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Symmetric products, duality and homological
dimension of configuration spaces

SADOK KALLEL

We discuss various aspects of “braid spaces” or configuration spaces of unordered
points on manifolds. First we describe how the homology of these spaces is affected
by puncturing the underlying manifold, hence extending some results of Fred Cohen,
Goryunov and Napolitano. Next we obtain a precise bound for the cohomological di-
mension of braid spaces. This is related to some sharp and useful connectivity bounds
that we establish for the reduced symmetric products of any simplicial complex. Our
methods are geometric and exploit a dual version of configuration spaces given in
terms of truncated symmetric products. We finally refine and then apply a theorem of
McDuff on the homological connectivity of a map from braid spaces to some spaces
of “vector fields”.

55R80; 55S15, 18G20

To Fred Cohen on his 60th birthday

1 Introduction

Braid spaces or configuration spaces of unordered pairwise distinct points on manifolds
have important applications to a number of areas of mathematics and physics. They
were of crucial use in the seventies in the work of Arnold on singularities and then
later in the eighties in work of Atiyah and Jones on instanton spaces in gauge theory.
In the nineties they entered in many works on the homological stability of holomorphic
mapping spaces. No more important perhaps had been their use than in stable homotopy
theory in the sixties and early seventies through the work of Milgram, May, Segal and
Fred Cohen who worked out the precise connection with loop space theory. This work
has led in particular to the proof of Nishida’s nilpotence theorem and to Mahowald’s
infinite family in the stable homotopy groups of spheres to name a few.

Given a space M , define B.M; n/ to be the space of finite subsets of M of cardinality
n. This is usually referred to as the nth “braid space” of M and in the literature it is
often denoted by Cn.M / (Atiyah and Jones [3], Bödigheimer, Cohen and Taylor [7],
Cohen [8]). Its fundamental group written Brn.M / is the “braid group” of M . The
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object of this paper is to study the homology of braid spaces and the main approach we
adopt is that of duality with the symmetric products. In so doing we take the opportunity
to refine and elaborate on some classical material. Next is a brief content summary.

Section 2 describes the homotopy type of braid spaces of some familiar spaces and
discusses orientation issues. Section 3 introduces truncated products, as in Bödigheimer,
Cohen and Milgram [6] and Milgram and Löffler [24], states the duality with braid
spaces and then proves our first main result on the cohomological dimension of braid
spaces. Section 4 uses truncated product constructions to split in an elementary fashion
the homology of braid spaces for punctured manifolds. In Section 5 we prove our
sharp connectivity result for reduced symmetric products of CW complexes which
seems to be new and a significant improvement on work of Nakaoka and Welcher [42].
In Section 5.2 we make the link between the homology of symmetric and truncated
products by discussing a spectral sequence introduced by Bödigheimer, Cohen and
Milgram and exploited by them to study “braid homology” H�.B.M; n//. Finally
Section 6 completes a left out piece from McDuff and Segal’s work on configuration
spaces [23]. In that paper, H�.B.M; n//, for closed manifolds M , is compared to
the homology of some spaces of “compactly supported vector fields” on M and the
main theorem there states that these homologies are isomorphic up to a range that
increases with n. We make this range more explicit and use it for example to determine
the abelianization of the braid groups of a closed Riemann surface. A final appendix
collects some homotopy theoretic properties of section spaces that we use throughout.

Below are precise statements of our main results which we have divided up into three
main parts. Unless explicitly stated, all spaces are assumed to be connected. The nth

symmetric group is written Sn .

1.1 Connectivity and cohomological dimension

For M a manifold, we write H�.M;˙Z/ for the cohomology of M with coeffi-
cients in the orientation sheaf ˙Z; in other words H�.M;˙Z/ is the homology of
HomZŒ�1.X /�.C�.

zM /;Z/, where C�. zM / is the singular chain complex of the universal
cover zM of M , and where the action of (the class of) a loop on the integers Z is
multiplication by ˙1 according to whether this loop preserves or reverses orientation.
Similarly one defines H�.M;˙Z/ WDH�.C�. zM /˝ZŒ�1.x/�Z/.

Remark (see Lemma 2.6) When M is simply connected and dim M WD d > 2,
�1.B.M; k// D Sk and zB.M; k/ D F.M; k/ �M k is the subspace of k ordered
pairwise distinct points in M (Section 2). It follows that H�.B.M; k/I˙Z/ is the
homology of the chain complex HomZŒSk �.C�.F.M; k/;Z/ where Sk acts on Z via
�.1/D .�1/sg.�/�d and sg.�/ is the sign of the permutation � 2Sk .
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We denote by cohdim˙Z.M / (cohomological dimension) the smallest integer with the
property that

H i.M I˙Z/D 0 ; 8i > cohdim˙Z.M / :

If M is orientable, then H�.M;˙Z/ D H�.M;Z/ and cohdim˙Z.M / D

cohdim.M /, the cohomological dimension of M .

A space X is r –connected if �i.X / D 0 for 0 � i � r . The connectivity of X ;
conn.X /, is the largest integer with such a property. This connectivity is infinite if X

is contractible. The following is our first main result

Theorem 1.1 Let M be a compact manifold of dimension d � 1, with boundary @M ,
and let U �M be a closed subset such that U \@M D∅ and M �U connected. We
denote by r the connectivity of M if U [@M D∅, or the connectivity of the quotient
M=U [ @M if U [ @M ¤∅. We assume 0� r <1 and k � 2. Then

cohdim˙Z.B.M �U; k//�

(
.d � 1/k � r C 1; if U [ @M D∅;
.d � 1/k � r; if U [ @M ¤∅:

When M is even dimensional orientable, then replace cohdim˙Z by cohdim.

Remark We check this theorem against some known examples:

(1) B.Sd�fpg; 2/DB.Rd ; 2/'RPd�1 (see Section 3) and cohdim˙Z.B.R
d ; 2//

D 2.d � 1/� r D d � 1 D cohdim˙Z.RPd�1/ indeed, where r D d � 1 D

conn.Sd /.

(2) B.Sd ; 2/'RPd (see Section 3) and cohdim˙Z.B.S
d ; 2//D d in agreement

with our formula.

(3) It is known that for odd primes p and d � 2, H .d�1/.p�1/.B.Rd ;p/IFp/ is
non-trivial and an isomorphic image of H .d�1/.p�1/.SpIFp/ (Ossa [32] and
Vassiliev [39]). Our result states that, at least for even d , no higher homology can
occur. The cohomological dimension of B.Rd ; k/ when using F2 coefficients
is known to be .k � ˛.k// � .d � 1/ where ˛.k/ is the number of 1’s in the
dyadic decomposition of k (see Roth [33]). In the case d D 2, B.R2; k/ is
the classifying space of Artin braid group Bk WD Brk.R

2/ and is homotopy
equivalent to a .k � 1/–dimensional CW complex so that cohdim.B.R2; k//�

k � 1 in agreement with our calculation.

Remark The theorem applies to when M D S1 and U is either empty or a single
point. In that case M �U Š S1;R. But one knows that for k � 1, B.S1; k/' S1

(Proposition 2.5) and B.R; k/ is contractible.
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Corollary 1.2 Let S be a Riemann surface and Q�S a finite subset. Then H i.B.S�

Q; k//D 0 if i � kC 1 and Q[ @S ¤∅ ; or if i > kC 1 and Q[ @S D∅.

This corollary gives an extension of the “finiteness” result of Napolitano [30]. When
S is an open surface, then B.S; k/ is a Stein variety and hence its homology vanishes
above the complex dimension; ie, Hi.B.S; k//D 0 for i > k . This also agrees with
the above computed bounds.

The proof of Theorem 1.1 relies on a useful connectivity result of Nakaoka (Theorem
3.8). We also use this result to produce sharp connectivity bounds for the reduced
symmetric products Section 5. Recall that SPn.X /, the nth symmetric product of X ,
is the quotient of X n by the permutation action of the symmetric group Sn so that
B.X; n/�SPn.X / is the subset of configurations of distinct points. We always assume
X is based so there is an embedding SPn�1.X / ,! SPn.X / given by adjoining the
basepoint, with cofiber SP

n
.X / the “nth reduced symmetric” product of X . The

following result expresses the connectivity of SP
n
X in terms of the connectivity of X .

Theorem 1.3 Suppose X is a based r –connected simplicial complex with r � 1.
Then SP

n
.X / is .2nC r � 2/–connected.

In particular the embedding SPn�1.X /��!SPn.X / induces homology isomorphisms
in degrees up to .2nC r �3/. The proof of this theorem is totally inspired from Kallel
and Karoui [20] where similar connectivity results are stated, and it uses the fact that
the homology of symmetric products only depends on the homology of the underlying
complex (Dold [11]). Note that the bound 2nC r � 2 is sharp as is illustrated by the
case X D S2 , r D 1 and SP

n
.S2/D S2n . A slightly weaker connectivity bound than

ours can be found in Welcher [42, Corollary 4.9].

Note that Theorem 1.3 is stated for simply connected spaces. To get connectivity results
for reduced symmetric products of a compact Riemann surface for example we use
geometric input from Kallel and Salvatore [22]. This applies to any two dimensional
complex.

Proposition 1.4 Let X D
Ww

S1[.D2
1
[� � �[D2

r / be a two dimensional CW complex
with one skeleton a bouquet of w circles. Then SP

n
X is .2n � min.w; n/ � 1/–

connected.

1.2 Puncturing manifolds

We give generalizations and a proof simplification of results of Napolitano [30; 31].
For S a two dimensional topological surface, p and the pi points in S , it was shown
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in [30] that, for field coefficients F ,

(1) H j .B.S �fp1;p2g; n/IF/Š
nM

tD0

H j�t .B.S �fpg; n� t/IF/ :

Here and throughout H� D 0 when � < 0 and B.X; 0/ is basepoint. When S is a
closed orientable surface and F D F2 , [30] establishes furthermore a splitting:

(2) H j .B.S; n/IF2/ŠH j .B.S �fpg; n/IF2/˚H j�2.B.S �fpg; n� 1/IF2/

Similar splittings occur in Cohen [9] and Gorjunov [16]. These splittings as we show
extend to any closed topological manifold M and to any number of punctures. If V is
a vector space, write V ˚k WD V ˚ � � �˚V (k –times). Given positive integers r and
s , we write p.r; s/ the number of ways we can partition s into a sum of r ordered
positive (or null) integers. For instance p.1; s/D 1, p.2; s/D sC 1 and p.r; 1/D r .

Theorem 1.5 Let M be a closed connected manifold of dimension d and p 2M .
Then:

(3) H j .B.M; n/IF2/ŠH j .B.M �fpg; n/IF2/˚H j�d .B.M �fpg; n� 1/IF2/

If moreover M is oriented and even dimensional, then:

H j .B.M�fp1; � � � ;pkg; n/IF/(4)

Š

M
0�r�n

H j�.n�r/.d�1/.B.M �fpg; r/IF/˚p.k�1;n�r/

For an arbitrary closed manifold, (4) is still true with F2 –coefficients.

Remark As an example we can set M D S2; k D 2 D d and obtain the additive
splitting H j .B.C�; n/IF/Š

L
0�r�n H j�.n�r/.B.C; r/IF/ as in (1), where C� is

the punctured disk (this isomorphism holds integrally according to [16]). Note that the
left hand side is the homology of the hyperplane arrangement of ‘Coxeter type” Bn ;
that is B.C�; n/ is an Eilenberg–MacLane space K.Brn.C�/; 1/ with fundamental
group isomorphic to the subgroup of Artin’s braids BrnC1.C/ consisting of those
braids which leave the last strand fixed. It can be checked that the abelianization of
this group for n � 2 is Z2 which is consistent with the calculation of H 1 obtained
from the above splitting.

Napolitano’s approach to (1) is through spectral sequence arguments and “resolution
of singularities” as in Vassiliev theory. Our approach relies on a simple geometric
manipulation of the truncated symmetric products as discussed earlier (see Section 4).
Theorem 1.5 is a consequence of combining a Poincaré–Lefshetz duality statement, the
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identification of truncated products of the circle with real projective space, Mostovoy
[27], and a homological splitting result due to Steenrod (Section 3). Note that the
splitting in (3) is no longer true with coefficients other than F2 and is replaced in
general by a long exact sequence (Lemma 4.1).

1.3 Homological stability

This is the third and last part of the paper. For M a closed smooth manifold of
dimension dim M D d , let �CM be the fiberwise one-point compactification of the
tangent bundle �M of M with fiber Sd . We write �.�CM / the space of sections
of �CM . Note that this space has a preferred section (given by the points at infinity).
There are now so called “scanning” maps for any k 2N (Mcduff [23], Bödigheimer,
Cohen and Taylor [7], Kallel [19])

(5) Sk W B.M; k/��!�k.�
CM /

where �k.�
CM / is the component of degree k sections (see Section 6.2). In important

work, McDuff shows that Sk induces a homology isomorphism through a range that
increases with k . In many special cases, this range needs to be made explicit and this
is what we do next.

We say that a map f W X ! Y is homologically k –connected (or a homology equiva-
lence up to degree k ) if f� in homology is an isomorphism up to and including degree
k .

Proposition 1.6 Let M be a closed manifold of dimension d � 2 and k � 2. Assume
the map CW B.M � p; k/��!B.M � p; k C 1/ which consists of adding a point
near p 2M (see Section 6) is homologically s.k/–connected. Then scanning Sk is
homologically s.k � 1/–connected. Moreover s.k/� Œk=2� (Arnold).

When k D 1, we give some information about S1W M��!�1.�
CM / in Lemma 6.5.

Note that s.k/ is an increasing function of k . Arnold’s inequality s.k/ � Œk=2� is
proven by Segal in [36]. This bound is far from being optimal in some cases since for
instance, for M a compact Riemann surface, s.k/D k�1 (Kallel and Salvatore [21]).
Note that the actual connectivity of the map CW B.M �p; k/��!B.M �p; kC 1/ is
often 0 since if dim M > 2, this map is never trivial on �1 (see Lemma 2.6).

The utility of Proposition 1.6 is that in some particular cases, knowledge of the homology
of braid spaces in a certain range informs on the homology of some mapping spaces.
Here’s an interesting application to computing the abelianization of the braid group of
a surface (this was an open problem for some time).
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Corollary 1.7 For S a compact Riemann surface of genus g � 1, and k � 3, we have
the isomorphism: H1.B.S; k/IZ/D Z2˚Z2g .

Proof �CS is trivial since S is stably parallelizable and �.�CS/ ' Map.S;S2/.
Suppose S has odd genus, then Sk W H1.B.S; k//��!H1.Mapk.S;S

2// is degree
preserving (where degree is k ) and according to Proposition 1.6 it is an isomorphism
when k � 3 using the bound provided by Arnold. But � WD �1.Mapk.S;S

2// was
computed in [18] and it is some extension

0��!Z2jkj��!���!Z2g
��!0

with a generator � and torsion free generators e1; : : : ; e2g with non-zero commutators
Œei ; egCi �D �

2 and with �2jkjD1. Its abelianization H1 is Z2g˚Z2 as desired. When
g is even, Sk W B.S; k/��!Mapk�1.S;S

2/ decreases degree by one (see Section 6.1)
but the argument and the conclusion are still the same.

Remark The above corollary is also a recent calculation of Bellingeri, Gervais and
Guaschi [4] which is more algebraic in nature and relies on the full presentation of the
braid group �1.B.S; k// for a positive genus Riemann surface S .

Example 1.8 We can also apply Proposition 1.6 to the case when M is a sphere
Sn . Write Map.Sn;Sn/ D

`
k2Z Mapk.S

n;Sn/ for the space of self-maps of Sn ;
Mapk.S

n;Sn/ being the component of degree k maps. Since �CSn is trivial there is a
homeomorphism �.�CSn/ŠMap.Sn;Sn/. However and as pointed out by Salvatore
in [34], one has to pay extra care about components : �k.�

CSn/ŠMapk.S
n;Sn/ if n

is odd and �k.�
CSn/ŠMapk�1.S

n;Sn/ if n is even (see Section 6.1). Let p.n/D 1

if n is even and 0 if n is odd. Vassiliev [39] checks that H�.B.Rn; k/IF2/��!

H�.B.Rn; kC 1/IF2/ is an isomorphism up to degree k and so we get that the map
of the k th braid space of the sphere into the higher free loop space

B.Sn; k/��!Mapk�p.n/.S
n;Sn/

is a mod–2 homology equivalence up to degree k�1. The homology of Map.Sn;Sn/

is worked out for all field coefficients in [34].

Remark The braid spaces fit into a filtered construction

B.M; n/DW B1.M; n/ ,! B2.M; n/ ,! � � � ,! Bn.M; n/ WD SPn.M /

where Bp.M; n/ for 1� p � n is defined to be the subspace

(6) fŒx1; : : : ;xn� 2 SPn.M / j no more than p of the xi ’s are equalg :
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Many of our results can be shown to extend with straightforward changes to Bp.M; n/

and p � 1 when M is a compact Riemann surface. Some detailed statements and
calculations can be found in [21].
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2 Basic examples and properties

As before we write an element of SPn.X / as an unordered n–tuple of points
Œx1; : : : ;xn� or sometimes also as an abelian finite sum

P
xi with xi 2 X . For a

closed manifold M , SPn.M / is again a closed manifold for n> 1 if and only if M

is of dimension two, Wagner [40]. We define

B.M; n/D fŒx1; : : : ;xn� 2 SPn.M /;xi ¤ xj ; i ¤ j g :

It is convenient as well to define the “ordered” n–fold configuration space F.M; n/D

M n��fat where

(7) �fat WD f.x1; : : : ;xn/ 2M n
j xi D xj for some i D j g

is the fat diagonal in M n . The configuration space B.M; n/ is obtained as the quotient
F.M; n/=Sn under the free permutation action of Sn

1. Both F.M; n/ and B.M; n/

are (open) manifolds of dimension nd , d D dim M .

Next are some of the simplest non-trivial braid spaces one can describe.

Lemma 2.1 B.Sn; 2/ is an open n–disc bundle over RPn . When nD 1, this is the
open Möbius band (see Proposition 2.5).

Proof There is a surjection � W B.Sn; 2/��!RPn sending Œx;y� to the unique line
LŒx;y� passing through the origin and parallel to the non-zero vector x � y . The
preimage ��1.LŒx;y�/ consists of all pairs Œa; b� such that a � b is a multiple of
x�y . This can be identified with an “open” hemisphere determined by the hyperplane
orthogonal to LŒx;y� (ie B.Sn; 2/ can be identified with the dual tautological bundle
over RPn ).

1In the early literature on embedding theory, Feder [15], B.M; 2/ was referred to as the “reduced
symmetric square”.
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Example 2.2 Similarly we can see that B.RnC1; 2/ ' RPn and that B.Sn; 2/ ,!

B.RnC1; 2/ is a deformation retract. Alternatively one can see directly that B.Sn; 2/'

RPn for there are an inclusion i and a retract r :

i W Sn ,! F.Sn; 2/ ; r W F.Sn; 2/��!Sn

x 7�! .x;�x/ .x;y/ 7!
x�y

jx�yj

Identify Sn with i.Sn/ as a subset of F.Sn; 2/. Then F.Sn; 2/ deformation retracts
onto this subset via

ft .x;y/D

�
x� ty

jx� tyj
;

y � tx

jy � txj

�
(which one checks is well-defined). We have that ft is Z2 –equivariant with respect
to the involution .x;y/ 7! .y;x/, that f0 D id and that f1W F.S

n; 2/��!Sn is Z2 –
equivariant with respect to the antipodal action on Sn . That is Sn is a Z2 –equivariant
deformation retraction of F.Sn; 2/ which yields the claim.

Example 2.3 B.R2; 3/ is up to homotopy the complement of the trefoil knot in S3 .

Example 2.4 There is a projection B.RP2; 2/��!RP2 which, to any two distinct
lines through the origin in R3 , associates the plane they generate and this is an
element of the Grassmann manifold Gr2.R

3/ Š Gr1.R
3/ D RP2 . The fiber over

a given plane parameterizes various choices of two distinct lines in that plane and
that is B.RP1; 2/ D B.S1; 2/. As we just discussed, this is an open Möbius band
M and B.RP2; 2/ fibers over RP2 with fiber M (see Feder [15]). Interestingly
�1.B.RP2; 2// is a quaternion group of order 16 (Wang [41]).

To describe the braid spaces of the circle we can consider the multiplication map:

mW SPn.S1/��!S1 ; Œx1; : : : ;xn� 7! x1x2 � � �xn

Morton [26] shows that m is a locally trivial bundle with fiber the closed .n� 1/–
dimensional disc and this bundle is trivial if n is odd and non-orientable if n is even. In
particular SP2.S1/ is the closed Möbius band. In fact one can identify m�1.1/ with
a closed simplex �n�1 so that the configuration space component m�1.1/\B.S1; n/

corresponds to the open part. This is a non-trivial construction that can be found in
Morton [26] and Morava [25]. Since B.S1; n/ fits in SPn.S1/ as the open disk bundle
one gets that

Proposition 2.5 B.S1; n/ is a bundle over S1 with fiber the open unit disc Dn�1 .
This bundle is trivial if and only if n is odd.
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Examples 2.2 and 2.4 show that when dim M is odd ¤ 1 or M is not orientable, then
B.M; k/ fails to be orientable. The following explains why this needs to be the case.

Lemma 2.6 (Folklore) Suppose M is a manifold of dimension d � 2 and pick n� 2.
Then B.M; n/ is orientable if and only if M is orientable of even dimension.

Proof We consider the Sn –covering � W F.M; n/
Sn

��!B.M; n/. If M is not ori-
entable, then so is M n . Now i W F.M; n/ ,!M n is the inclusion of the complement
of codimension at least two strata so that �1.F.M; n//��!�1.M /n is surjective and
hence so is the map on H1 . The dual map in cohomology is an injection mod 2

and hence w1.F.M; n//D i�.w1.M
n//¤ 0 since w1.M

n/¤ 0. This implies that
F.M; n/ is not orientable if M isn’t. It follows that the quotient B.M; n/ is not
orientable as well.

Suppose then that M is orientable. If d WD dim M D 2, then M is a Riemann surface,
B.M; n/ is open in SPn.M / which is a complex manifold and hence is orientable.
Suppose now that d WD dim M > 2 so that �1F.M; n/ D �1.M

n/ (since the fat
diagonal has codimension > 2). Notice that we have an embedding �W B.Rd ; n/ ,!

B.M; n/ coming from the embedding of an open disc Rd ,!M . Now �1.B.R
d ; n//D

Sn when d > 2, and � induces a section of the short exact sequence of fundamental
groups for the Sn –covering � so we have a semi-direct product decomposition

�1.B.M; n//D �1.M
n/Ë Sn ; d > 2 :

Let’s argue then that B.Rd ; n/ is orientable if and only if d is even. Denote by
�x the tangent space at x 2 Rd and write � W F.Rd ; n/��!B.Rd ; n/ the quotient
map. A transposition � 2Sn acts on the tangent space to B.Rd ; n/ at some chosen
basepoint say Œx1; : : : ;xn� which is identified with the tangent space �x1

� � � � � �xn
at

say .x1; : : : ;xn/ 2 �
�1.Œx1; : : : ;xn�/ � F.Rd ; n/ � .Rd /n . The action of � D .ij /

interchanges both copies �xi
M and �xj

M Š Rd and thus has determinant .�1/d .
Orientation is preserved only when d is even and the claim follows (for the relation
between orientation and fundamental group see Novikov [13, Chapter 4]).

Note that the lemma above is no longer true in the one-dimensional case according to
Proposition 2.5.

3 Truncated symmetric products and duality

The heroes here are the truncated symmetric product functors TPn which were first
put to good use by Bödigheimer, Cohen and Milgram in [6] and Milgram and Löffler

Geometry & Topology Monographs, Volume 13 (2008)



Symmetric products and configuration spaces 509

in [24]. For n� 2, define the identification space

TPn.X / WD SPn.X /=� ; Œx;x;y1 : : : ;yn�2�� Œ�;�;y1; � � � ;yn�2�

where as always �2X is the basepoint. Clearly TP1X DX and we set TP0.X /D�.
Note that by adjunction of basepoint Œx1; : : : ;xn� 7! Œ�;x1; : : : ;xn�, we obtain topologi-
cal embeddings SPn.X /��!SPnC1.X / and TPn.X /��!TPnC1.X / of which limits
are SP1.X / and TP1.X / respectively. We identify SPn�1.X / and TPn�1.X /

with their images in SPn.X / and TPn.X / under these embeddings and we write

(8) TP
n
.X / WD TPn.X /=TPn�1.X /

for the reduced truncated product. These are based spaces by construction. We will set
TP

0
.X / WD S0 . The following two properties are crucial.

Theorem 3.1

(1) (Dold and Thom [12]) �i.TP1.X //Š zHi.X IF2/

(2) (Milgram and Löffler [24]) There is a splitting

H�.TPn.X /IF2/ŠH�.TPn�1.X /IF2/˚ zH�.TP
n
X IF2/:

The splitting in (2) is obtained from the long exact sequence for the pair .TPn.X /;

TPn�1.X // and the existence of a retract H�.TPn.X /IF2/��!H�.TPn�1.X /IF2/

constructed using a transfer argument. In fact this splitting can be viewed as a conse-
quence of the following homotopy equivalence discussed in [24] and Zanos [43].

Lemma 3.2 TP1.TPn.X //' TP1.TP
n
.X //�TP1.TPn�1.X //.

Further interesting splittings of the sort for a variety of other functors are investigated
in [43]. The prototypical and basic example of course is Steenrod’s original splitting of
the homology of symmetric products (which holds with integral coefficients).

Theorem 3.3 (Steenrod, Nakaoka) The induced basepoint adjunction map on homol-
ogy H�.SPn�1.X /IZ/��!H�.SPn.X /IZ/ is a split monomorphism.

3.1 Duality and homological dimension

The point of view we adopt here is that B.M; n/D TPn.M /�TPn�2.M / as spaces.
A version of Poincaré–Lefshetz duality (Lemma 3.5) can then be used to relate the
cohomology of B.M; k/ to the homology of reduced truncated products. This idea is
of course not so new (see Bödigheimer, Cohen and Taylor [7] or Mùi [28]).
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If U �X is a closed cofibrant subset of X , define in SPn.X / the “ideal”:

(9) U WD fŒx1; : : : ;xn� 2 SPn.X /;xi 2 U for some i g

For example and if � 2X is the basepoint, then �DSPn�1.X /�SPn.X /. Let S be
the “singular set” in SPn.X / consisting of unordered tuples with at least two repeated
entries. This is a closed subspace.

Lemma 3.4 With U ¤∅, SPn.X /=.U [S/D TP
n
.X=U /.

Proof Denote by � the basepoint of X=U which is the image of U under the quotient
X��!X=U . Then by inspection

SPn.X /=.U [S/D SPn.X=U /=.�[S/ :

Moding out SPn.X=U / by S we obtain TPn.X=U /=TPn�2.X=U /. Moding out
further by � we obtain the desired quotient.

The next lemma is the fundamental observation which states that for M a compact
manifold with boundary and U ,!M a closed cofibration, B.M �U; n/ŠSPn.M /�

U [ @M[S is Poincaré–Lefshetz dual to the quotient SPn.M /=.U [ @M[S/. More
precisely, set

(10) M DM=.U [ @M /

with the understanding that xM DM if U [@M D∅; fpointg. The following elaborates
on [6, Theorem 3.2].

Lemma 3.5 If M is a compact manifold of dimension d � 1, U �M a closed subset
with M �U connected, U \ @M D∅ and M as in (10), then

H i.B.M �U; k/I˙Z/Š

(
Hkd�i.TPk.M /;TPk�1.M /IZ/; if U [ @M ¤∅;
Hkd�i.TPk.M /;TPk�2.M /IZ/; if U [ @M D∅:

The isomorphism holds with coefficients F2 . When M is even dimensional and
orientable, we can replace ˙Z by the trivial module Z.

Proof Suppose X is a compact oriented d –manifold with boundary @X . Then
Poincaré–Lefshetz duality gives an isomorphism H d�q.X IZ/ŠHq.X; @X IZ/. Ap-
ply this to the following situation: X is a finite d –dimensional CW–complex, V �X

is a closed subset of X , and N is a tubular neighborhood of V which deformation
retracts onto it;

V �N �X
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xN its closure and @ xN D @.X �N /D xN �N . Assume that X �N is an orientable
d –dimensional manifold with boundary @ xN . Then we have a series of isomorphisms:

(11) H d�q.X �V IZ/ŠH d�q.X �N IZ/ŠHq.X �N; @ xN IZ/ŠHq.X;V IZ/

Let’s now apply (11) to the case when X D SPk.M / with M as in the lemma and
with V the closed subspace consisting of configurations Œx1; : : : ;xk � such that

(i) xi D xj for some i ¤ j , or

(ii) for some i , xi D � the point at which U [ @M is collapsed out.

As discussed in Lemma 3.4, SPk.M /=�DSPk.M /=.U [ @M / so that SPk.M /=V

D SPk.M /=.U [ @M [ S/ with S again being the image of the fat diagonal in
SPk.M /. Then, according to Lemma 3.4 and to its proof we see that

SPk.M /=V D

(
TPk.M /=TPk�1.M /; if @M ¤∅ or U ¤∅;
TPk.M /=TPk�2.M /; if M closed and U D∅:

Now B.M �U; k/Š SPk.M /�U [ @M [S D SPk.M /�V is connected (since
M �U is), it is kd dimensional and is orientable if M is even dimensional orientable
(Lemma 2.6). Applying (11) yields the result in the orientable case. When B.M�U; k/

is non orientable, Poincaré–Lefshetz duality holds with twisted coefficients.

A version of this lemma has been greatly exploited in [6; 21] to determine the homology
of braid spaces and analogs. The following is immediate.

Corollary 3.6 With M , U �M as in Lemma 3.5, let

Rk D

(
conn.TPk.M /=TPk�1.M //; if U [ @M ¤∅;
conn.TPk.M /=TPk�2.M //; if U [ @M D∅:

Then cohdim˙Z.B.M �U; k//D dk �Rk � 1.

Theorem 1.1 is now a direct consequence of the following result.

Lemma 3.7 Let M;U and M as above, r D conn.M / with r � 1. Then

Rk �

(
kC r � 1; if U [ @M ¤∅;
kC r � 2; if U [ @M D∅:

The proof of this key lemma is based on a computation of Nakaoka [29, Proposition
4.3]. We write Y .k/ for the k –fold smash product of a based space Y and XSk

the
orbit space of a Sk –space X .
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Theorem 3.8 (Nakaoka) If Y is r –connected, then .Y .k/=�fat/Sk
is r C k � 1–

connected.

Remark In fact nakaoka only proves the homology version of this result and also
assumes r � 1. An inspection of his proof shows that r � 0 works as well. Also his
homology statement can be upgraded to a genuine connectivity statement. To see this,
we can assume that k � 2 (the case k D 1 being trivial). One needs to show in that
case that �1..Y

.k/=�fat/Sk
/D 0. This follows by an immediate application of Van

Kampen and the fact that �1.Y
.k/=Sk/D �1.SP

k
Y /D 0 for k � 2. To see this last

statement, recall that the natural map �1.Y /��!�1.SPkY / factors through H1.Y IZ/
and then induces an isomorphism H1.Y IZ/Š �1.SPkY / when k � 2 (Smith [37]).
But if SPk�1.Y / ,! SPk.Y / induces a surjection on fundamental groups, then the
cofiber is simply connected (Van Kampen).

Proof (of Lemma 3.7 and Theorem 1.1) By construction we have the equality
TPk.Y / D .Y .k/=�fat/Sk

. The connectivity of TPk.M /=TPk�1.M / is (at least)
kC r �1 according to Theorem 3.8, while that of TPk�1.M /=TPk�2.M / is at least
kC r � 2 which means that conn.TPk.M /=TPk�2.M // � kC r � 2 (by the long
exact sequence of the triple .TPk�2.M /;TPk�1.M /;TPk.M //). This produces the
lower bounds on Rk in Lemma 3.7. Since the cohomology of B.M �U; k/ starts to
vanish at dk �Rk (Corollary 3.6), Theorem 1.1 follows.

4 Braid spaces of punctured manifolds

We start with a simple proof of Theorem 1.5, (3); dim M D d � 2 throughout.

Proof of Theorem 1.5, (3) This is a direct computation (with M closed)

H j .B.M; n/IF2/ŠHnd�j .TPnM;TPn�2M IF2/ (Lemma 3.5)

Š zHnd�j .TP
n
M IF2/˚ zHnd�j .TP

n�1
M IF2/ .by 3:1; .2//

ŠH j .B.M �fpg; n/IF2/˚H j�d .B.M �fpg; n� 1/IF2/

In this last step we have rewritten Hnd�j as H.n�1/d�.j�d/ and reapplied Lemma
3.5.

Example When M D Sd and nD 2, then B.Sd ; 2/' RPd and B.Sd �p; 2/D

B.Rd ; 2/DRPd�1 in full agreement with the splitting. This shows more importantly
that the splitting is not valid for coefficients other than F2 . The general case is covered
by the following observation of Segal and McDuff.
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Lemma 4.1 (McDuff [23]) There is a long exact sequence:

��!H��dC1.B.M ��; n� 1//��!H�.B.M ��; n//

��!H�.B.M; n//��!H��d .B.M ��; n� 1// � � �

Proof Let U be an open disc in M of radius < � and let N DM �U . We have
that B.M ��; n/'B.N; n/. There is an obvious inclusion B.N; n/��!B.M; n/ and
so we are done if we can show that the cofiber of this map is †dB.N; n� 1/C . To
that end using a trick as in [23] (proof of theorem 1.1) we replace B.M; n/ by the
homotopy equivalent model B0.M; n/ of configurations Œx1; : : : ;xn� 2B.M; n/ such
that at most one of the xi ’s is in U . The cofiber of B.N; n/ ,!B0.M; n/ is a based
space at � and consists of pairs .x;D/ 2 xU �B.N; n� 1/ such that if x 2 @ xU then
everything is collapsed out to �. But U ŠDd and xU =@ xU D Sd so that the cofiber is
the half-smash product Sd Ì B.N; n� 1/D†dB.N; n� 1/C as asserted.

In order to prove Theorem 1.5 we need the following result of Mostovoy.

Lemma 4.2 (Mostovoy [27]) There is a homeomorphism TPn.S1/ŠRPn .

Remark We only need that the spaces be homotopy equivalent. It is actually not hard
to see that TPn.S1/ has the same homology as RPn since it can be decomposed into
cells one for each dimension less than n and with the right boundary maps. The k th

skeleton is TPk.S1/. Indeed identify S1 with Œ0; 1�=�. A point in TPk.S1/ can be
written as a tuple 0� t1�� � �� tk �1 with identifications at t1D0; tkD1 and tiD tiC1 .
The set of all such points is therefore the image �k of a k –simplex �k��!TPk.S1/

with identifications along the faces Fi�
k . Since all faces corresponding to ti D tiC1

map to the lower skeleton (TPk�2.S1// and since the last face Fk�
k (when tk D 1)

is identified with the zeroth face (t1 D 0) in TPk.S1/, the corresponding chain map
sends the boundary chain @�k to the image of @�k D

Pk
iD0.�1/iFi�

k ; that is to the
image of F0�

k C .�1/kFk�
k which is .1C .�1/k/�k�1 .

We need one more lemma.

Lemma 4.3 Set TP
0
.X /DS0 . Then TP

n
.X _Y /D

W
rCsDn TP

r
.X /^TP

s
.Y /.

Proof Here the smash products are taken with respect to the canonical basepoints of
the various TP ’s. A configuration Œz1; : : : ; zn� in TPn.X _Y / can be decomposed
into a pair of the form Œx1; : : : ;xr � � Œy1; : : : ;ys � in TP r .X / � TP s.Y / for some
rC sD n. This decomposition is unique if we demand that the basepoint (chosen to be
the wedgepoint �) is not contained in the configuration. The ambiguity coming from
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this basepoint is removed when we quotient out TPn.X _Y / by �D TPn�1.X _Y /,
and when we quotient out

S
rCsDn TP r .X /�TP s.Y / by those pairs of configurations

with the basepoint in either one of them. The proof follows.

We are now in a position to prove the second splitting (4).

Proof of Theorem 1.5, (4) Let Qk D fp1; : : : ;pkg be a finite subset of M of
cardinality k . We note that the quotient M=Qk is of the homotopy type of the bouquet
M _S1

_ � � � _S1„ ƒ‚ …
k�1

, and that TP
l
.S1/DRP l=RP l�1 D S l . Using field coefficients

we then have the folowing, where, whenever we quote Lemma 3.5, we assume that
either M is even dimensional orientable or that F D F2 :

H j .B.M�Qk ; n/IF/

Š zHnd�j .TP
n
.M=Qk// (Lemma 3.5 with U [ @M DQk)

Š zHnd�j .TP
n
.M _

_
k�1

S1//

Š zHnd�j

0@ _
rCs1C���Csk�1Dn

TP
r
.M /^TP

s1
.S1/^ � � � ^TP

sk�1
.S1/

1A
Š zHnd�j

0@ _
rCs1C���Csk�1Dn

Sn�r
^TP

r
M

1A
Š

M
rCs1C���Csk�1Dn

zHnd�j�nCr .TP
r
M /

Š

M
r

zHnd�j�nCr .TP
r
M /˚p.k�1;n�r/

Š

nM
rD0

H j�.n�r/.d�1/.B.M �fpg; r/IF/˚p.k�1;n�r/ (Lemma 3.5)

This is what we wanted to prove.

5 Connectivity of symmetric products

In this section we prove Theorem 1.3 and Proposition 1.4 of the introduction.

Theorem 5.1 Suppose X is a based r –connected simplicial complex with r � 1 and
let n� 1. Then SP

n
.X / is 2nC r � 2–connected.
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Proof The claim is tautological for nD 1 and so we assume throughout that n> 1. We
use some key ideas from Arone and Dwyer [2] and Kallel and Karoui [20]. Start with
X simply connected and choose a CW complex Y such that H�.†Y /DH�.X /. If X

is based and r –connected, then Y is based and .r � 1/–connected. A crucial theorem
of Dold [11] now asserts that H�.SPnX /, and hence H�.SP

n
X /, only depends on

H�.X / so that in our case H�.SP
n
X /DH�.SP

n
†Y /. As before we write X .n/ the

n–fold smash product of X so that we can identify SP
n
X with the quotient X .n/=Sn

by the action of Sn . It will also be convenient to write X
.n/
Sn
WDX .n/=Sn . Note that

X .n/ has a preferred basepoint which is fixed by the action of Sn (ie the action is
based). By construction we have equivalences

(12) SP
n
.†Y /D .†Y /

.n/
Sn
D .S1

^Y /
.n/
Sn
D .S1/.n/ ^Sn

Y .n/

where here A^Sn
B is the notation for the quotient by the diagonal action of Sn on

A^B where A admits a based right action of Sn and B a based left action.

We next observe that the quotient .S1/.n/=K is contractible for any non-trivial Young
subgroup KDSk1

�Sk2
�� � ��Skr

�Sn ,
P

ki D n. This follows from the fact that
.S1/.n/=KDSn=KDSk1=Sk1

^� � �^Skr =Skr
, and that for some ki�2, Ski=Ski

D

SP
ki
.S1/ is contractible since the basepoint inclusion SPki�1.S1/��!SPki .S1/ is

a homotopy equivalence between two copies of the circle (see section 2). We can then
use [2, Proposition 7.11] to conclude that .S1/.n/^Sn

�fat is contractible with �fat as
in (7). This subspace can then be collapsed out in the expression of SP

n
.†Y / of (12)

without changing the homotopy type and one obtains

(13) SP
n
.†Y /' .S1/.n/ ^Sn

�
Y .n/=�fat

�
:

The point of expressing SP
n
.X / in this form is to take advantage of the fact that the

action of Sn on Y .n/=�fat is based free (ie, free everywhere but at a single fixed point
say x0 to which the entire �fat is collapsed out).

Consider the projection Wn WD Sn �Sn
.Y .n/=�fat/! .Y .n/=�fat/Sn

. This map is
a fibration on the complement of the point x0 with fiber Sn there, and over x0

the fiber is F0 D Sn=Sn (which is contractible). The space SP
n
.†Y / in (13)

is obtained from Wn by collapsing out F0 (being contractible this won’t matter)
and Xn WD � �Sn

.Y .n/=�fat/ D .Y .n/=�fat/Sn
. Consider the sequence of maps

.Sn;�/��!.Wn;Xn/��! .Xn;Xn/. This is a fibration away from the point x0 2X as
we pointed out. One can then construct a relative serre spectral sequence (as in [20,
Section 6]) with E2 –term:

E2
D zH�.XnI

zH�.S
n// H) H�.Wn;Xn/ŠH�.SP

n
.†Y //
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But Xn is r C n� 2–connected (Theorem 3.8), r C n� 2� 1, so that the E2 –term is
made out of terms of homological dimension r C n� 1C nD 2nC r � 1 or higher
which implies that SP

n
.†Y /D SP

n
.X / has trivial homology up to 2nC r � 2. But

SP
n
.X / is simply connected if n� 2 (see remark after Theorem 3.8) and the proof

follows by the Hurewicz Theorem.

Example 5.2 There is a homotopy equivalence SP
2
.Sk/ ' †kC1RPk�1 (see

Hatcher [17, Chapter 4 , Example 4K.5]). This space is k C 1 D 4C .k � 1/� 2–
connected as predicted and this is sharp.

5.1 Two dimensional complexes

To prove Proposition 1.4 we use a minimal and explicit complex constructed in [22].
The existence of this complex is due to the simple but exceptional property in dimension
two that SPnD , where D � R2 is a disc, is again a disc of dimension 2n. Write
X D

Ww
S1[ .D2

1
[ � � � [D2

r / and denote by ? the symmetric product at the chain
level. In [22] we constructed a space SPnX homotopy equivalent to SPn.X / and
such that SP X '

`
n�0 SPnX has a multiplicative cellular chain complex generated

under ? by a zero dimensional class v0 , degree one classes e1; : : : ; ew and degree 2s

classes SP sDi , 1� i � r , 1� s , under the relations

ei ? ej D�ej ? ei .i ¤ j / ; ei ? ei D 0 ;

SP sDi ?SP tDi D

�
sC t

t

�
SP sCtDi :

The cellular boundaries on these cells were also explicitly computed (but we don’t need
them here). The point however is that a cellular chain complex for SPn.X / consists
of the subcomplex generated by cells

vr
0 ? ei1

? � � �? eit
?SP s1.Dj1

/ ? � � �?SP sl .Djl
/

with rC tC s1C� � �C sl D n and t �w where w again is the number of leaves in the
bouquet of circles. The dimension of such a cell is t C 2.s1C � � � C sl/ for pairwise
distinct indices among the ei ’s.

A reduced cellular complex for SP
n
X can then be taken to be the quotient of

C�.SPnX / by the summand v0C�.SPn�1X / and this has cells of the form

ei1
? � � �? eit

?SP s1.Dj1
/ ? � � �?SP sl .Djl

/

with tCs1C� � �CslDn. The dimension of such a cell is tC2.s1C� � �Csl/D2n�t . The
smallest such dimension is 2n�min.w; n/. This means that conn.SPnX=SPn�1X /D

conn.SP
n
X /� 2n�min.w; n/� 1 and Proposition 1.4 follows.
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Example 5.3 A good example to illustrate Proposition 1.4 is when S is a closed
Riemann surface of genus g . It is well-known that for n � 2g � 1, SPn.S/ is an
analytic fiber bundle over the Jacobian (by a result of Mattuck)

Pn�g
��!SPn.S/

�
��! J.S/

where � is the Abel–Jacobi map. In fact this is the projectivisation of an n� gC 1

complex vector bundle over J.S/. Collapsing out fiberwise the hyperplanes Pn�g�1�

Pn�g we get a fibration �nW S2n�2g��!En��!J.S/ with a preferred section, so that
for n � 2g , SP

n
.S/ is the cofiber of this section. This is 2n� 2g � 1–connected

as predicted, and in fact zH�.SP
n
.S// D �2n�2gH�.J.S// where � is a formal

suspension operator which raises degree by one.

5.2 Connectivity and truncated products

The homology of truncated products, and hence of braid spaces, is related to the
homology of symmetric products via a very useful spectral sequence introduced in
[6]. This spectral sequence has been used and adapted with relative success to other
situations; eg [21]. The starting point is the duality in Lemma 3.5. The problem of
computing H�.B.M; n/IF/ becomes then one of computing the homology of the
relative groups H�.TPnM ;TPn�2M IF/. The key tool is the following Eilenberg–
Moore type spectral sequence with field coefficients F .

Theorem 5.4 [6] Let X be a connected space with a non-degenerate basepoint.
Then there is a spectral sequence converging to H�.TPn.X /;TPn�1.X /IF/ , with
E1 –term

(14)
M

iC2jDn

H�.SP iX;SP i�1X /˝H�.SP j .†X /;SP j�1.†X //

and explicit d1 differentials.

Field coefficients are used here because this spectral sequence uses the Kunneth formula
to express E1 as in (14). Here SP�1.X /D∅ and SP0.X / is the basepoint.

Example 5.5 When X D S1 , then H�.TPn.S1/;TPn�1.S1// D zH�.S
n/. Since

SP iS1' S1 for all i � 1, the spectral sequence in this case has E1 –term of the form

H�.S
1;�/˝H�.P

n�1
2 ;P

n�1
2
�1/D � zH�.S

n�1/D zH�.S
n/

if n is odd (where � is the suspension operator), or E1
�;� DH�.P .n=2/;P .n=2/�1/D

zH�.S
n/ if n is even. In all cases the spectral sequence collapses at E1 .
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Now Lemma 3.5 combined with Theorem 5.4 gives an easy method to produce upper
bounds for the non-vanishing degrees of H�.B.M; n//. The least connectivity of the
terms SP

i
X �SP

j
.†X / for iC2j D n translates by duality to such an upper bound.

This was in fact originally our approach to the cohomological dimension of braid
spaces. We illustrate how we can apply this spectral sequence by deriving Corollary
1.2 from Proposition 1.4.

Proof of Corollary 1.2 Suppose Q[ @S ¤ ∅. The spectral sequence of Theorem
5.4 converging to the homology of .TPk.S/;TPk�1.S// takes the form
(15)
E1
D zH�.SP

k
S/
M
˚iC2jDk.H�.SP

i
S/˝H�.SP

j
.†S//

M
zH�.SP

k=2
.†S//

(if k odd, the far right term is not there). We have that Rk (as in Corollary 3.6) is
at least the connectivity of this E1 –term. Since S is a two dimensional complex,
the connectivity of SP

i
.S/ is at least 2i �min.w; i/ � 1 (for some w � 0). The

connectivity of SP
j
.†S/ is at least 2j C r � 2 � 2j � 1 since †S is now simply

connected (Theorem 5.1). The connectivity of SP
i
.S/^ SP

j
.†S/ for non-zero i

and j is then at least

.2i �min.w; i/� 1/C .2j � 1/C 1D i C k �min.w; i/� 1

When i D 0, then j D k
2

(k even) and conn.SP
k=2
.†S//� k � 1. The connectivity

of the E1 –term (15) is at least the minimum of8̂<̂
:

i C k �min.w; i/� 1; 1� i � k � 1;

2k �min.w; k/� 1; i D k;

k � 1; i D 0:

which is k � 1. By duality H�.B.S �Q; k//D 0 for � � 2k � kC 1D kC 1. If S

is closed, then the same argument shows that this bound needs to be raised by one.

6 Stability and section spaces

In this final section, we extrapolate on standard material and make slightly more precise
a well-known relationship between configuration spaces and section spaces [23; 7; 36;
19].

When manifolds have a boundary or an end (eg a puncture), one can construct embed-
dings

(16) CW B.M; k/��!B.M; kC 1/ :
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by “addition of points” near the boundary, near “infinity” or near the puncture. In the
case when @M ¤∅ for example, one can pick a component A of the boundary and
construct a nested sequence of collared neighborhoods V1 � V2 � � � � � A together
with sequences of points xk 2 Vk � VkC1 . There are then embeddings B.M �

Vk ; k/��!B.M � VkC1; k C 1/ sending
P

zi to
P

zi C xk . Now we can replace
B.M �Vk ; k/ by B.M �A; k/ and then by B.M; k/ up to small homotopy. In the
direct limit of these embeddings we obtain a space denoted by B.M;1/. Note that
an easy analog of Steenrod’s splitting [6] gives the splitting

(17) H�.B.M;1//Š
M
kD0

H�.B.M; kC 1/;B.M; k//

(here B.M; 0/D∅). In fact (17) is a special case of a trademark stable splitting result
for configuration spaces of open manifolds or manifolds with boundary. Denote by
Dk.M / the cofiber of (16). For example D1.M /D B.M; 1/DM .

Theorem 6.1 (Bödigheimer [5], Cohen [8]) For M a manifold with non-empty
boundary, there is a stable splitting (ie, after sufficiently many suspensions):

B.M; k/'s

k_
iD0

Di.M /

The classical case of M DDn (closed n–ball) is due to Victor Snaith. A short and
clever argument of proof for this sort of splittings is due to Fred Cohen [8]. The next
stability bound is due to Arnold and a detailed proof is in an appendix of [36].

Theorem 6.2 (Arnold) The embedding B.M; k/ ,!B.M; kC 1/ induces a homol-
ogy monomorphism and a homology equivalence up to degree Œk=2�.

The monomorphism statement is in fact a consequence of (17). Arnold’s range is not
optimal. For instance

Theorem 6.3 [21] If S is a compact Riemann surface and S� D S � fpg, then
B.S�; k/ ,! B.S�; kC 1/ is a homology equivalence up to degree k � 1.

We define s.k/ to be the homological connectivity of CW B.M; k/��!B.M; kC 1/

(see Section 1.3) . By Arnold, s.k/� Œk=2� .
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6.1 Section spaces

If �W E��!B is a fiber bundle over a base space B , we write �.�/ for its space of
sections. If � is trivial then evidently �.�/ is the same as maps into the fiber. Let
M be a closed smooth manifold of dimension d , U � M a closed subspace and
�CM the fiberwise one-point compactification of the tangent bundle over M with
fiber Sd D Rd [ f1g. Then �CM��!M has a preferred section s1 which is the
section at 1 and we let �.�CM IU / be those sections which coincide with s1 on
U . Note that �.�CM / splits into components indexed by the integers as in

�.�CM / WD
a
k2Z

�k.�
CM / :

This degree arises as follows. Let sW M��!�CM be a section. By general position
argument it intersects s1 at a finite number of points and there is a sign associated
to each point. This sign is defined whether the manifold is oriented or not (as in the
definition of the Euler number). The degree is then the signed sum. Similarly we can
define a (relative) degree of sections in �.�CM IU /.

Observe that if �CM is trivial, then ˆW �.�CM /
'

��! Map.M;Sd /, where d D

dim M . The components of Map.M;Sd / are indexed by the degree of maps (Hopf),
but at the level of components we have the equivalence

�k.�
CM /'MapkC`.M;Sd /

where ` is such that ˆ.s1/ 2 Map` . In the case when M D Seven , then ˆ.s1/
is the antipodal map which has degree ` D �1 [34]. When M D S is a compact
Riemann surface, `D�1 when the genus is even and `D 0 when the genus is odd
[21]. Further relevant homotopy theoretic properties of section spaces are summarized
in the appendix.

6.2 Scanning and stability

A beautiful and important connection between braid spaces and section spaces can be
found for example in [35; 23; 19] (see Crabb and James [10] for the fiberwise version).
This connection is embodied in the “scanning” map

(18) Sk W B.M �U; k/��!�k.�
CM IU [ @M /

where U is a closed subspace of M . Here and throughout we assume that removing a
subspace as in M �U doesn’t disconnect the space. The scanning map has very useful
homological properties. A sketch of the construction of Sk for closed Riemaniann M

goes as follows (for a construction that works for topological manifolds see for example
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Dwyer, Weiss and Williams [14]). First construct S1W M �U��!�1 . We can suppose
that M has a Riemannian metric and use the existence of an exponential map for �M
which is a continuous family of embeddings expx W �xM��!M for x 2M such that
x 2 im.expx/ and im.expx/

C Š �Cx M (the fiber at x of �CM ). By collapsing out
for each x the complement of im.expx/ we get a map cx W M��! im.expx/

CŠ �Cx M

Let V be an open neighborhood of U , M �V��!M �U being a deformation retract.
Then we have the map

S1W M �V��!�.�CM / ; y 7! .x 7! cx.y// 2 �
C
x M :

Observe that for x near U , the section S1.y/ agrees with the section at infinity (ie,
we say it is null). In fact and more precisely, S1 maps into �c.�CM;U / the space
of sections which are null outside a compact subspace of M � U . A deformation
argument shows that �c ' � . It will be convenient to say that a section s 2 � is
supported in a subset N �M if s D s1 outside of N . A useful observation is that
if s1; s2 are two sections supported in closed A and B and A\B D∅, then we can
define a new section which is supported in A[B , restricting to s1 on A and to s2 on
B .

Extending S1 to Sk is now easy. We first choose � > 0 so that B�.M; k/ the closed
subset of B.M; k/ where particles have pairwise separation � 2� is homotopic to
B.M; k/ (this is verified in [23, Lemma 2.3]). We next choose the exponential maps to
be supported in neighborhoods of radius � . Given a finite subset Q WD fy1; : : : ;ykg 2

B�.M �U; k/, each point yi determines a section supported in Vi WD im.expyi
/. Since

the Vi ’s are pairwise disjoint, these sections fit together to give a section sQ supported
in
S

Vi so that Sk.Q/ WD sQ .

When M is compact with boundary, then we get the map in (18) by replacing B.M �

U; k/ by B.M �U [ @M; k/ and �c.�CM;U / by �.�CM;U [ @M / the space of
sections that are null outside a compact subspace of M �U [@M . We let s.k/ be the
stability range of the map B.M �U; k/��!B.M �U; kC 1/ (as in ~6.1)

The next proposition is a follow up on a main result of [23] (see also [19]).

Proposition 6.4 Suppose M is a closed manifold and U �M a non-empty closed sub-
set, M �U connected. Then the map Sk�W H�.B.M �U; k//��!H�.�k.�

CM;U //

is a monomorphism in all dimensions and an isomorphism up to dimension s.k/.

Proof It is easy to see that the maps Sk for various k are compatible up to ho-
motopy with stabilization so we obtain a map S W B.M;1/��!�1.�

CM;U / WD

limk �k.�
CM;U / which according to the main theorem of McDuff is a homology
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equivalence (in fact all components of �.�CM;U / are equivalent and �1 can be cho-
sen to be the component containing s1 ). But according to (17) H�.B.M �U; k//!

H�.B.M �U;1// is a monomorphism, and then an isomorphism up to dimension
s.k/. The claim follows.

This now also implies our last main result from the introduction.

Proof of Proposition 1.6 Suppose that M is a closed manifold of dimension d , U

a small open neighborhood of the basepoint � and consider the fibration (see the
appendix)

�k.�
CM I xU /��!�k.�

CM /��!Sd

The main point is to use the fact as in [23, proof of Theorem 1.1] that scanning sends the
exact sequence in Lemma 4.1 to the Wang sequence of this fibration. Let N DM�U so
that we can identify �k.�

CM I xU / with �k.�
CN I @N / which we write for simplicity

�c
k
.�CN / as before. Under these identifications and by a routine check we see that

scanning induces commutative diagrams:

!Hq�dC1.B.N; k � 1//! Hq.B.N; k// ! Hq.B.M; k// !Hq�d .B.N; k � 1//!???yS

???yS

???yS

???yS

! Hq�dC1.�
c
k
.�CN // !Hq.�

c
k
.�CN //!Hq.�k.�

CM //! Hq�d .�
c
k
.�CN // !

where the top sequence is the homology exact sequence for the pair .B.M; k/;B.N; k//

as discussed in Lemma 4.1 and the lower exact sequence is the Wang sequence of the
fibration �k.�

CM /��!Sd . According to Proposition 6.4, the map Sk�W Hq.B.N; k//

��!Hq.�
c
k
.�CN // is an isomorphism up to degree q D s.k/. It follows that all

vertical maps in the diagram above involving the subspace N together with the next
map on the right (which doesn’t appear in the diagram) are isomorphisms whenever
q � s.k � 1/� s.k/. By the 5–lemma the middle map is then an isomorphism within
that range as well. This proves the proposition.

We can say a little more when k D 1, M closed always.

Lemma 6.5 The map S1W M��!�1.�
CM / induces a monomorphism in homology

in degrees r C 1; r C 2, where r D conn.M /, r � 1.

Proof Consider �.s�CM / the space of sections of the fibration s�CM��!M ob-
tained from �CM by applying fiberwise the functor SP1 . It is easy to see that
scanning has a stable analog st W SP1.MC/��!�.s�

CM / but harder to verify that
st is a (weak) homotopy equivalence [14; 19]. Note that SP1.MC/' SP1M �Z
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and SP1.M / is equivalent to a connected component (any of them) say �0.s�
CM /.

By construction the following diagram homotopy commutes

M
S1

��! �1.�
CM /?y ???y˛

SP1.M /
st
��! �0.s�

CM /

where the right vertical map ˛ is induced from the natural fiber inclusion ˛W Sd ,!

SP1.Sd /. When M is r –connected, the map M��!SP1.M / induces an isomor-
phism in homology in dimensions rC1 and rC2 [29, Corollary 4.7]. This means that
the composite M ! �1.�

CM /! �1.s�
CM / is a homology isomorphism in those

dimensions and the claim follows.

Remark If M has boundary, then by scanning M0 WD M � @M we obtain a
map into the compactly supported sections �.�CM /. This map extends to a map
S W M=@M��!�.�CM / which is according to Aouina and Klein [1] .d � r C 1/–
connected if M is r –connected of dimension d � 2.

7 Appendix: Some homotopy properties of section spaces

All spaces below are assumed connected. We discuss some pertinent statements from
Switzer [38]. Let pW E��!B be a Serre fibration, i W A ,!X a cofibration (A can be
empty) and uW X��!E a given map. Slightly changing the notation in that paper, we
define

�u.X;AIE;B/D ff W X��!E j f ı i D u ı i;p ıf D p ıug

This is a closed subspace of the space of all maps Map.X;E/ and is in other words
the solution space for the extension problem

A
ui //

i
��

E

p

��
X pu

//

u
>>~~~~~~~~
B

with data ujAW A��!E and puW X��!B . When A D fx0g and B D fy0g then
�.X;x0IE;y0/DMap�.X;E/ is the space of based maps from X to Y sending x0

to y0 . On the other hand and when X DB and AD∅, then �u.B;∅IE;B/D�.E/
is the section space of the fibration � D .E

p
��!B/.
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Proposition 7.1 [38]

� If A�X 0�X is a nested sequence of NDR pairs, and j W X 0 ,!X the inclusion,
then the induced map �u.X;AIE;B/��!�uj .X

0;AIE;B/ yields a fibration
with �u.X;X

0IE;B/ as fibre.

� If E��!E0��!B are two fibrations and qW E��!E0 the projection, then
the induced map �u.X;AIE;B/��!�qu.X;AIE

0;B/ is a fibration with
�u.X;AIE;E

0/ as fibre.

The first part of Switzer’s result implies that restriction of the bundle �W E��!B to
X � B is a fibration �.�/��!�.�jX / with fiber the section space �.�;X / ie, those
sections of � which are “stationary” over X (compare [10, Chapter 1, Section 8]). An
example of relevance is when � D �CM is the fiberwise one-point compactification
and s1 is the section mapping at infinity. Denote by Sd the fiber over x0 2M . If U

is a small open neighborhood of x0 , then �.�
j xU /' Sd and we have a fibration

(19) �.�CM; xU /��!�.�CM /
res
��!Sd

where the fiber consists of those sections which coincide with s1 on U . So for instance
if M DSd , �.�CM; xU /'�dSd and the fibration reduces to the evaluation fibration
�dSd !Map.Sd ;Sd /! Sd .

Finally and according to [10, page 29], if E��!B is a Hurewicz fibration and s; t are
two sections, then s and t are homotopic if and only if they are section homotopic.
We use this to deduce the following lemma.

Lemma 7.2 Let � W E��!B be a fibration with a preferred section s1 (which we
choose as basepoint). Then the inclusion �.E/��!Map.B;E/ induces a monomor-
phism on homotopy groups.

Proof We give �.E/ � Map.B;E/ the common basepoint s1 . An element of
�i�.E/ is the homotopy class of a (based) map �W S i��!�.E/ or equivalently a
map �W S i �B��!E (where �.�; b/ 2 ��1.b/ and �.N;�/D s1.�/, N the north
pole of S i ) and the homotopy is through similar maps. Write ˆ the image of � via
the composite S i��!�.E/��!Map.B;E/. Now ˆ can be viewed as a section of
S i �E��!S i �B and a null-homotopy of ˆ is a homotopy to id � s1 . Since this
null-homotopy can be done fiberwise it is a null-homotopy in �.E/ from � to s1 .
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