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On multiplicity of mappings between surfaces

SEMEON BOGATYI

JAN FRICKE

ELENA KUDRYAVTSEVA

Let M and N be two closed (not necessarily orientable) surfaces, and f W M !N

a continuous map. By definition, the minimal multiplicity MMRŒf � of the map f
denotes the minimal integer k having the following property: f can be deformed
into a map g such that the number jg�1.c/j of preimages of any point c 2N under
g is � k . We calculate MMRŒf � for any map f of positive absolute degree A.f / .
The answer is formulated in terms of A.f / , Œ�1.N / W f#.�1.M //� , and the Euler
characteristics of M and N . For a map f with A.f /D 0 , we prove the inequalities
2�MMRŒf �� 4 .
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1 Introduction

For a continuous map f W X ! Y between topological spaces, we define the multi-
plicity of f as maxy2Y jf

�1.y/j, and the minimal multiplicity of f as the minimal
multiplicity of maps homotopic to f , that is

MMRŒf � WD min
g'f

max
y2Y
jg�1.y/j:

From now on, ' means that the mappings are homotopic. The problem of determining
MMRŒf � arises. This problem is closely related to the self-intersection problem of
determining the minimal self-intersection number (see Bogatyi, Kudryavtseva and
Zieschang [4; 3])

MIŒf � WD min
g'f
jInt.g/j; Int.g/ WD f.x;y/ 2X �X jx ¤ y; g.x/D g.y/g=†2

(here †2 is the symmetric group in two symbols, which acts on X �X by permutations
of the coordinates), and to the problem of determining the minimal (unordered) �–tuple
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self-intersection number

MI�Œf � WD min
g'f
jInt�.g/j; Int�.g/ WD fI �X j jI j D �; jg.I/j D 1g; �� 2:

Clearly, MIŒf �DMI2Œf �, and one easily shows1 that MI�C1Œf �� .MI�Œf �/2 , �� 2.
The connection between MMRŒf � and MI�Œf � is illustrated by the following properties:

MI�Œf �D 0 () MMRŒf � < � and MI�Œf � > 0 () MMRŒf �� �:

In particular, MIŒf �D 0 if and only if MMRŒf �D 1. The numbers MMRŒf �, MIŒf �,
and MI�Œf �, measure, in a sense, “complexity” of the self-intersection set Int.f /.

It is natural to consider the above problem for maps f W M m!N n between closed
connected (nonempty) smooth manifolds, where m D dim M , n D dim N . The
problem is nontrivial for 0<m� n� 2m.

Hurewicz [14] proved that, if X is an m–dimensional compact metric space and
mC 1� n� 2m, then any continuous map f W X !Rn can be deformed, by means
of an arbitrary small perturbation, to a map gW X ! Rn of multiplicity � Œ n

n�m
�. A

similar assertion is also valid if the Euclidean space Rn is replaced by an arbitrary
smooth manifold N n . Thus, for m< n� 2m, we have

(1.1) MMRŒf ��
h n

n�m

i
:

This inequality follows by observing that, for a “generic” map gW M ! N , the
set Int�C1.g/ � M has dimension .�C 1/m � �n, which is negative (and, thus,
MMRŒf �� �) if � > m

n�m
.

The special case nD 2m is the classical self-intersection problem which gives rise to
Whitney’s work [21]. Here the estimation (1.1) gives MMRŒf �2 f1; 2g, and computing
MMRŒf � is equivalent to deciding whether MIŒf � D 0, ie whether the map f is
homotopic to an embedding. Namely, we have MMRŒf � D 1 if MIŒf � D 0, and
MMRŒf � D 2 if MIŒf � > 0. A useful tool for deciding whether MIŒf � D 0 is the
Nielsen self-intersection number NIŒf � of f [4; 3]. One can show by using the Whitney
trick [21] that MIŒf � D NIŒf � if m � 3. But, if m � 2, one has only the inequality
MIŒf � � NIŒf � (see our papers with Zieschang [4; 3] for mD 1). For mD 1, there
are several combinatorial and geometric methods for deciding whether a closed curve

1(Indeed, take a map g ' f such that MI�Œf �D jInt�.g/j DW ` . We can assume that ` <1 . Then
`D

P
i��

P
y2Y; jg�1.y/jDi

� i
�

�
. Hence, for every nonvanishing summand in this sum, one has

� i
�

�
� `

and � i
�C1

�
D
� i
�

� i��
�C1

<
� i
�

�
i
� �

� i
�

�2
� `

� i
�

�
:

Therefore MI�C1Œf � � jInt�C1.g/j D
P

i>�

P
y2Y; jg�1.y/jDi

� i
�C1

�
, which is at most

`
P

i>�

P
y2Y; jg�1.y/jDi

� i
�

�
� `2 .)
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on a surface is homotopic to a simple closed curve (see, for example, Gonçalves,
Kudryavtseva and Zieschang [9] and references therein). An answer in terms of the
Nielsen self-intersection number is given in Theorem 2.2. In the remaining case mD 2,
we only know that NIŒf � > 0 implies MIŒf � > 0 (and thus MMRŒf � D 2), but the
question whether NIŒf �D 0 implies MIŒf �D 0 is still open.

The present paper studies the number MMRŒf � mainly in the case mD n� 2. Here
MMRŒf � is closely related to the absolute degree A.f / (as defined in Hopf [13] or Ep-
stein [7]; see also Kneser [16], Olum [18] and Skora [19]) of the map f . A definition of
the absolute degree is also given in Definition 3.7 in the paper by Gonçalves, Kudryavt-
seva and Zieschang [10] of this volume. Theorem 2.1 computes the number MMRŒf �
for a self-mapping f of a circle (m D n D 1). In the case m D n D 2 (mappings
between closed surfaces), the following results are obtained. We calculate MMRŒf �
in terms of A.f /, `.f / WD Œ�1.N / W f#�1.M /�, and the Euler characteristics of the
surfaces, for any map f W M ! N with A.f / > 0 (Theorem 3.2 and Theorem 3.3).
We also estimate MMRŒf � for any map f with A.f /D 0 (Theorem 4.2). In particular,
we prove that

MMRŒf � 2 fA.f /;A.f /C 2g if A.f / > 0;

MMRŒf � 2 f2; 3; 4g if A.f /D 0:

The authors do not know whether MMRŒf ��A.f / if mD n� 3.

Acknowledgements This work was partially completed during the visit of the first and
the third authors in June–July 2005 at the Fakultät für Mathematik, Universität Siegen,
Deutschland. The visits have been supported by the FIGS-project “Niedrigdimensionale
Topologie und geometrisch-topologische Methoden in der Gruppentheorie” (1st author),
by the Grant of the President RF, project NSh–4578.2006.1, and by a PIMS Fellowship
(3rd author).

2 Computing MMRŒf � for mappings of a circle

Any map f W S1!N with dim N �3 is homotopic to an embedding, thus MMRŒf �D
1. Consider the cases dim N D 1; 2.

Theorem 2.1 For any self-map f W S1! S1 ,

MMRŒf �D

(
j degf j; degf ¤ 0;

2; degf D 0:
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Proof We will identify the circle S1 with the unit circle in the complex plane C .
Consider the projection pW R! S1 , p.r/D e2�ir , r 2R, of the universal covering
R of S1 to S1 .

Suppose that degf ¤ 0. Then f is homotopic to the map sending z 7! zdegf ,
z 2 S1 . Thus all points have exactly j degf j preimages, hence MMRŒf �� j degf j.
Let us show that the number of preimages can not be reduced. Since degf ¤ 0,
for every point s 2 S1 there exists a point t 2 S1 such that f .t/ D s . Let r0 2 R
be a point such that p.r0/ D t . Consider a lifting zf W R ! R of f W S1 ! S1 .
Then zf .r0 C 1/ D zf .r0/ C degf , so by the Intermediate Value Theorem, there
exist points r1; : : : ; rj degf j�1 2 .r0; r0C 1/ such that zf .ri/D zf .r0/C j sgn.degf /,
1� j � j degf j � 1. Thus p.r0/;p.r1/; : : : ;p.rj degf j�1/ are different preimages of
s under the mapping f . This shows MMRŒf �� j degf j.

Suppose that degf D 0. Let us show that there exists g'f with jg�1.s/j� 2 for any
s 2S1 . Indeed, take g to be the map given by the following rule: g.z/D z if Im z� 0,
g.z/D xz if Im z � 0. It remains to show that for any f W S1! S1 , degf D 0, there
exists a point s 2 S1 with jf �1.s/j � 2. Such a map f lifts to a map xf W S1! R,
thus it is enough to show that xf is not an embedding. This can be easily deduced by
taking two points s0; s1 2 S1 with xf .s0/D mins2S1

xf .s/, xf .s1/D maxs2S1
xf .s/,

and applying the Intermediate Value Theorem to the restriction of xf to two segments
in S1 having endpoints at s0; s1 .

Consider a closed curve f W S1 ! N 2 on a closed surface N 2 . Then computing
MMRŒf � is equivalent to deciding whether the homotopy class Œf � of the curve f
contains a simple closed curve. Namely, MMRŒf �D 1 if Œf � contains a simple curve,
and MMRŒf �D 2 otherwise.

Theorem 2.2 [4; 3] A closed curve f W S1 ! N 2 on a closed surface N 2 is ho-
motopic to a simple closed curve if and only if NIŒf � D 0 and one of the following
conditions is fulfilled: the curve f is not homotopic to a proper power of any closed
curve on N , or f ' g2 for some orientation-reversing closed curve gW S1!N .

An analogue of Theorem 2.2 was proved by Turaev and Viro [20, Corollary II], in
terms of the intersection index introduced therein.

3 MMR.f / for maps of positive degree between surfaces

In the following, M DM 2 and N DN 2 are arbitrary connected closed surfaces, ie
2–dimensional manifolds. By �.M /, we denote the Euler characteristic of M . For a
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continuous mapping f W M !N , A.f / denotes its absolute degree (see Hopf [13],
Epstein [7], Kneser [16], Olum [18], Skora [19] or Gonçalves, Kudryavtseva and
Zieschang [8]). Denote the index of the image of the fundamental group of M in
the fundamental group of N by `.f / WD Œ�1.N; f .x0// W f#.�1.M;x0//� for some
x0 2M . Actually the number `.f / does not depend on the choice of the point x0 .

The following consequence of Kneser’s inequality will be central in the proof of our
main result.

Proposition 3.1 If f W M ! N has absolute degree d D A.f / > 0 then there are
at most d � �.N /� �.M / points in N whose preimages have cardinality � d � 1.
Moreover, if pairwise different points y1; : : : ;yr of N have �1; : : : ; �r preimages,
respectively, then

d ��.N /� �.M /C

rX
iD1

.d ��i/:

Proof In the case when r D 1 and f is orientation-true, the latter inequality was
proved in Theorem 2.5 (a) of [8]. In the general case, the inequality can be proved
using the techniques in [1; 8; 11; 2], as follows.

If f is not orientation-true and d D A.f / > 0 then d D `.f /, due to the result
of Kneser [15; 16]. On the other hand, one has �i � `.f /, 1 � i � r , since the
map f admits a lifting yf W M ! yN such that f D p ı yf , where pW yN ! N is an
`.f /–fold covering corresponding to the subgroup f#.�1.M;x0// of �1.N; f .x0//,
and A. yf /D 1, hence yf is surjective. Therefore

Pr
iD1.d ��i/ � 0. This, together

with the Kneser inequality [16], d ��.N /� �.M /, implies the desired inequality.

If f is orientation-true, one proceeds as in the proof of Proposition 2.5 (a) of [8], where
one replaces the single point y02N by the set of r points y1; : : : ;yr . More specifically,
by applying a suitable deformation, one can assume that there are small pairwise disjoint
disks Di ;Dij , 1 � i � r , 1 � j � �i , around the points yi of N and the points of
f �1.yi/ such that f �1. VDi/D

S�i

jD1
VDij , and f jDij

is a branched covering of type
z 7! zdij for some positive integer dij . Therefore the complement of these open disks
are two compact surfaces F �M , G � N such that the restriction of f induces a
proper map carrying the boundary into the boundary, f jF W .F; @F /! .G; @G/. By
Proposition 1.6 of [8] (or by a more general Theorem 4.1 of [19]), �.F /�A.f / ��.G/.
This, together with �.F /D �.M /�

Pr
iD1 �i , �.G/D �.N /� r , gives the desired

inequality.

Theorem 3.2 Suppose that f W M ! N has absolute degree d D A.f / > 0. If
`.f /¤ d , or `.f /D d and d ��.N /D �.M /, then MMRŒf �D d .
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Proof The inequality MMRŒf ��A.f / follows from the first part of Proposition 3.1.

Let us show the converse inequality, MMRŒf � � A.f /. It follows from [6; 19; 16],
respectively, that the mapping f is homotopic to a d –fold covering which is branched
in the first case and unbranched in the second case. Thus, we found a mapping which
is homotopic to f , and the preimage of any point of N has cardinality � d .

Theorem 3.3 Suppose that f W M ! N has absolute degree d D A.f / > 0. If
`.f /D d and d ��.N /¤ �.M /, then MMRŒf �D d C 2.

Proof Case 1 Suppose that d DA.f /D 1. It follows from [6; 19] that the mapping
f is homotopic to a pinching map where the pinched subsurface M 0�M , @M 0'S1 ,
is different from the 2–disk D2 (here the natural projection M !M=M 0 is called a
pinching map).

Let us show that such a pinching map is homotopic to a map g of multiplicity � 3.
For this, we construct a proper continuous map g0W .M 0; @M 0/! .D2; @D2/ whose
restriction to @M 0 is a homeomorphism, and whose multiplicity equals 3. Such a
map g0 is shown in Figure 1. We may identify N with the surface which is obtained
by gluing of M n VM 0 and D2 by means of the aforementioned homeomorphism of
the boundary circles, where VM 0 denotes the interior of M 0 . Define gW M ! N as
gjMnM 0 D idMnM 0 and gjM 0 D g0 . Clearly, f ' g , since g0 is homotopic relative
boundary to a pinching map. In Case 2 below, we will use the following property of
the constructed map g : its restriction to the preimage of the complement N nD2 of a
disk is injective.

�!

ddd

Figure 1: A proper map g0W M 0!D2 of multiplicity 3

It follows from the inequality of Euler characteristics of M and N that f is not homo-
topic to an embedding. (Indeed, otherwise such an embedding g is a homeomorphism
onto g.M /; it follows from Brouwer’s Theorem on Invariance of Domain [5] that g
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is surjective and, therefore, it is a homeomorphism.) Suppose that f is homotopic to a
map gW M !N of multiplicity 2, we will show that this leads to a contradiction. Let
y 2N be a point with g�1.y/D fx1;x2g. Then the local degree of g at each of the
points x1 and x2 is defined modulo 2, and

deg.g;x1/C deg.g;x2/�A.g/�A.f /� 1 mod 2:

Without loss of generality, we may assume that deg.g;x1/¤ 0. This implies that the
image of any neighbourhood of x1 contains a neighbourhood of y D g.x1/, since
otherwise one could construct a map F W D2!S1 with deg.F j@D2/D deg.g;x1/¤ 0.
Therefore the restriction of g to an appropriate neighbourhood of x2 is injective and,
thus (by Brouwer’s Theorem on Invariance of Domain [5]), is a homeomorphism onto
a neighbourhood of y . This implies that deg.g;x2/D˙1. Similar arguments show
that deg.g;x1/D˙1, a contradiction.

Case 2 Suppose that d D A.f / D `.f / � 2. Let us construct a map g which is
homotopic to f and has multiplicity A.f /C2. Consider a covering pW zN !N which
corresponds to the subgroup f#.�1.M;x0// of �1.N; f .x0//. So, this is an `.f /–fold
covering. Let y 2N be an arbitrary point and D a small closed neighbourhood which
is homeomorphic to the disk D2 . Let D1; : : : ;Dd be the connected components of
p�1.D/.

Let zf W M ! zN be a lifting of f . Then A. zf /D `. zf /D 1. By Case 1, there exists a
map zgW M ! zN which is homotopic to zf and has multiplicity � 3. Then the map
g WD p ı zg is homotopic to f D p ı zf . By Case 1, we may also assume that zg is
injective on zg�1. zN nD1/. Therefore the map g has multiplicity `.f /C2DA.f /C2.

Let us show that the multiplicity of f is � `.f /C 2. Let zf W M ! zN be a lifting of
f to this `.f /–fold covering, thus A. zf /D `. zf /D 1. By Case 1, there exists a point
zy 2 zN whose preimage under zf has cardinality � 3. Since A. zf / > 0, every point of
p�1.p.zy// has a nonempty preimage under zf . Therefore f �1.p.zy// has cardinality
at least `.f /C 2DA.f /C 2.

4 Estimates for MMR.f / if A.f / D 0

Suppose that M is a connected orientable closed surface of genus g � 0. Consider
the standard presentation of the closed surface M as the boundary of a solid sur-
face in R3 which is obtained from a closed 3-ball by attaching g solid handles; see
Figure 2 (a). Choose a base point x0 2M and consider a system of simple closed
curves ˛1; ˇ1; : : : ; ˛g; ˇg on M based at x0 which form a canonical system of cuts; see
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Figure 2 (a). Then the fundamental group �1.M;x0/ admits a canonical presentation

�1.M;x0/D

�
a1; b1; : : : ; ag; bg

ˇ̌̌̌ gY
jD1

Œaj ; bj �

�
;

where aj ; bj are the homotopy classes of the based loops j̨ ; ǰ , respectively. Denote
by Vg the bouquet of g circles ˛1[ : : :[˛g if g � 1, V0 WD fx0g if g D 0, and by
% a retraction %W M ! Vg which maps all loops ǰ to the point x0 . We can assume
that the curves ˛1; : : : ; ˛g are contained in the plane …�R3 which is tangent to M

at x0 . (In Figure 2, the plane … is parallel to the plane of the picture.)

Let i W M ! R3 denote the inclusion, and p…W R
3!… the orthogonal projection.

The following properties of the map p D p… ı i W M !… can be assumed without
loss of generality, and will be used later:

(p1) The restriction of p to a neighbourhood U of the base point x0 2M is a home-
omorphism onto a neighbourhood of the point p.x0/ in …. Moreover, pjVr

W Vr !…

is an embedding, and all curves pj
j̨
W j̨ !… are regular;

(p2) All curves pj
ǰ

are contractible in p.M /;

(p3) p.M / is a regular neighbourhood of the graph p.Vr / in …;

(p4) The map p has multiplicity 2.

k k k
�

x0
˛1
Y

ˇ1

I O

˛2
ˇ2

�
˛3

�

j

ˇ3

(a) M orientable, g D 3

k k
�

x0
˛1
Y

ˇ1

I O

˛2
ˇ2

�
˛3

�

Y
ˇ3

(b) M nonorientable, g D 6

k k
` z2`z1

�
x0

˛1
Y

ˇ1

I O

˛2 ˇ2

�
ˇ0

3

(c) M nonorientable, g D 5

Figure 2: A canonical system of cuts on a closed surface M
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Suppose that M is a connected nonorientable closed surface of genus g � 1. Choose a
base point x0 2M . Then the fundamental group of M admits the following canonical
presentation:

�1.M;x0/D

�
a1; b1; : : : ; ag=2; bg=2

ˇ̌̌̌ � g=2�1Y
jD1

Œaj ; bj �

�
� Œag=2; bg=2��

�
if g is even,

�1.M;x0/D

�
a1; b1; : : : ; aŒg=2�; bŒg=2�; b0

ˇ̌̌̌ � .g�1/=2Y
jD1

Œaj ; bj �

�
� b2

0

�
if g is odd,

where we use the notation

Œx;y� D xyx�1y�1; Œx;y�� D xyx�1y:

This presentation of the group �1.M;x0/ corresponds to a system of simple closed
curves ˛1; ˇ1; : : : ; ˛Œg=2�; ˇŒg=2�; ˇ0 on M based at x0 , which form a canonical system
of cuts; see Figure 2 (b), (c). Here the curve ˇ0 appears only if g is odd. Denote by Vr

the bouquet of r D Œg=2� circles ˛1[ : : :[˛Œg=2� for g� 2, V0Dfx0g for gD 1, and
by % a retraction %W M ! Vr which maps all loops ǰ to the point x0 . We consider a
realization of M in R3 via a map i W M ! R3 which is an immersion if g is even
(see Figure 2 (b)), while, for g odd, the restriction i jMnfz1;z2g

to the complement of
the set of two points z1; z2 2M n fx0g is an immersion; see Figure 2 (c). We can
assume that i jVr

is an embedding with i.Vr / �…, moreover … coincides with the
tangent plane to i.M / at i.x0/.

Let p…W R
3!… denote the orthogonal projection. Without loss of generality, we

may assume that the map pD p… ı i W M !… has the properties (p1), (p2), (p3) from
above. Moreover, (p4) holds if g is odd, while the following property holds if g is
even:

(p40 ) The map p has multiplicity 4. Moreover, the set of all points of p.M /, whose
preimage under p contains more than 2 points, lies in a regular neighbourhood T in
p.M / of a simple arc � � p.M /, where the endpoints of � lie on the boundary of
p.M /, � intersects the graph p.Vr / at the unique point p.t/, for some t 2 ˛r n fx0g,
and the intersection of � and p.˛r / at the point p.t/ is transverse; see Figure 3 (a).

Proposition 4.1 Suppose that M is an (orientable or nonorientable) closed surface
of genus g , and f W M ! N has absolute degree A.f / D 0. Then there exists a
self-homeomorphism ' of M and a map  W Vr !N such that f '  ı% ı' . Here
r D 2g if M is orientable, r D Œg=2� if M is nonorientable, and %W M ! Vr is the
retraction defined above.
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p.M /

k k
�

p.x0/

��

XX
T  `

p.t/

�
�

p.Vr / p.˛r /

(a) T � p.M /

Uj

PP
Q
Q

��
�

p.tj/

�j Tj

�
p.x0/

p. j̨ /

(b) Tj � Uj

�j .�j /

 . j̨ /

(c) �j .Tj /�N

Figure 3: The strips T , Tj and “folding” of Tj via �j

Proof Since A.f /D 0, it follows from [16] or [7] that f is homotopic to a map h

which is not surjective; thus h.M /�N � DN n VD2 for an appropriate disk D2 �N .
Since the fundamental group of N � is a free group, we obtain a homomorphism
h#W �1.M /! �1.N

�/ to the free group �1.N
�/.

Suppose that M is orientable. It has been proved in Satz 2 of Zieschang [22] using
the Nielsen method (see also Zieschang, Vogt and Coldewey [23], or Proposition 1.2
of Grigorchuk, Kurchanov and Zieschang [12]) that there is a sequence of “elementary
moves” of the system of generators a1; b1; : : : ; ag; bg and the corresponding sequence
of “elementary moves” of the system of cuts ˛1; ˇ1; : : : ; ˛g; ˇg on M (see above),
such that the resulting system of cuts z̨1; ž1; : : : ; z̨g; žg is also canonical (this means
there exists a self-homeomorphism ' of M such that j̨ D '.z̨j /, ǰ D '. žj /),
and the loops hj ž

j
W žj !N � are contractible in N � . From this, using the fact that

�2.N
�/D 0, one can prove that h'  ı % ı' where  WD hjVg

.

Suppose that M is nonorientable. The method to prove Satz 2 of [22] can be success-
fully applied to construct a canonical system of cuts z̨1; ž1; : : : ; z̨Œg=2�; žŒg=2� , ž0 on
M (this means there exists a homeomorphism ' of M with j̨ D '.z̨j /, ǰ D '. žj /)
such that the loops hj ž

j
W žj ! N � are contractible in N � ; see Ol’shanskiı̆ [17] or

Proposition 1.5 of [12]. (Again the curve ˇ0 is considered only if g is odd.) Similarly
to the orientable case, this implies that h'  ı % ı' where  WD hjVg

.

Theorem 4.2 Suppose that f W M ! N has absolute degree A.f / D 0. Then 2 �

MMRŒf �� 4.

Proof Suppose that h is homotopic to f and has multiplicity 1. Then h is a
homeomorphism onto h.M /. It follows from Brouwer’s Theorem on Invariance of

Geometry & Topology Monographs, Volume 14 (2008)



On multiplicity of mappings between surfaces 59

Domain [5] that h is surjective and, therefore, it is a homeomorphism. Then A.h/D 1,
a contradiction. Therefore MMRŒf �� 2.

Let us prove the second inequality. Since A.f /D 0, by Proposition 4.1, f '  ı%ı'
for a self-homeomorphism ' of M , the retraction %W M !Vr , and a map  W Vr!N ,
where rDg if M is an orientable surface of genus g , rD Œg=2� if M is a nonorientable
surface of genus g . Without loss of generality, we may assume that  has the following
properties:

.1/ There exists a homeomorphism  of the neighbourhood U of x0 in M onto a
neighbourhood of  .x0/ in N such that  jVr\U D  jVr\U . In other words,  jVr\U

extends to an embedding  W U !N ;

.2/ The restriction of  onto each curve ˛1; : : : ; ˛r is an immersion S1 ! N .
Moreover,  has multiplicity � 2, and it has only finitely many double points (ie pairs
of distinct points of Vr having the same image).

Case 1 Suppose that the surface M is either orientable (thus r D g ), or nonorientable
with g odd (thus r D .g� 1/=2). In both cases, the map p D p… ı i W M !…DR2

of M to the plane … has the properties (p1), (p2), (p3), (p4); see above.

Subcase 1 Suppose that N is orientable. Since every closed curve  j
j̨

is orientation-
preserving, it follows from the properties .1/, .2/, (p1), (p3) that the map y D
 ıp�1W p.Vr /!N can be extended to an immersion �W p.M /!N of the regular
neighbourhood p.M / of p.Vr / in the plane … to N , such that � has multiplicity
� 2.

Consider the composition y%D p ı %W M !…. Observe that the maps y% and p are
homotopic as maps M !p.M /�… with the target p.M /, due to y%jVr

DpjVr
, (p2),

and �2.p.M //D 0. From this and  D � ıpjVr
, we have

(4.3) f '  ı % ı' D � ıp ı % ı' ' � ıp ı':

Since ' is bijective and each of � and p has multiplicity �2 (see (p4)), the multiplicity
of the composition � ıp ı' is � 2 � 2 � 1D 4.

Subcase 2 Suppose that N is nonorientable. So in general, the immersion y W p.Vr /!

N can not be extended to an immersion of the regular neighbourhood p.M / of p.Vr /

in …DR2 . However, due to .1/, .2/, and (p1), we can extend y to an immersion
z�W p.D[Vr /!N , where D � U is a small disk centred at x0 .

Now, for each curve j̨ , we will extend the immersion z�j D
z�jp.D[ j̨ /W p.D[ j̨ /!

N to a regular neighbourhood Uj �p.D/ of p. j̨ / in … as follows. If the curve  j
j̨

is orientation-preserving then, similarly to Case 1, the immersion z�j W p.D[ j̨ /!N
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can be extended to an immersion �j W Uj ! N . If the curve  j
j̨

is orientation-
reversing, let us choose a point tj 2 j̨ nD such that tj is the only preimage of the point
 .tj / under  . Consider a simple arc �j � Uj np.D/, which transversally intersects
p. j̨ / at the only point p.tj /, and whose endpoints lie on the boundary of Uj . Let
Tj be a regular neighbourhood of the arc �j in Uj np.D/, thus Tj is a “strip” in the
annulus Uj ; see Figure 3 (b). Outside the interior of the strip Tj , we extend z�j to
an immersion x�j W .Uj n Tj /[ p. j̨ /! N similarly to above. Now we extend the
obtained immersion x�j to the whole annulus Uj , giving a map �j W Uj !N which
coincides with x�j outside Tj np. j̨ / and has a “folding” along the arc �j � Tj , as
shown in Figure 3 (c).

Without loss of generality, we may assume that Uj �p.M /, and any two annuli Uj ;Uk

have only the disk p.D/ in common. Since the constructed mappings �j W Uj !N

agree on the common part p.D/, they determine an extension x�W U !N of the map
z� , where U D U1[ : : :[Ur is a regular neighbourhood of p.Vr / in …DR2 . The
above construction can be performed in such a way that the map x� has multiplicity
� 2, due to .2/ and the choice of the points tj 2 j̨ . Obviously, the map x� can
be extended to the regular neighbourhood p.M / of p.D [ Vr / (see (p3)) and the
extended map �W p.M /!N also has multiplicity � 2.

Similarly to Subcase 1, the composition � ıp ı' has multiplicity � 2 � 2 � 1D 4, and
(4.3) holds. This completes the proof in Case 1.

Case 2 Suppose that M is a nonorientable closed surface of even genus g , thus
r D g=2, and the map p D p… ı i W M ! … D R2 of M to the plane … has the
properties (p1), (p2), (p3), (p40 ); see above. We may assume, without loss of generality,
that the map  W Vr !N has the following additional property:

.3/ The point t 2 ˛r considered in (p40 ) is the only preimage of  .t/ under  , and
the analogous property holds for any point zt 2 ˛r \p�1.T /.

Subcase 1 Suppose that N is orientable. Similarly to Subcase 1 of Case 1, one shows
using .1/, .2/, (p1), (p3) that the immersion y D  ıp�1W p.Vr /!N extends to
an immersion �W p.M /!N of multiplicity 2, and using (p2) that (4.3) holds. Taking
into account (p40 ) and .3/, one can show that the multiplicity of � ıp ı' is � 4.

Subcase 2 Suppose that N is nonorientable. We proceed as in Subcase 2 of Case 1.
Namely, for those curves j̨ whose image under  is orientation-preserving, we extend
the immersion z�j W p.D [ j̨ /! N to Uj , as in Case 1. For each of the remaining
curves j̨ , we choose a point tj 2 j̨ nD which is the only preimage of  .tj / under
 , and we extend the corresponding immersion z�j to a map x�j W Ui ! N having a
“folding” along an arc �j �Tj �Uj , which transversally intersects p.Vr / at the unique
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point p.tj /; see Case 1. As above, this allows one to construct a map �W p.M /!N

of multiplicity � 2 which is an extension of y , and to show that (4.3) holds. Observe
now that, if the curve  j˛r

is orientation-reversing, we can choose the point tr 2 ˛r

in such a way that it is “far enough” from the point t 2 ˛r considered in (p40 ). This,
together with .3/, shows that the above construction can be performed in such a
way that the composition � ıp ı ' has multiplicity � 4. This completes the proof of
Theorem 4.2.
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