriented

4–dimensional subsapce ˘ through the origin (Figure 11). Let � 2� be the endpoint
of the positive unit normal vector to ˘ . Then the map 'W S.2; 3/ 3 ˙ 7! � 2 � is
the bijection we want. Moreover, since this bijection is defined only by means of the
pseudoorthogonality, it is preserved under the action of the Lorentz group O.4; 1/, ie,
'.A �˙/DA'.˙/ for A 2O.4; 1/.

3.3 Willmore Conjecture

In his attempt to solve the Willmore Conjecture (stated below) Langevin has been
interested in defining conformally invariant functionals on the space of surfaces and
knots by means of integral geometry in the Minkowski space. One of his functionals
turned out to be a self-repulsive energy of knots (Langevin and O’Hara [13]). That

Geometry & Topology Monographs, Volume 13 (2008)



432 Jun O’Hara

˙

˘

�

l D˘?

�

light cone

Figure 11: The bijection between S.2; 3/ and �

was the beginning of our joint work. Let us make a short comment on the Willmore
Conjecture.

Let �W T 2! R3 be a smooth embedding. Let �1; �2 be the principal curvatures. The
Willmore functional W is defined by

W .�/D

Z
T 2

�
�1C �2

2

�2

dvD

Z
T 2

��1� �2

2

�2

dv:

The second equality comes from the Gauss-Bonnet theorem. The integrand of the right
hand side is known to be invariant under Möbius transformations, so is W .

Willmore Conjecture 3.1 We have W .�/ � 2�2 . The equality holds if and only if
�.T 2/ is a torus of revolution Tp

2;1
modulo Möbius transformations, where Tp

2;1

can be obtained by rotating around the z–axis a circle with radius 1 in the xz–plane
whose center is distant form the z–axis by

p
2.

One of the important contributions is the following theorem due to Bryant. Fix a
stereographic projection � W S3! R3[f1g.
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Theorem 3.2 (Bryant [2]) Let ˙ 2
�1.p/C�2.p/

.p/ be a sphere which is tangent to �.T 2/

at p with curvature �1.p/C�2.p/
2

. Define  �W T 2!� by

 �.p/D ' ı�
�1

�
˙ 2
�1.p/C�2.p/

.p/

�
;

where 'W S.2; 3/!� is the bijection given in Subsection 3.2. Then W .�/ is equal to
the area of  �.T 2/.

The area is given with respect to the indefinite metric of �� R5
1

, which is SO.4; 1/–
invariant. It does not depend on the stereographic projection � .

3.4 Infinitesimal cross ratio

Let us introduce the infinitesimal cross ratio �, which plays an important role in our
study. It is a complex valued 2–form on K�K n�. (The imaginary part might not be
smooth.) It is conformally invariant.

We explain that its real part can be interpreted in two ways. They correspond to two
kinds of interpretations of S3 � S3 n� which contains K �K n�. One is as the
total space of the cotangent bundle T �S3 , which enables us to consider <e�K as
the pull-back of the canonical symplectic form of the cotangent bundle T �S3 . The
other is as the set of oriented 0–spheres in S3 which has a natural pseudo-Riemannian
structure coming from that of the Minkowski space, which enables us to consider
<e�K as a signed area form.

Let us begin with a geometric definition of the infinitesimal cross ratio.

Let ˙D˙K .x;y/ denote the 2–sphere which is tangent to the knot K at both x and y .
We call it a bitangent sphere. It can be considered the 2–sphere ˙.x;xCdx;y;yCdy/

that passes through four points x;xCdx;y , and yCdy (Figure 12 left). It is generically
determined uniquely unless these four points are cocircular, which is a condimension
2 phenomenon. Identify †K .x;y/ with the Riemann sphere C [ f1g through a
stereographic projection p (Figure 12 right). Then the four points x;xC dx;y , and
y C dy can be considered a quadruplet of complex numbers zx D p.x/, zxC �dx D

p.xC dx/, zy D p.y/, and zy C �dy D p.y C dy/. Let �K .x;y/ be the cross ratio
.zxC �dx; zyI zx; zyC �dy/:

�K .x;y/D
.zxC �dx/� zx

.zxC �dx/� .zyC �dy/
W

zy � zx

zy � .zyC �dy/
�

�dx �dy

.zx� zy/2
:

To be precise, we need an orientation of ˙ to avoid the ambiguity of complex conjugacy
of the infinitesimal cross ratio (see the Remark below).
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y

yCdy

˙.x;xCdx;y;yCdy/
K

x
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˘ Š C

C.x;x;y/

zyC�dy

Figure 12: A stereographic projection

Then �K .x;y/ is independent of the choice of the stereographic projection p . Suppose
we use another stereographic projection. Then we get another quadruplet of complex
numbers, which can be obtained from the former by a linear fractional transformation.
Since a linear fractional transformation does not change the cross ratio, we get the
same value.

We call �K .x;y/ the infinitesimal cross ratio of the knot K . The real part of it has a
pole of order 2 at the diagonal ��K �K . It satisfies

.T �T /�
�
�T .K /.T x;Ty/

�
D�K .x;y/

for any Möbius transformation T , where T �T is the diagonal action

T �T W K �K n� 3 .x;y/ 7! .T x;Ty/ 2 T .K/�T .K/ n�:

Remark Let S be the set of quadruplets of ordered four points in S3 which are not
cocircular. We can define a continuous map from S to the set of oriented spheres �.
(It is given by a similar formula to (6) which shall be given later.) The composite with
the cross ratio map gives a continuous map from S to C nR. Since S is connected
its image is contained in one of the two half-planes. Our convention implies that the
imaginary part of the cross ratio of any ordered quadruplet of non-cocircular points in
S3 is non-negative (the reader is referred to O’Hara [19] for details).

3.5 Conformal angles and cosine formula

Definition 3.3 (Doyle and Schramm) Let C.x;x;y/ be an oriented circle tangent
to K at x which passes through y whose orientation coincides with that of K at x .
Let � be the angle from C.x;x;y/ to C.y;y;x/ at point y . We call it the conformal
angle between x and y and denote it by � D �K .x;y/.
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K

x

y

C.x;x;y/

K

x

y

C.x;x;y/

C.y;y;x/

�K .x;y/

Figure 13: The conformal angle

Generically C.x;x;y/ and C.y;y;x/ are different. The bitangnet sphere ˙K .x;y/

is then the unique sphere that contains both C.x;x;y/ and C.y;y;x/. We assume
that the sign of �K .x;y/ is given with respect to the orientation of ˙K .x;y/. Our
convention of the orientation of bitangent spheres [19] implies that the conformal angle
always satisfies 0� �K .x;y/� � .

Proposition 3.4 The absolute value of the infinitesimal cross ration �K .x;y/ is equal

to
dxdy

jx�yj2
and the argument is equal to �K .x;y/. Therefore we have

�K .x;y/D ei�K .x;y/
dxdy

jx�yj2
:

Remark (1) The conformal angle is of the order of jx�yj2 near the diagonal.

(2) The conformal angle behaves like an absolute value of a smooth function. There-
fore, the imaginary part of the infinitesimal cross ratio may have singularity at f.x;y/2
K �K n� j �K .x;y/D 0g.

Doyle and Schramm gave a cosine formula of E
.2/
ı .K/ (Auckly and Sadun [1], Kusner

and Sullivan [12]):

E
.2/
ı .K/D

“
K�Kn�

.1� cos �K .x;y//

jx�yj2
dxdy:

This is another proof of the conformal invariance of E
.2/
ı .

Proposition 3.4 and the cosine formula imply:
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Proposition 3.5 (Langevin and O’Hara [13]) The energy E
.2/
ı can be expressed in

terms of the infinitesimal cross ratio �K as

E
.2/
ı .K/D

“
K�Kn�

.j�K j �<e�K / :

3.6 <e �K and the canonical symplectic form of T �S 3

We give the first interpretation of the real part of the infinitesimal cross ratio as the
pull-back of the canonical symplectic form of the cotangent bundle T �S3 .

Definition 3.6 Let T �M be a cotangent bundle of an m–dimensional manifold M .
Let .q1; � � � ; qm;p1; � � � ;pm/ be local coordinates of T �M , where .q1; � � � ; qm/ are
local coordinates of M and .p1; � � � ;pm/ are local coordinates of fibers associated with
the basis fdq1; � � � ; dqmg. The canonical symplectic form !M of the cotangent bundle
T �M is a globally defined non-vanishing 2–form which can locally be expressed by

!M D

X
dqi ^ dpi :

It is an exact form. In fact, there is a 1-form � of T �M which can locally be expressed
by � D

P
pidqi that satisfies !M D�d� . This � is called the tautological form of

T �M . It can be defined globally as follows. Let T .T �M / be a tangent bundle of
T �M . Then � is given by

.�.x; v//.w/D v.d�.w// 2 R; .x; v/ 2 T �x M; w 2 T.x;v/T
�M;

where d� W T.x;v/T
�M ! TxM is induced by the projection � W T �M !M .

The space Sn �Sn n� can be identified with the total space of the cotangent bundle
T �Sn as follows. Assume Sn�RnC1 . Let x 2Sn . Let ˘x D .Spanhxi/? be the n–
plane in RnC1 through the origin which is orthogonal to x , and px W S

n n fxg!˘x

be a stereographic projection. We identify Tx Sn with ˘x Š Rn , and Tx Sn with
T �x Sn by

Tx Sn
3 u 7!

�
Tx Sn

3 v 7! .u; v / 2 R
�
2 T �x Sn:

Then the composition of identifications

'x W S
n
n fxg

Š
���!

px
˘x

Š
���!Tx Sn Š

���!T �x Sn

induces a canonical bijection ' :

Sn
�Sn

n�D
[

x2Sn

fxg�.Sn
nfxg/3 .x ; y /

'
7! .x ; 'x .y //2

[
x2Sn

T �x Sn
DT �Sn:
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Let us write the pull-back '�!Sn of the canonical symplectic form !Sn of T �Sn by
the same letter !Sn .

Theorem 3.7 (Langevin and O’Hara [13])

(1) The 2–form !Sn on Sn � Sn n� is invariant under the diagonal action of a
Möbius transformation: .T �T /�!Sn D !Sn .

(2) (Folklore) Let !crD
dw^dz

.w�z/2
be a complex 2–form on C�Cn�. It can be

considered the cross ratio of w;wC dw; z; zC dz :

.wC dw/�w

.wC dw/� .zC dz/
W

z�w

z� .zC dz/
D

dwdz

.w� z/2
:

Then <e!cr D �
1
2
!S2 through the identification of S2 and C [ f1g by a

stereographic projection.

(3) The real part of the infinitesimal cross ratio can be expressed as the pull-back of
the canonical symplectic form of the cotangent bundle T �S3 by the inclusion
�W K �K n� ,! S3 �S3 n�:

<e�.x;y/D�
1

2
��!S3 :

As a corollary, <e�.x;y/ is an exact form.

3.7 Pseudo-Riemannian structure of the set of spheres

We introduce some of the results from Langevin and O’Hara [14] in what follows.

We give the second interpretation of the real part of the infinitesimal cross ratio using
the pseudo-Riemannian structure of the set of oriented 0–spheres in S3 .

Let S.q; n/ denote the set of oriented q–spheres in Sn . As we saw in Subsection 3.2,
when n D 3 and q D 2 D 3� 1, S.2; 3/ can be identified with the de Sitter space
� in R5

1
. The restriction of the indefinite metric of R5

1
to each tangent space of �

induces an indefinite non-degenerate quadratic form of index 1. Let us consider the
generalization to the cases with bigger codimensions. We assume n� q � 2 in this
subsection.

Theorem 3.8 [14] The dimension of S.q; n/ is given by .q C 2/.n � q/. There
is a natural pseudo-Riemannian structure on S.q; n/ of index n� q . Namely, each
tangent space TpS.q; n/ admits an indefinite non-degenerate quadratic form g such
that TpS.q; n/ can be decomposed as the direct sum TpS.q; n/Š VC˚V� such that
dim VC D .qC 1/.n� q/, dim V� D n� q , and that the restriction of g to VC (or, to
V� ) is positive definite (or respectively, negative definite).
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This indefinite non-degenerate quadratic form g induces an indefinte pseudo-inner
product.

Just like in the case of nD 3, Sn can be realized in the Minkowski space RnC2
1

with
the metric

hx ; xi D �x0
2
Cx1

2
C � � �CxnC1

2

as the set of lines through the origin in the light cone V D fhv ; vi D 0g, and an
oriented q–sphere ˙ in Sn can be considered the intersection of Sn and an oriented
.qC 2/–plane ˘˙ through the origin. Therefore, S.q; n/ can be identified with the
Grassmann manifold

�Gr�.qC 2IRnC2
1

/D

�
˘ � RnC2

1

ˇ̌̌̌
oriented .qC 2/–plane through 0

˘ intersects the light cone transversally�

�
:

(� The second condition above is equivalent to say that ˘ is again a Minkowski space,
ie, the restriction of h ; i to ˘ is a non-degenerate indefinite quadratic form of index
1.) It is a homogeneous space

�Gr�.qC 2IRnC2
1

/Š SO.nC 1; 1/=SO.n� q/�SO.qC 1; 1/;

and Theorem follows from Kobayashi and Yoshino [11, Propopsition 3.2.6].

Let us introduce more constructive explanation which is useful in the study of conformal
geometry.

Let ˘ be an oriented .qC2/–dimensional vector subspace in RnC2
1

, and let fx1; � � � ;

xqC2g be an ordered basis of ˘ which gives the orientation of ˘ . Let M be a
.qC 2/� .nC 2/–matrix given by

M D

0B@ x1
:::

xqC2

1CAD
0B@ x1 0 x1 1 � � � x1 nC1

:::
:::

: : :
:::

xqC2 0 xqC2 1 � � � xqC2 nC1

1CA :
Let I D .i1; � � � ; iqC2/ be a multi-index .0� ik � nC 1/. Define pI D pi1���iqC2

by

pi1���iqC2
D

ˇ̌̌̌
ˇ̌̌̌
ˇ

x1 i1
x1 i2

� � � x1 iqC2

x2 i1
x2 i2

� � � x2 iqC2

:::
:::

: : :
:::

x.qC2/ i1
x.qC2/ i2

� � � x.qC2/ iqC2

ˇ̌̌̌
ˇ̌̌̌
ˇ :(3)
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Then pi1���iqC2
is alternating in the suffixes ik . The exterior product of x1; � � � ; xqC2

is given by

x1 ^ � � � ^ xqC2 D

X
0�i1<���<iqC2�nC1

pi1���iqC2
e i1
^ � � � ^ e iqC2

2

qC2^
RnC2

1
:

Let N D

�
nC 2

qC 2

�
. We identify

qC2

^ RnC2
1

with RN by expressing x1^� � �^ xqC2 2

qC2

^ RnC2
1

by .� � � ;pi1���iqC2
; � � � / 2 RN .

Let Œ˘� denote an unoriented .q C 2/–space which is obtained from ˘ by for-
getting its orientation. Then it can be identified by the homogeneous coordinates
Œ� � � ;pi1���iqC2

; � � � � 2 RPN�1 . They are called the Plücker coordinates or Grassmann
coordinates. They do not depend on the choice of .qC2/ linearly independent vectors
which span Œ˘�. Let Gr .qC 2; nC 2/ be the Grassmann manifold of the set of all
.qC 2/–dimensional vector subspaces in RnC2 . The mapping

Gr .qC 2; nC 2/ 3 Œ˘� 7! Œ� � � ;pi1���iqC2
; � � � � 2 RPN�1

is called the Grassmann mapping.

The Plücker coordinates pi1���iqC2
are not independent. They satisfy the Plücker

relations:

(4)
qC3X
kD1

.�1/kpi1���iqC1jk
p

j1����jk ���jqC3
D 0;

where �jk indicates that the index jk is being removed. (We remark that the digits
i1; � � � ; iqC1; jk in the multi-index above are not necessarily ordered according to their
sizes. ) All the Plücker relations are not necessarily independent.

The pseudo-Riemannian structure of
qC2

^ RnC2
1

is given by

he i1
^ � � � ^ e iqC2

; ej1
^ � � � ^ ejqC2

i D �

ˇ̌̌̌
ˇ̌̌ hei1

; ej1
i � � � hei1

; ejqC2
i

:::
: : :

:::

heiqC2
; ej1
i � � � heiqC2

; ejqC2
i

ˇ̌̌̌
ˇ̌̌ ;

which can be obtained by generalizing a formula in the case of codimension 1,
4

^ R5
1 Š R5

1 . Therefore,

fe i1
^ � � � ^ e iqC2

g0�i1<���<iqC2�nC1
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can serve as a pseudoorthonormal basis of
qC2

^ RnC2
1

which satisfies

he i1
^ � � � ^ e iqC2

; e i1
^ � � � ^ e iqC2

i D

(
�1 if i1 � 1;

C1 if i1 D 0:

It follows that if v D .� � � ;pi1���iqC2
; � � � / 2

qC2

^ RnC2
1
Š RN then

(5) hv ; vi D �
X

1�i1<���<iqC2

pi1���iqC2

2
C

X
i1D0<i2<���<iqC2

p0i2���iqC2

2:

Put N1 D
�
nC1
qC2

�
and N2 D

�
nC1
qC1

�
. Then

qC2

^ RnC2
1
Š RN can be decomposed to a

direct sum RN1
� ˚R

N2

C , where the restriction of h ; i to RN1
� (or R

N2

C ) is negative (or
respectively, positive) definite. We denote RN with the metric h ; i given by (5) by
RN

N1
.

Theorem 3.9 [14] Let N D
�
nC2
qC2

�
and N1 D

�
nC1
qC2

�
as before.

(1) Let ˘ D Spanhx1; � � � ; xqC2i be an oriented .qC 2/–dimensional vector sub-
space in RnC2

1
spanned by x1; � � � ; xqC2 . Put p D x1 ^ � � � ^ xqC2 2 RN

N1
. Then

˘ intersects the light cone V transversally if and only if hp ; pi> 0.

(2) Let SN�1
N1

be the unit pseudosphere:

SN�1
N1

D

n
v D .� � � ;pi1���iqC2

; � � � / 2 RN
N1

ˇ̌̌
hv ; vi D 1

o
and �QP .qC 2IRnC2

1
/ be the quadric satisfying the Plücker relations:

�QP .qC2IRnC2
1

/D

8<:.� � � ;pi1���iqC2
; � � � /

ˇ̌̌̌
ˇ̌ qC3X

kD1

.�1/kpi1���iqC1jk
p

j1����jk ���jqC3
D 0

9=; :
Then the set S.q; n/ of oriented q–dimensional spheres in Sn can be identified with
the intersection of SN�1

N1
and �QP .qC 2IRnC2

1
/:

S.q; n/Š SN�1
N1
\ �QP .qC 2IRnC2

1
/� RN

N1
:

Let us denote the right hand side by ‚.q; n/.

(3) Let ˙.x1; � � � ; xqC2/ denote an oriented q–sphere ˙ which is given as the
intersection of Sn and an oriented vector subspace Spanhx1; � � � ; xqC2i. Then the

Geometry & Topology Monographs, Volume 13 (2008)



Energy of knots and the infinitesimal cross ratio 441

bijection  G W S.q; n/!‚.q; n/ is given by

(6)  G.˙.x1; � � � ; xqC2//D
x1 ^ � � � ^ xqC2p

hx1 ^ � � � ^ xqC2; x1 ^ � � � ^ xqC2i
:

We show that a Möbius transformation of Sn induces a pseudoorthogonal transfor-

mation of ‚.q; n/ �
qC2

^ RnC2
1

. Let O.N2;N1/ denote the pseudoorthogonal group.

Definition 3.10 Let N D
�
nC2
qC2

�
as before. Define

	q;nW MnC2.R/ 3AD .aij / 7! �AD .zaIJ / 2MN .R/;

where I D .i1 � � � iqC2/ and J D .j1 � � � jqC2/ are multi-indices, and zaIJ is given by

zaIJ D

ˇ̌̌̌
ˇ̌̌ ai1j1

� � � ai1jqC2

:::
: : :

:::

aiqC2j1
� � � aiqC2jqC2

ˇ̌̌̌
ˇ̌̌ :

Proposition 3.11 [14] Let N D
�
nC2
qC2

�
, N1 D

�
nC1
qC2

�
and N2 D

�
nC1
qC1

�
as before. Let

AD .aij / 2MnC2.R/.

(1) A matrix �A 2MN .R/ satisfies

.Ax1/^ � � � ^ .AxqC2/D �A .x1 ^ � � � ^ xqC2/ .8x1; � � � ; xqC2 2 RnC2
1

/

if and only if �AD 	.A/.
(2) If A 2O.nC 1; 1/ then 	.A/ 2O.N2;N1/.

(3) The restriction of 	q;n to O.nC 1; 1/, which shall also be denoted by 	q;n ,

	q;nW O.nC 1; 1/ 3A 7! �A 2O.N2;N1/

is a homomorphism.

(4) Let  G W S.q; n/!‚.q; n/ be the bijection given in the above Theorem. Then,

 G.A �˙/D 	q;n.A/ G.˙/

for ˙ 2 S.q; n/ and A 2O.nC 1; 1/.

Geometry & Topology Monographs, Volume 13 (2008)



442 Jun O’Hara

3.8 <e � as a signed area form

We give the second interpretation of the real part of the infinitesimal cross ratio.

When q D 0 and nD 3 the set S.0; 3/ of oriented 0–spheres in S3 is a subspace of
R10

6
since N D

�
5
2

�
D 10 and N1 D

�
4
2

�
D 6. At the same time, it is identical with

S3 �S3 n�. It admits the pseudo-Riemannian structure of index 3 (Theorem 3.8).
The pseudoorthonormal basis can be given by mutually pseudoorthogonal pencils, as
is illustrated in Figure 14 (which is a picture in R3 obtained through a stereographic
projection).

Figure 14: 3 spacelike pencils (above) and 3 timelike pencils (below)

Let .x;y/ be a pair of distinct points of a knot K . Then it can be considered a point
in S.0; 3/Š‚.0; 3/. Let it be denoted by s .x;y/. Namely, s induces a map

s W K �K n� ,! S3
�S3

n�
Š
�! S.0; 3/Š‚.0; 3/� R10

6 :

The image s .K �K n�/ is a surface in ‚.0; 3/. Its area element is given by

dv D

s ˇ̌̌̌
hsx; sxi hsx; syi

hsy ; sxi hsy ; syi

ˇ̌̌̌
dxdy ;

where sx and sy denote
@s

@x
.x;y/ and

@s

@y
.x;y/ in Ts .x;y/‚.0; 3/. It turns out that

hsx; sxi D hsy ; syi D 0. Therefore

dv D

q
�hsx; syi

2 dxdy:

Definition 3.12 Define a signed area form ˛ of the surface s .K �K n�/ by

˛ D hsx; syi dx ^ dy:
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Theorem 3.13 [14] The real part of the infinitesimal cross ratio is equal to the half of
the signed area form of the surface s .K�Kn4/ with respect to the pseudo-Riemannian
structure of S.0; 3/:

<e�K .x;y/D
1

2
hsx; syi dx ^ dy:

Let 
1[
2 be a 2–component link. The infinitesimal cross ratio �.x;y/ .x 2 
1;y 2


2/ can be defined in the same way. The above Theorem and Theorem 3.7 imply that
the signed area form ˛D 2<e� of the surface s .
1�
2/�‚.0; 3/ is an exact form.
Therefore, Stokes’ theorem implies that the signed area of s .
1 � 
2/ vanishes:Z


1�
2

˛ D

Z
x2
1

Z
y2
2

hsx; syi dx ^ dy D 0:

3.9 The imaginary part of the infinitesimal cross ratio

Unlike the real part, the imaginary part =m� of the infinitesimal cross ratio does
not have a nice global interpretation. It cannot be expressed as a pull-back of a

globally defined 2–form. (We cannot generalize the imaginary part of !crD
dw^dz

.w�z/2

to Sn � Sn n� for n � 3.) It might be singular at .x;y/ 2 K �K n4 where the
conformal angle �K .x;y/ vanishes.

The imaginary part =m� of the infinitesimal cross ratio can be considered a local
transversal area element of geodesics in H4 joining pairs of points on the knot K . To
be precise, let S3Š @H4 , l.x;y/ be a geodesic in H4 joining a pair of points x and y

on K , ˘0 be any totally geodesic 3–space of H4 which is perpendicular to l.x0;y0/,
and S.x;y/D l.x;y/\˘0 be a surface in ˘0 . Then =m�.x0;y0/ is equal to the
quater of the area element of S.x;y/ at .x0;y0/ [14].
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