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Automorphic functions for a Kleinian group

MASAAKI YOSHIDA

In the paper ‘Automorphic functions for a Whitehead-complement group’ [5], Mat-
sumoto, Nishi and Yoshida constructed automorphic functions on real 3–dimensional
hyperbolic space for a Kleinian group called the Whitehead-link-complement group.
For a Kleinian group (of the first kind), no automorphic function/form has been studied
before. In this note, their motivation is presented with a historical background.

11F55, 14P05; 57M25

Dedicated to Professor Fred Cohen on his sixtieth birthday

1 Introduction

In [5] Matsumoto, Nishi and Yoshida constructed automorphic functions on real
3–dimensional hyperbolic space for a Kleinian group called the Whitehead-link-
complement group. For a Kleinian group (of the first kind), no automorphic func-
tion/form has been studied before, except by Matsumoto and Yoshida [9].

In this note, we first recall (from a very elementary level) branched covers of the
complex projective line, especially those with three branch points; these are prototypes
of our branched cover story. We also define, as higher dimensional generalizations,
several branched covers of complex projective spaces, when the universal ones are the
complex ball (complex hyperbolic sapce) and we briefly mention the history.

The main topic of this note is another higher dimensional generalization: branched
covers of the 3–sphere. One of the simplest links/knots whose complements admit
hyperbolic structures is the Whitehead link L; there is a discrete subgroup W of
the automorphism group of real hyperbolic 3–space H3

R , such that the quotient space
H3

R=W is homeomorphic to the complement S3 � L. We construct automorphic
fucntions on H3

R for W and make the projection H3
R! S3�L explicit.

2 Covers of the complex projective line

Let X D P1 be the complex projective line, which is also called the Riemann sphere.
We are interested in its coverings. Since X is simply connected, there is no non-trivial
covering unless we admit branch points.
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2.1 One branch point

If we admit only one branch point, which we can assume to be the point at infinity,
then since X �f1g Š C is still simply connected, there is no non-trivial cover.

2.2 Two branch points

If we admit two branch points, which we can assume to be the origin and the point
at infinity, and assign p; q 2 f2; 3; � � � ;1g as the indices, respectively, then such a
covering of X exists if and only if p D q . Let us denote such a covering space by Z ,
and the projection by � W Z!X ; its (multi-valaued) inverse is called the developing
map sW X ! Z . The covering (deck) transformation group, which is a group of
automorphisms of Z , is denoted by � ; note that the projection � is � –automorphic,
ie, invariant under the action of � .

2.2.1 Case p D q <1 The covering space and the projection are given by

� W P1 ŠZ 3 z 7�! x D zp 2X;

and the developing map is the multi-valed map x 7! zD x1=p . Note that the projection
is invariant under the finite group

� D fz 7! e
2�ik

p z j k D 1; : : : ;pg:

2.2.2 Case p D q D1 The covering space and the projection are given by

� W CŠZ 3 z 7�! x D exp z 2X

and the developing map is the multi-valed map x 7! zD log x . Note that the projection
is invariant under the infinite group

� D fz 7! zC 2� ik j k 2 Zg:
In this way, two points on a sphere – a simple geometric object – naturally leads to
very important functions the exponential and the logarithm functions.

2.3 Three branch points

If we admit three branch points, which we can assume to be x D 0; 1;1, and assign
p; q; r 2 f2; 3; � � � ;1g as the indices, respectively, then such a covering of X always
exists; there are many such. Let Z be the biggest one, the universal branched covering
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with the pre-assigned indices; this is characterized as the simply connected one. There
are only three simply connected 1–dimensional complex manifolds. The ramification
indices determine the nature of Z . We tabulate the three cases with familiar names for
the deck transformation groups.

type 1
p
C 1

q
C 1

r
Z deck transformation group �

elliptic > 1 P1 polyhedral groups

parabolic D 1 C 1-dimC crystallographic groups

hyperbolic < 1 H triangle (Fuchsian) groups

Complex crystallographic groups of dimension n are by definition, groups of affine
transformations of Cn with compact quotients. A Fuchsian group (of the first kind) is
by definition a discrete subgroup of SL.2;R/ acting on the upper half-space

HD f� 2 C j =� > 0g;
such that a(ny) fundamental domain has finite volume.

2.3.1 Developing maps In each case the developing map is given by the Schwarz
map

sW X 3 x 7! z D u0.x/=u1.x/ 2Z;

defined by the ratio of two (linealy independent) solutions of the hypergeometric
differential equation E.a; b; c/:

x.1�x/u00Cfc � .aC bC 1/xgu0� abuD 0;

where the parameters a; b; c are determined by the condition

j1� cj D 1

p
; jc � a� bj D 1

q
; ja� bj D 1

r
:

See Yoshida [15] for hypergeometric functions, thir fundamental properties and the
Schwarz map.

2.3.2 Projections In each elliptic case, the projection is given by an invariant of a
polyhedral group � , which is classically known.

In each parabolic case, the projection is given by an elliptic function.

However in hyperbolic cases, only for a few examples, are the projections explic-
itly constructed. Here we explain a typical example when .p; q; r/ D .1;1;1/.
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The developing map is the Schwarz map of the equation E.1=2; 1=2; 1/, the deck
transformation group is (conjugate to) the congruence subgroup

�.2/D fg 2 SL.2;Z/ j g � identity mod 2g
of the elliptic full modular group SL.2;Z/. The projection is given by the lambda
function

�.�/D
�
#01.�/

#00.�/

�4

; � 2 H;

where

#00.�/D
X
n2Z

q2n2

; #01.�/D
X
n2Z

.�1/nq2n2

; q D exp� i�=2:

2.3.3 Note Three points on a sphere – a simple geometric object – naturally leads to
interesting kind of mathematics such as polyhedral groups and their invariants, Fuchsian
automorphic forms/functions and the hypergeometric differential equation/functions.

2.4 Four or more branch points

If we admit four branch points, which we can assume x D 0; 1;1; t , and assign any
four indices pD .p0; � � � ;p3/, then such a covering of X always exists. Let Z be the
biggest one. If the indices are p D .2; � � � ; 2/ then Z Š C, otherwise Z Š H. The
developing map is the Schwarz map of a second-order Fuchsian equation E.t;p/. The
t –dependence of the coefficients of this equation is difficult to analyse, and when t is
in a generic position, the coefficients have no explicit expressions. The projection is
known only for sporadic values of t and p. Though there have been many attempts for
tackling this difficulty the goal is still far away. I am afraid that ‘four points on P1 ’ is
an object too difficult for human beings. There is no hope for more than four points.

3 Covers of the complex projective spaces

When one encounters a serious difficulty, one of the ways to proceed is to turn to high
dimensional analogues.

3.1 Covers of P2

The first attempt was made by E Picard [10]. He considers the six lines

x0x1x2.x0�x1/.x1�x2/.x2�x0/D 0
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on the projective plane X.Š P2/ with homogeneous coordinates x0 W x1 W x2 , and
studies the universal branched covering Z of X ramifying along the six lines with
indices 3. It turns out that Z is isomorphic to the complex 2–dimentional ball

B2 D fz0 W z1 W z2 2 P2 j jz0j2� jz1j2� jz2j2 > 0g;
and that the developing map is the Schwarz map

sW X 3 x 7�! z D u0.x/ W u1.x/ W u2.x/ 2Z;

defined by linearly independent solutions u0;u1 and u2 of Applell’s hypergeometric
differential equation F1 (with special parameters), a system of linear partial differential
equations defined on X of rank three with singularities along the six lines. The deck
transformation group is an arithmetic subgoup of the group of automorphisms of B2

defined over Z.11=3/, and the projection can be expicitly expressed in terms of Riemann
theta functions (this part is completed by H Shiga [11]).

3.2 Covers of Pn

T Terada [12; 13] considers the hyperplanes
nY

iD1

xi �
nY

i;jD1;i 6Dj

.xi �xj /D 0

on the projective n–space X.Š Pn/ with homogeneous coordinates x0 W � � � W xn , and
studies the universal branched covering Z of X ramifying along these hyperplanes
with different indices. It turns out, for some choices (finite possibilities) of indices, that
Z is isomorphic to the complex n–dimentional ball

Bn D fz0 W � � � W zn 2 Pn j jz0j2�
nX

iD1

jznj2 > 0g;

and that the developing map is the Schwarz map

sW X 3 x 7�! z D u0.x/ W � � � W un.x/ 2Z;

defined by linearly independent solutions u0; � � � ;un of Applell’s hypergeometric dif-
ferential equation FD (with parameters corresponding to the indices chosen), a system
of linear partial differential equations defined on X of rank nC 1 with singularities
along those hyperplanes. The deck transformation group is a discrete subgoup (not
necessarily arithmetic, see Deligne and Mostow [3]) of the group of automorphisms of
Bn . For several cases, the projection can be explicitly expressed in terms of Riemann
theta functions (Shiga, [11], Matsumoto and Terasoma [7; 8]).
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3.3 Note

Recently further studies have been made; the objects and techniques require considerably
more algebraic geometry and representation theory. For more detail see Allcock, Carlson
and Toledo [1], or Couwenberg, Heckman and Looijenga [2].

4 Covers of the 3–sphere

If one recalls that the complex projective line is also called the (Riemann) sphere
and that the Poincaré upper half-plane H is just the real hyperbolic 2–space, another
high-dimensional generalization would be made by the 3–dimensional sphere S3 and
the real hyperbolic 3–space

H3
R D f2� 2 positive Hermitian matricesg=R>0:

Since the branch locus must be a submanifold of codimension 2, we consider links/knots
as branch loci.

If our branch locus is a trivial knot, nothing interesting happens.

If our branch locus is the trefoil knot, several interesting things happen, but the universal
cover (branched cover with branch index D1) is not H3

R .

If our branch locus is the Whitehead link or the figure eight knot, it is known that its
universal cover is H3

R . I believe that these are the simplest ones, and that these are
the ones we should/could study. For more complicated links/knots, their complements
would permit hyperbolic structures, but one can not expect nice mathematics from the
view point of function theory. In this note, we just treat the Whitehead link.

4.1 Whitehead-link-complement group

It is known that the complement of the Whitehead link L admits a hyperbolic structure;
that is, the universal cover of S3 �L is H3

R , or there is a discrete subgroup W of
the automorphisms of H3

R , such that S3�L is homeomorphic to the quotient space
H3

R=W .

The group of automorphisms of H3
R is generated by PGL.2;C/ acting as

GL.2;C/ 3 gW H3
R 3 z 7�! gzt xg 2 H3

R;

and the (orientation reversing) transpose operation

T W H3
R 3 z 7�! tz 2 H3

R:
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The Whitehead-link-complement group W is generated by the two elemnts�
1 i

0 1

�
and

�
1 0

1Ci 1

�
:

This group is a subgroup of the principal congruence subgroup �.1C i/ of the full
modular group

� DGL.2;ZŒi �/

of finite index. It is not normal; the conjugate one is xW (complex conjugate). We have
the homeomorphism

homeW H3
R=W � S3�L:

4.2 What should be studied?

We stated in subsection 2.3.2 that we have an isomorphism (of complex analytic
varieties)

�W H=�.2/
Š�! P1�f0; 1;1g:

If it is just a homeomorphism

H2
R=�.2/� S2�f0; 1;1g;

the picture is easy to see: a schoolchild could glue the corresponding sides of the
fundamental domain of �.2/ (see Figure 1) and obtain a balloon with three holes. The
explicit expression (in terms of the theta functions) of � makes this isomorphism into
interesting mathematics.

-1 0 1

A A

B B

Figure 1: A fundamental domain for �.2/

A fundamenatal domain (consisting of two pyramids) of the Whitehead-link-comple-
ment group W is shown in Figure 2 (cf Wielenberg [14]); here hyperbolic 3–space is
realized as the upper half-space model

f.z; t/ 2 C�R j t > 0g:
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The faces of the two pyramids are patched as follows: the eight walls with the same

�1 C i
i

0�1

1

1 � i

Re(z)

Im(z)

�i

A

A

B

B

C

C

D

D

H

H

Figure 2: Fundamental domain FD of W in H3
R

labels (A;B;C;D ) are patched together, and the two hemi-spheres labelled H are
also patched. The group W has two cusps. They are represented by the vertices of the
pyramids:

.z; t/D .�;C1/; .0; 0/� .˙i; 0/� .˙1; 0/� .�1˙ i; 0/:

Though it is not so easy as in the 2–dimensional case above to see that the fundamental
domain modulo this patching is homeomorphic to the complement of the Whitehead
link L D L0 [L1 (in S3 D R3 [ f g) shown in Figure 3, it is still not advanced
mathematics.

F1 F2

F3

L1
L0

Figure 3: Whitehead link with its symmetry axes
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Our goal is to find functions on H3
R invariant under the action of W , and make the

projection
� W H3

R �! S3�L

(which induces homeW H3
R=W ��! S3�L) explicit.

Though the automorphic forms/functions on the Poincaré upper half-plane H and those
on their high complex-dimensional generalizations (such as Siegel upper half-spaces,
complex balls, and other Hermitian symmetric spaces) have been studied in detail,
those on H3

R have never been studied before; this is really surprising.

As ‘function theory’ usually means ‘theory of complex analytic functions’, most
(explicit) functions are defined naturally in complex domains. So we had to rely first on
a Hermitian (complex anlytic) setting, and then to restrict to a real subvariety isomorphic
to H3

R .

4.3 A Hermitian setting

More than fifteen years ago, we made in [6] a generalization of the story (explained
above) of the isomorphism

�W H=�.2/
Š�! P1�f0; 1;1g:

The developing map P1�f0; 1;1g! H1 can be considered as the period map of the
family of elliptic curves

t2 D .s�x1/ � � � .s�x4/;

where .x1; : : : ;x4/ is a quadruple of distict points in P1 , which can be, modulo
PGL.2;C/ action, normalized as

.0; 1;1;x/; x 2 P1�f0; 1;1g:
We consider the family of K3 surfaces

t2 D `1.s1; s2/ � � � `6.s1; s2/;

where j̀ .j D 1; : : : ; 6/ are linear forms in .s1; s2/ 2 P2 in general position; modulo
PGL.3;C/ action, one can check that this family is 4–dimensional. Let us call this
parameter space X , that is,

X D PGL.3;C/n ˚.`1; � � � ; `6/ j six ordered lines in P2 in general position
	
:

The periods of these surfaces – these are also solutions of the generalized hypergeometric
differential equation of type .3; 6/ defined in X – defines a map from X to the 2� 2
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upper half-space

H2�2 D
�
� W 2� 2 complex matrix j � �

tx�
2i

> 0

�
I

the deck transormation group (the monodromy group) is the principal congruence
subgroup

�.1C i/D fg 2� j g � I4 mod .1C i/g
of the full modular group

�DGL.4;ZŒi �/\fg 2GL.4;C/ j gJ4
t xg D J4g; where J4 D

�
0 �I2

I2 0

�
:

The group � acts on H2�2 as

g � � D .A� CB/.C� CD/; g D
�

A B

C D

�
2�; � 2 H2�2:

The projection � W H2�2!X can be expressed in terms of the theta functions

�

�
a

b

�
.�/D

X
n2ZŒi�2

exp� if.nC a/� t .nC b/C 2<.n � t xb/g

with characteristics

a; b 2
�

ZŒi �

1C i

�2

:

The projection � induces the isomorphism H2�2=�.1C i/ŠX:

4.4 Restriction to H3
R

in H2�2

The real hyperbolic 3–space H3
R lives in H2�2 as

H2�2 D Her2C iHerC
2
� 0C iHerC

2
� 0C ifz 2 HerC

2
j det z D 1g Š H3

R;

where Her2 stands for the space of 2�2–Hermitian matrices, and HerC
2

that of positive
definite ones. We restrict the groups � and �.1C i/ onto the subvariety H3

R �H2�2 ;
we have

�j
H3

R
D �; �.1C i/j

H3
R
D �.1C i/:

Since the Whitehead-link-complement group W is a subgroup of � of finite index, and
so W is commensurable with �.1C i/, one can expect that the restrictions of the theta
functions in the Hermitian setup would give the desired projection � W H3

R! S3�L:
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4.5 Toward an embedding of H3
R
=W

The expectation stated at the end of the previous section becomes true; we can construct
automorphic functions (out of the theta functions) fj defined in H3

R invariant under
W , and get a map

H3
R 3 x 7�! .fj .x// 2 RN ; N D 13;

which gives an embedding of H3
R=W onto a semi-algebraic subset of RN homeomor-

phic to S3 �L; refer to our paper [5] for precise formulation and proofs. Here we
describe what is going on.

4.5.1 Base camp The miraculously lucky fact is that the theta functions �
�

a
b

�
.�/ for

a; b 2 .ZŒi �=.1C i//2 are real valued on H3
R . (We do not know yet a basic reason for

this.)

Let �.2/ be the principal congruence subgroup of � of level 2. The group �T .2/ WD
h�.2/;T i is a (hyperbolic) Coxeter group with (ideal) octahedral Weyl chamber (see
Figure 4). For suitable four such thetas x0; : : : ;x3 , this Weyl chamber (�H3

R=�
T .2/)

is mapped diffeomorphically by the map

H3
R 3 .t; z/ 7�!

1

x0

.x1;x2;x3/ 2 R3;

onto the euclidean octahedron

f.t1; t2; t3/ 2 R3 j jt1jC jt2jC jt3j � 1g
minus the six vertices. Note that this embedding of H3

R=�
T .2/ is of codimention 0.

This embedding plays a role of a base camp of our orbifold-embedding-tour.

4.5.2 Symmetries of L Though the codimension of the embedding announced in
the beginning of this subsection (4.5) is high (N � 3D 10), we can nevertheless see
what is happening as follows. We consider a chain of supgroups of W :

W
2� W1

2� W2

2� ƒ WD h�T .2/;W i;
each inclusion being of index 2, such that the double coverings

.S3�L�/ H3
R=W

p1�! H3
R=W1

p2�! H3
R=W2

p3�! H3
R=ƒ

of the orbifolds have clear geometric interpretations.

� p1 is the projection modulo the order-2–rotation with axis F1�H3
R=W �S3�L

(cf Figures 3, 5),
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�1 C i
i

0�1

Im(z)

Re(z)

Figure 4: Weyl chamber of �T .2/

.

F1

F2 F3

L1

L0

2

Figure 5: The orbifold H3
R=W1

� p2 is the projection modulo the order-2–rotation with axis p1.F2/[p1.F3/�
H3

R=W1 (cf Figures 5, 6),
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F1

F2 F3

L1

L0

2

2
2

Figure 6: The orbifold H3
R=W2

� p3 is the projection modulo an order-2–reflection with a mirror (� S2 ) in
H3

R=W2 (cf Figures 6, 7). The mirror is shown in Figure 8 as the union of four
triangles labeled as a; b; c and d .

The orbifold H3
R=ƒ is homeomorphic to a 3–ball with two holes, corresponding to the

two strings L0 and L1 forming L. We have a very simple embedding of H3
R=ƒ of

codimension 1, as we see in subsection 4.5.3.

1

0

F1

F2

F3

a

b

c
d

Figure 7: A fundamental domain for W2

4.5.3 Climb up and down The group �T .2/ is a normal subgroup of ƒ, and
ƒ=�T .2/ is isomorphic to the dihedral group of order eight. To climb up from
�T .2/ to ƒ is easy. We have only to find rational functions in x0; : : : ;x3 invariant
under the dihedral group. Actuallly, by the map

H3
R 3 .z; t/ 7�! .�1; : : : ; �4/D .�2

1 C �2
2 ; �

2
1�

2
2 ; �

2
3 ; �1�2�3/ 2 R3;
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F1

F1

F1

F2 F2F3 F3

L1

L1

.L1/

.L1/

L0 L0

wall a wall b

wall c wall d

Figure 8: The mirror of the reflection in the orbifold H3=W2 is shown as the
union of four parts.

where �i D xi=x0 , the orbifold H3
R=ƒ is embedded into a subdomain of the quadratic

hypersurface �2�3 D �2
4
:

To climb down from ƒ to W2 , we need functions which separate the two sheets of
the double cover p3W H3

R=W2 ! H3
R=ƒ. These functions are made from the theta

functions �
�

a
b

�
.�/ with deeper characteristics a; b 2 .ZŒi �=2/2 . To determine the image

of the embedding, we make use of the transformation formulas and algebraic relations
among these thetas obtained by Matsumoto [4].

When we climb down from W2 to W1 , and finally from W1 to W , we need several
functions made by such thetas. Anyway, by functions made by thetas, we can thus
embed H3

R=W into R13 .
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hypergéométriques de plusieurs variables, J. Math. Kyoto Univ. 13 (1973) 557–578
MR0481156
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