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On the category of Euclidean configuration spaces
and associated fibrations

FRIDOLIN ROTH

We calculate the Lusternik—Schnirelmann category of the k" ordered configuration
spaces F(R",k) of R" and give bounds for the category of the corresponding un-
ordered configuration spaces B(R”, k) and the sectional category of the fibrations
mp: F(R", k) — B(R", k). We show that secat(rr}/) can be expressed in terms of sub-
space category. In many cases, eg, if n is a power of 2, we determine cat(B(R", k))
and secat(r;) precisely.

55M30; 55R80, 55540

1 Motivation and results

The sectional category secat(p) of a fibration p: E — B is defined to be the least integer
n such that the base B can be covered with n 4 1 open sets admitting local sections
(Cornea, Lupton, Oprea, and Tanré [9, 9.13]). This notion, as in Svarc [22, page 70]
sometimes defined without the + 1—shift and referred to as the Schwarz genus of p, has
proved very useful. For instance, consider the fibration ”13: F(R?, k) — B(R?, k) from
the ordered configuration space F(RZ, k) ={(x1, X2, ...,xg) € (R*)K|x; # xj fori #
j} to its unordered quotient B(R?, k) := F(R?,k)/ X given by the obvious action
of the symmetric group X; on k letters. The sectional category of the fibration
n,%: F(R?,k) — B(R?,k) has attracted some attention since Smale showed that it
provides a lower bound for the complexity of algorithms computing the (pairwise
disjoint) roots of a complex polynomial of degree k& (Smale [21], Vasiliev [24; 23], de
Concini, Procesi and Salvetti [10] and Arone [2]). Nevertheless secat(yr,f) has not yet
been determined for all k.

We now recollect what is known on secat(ﬂlz) so far: Vassiliev showed the inequality
k —Dp(k) < secat(n,?) <k —1 where D,(k) is the sum of the coefficients in the
p—adic extension of k [24; 23]. In particular, this gives secat(n,f) =k—1if k is
a power of a prime. If k is not a power of a prime, it is very difficult to determine
secat(nlz) precisely, and it is only recently that some progress has been made. In [10]
de Concini, Procesi and Salvetti developed an obstruction theory to decide whether
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secat(n,?) equals its known upper bound k — 1 and showed that for k = 6 — the least
k for which the question was open — in fact it does not. Based on that theory, Gregory
Arone did some more calculations and showed that secat(n,%) < k —1 holds for all k
which are neither the power of a prime nor twice the power of a prime [2]. If k =2 e,
the question whether secat(n,f) =k — 1 is still open for some £ and odd p, as well as
the precise determination of secat(n,f) in many other cases.

In this paper we begin to study the sectional category secat(r;’) of the fibrations
ny: F(R", k) — B(R", k) for varying n € N. This is closely related to the Lusternik—
Schnirelman category cat(B(R", k)) of the unordered configuration spaces B(R”, k).
Here we follow [9] and say that the Lusternik—Schnirelman category cat(X) of a
topological space X is the least integer m such that X can be covered with 71+ 1 open
sets, which are all contractible within X . One elementary relation between secat(n,’;)
and cat(B(R", k)) is the general fact that the sectional category of a fibration is bounded
above by the category of its base. Together with cat(B(R",k)) < (k—1)-(n—1)
(Lemma 4.1) this gives an upper bound for secat(rr}). Moreover, in our cases, we get
descriptions of secat(r}/) in terms of the category of a map and subspace category,
definitions whereof are given in Section 2:

Theorem 1.1 Let n,k,r € {1,2,3,...} and let n}: F(R", k) — B(R", k) be the
obvious fibration. More generally we can admit r = oo as well. Then

secat(r}) = cat(B(R", k) — B(R""" k)) = catggn+r gy BR", k).

The key to this observation is to consider the ordered Euclidean configuration spaces as
well. Another reason for considering the spaces F(R", k) is that cat(F(R", k)) gives a
lower bound for cat(B(R", k)) by the usual covering argument. In general this bound
is quite bad. For n = 2 however, it allows to precisely determine cat(B(R?,k)) and
shows that the subtleties in the calculation for secat(ni) do not arise in the calculation
of cat(B(R?, k)), which turns out to be k — 1 for all k. The following result might
also be of interest for its own sake.

Theorem 1.2 For all n > 1, ie, as long as F(R"*!, k) is connected,
cat(F(R" k) =k —1.
The space F(R, k) consists of k! contractible components, hence

cat(F(R,k)) = k!— 1.
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It would be nice to have an analogous statement for the category of the unordered
Euclidean configuration spaces, able to compete with the previous theorem in simplicity.
We hold the following quite plausible:

Conjecture 1.3 For all n and k
cat(B(R",k))=(k—1)-(n—1).

Among other indications, our optimism is based on the following calculations. We use
the more usual notation « (k) for D, (k):

Theorem 1.4 Let a(k) = D, (k) be the number of 1’s in the dyadic expansion of k.
Then we have

(k —a(k))-(n—1) <secat(n}) <cat(B(R",k)) < (k—1)-(n—1).

Theorem 1.5 In case k is a power of 2 or k = 3 orif n is odd and k = p is any
prime, we have

secat(my ) = cat(B(R", k)) = (k —1)- (n—1).
Moreover, for any k we have

cat(B(R?, k)) = (k —1).

These results are obtained by exploiting work of Vassiliev, cohomology calculations by
Fred Cohen and combining them with standard results from LS—theory and the concept
of category weight. The statement for k£ = 3 follows together with Theorem 1.1 and
geometric insight. The general upper bound in Theorem 1.4 can be derived from the
following lemma, which we could not find in literature.

Lemma 1.6 Let X be an n—dimensional CW-complex, X ) jts r—skeleton and
assume that X — X =1 s connected. Then cat(X — X*—D) <n—k.

We are aware of the incompleteness of Theorem 1.4. We are also aware that im-
provements can be achieved. For instance, we gained some generalizations in [20].
However, we did not obtain a complete generalization of Vassiliev’s results, new
improvements of the upper bound for secat(r}), an unbounded sequence (n;) such
that cat(B(R",k)) = (k — 1)(n; — 1) for all k or of course a proof or disproof of
Conjecture 1.3.

We think it is worth mentioning that the behaviour showing up in Vassiliev’s calculations
and our Theorem 1.4, as well as the lack of complete information seem not to be unusual.
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For example, take the immersion problem for real projective spaces R P” into R which
is still open in the general case. Whitney’s embedding theorem says that an immersion
exists at least for m greater or equal to 2 — 1. This bound is taken if # is a power of 2.
More generally, the number « (1) appears in Ralph Cohen’s general immersion theorem
which says that every compact, differentiable, n—dimensional manifold immerses in
Euclidean space of dimension 2n — () [8]. For the case of complex projective spaces
it has been conjectured, that the immersion dimension is 4n — 2« (n) + €, where €
is a non-negative integer bounded roughly by 3, see Gonzdlez [15] and references
therein. In fact, these immersion problems are closely related to invariants of the
category type. For instance, in the real case and n # 1, 3, 7, Faber, Tabachnikov and
Yuzvinsky showed in [13] that the immersion dimension is the sectional category of
PRP" — RP" x RP", up to shift also known as the topological complexity of RP”".
Here PRP" is the space of all continuous paths y: [0, 1] — RP”", and the fibration is
evaluation at the end points. This notion was also useful for the immersion problem for
2¢—torsion lens-spaces for ¢ > 1 as an approach to the immersion problem for complex
projective spaces [15].

As another example consider the Lusternik—Schirelman category of the real Grass-
mann manifolds G, of k dimensional subspaces in Rtk By dimensional reasons
cat(G, x) <nk and Berstein showed in [3], that this bound is taken if and only if n =1
ork=1lor(n=2and k =2"—1) or (k =2 and n = 2" —1). We are not aware
of precise determinations in the general case.

This paper developed from the author’s diploma thesis [20] which is more detailed in
a number of points. However, here we put more emphasis on the sectional category
point of view.
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2 Lusternik—Schnirelman category

The investigation of numerical homotopy invariants called category began with an
article by Lusternik and Schnirelman [18]. Their aim was to obtain bounds for the
number of critical points of a smooth function on a manifold. Since then various slightly
differing definitions showed up in the literature. The definition given in the introduction
takes into account that we should have cat(x) = 0 for a point or contractible space .
We followed [9] and also recommend this book as a source for the following results.

We now give a unifying approach to various notions of category including those
mentioned above. For that purpose we define the category cat(f) ofamap f: A — B.
Let cat( /) be the least integer n, such that 4 can be covered with n + 1 open sets
and the restriction of f to each of these sets is nullhomotopic. Such a cover of A4 is
called categorical.

We recover the definitions of the introduction via cat(X) = cat(idy) and also secat(p)
equals cat(fp) when f, is a classifying map for a principal fibration p, see [9, 9.18,
9.19] and Hatcher [16, Exercise 22 page 420]. We will only deal with fibrations
of this type and can hence use secat(p) and cat(f,) interchangeably in the sequel.
Furthermore, for A C B the subspace category of catp(A4) is defined to be the least n
such that there exists a cover of A with n+ 1 subsets of B, each open and contractible
in B. For an open inclusion i: A < B one obviously has catp(A4) = cat(i).

Alternative definitions for cat(X) which agree with the standard one under mild
hypotheses, including the case where X is a pointed CW—complex, have been given
by Whitehead and Ganea. For a space X Ganea constructed a sequence of fibrations
pn: Gn(X) = X which have a section if and only if cat(X) <n.

We now recollect some properties of the category of a space X:

Proposition 2.1
(1) If X dominates Y, ie, if there are maps f: X — Y and g: Y — X such that
fog~idy,thencatY <cat X . In particular, category is a homotopy invariant.
(2) We have cat(E) < cat(B) for a covering p: E — B with E path-connected.
(3) We have secat(p) < cat(B) for a fibration p: E — B.

(4) We have cupp(X) < cat(X) where cupg(X) is the R—cuplength for any coeffi-
cient ring R, ie, the least n such that all cup-products of at least n+1 non-trivial
factors in H* (X ; R) vanish.

(5) If X isan (n— 1)—connected CW-complex, then cat(X) < w
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All proofs are elementary and can be found in [9, Chapters 1 and 3]. Since the statement
of Lemma 1.6 fits very well in this collection, we now give its proof:

Proof of Lemma 1.6 The idea is the same as one can use to show that every CW-—
subcomplex is a strong deformation-retract of some open neighborhood. First note that
subadditivity (ie, caty (4 U B) < caty(A4) +caty(B) + 1 for A, B C X)) yields

n
cat(X —X(k_l)) = caty_ y k-1 (L[ X(") _ X(r—l))
r=k

n
<n—k+ Z caty _ yu—1 (X(r) —X(r_l)) .
r=k

Hence it suffices to show that catX_X(k—l)(X(’) —X0=D) =0 forall r € {k,k +
1,...,n},ie, that X () — x =1 5 covered by some set which is open and contractible
in X — X% =D Fix r e {k,k +1,...,n} for the sequel. X — X~ is a disjoint
union of r—balls, hence contractible in X — X%~V since X — X*=1 is path-
connected. We are left to show that X ) — X =1 s a retract of some set Vj,,
openin X — X (k=1) ' The requirement that V;, is contractible in the ambient space
X — X%~ is then automatically satisfied since X ) — X "1 is a disjoint union of
r—cells, hence contractible in the ambient space: Each of the cells is contractible to a
point and then we use that in our case the ambient space is path-connected.

We will obtain V,, by recursively defining sets V; for r < £ < n, such that V; D
X@ — x=1 jsopenin X® — X* =1 and retracts to X — X~ For V, we
can just take V, 1= X — xC0=D 1f v, 5 X — x=1D a5 required is already
defined, extend it to obtain V. as follows: For each (£ + 1)—cell e choose a point x,
in its interior, as well as radial homotopies /¢: X O U (e—x¢) > XD U (e —x), ie,
homotopies relative X ©) with h§=id, h$: XOU(e—xe) > XD and h$ohf =h.
The set (h‘i’)_1 (V) then is obtained from Vy by glueing a truncated cone over V; Nade,
open in e. Define Vy4 1 := Ue(hel')_1 (V¢), taking the union over all (£ + 1)—cells e.
The set VD X — X~ then is open in X ¢+ — x®k=1) (weak topology) and
retractible to X ) — X "=1  This shows caty _ y (k-1 (X(’) — X(’_l)) =0. O

Most of our lower bounds for the sectional category are obtained through the concept of
category weight wgtp. For a non-zero class u € H*(X; R) define wgtgp(u) to be the
greatest k (or 00), such that p;_,(u) =0¢€ H*(Gg_;(X); R) for the (k —1)st Ganea
fibration py_1: Gr_1(X) — X . We recollect important properties and consequences
from [9, pages 63f, 242ff and 261f]. The last point is a consequence of [9, Proposition
9.18 and 8.22(2)]:
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Proposition 2.2 Let u € H*(X: R) be non-zero. Then:

(1) Ifue H* (K(m, 1); R) is a class in the cohomology of an Eilenberg—MacLane
space of type (m, 1), then wgtp(u) = k.

(2) If /1Y — X issuchthat f*(u) # 0, then wgtp(f™*(u)) > wgtg(u). In other
words: If a cohomology class does not vanish under pullback, then its category
weight cannot decrease.

(3) If p: E — Y is a fibration arising as a pullback over f: Y — X of a fibration
E — X with contractible total space E and f*(u) # 0, then wgtp(u) <
secat(p).

3 Cellular models, geometry and cohomology of Euclidean
configuration spaces

In this section we will collect the necessary algebraic and geometric data in order to
derive bounds for the category of Euclidean configuration spaces in combination with
the results of Section 2. The maps and spaces under consideration fit into the following
fundamental diagram

(D 2k b)) Tk
F(R" k) $_ F([Rn—H,k) . F(R®, k) ~ x

n,’fl in,’j'“ l”/?o

B[R", k) J, B(R"*! k) —— -+ —— B(R®, k) = K(Z, 1)

where the vertical maps are the coverings given by the free action of the symmetric
group ¥ and horizontal maps are induced by the inclusion of R” into R**!. Tt
follows from Fadell’s and Neuwirth’s fundamental sequence of fibrations [12], that
F(R", k) is n —2 connected. As a consequence the limit spaces on the right give the
universal covering of an Eilenberg—MacLane space K(Xj, 1). Note for later use that
all the rectangles in diagram (1) are homotopy pullbacks.

The integer cohomology of Euclidean configuration spaces was calculated by Fred
Cohen [6; 7]. In the formulation of [5] and for n > 2, H*(F(R",k)) is given by
generators A; j, (1 < j <i < k) all in degree n — 1, subject to the relations
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(1) 47;=0
(2) Ai,in,g = Ag’j(Ai’g — Ai’j) for ] < E <

(3) associativity and graded commutativity.
We can draw the following conclusions:
Corollary 3.1 For all n > 2, we have cup,(F(R", k)) =k —1.

Corollary 3.2 Letn > 3. Then F(R", k) is homotopy equivalent to a CW-complex
Y with cells just in dimension ¢ - (n — 1) for g € {0, 1, ...,k —1}.

Proof Follow the construction in [16, 4.C page 429] and note that in our case the
homology is free. A geometric construction (also for n = 2) can also be found in [11,
Sections VI.8,VI.10]. O

These corollaries will allow to calculate the category of ordered configuration spaces
completely and we now turn to the unordered case and sectional category.

We are going to apply the concept of category weight using the fundamental diagram
(1). It turns out that we can draw a lot of information from a CW-decomposition of the
one-point compactification B(R", k) of B(R", k) introduced by Vassiliev [24][23,
pages 28ff]. This decomposition is a generalization of the one introduced by Fuks
for n = 2 in [14]. Vassiliev describes the various cells of his model as well as their
boundaries mod 2 in terms of certain so-called (n, k)—trees. A precise description of
what an (n, k)—tree looks like is given in the construction [23, page 28]. We only note
that an (n, k)—tree has at least k +#n — 1 and at most k -n edges. Vassiliev has proven
that for any 7, k there exists the structure of a C W —complex of the space B(R", k)0
with cells being sets of points corresponding to various (7, k)—trees and the added
point [23, lemma 3.3.1, page 29]. Furthermore, the dimension of such a cell is equal to
the number of edges in the corresponding tree [23, lemma 3.3.2, page 29]. Altogether,
this leads to the following observation:

Proposition 3.3 (Vassiliev) There is a CW—decomposition of the one-point compacti-
fication B(R", k)~ having the point oo as the only cell of dimension 0. All other cells
have dimension r withk +n—1=<r <k-n.

There is a stabilization of these models as n turns to oo, and using Poincaré—Lefschetz
duality, Vassiliev shows:
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Proposition 3.4 [23, page 27] The homomorphism
H*(B(R*,k);7/27) — H*(B(R",k);Z/27)

induced by the map from the fundamental diagram (1) is surjective.

The reader who is familiar with Vassiliev’s cell decomposition and its description in
terms of trees may also derive the following:

Corollary 3.5 Let a(k) be the number of 1’s in the dyadic decomposition of k. Then

=0 ifg>(k—ak) -(n—1)

Hq(B([R”,k):Z/QZ){#O ifg=(k—ak)) -(n—1).

In other words
cohdimy/,7 B(R" k) = (k —a(k))-(n—1).

Proof For k = 2 this follows from [14, Section 4,4.2] with an elementary proof
on page 144f. For arbitrary k > 2 this follows from the theorem in [23, page 31]
once one is familiar with Vassiliev’s cell decomposition. We do not want to repeat
this construction but give some hints for the reader who wants to get acquainted with
Vassiliev’s notation and the labeling trees I'g; that occur in his theorem: For the case
of H*(B(R",k)) (which is H*(R"(k)) = H*(R"(m)) in Vassiliev’s notation, hence
k = m) such a tree has vertices concentrated on 7 + 1 horizontal lines and branches
from top to bottom. A typical example is given in [23, Figure 12, page 31]. The
depth of such a tree is the number of the highest horizontal line beneath which no
more branchings exist, see [23, Figure 11, page 30]. The branching condition (page
30, bottom) implies that the number of vertices on each horizontal line is a power of
two and the tree 'k, has 2IKil vertices on the bottom line. The m in [Ky,..., K;;m]
stands for m —21K1l—... 2l K| copies of the unique tree I'y that is just a vertical chain
of edges without any branching. This means that if we add up the number of vertices
on the bottom horizontal lines over all the trees of the collection [Ky, ..., K;;m], the
sum is m. We are looking for an additive generator of maximal degree, which means
that we are looking for a collection K, ..., K;;m] where the sum of the edges of all
the trees is minimal. This is because H*(B(R", k)) is obtained via Poincaré duality
from the space B(R”", k)oo whose cells correspond to trees, its dimensions correspond
to the number of edges. From the fact that on each bottom line the number of vertices
is a power of two and their sum is k = m, it follows that a collection [K,..., K;;m]
consists of at least a(m) = a(k) trees. For k = 2/1 ... 4 2l such a collection of
trees with the minimal number of edges is given in Figure 1.
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S

n edges

——

2k

Figure 1: A collection of trees representing an additive generator in
H@- D= ®)(BR" k), 7/27).

This collection has k 4+ (n — 1) - «(k) edges and hence represents a generator of
H*(B(R", k)) in degree nk —(k+(n—1)-a(k)) = (n—1)-(k —a(k)). More details,
pictures and examples are also given in [20, pages 25-36]. In particular, see Satz 2.9
on page 34. m|

There is also a statement for Z/ pZ—coefficients available in literature, which we shall
exploit later. It goes back to Fred Cohen [4; 6] and was proved anew and stated
explicitly by Ossa (see [19, Proposition 3.4] and the following remark for p = 3):

Proposition 3.6 If p is an odd prime, then
HP=V00(8,:2/ p7) — HP™VOD(BR", p):Z/ p2)
is an isomorphism.

The reader interested in cohomological dimensions of configuration spaces should have
a look at Kallel [17].

4 Calculations and proofs

We begin with the partly special arguments for the computation of cat(F(R”, k)) and
cat(B(R", k)) in case n or k is less or equal to 2.

k =1 Clearly, cat(F(R", 1)) = cat(B(R", 1)) = cat(R") = 0.

n=1 If n =1, then F(R, k) has k! contractible components and B(R, k) is
contractible, hence cat(F(R, k)) = k! —1 and cat(B(R, k)) = 0.
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k=2 Next, since R" is a topological group we have F(R",2) ~R"x F(R"—{0}, 1) ~
S"~1 [6] and hence cat(F(R",2)) = 1 for all n > 1. In the unordered case we use
the homotopy equivalence B(R",2) ~ RP"~! [6] which implies cat(B(R",2)) =
cat(RP""!) = n — 1, bounded above by the dimension and below by the mod 2
cuplength.

n=2 Wehave k — 1 = cup,(F(R?, k)) < cat(F(R?,k)) < cat(B(R?,k)) <k —1
resulting from Corollary 3.1, Proposition 2.1 (4) and (2) and the more general Lemma
4.1.

Lemma 4.1 For all n and k we have cat(B(R",k)) < (k—1)-(n—1).

Proof We can assume n > 2. Then the lemma follows from Proposition 3.3 and
Lemma 1.6. m|

Proof of Theorem 1.2 'We now can assume 7n, k > 3. Then k—1 =cup,(F(R", k)) <
cat(F(R",k)) <k —1 follows from 3.1, 2.1(4) and (5). Remember that F(R", k) is
(n — 2)—connected. |

Proof of Theorem 1.4 It follows from Proposition 3.4 together with Proposition 2.2,
that the degree of each non-zero cohomology class in H*(B(R",k);Z/27Z) gives a
lower bound for secat(r;'). Hence by Corollary 3.5 and the previous Lemma 4.1 we
have (k —a(k)) - (n — 1) = cohdimz,,7(B(R", k)) < secat(r})) < cat(B(R", k)) <
(k—=1)-(n—1). Here we use 2.1(3) and Lemma 4.1 again. a

Proof of Theorem 1.1 For notational convenience we just formulate the proof for r =
1. The other cases are similar. We first show secat(r}') = cat(B(R", k) <~ B(R"*! k)
and denote the inclusion by f* as in the fundamental diagram (1). Consider secat(r;
as the category of a classifying map B(R", k) — B(R®°, k). The classifying map of
nry factors through f, hence secat(r})) < cat(f).

Now consider the left square in diagram (1). Given a subset A C B(R", k) over which
) is trivial, we can factor f'|4 as nZ'H o f~ os where s is a local section for 7}/ over
A. Now we observe that F(R", k) is contractible in F(R"T!, k): Remember that a
point in F(R", k) is a k—tuple in R” = R" x {0} C R**!. First move the k points
of such a tuple linearly by varying only their last coordinates such that in the end the
i™ point lies in R” x {i}. Then continue moving the i point linearly to (0,...,0,i).
The fact that F(R”, k) is contractible in F(R"*!, k) implies that the restriction of f
to A is nullhomotopic. This shows cat(f) < secat(r}).
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The second equality in Theorem 1.1 can be proved quite elementary by pulling back
and extending categorical covers. Remember that a point in U; C B(R",k) is a k—
element subset of R"” =~ R" x {0}. If U; is open and contractible, extend it to an
open contractible subset of B(R"*! k) by simply letting vary the elements of its
points in their (n + 1) coordinates within an open interval, say (—1, 1). Alternatively
one can apply the next lemma and the fact that the spaces B(R”, k) are normal (as
CW-complexes) and absolute neighborhood retracts (ANR’s) as retracts of some open
subset of some RY . For a definition of ANR see the appendix of [9] and Warner [25]
for a more detailed introduction. d

Lemmad4.2 Ifi: A— B isaclosed inclusion between normal ANR’s, then catg(A4) =
cat(i).

Proof Given a categorical cover for catg(A4), inverse images under i give a cat-
egorical cover for cat(i), hence cat(i) < catg(A). Vice versa, given a categorical
cover Uy, ---, Uy for cat(i), we can pass to an open refinement Vy,---, V; with
V; C Vi C U; since A is normal [9, Theorem A.1]. Hence A can be covered with
k41 sets, each closed and contractible in B. In [9] this fact is denoted by cat/g(4) <k
and under the hypothesis that B is a normal ANR and 4 C B is closed, [9, Theorem
1.10 ] says that catg(A4) = catp(A). Hence we have catp(4) < cat(i). a

Proof of Theorem 1.5 The statement for & a power of 2 is a corollary to Theorem
1.4. If k = p is an odd prime, we combine Proposition 3.6 with the group cohomology
H*(X,:2/pZ) = 7/ pZ|a] ® Ap(B) where « is a polynomial generator in degree
2(p—1) and B is an exterior generator in degree 2(p — 1) — 1. This can be derived
from Adem and Milgram [1, VI.1.4,1.6, I11.2.9] or see Ossa [19] for the statement.
Hence H(p_l)(”_l)(Ep; Z/pZ) # 0 if n is odd. Now we can argue as in the proof of
Theorem 1.4 and obtain

—1)-(n—1) ifnisodd

ny > (p

secat(my) = { (p—1)-(n—2) ifniseven.

The inequality for even #n is a consequence of the statement for odd 7, since
H*(£p:Z/pZ) — H*(BR"™', p):Z/ pZ)

factors via H*(B(R", p);Z/pZ). The improvement for k = 3 then follows from
the next lemma and the statement cat(B(R?, k)) = (k — 1) was already shown at the
beginning of this section. m]

Lemma 4.3 For all n we have

) secat(né’“) < secat(n}) + 2.
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Proof We partition B(R"+!,3) = [[}_, Vi (R"*!), where Vi (R"*!) is the sub-
manifold of all 3—configurations in R”*! whose image under the perpendicular projec-
tion onto R" 2 R” x {0} C R"*! consists of exactly k points. V;(R"*1) is obiously
contractible. The space V,(R"”*!) is not necessarily contractible but it is contractible
whithin B(R"*1,3). This can be seen by an argument similar to the one that we
used in order to show that F(R”, k) is contractible within F(R"*! k). The space
V> (R™) can be contracted within B(R”*!,3) in the following way: Move the three
points (making up a point in V,(R")) linearly by varying only their last coordinates
to obtain a three-element subset of R”*1 of the form {(x,—1), (¥,0), (X, 1)} (here
x,X € R"), then move this linearly to {(0,0,—1),(0,0,0), (0,0, 1)}. Furthermore
catgpn+1.3)(V3 (R*1)) < cat(B(R", 3)), since V3(R"T!) c B(R"*1,3) is open and
retractible to B(R",3). Now we should pass to tubular neighborhoods U;, U, of
V1, V> in order to have open contractible sets available. We obtain

secat(n;’Jr 1 < cat(B(R"™1, 3))

3
= cat(] | Vi®"*)
k=1
= CatB(Rn+1,3)(U1 @) U2 U V3)

S CatB(Rn-‘rl’?,)(V}}) + CatB(Rn-‘rl’?,)(Uz) + CatB(Rn-‘rl’?)) (U]) + 2
< catB(Rn+1,3)(B(R”, 3)) 4+ 2
= secat(n}) + 2.

The last inequality follows from Theorem 1.1 with r = 1. a
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