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Roots of torsion polynomials and dominations

MICHEL BOILEAU

STEVE BOYER

SHICHENG WANG

We show that the nonzero roots of the torsion polynomials associated to the infinite
cyclic covers of a given compact, connected, orientable 3–manifold M are contained
in a compact part of C� a priori determined by M . This result is applied to prove
that when M is closed, it dominates at most finitely many Sol manifolds.

57M27

Dedicated to the memory of Heiner Zieschang

1 Introduction

All manifolds are connected and orientable in this paper. All homology groups will
have Q–coefficients unless otherwise specified.

Suppose that M and N are compact 3–manifolds. We say that M dominates N if
there is a nonzero degree map f W .M; @M /! .N; @N /.

To each epimorphism  W �1.M /! Z of the fundamental group of a compact 3–
manifold one can associate a torsion polynomial �M

 .t/. Our first result shows that
the absolute values of the nonzero roots of such polynomials are pinched between two
constants depending only on M , even though �1.M / has infinitely many epimorphisms
to Z when its first Betti number is greater than one. We combine this result with a
classical argument due to Wall for nonzero degree maps to show that the same conclusion
holds for any 3–manifold dominated by M . As an application we prove that a closed
3–manifold M dominates at most finitely many Sol manifolds.
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2 Roots of torsion polynomials

Given a compact 3–manifold and an epimorphism  W �1.M /!Z, let �M !M be
the associated infinite cyclic cover. The action on H1. �M / of tD .T /� induced by the
generator T of the deck transformation group corresponding to 12Z makes H1. �M /

a finitely generated � –module, where � DQŒ�1.M /=ker. /�ŠQŒt; t�1�. Since �
is a principal domain, H1. �M / Š �

k ˚n
iD1

�=.pi.t// where 0 ¤ pi.t/ 2 � . The
product �M

 .t/D p1.t/p2.t/ : : :pn.t/, called the torsion polynomial of  , represents
the order of the � –torsion submodule Tor.H1. �M // of H1. �M / and is well-defined
up to multiplication by some unit r t i of � (i 2 Z, 0 ¤ r 2 Q). In particular, the
set of nonzero roots ft0 2C� W�M

 .t0/D 0g is independent of the choice of �M
 .t/.

A straightforward calculation shows that �M
 .t/ coincides, up to units, with the

characteristic polynomial of the automorphism of the Q–vector space ˚n
iD1

�=.pi.t//

corresponding to multiplication by t .

Theorem 2.1 A compact, connected, orientable 3–manifold M determines a constant
cM > 0 with the following property: If t0 2C� is a root of a torsion polynomial �M

 .t/

associated to an epimorphism  W �1.M /! Z, then 1=cM � jt0j � cM .

Proof Since 1=t0 is a root of �M
� .t/, it suffices to prove the existence of a constant

cM such that jt0j � cM .

For a group G and ˛ D
P

g2G

rgg 2QŒG�, we set k˛k D
P

g2G

jrgj.

Consider a finite presentation hxj W rii of �1.M / and let J D
�
@ri

@xj

�
be the associated

Jacobian matrix. Define k.hxj W rii/D
P

i;j



 @ri

@xj



 2N and set

kM Dminfk.hxj W rii/ W hxj W rii presents �1.M /g:

We assume that hxj W rii has been chosen to realize kM and that the number m of
generators is minimal among such presentations.

Fix an epimorphism  W �1.M /! Z and let ‰ be the composition ZŒ�1.M /�!

QŒ�1.M /=ker. /�DQŒt; t�1�. Recall that J‰ D
�
‰
�
@ri

@xj

��
presents the � –module

H1. �M /˚ � (see Burde and Zieschang [1, Section 9], for example). Set qij .t/ D

‰
�
@ri

@xj

�
2 QŒt; t�1� and observe that kqij .t/k �



 @ri

@xj



. Thus the following claim
holds.

Claim 2.2
P

i;j kqij .t/k � kM .
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If r denotes the � –rank of J‰ , then �M
 .t/ is, up to units, the g.c.d. of the r –rowed

minors of J‰ (see Jacobson [2, Theorem 3.9], for example). Thus it suffices to
show that the absolute values of the roots of some nonzero r –rowed minor of J‰ are
bounded above by a constant depending only on M . To that end, fix such a minor
D.t/ 2 ZŒt; t�1� which, without loss of generality, we can assume is polynomial in
t , and let D0.t/ be the monic polynomial with the same roots. Since r � m, the
expansion of D.t/ in terms of the qij .t/ shows that m!km

M
is an upper bound for the

sum of the absolute values of its coefficients (cf Claim 2.2). It is evident that the same
inequality holds for D0.t/ D t s C bs�1t s�1 C : : :C b0 . If jt j > R D 1C

P
i jbi j,

then jD0.t/j>Rn� .
P

i jbi jR
i/�Rn�1.R�

P
i jbi j/ > 0 so that the roots of D0.t/

lie in the ball of radius 1C
P

i jbi j centred at zero. Thus the theorem holds with
cM D 1Cm!km

M
.

We generalize this result with our applications in mind.

Theorem 2.3 For a compact, connected, orientable 3–manifold M , there is a constant
cM > 0 with the following property: If N is a compact 3–manifold dominated by M

and t02C� is a root of a torsion polynomial �N
 .t/ of an epimorphism  W �1.N /!Z,

then 1=cM � jt0j � cM

Proof Suppose that f W M ! N is a nonzero degree map and fix an epimorphism
 W �1.N /! Z. Since deg.f / ¤ 0, there is an integer n � 1 such that the image
. ı f#/.�1.M //D nZ. Denote by � W �1.M /! Z the epimorphism .1=n/. ı f#/

and by �M
�
.t/ the associated torsion polynomial. The theorem is a simple consequence

of Theorem 2.1 and the following claim.

Claim 2.4 If t0 2C� is a root of �N
 .t/, then tn

0
is a root of �M

�
.t/.

Proof Let QŒt; t�1�f be the ZŒ�1.M /�–module whose underlying group is QŒt; t�1�

and whose �1.M / action is that determined by the homomorphism f#W �1.M /!

�1.N /. Thus for x 2 �1.M / and p.t/ 2QŒt; t�1� we have x �p.t/D t . ıf#/.x/p.t/.
When nD 1, this action coincides with that of ZŒ�1.M /� on QŒ�1.M /=ker. ı f#/�

and so H1.M IQŒt; t
�1�f / Š H1. �M� /, where the latter has the �–action described

above. In particular, since deg.f /¤ 0, there is a � –module splitting

H1. �M� /DH1.M IQŒt; t
�1�f //ŠH1.N IQŒt; t

�1�/˚K DH1. zN /˚K

for some finitely generated � –submodule K of H1. �M� / (see the proof of [7, Lemma
2.1]). Hence when nD 1, Tor.H1. zN // is a � –submodule of Tor.H1. �M� //, and so
its order �N

 .t/ divides �M
�
.t/, which implies the claim in this case.
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Next suppose n> 1 and let zN. ;n/!N be the n–fold cyclic cover with �1. zN. ;n//

the kernel of the (mod n) reduction of  . Then f lifts to a �1 –surjective, nonzero
degree map zf W M ! zN. ;n/ DN 0 . Let

 0W �1.N
0/! nZ

1=n
�! Z

be the epimorphism induced by  . The case nD 1 shows that any nonzero root of
�N 0

 0
.t/ is also a root of �M

�
.t/. On the other hand, it is easy to see that .T 0/� D .T /n�

on H1. �N 0 0/ D H1. zN / so that if t0 2 C� is a root of �N
 .t/, then tn

0
2C� is a

root of �N 0

 0
.t/, and therefore of �M

�
.t/. This completes the proof of the claim and

therefore of Theorem 2.3.

3 Q–Homology surface bundles

Let F be a compact surface and A an abelian group. An A–homology F � I is a
3–manifold W with boundary containing two disjoint surfaces F1 Š F2 Š F such
that

(i) @W n .F1[F2/Š @F � I where @F � f0g D @F1; @F � f1g D @F2 , and

(ii) the inclusion induced homomorphism H�.F1IA/!H�.W IA/ is an isomor-
phism.

(Duality and universal coefficients shows that (ii) is equivalent to each of the following
three conditions: H�.W;F1IA/D0; H�.W;F2IA/D0; H�.F2IA/

Š
�!H�.W IA/.)

Note that W determines orientations on F1 and F2 well-defined up to simultaneous
reversal. Thus the set Homeo.F2;F1/

� of orientation reversing homeomorphisms
F2 ! F1 is well-defined. For each ' 2 Homeo.F2;F1/

� we define W' to be the
compact, orientable manifold obtained from W by identifying F2 to F1 via ' . The
composition

H1.F1IA/
Š
�!H1.W IA/

Š
�!H1.F2IA/

'�
�!H1.F1IA/

determines an isomorphism

'W
� W H1.F1IA/!H1.F1IA/

which we call the algebraic monodromy of W' . Set

�W
' .t/D det.'W

� � tI/:

We call W' an A–homology F bundle.
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Theorem 3.1 For a compact, connected, orientable 3–manifold M , there is a constant
cM > 0 with the following property: If W' is a Q–homology surface bundle which is
dominated by M , then the absolute values of the roots of the characteristic polynomial
�W
' .t/ of 'W

� are pinched between 1=cM and cM .

Proof Let F �W' be the nonseparating surface corresponding to F1 D '.F2/. It
determines a nonzero class ŒF �2H2.W'/, well-defined up to sign, and an epimorphism

 W �1.W' IZ/! Z; ˛ 7! ˛ � ŒF �:

Let �W'!W' be the infinite cyclic cover associated to this epimorphism  . Note that
H1. �W'/ D H1.W' I�/ where � is the ZŒ�1.W'/�–module QŒ�1.W'/=ker. /� Š
QŒZ� Š QŒt; t�1�. The ZŒ�1.W'/� action on H1. �W'/ factors through one of � in
such a way that t D .T'/� where T' W �W'!

�W' is a generator of the group of deck
transformations of �W'!W' .

Claim 3.2 H1. �W'/ is a torsion module over � whose order is represented by �W
' .t/.

Proof The quotient map W !W' lifts to an inclusion of W into �W' with image�W0 say. Let zF0 � @ �W0 correspond to F1 and set �Wj D T
j
' . �W0/; zFj D T

j
' . zF0/.

Then �W' D [j
�Wj where �Wj \

�Wk D ∅ if jj � kj > 1 and �Wj \
�Wj�1 D

zFj .
Since W is a Q–homology F1 � I , the composition H1.F1/DH1. zF0/!H1. �W'/

is an isomorphism under which the algebraic monodromy 'W
� W H1.F1/! H1.F1/

corresponds to .T'/�W H1. �W'/!H1. �W'/.

It is now clear that H1. �W'/ is a torsion module over � since H1. �W'/ŠH1.F1/ is
finite dimensional over Q. Hence the order of H1. �W'/ as a � –module corresponds
to the characteristic polynomial of the automorphism .T'/� of the Q–vector space
H1. �W'/, at least up to multiplication by some unit � . Since .T'/� corresponds to
'W
� under H1.F1/

Š
�!H1. �W'/, �W

' .t/ also represents the order of H1. �W'/.

Claim 3.2 shows that, up to multiplication by a unit, �W
' .t/ is the torsion polynomial

of the epimorphism  . Theorem 3.1 now follows from Theorem 2.3.

Corollary 3.3 Let W be a Q–homology F � I . A compact, connected, orientable
3–manifold M determines a finite subset P.M;W / of QŒt � such that if M dominates
W' , then the characteristic polynomial of 'W

� is contained in P.M;W / .

Proof Let ˇ1.F / be the first Betti number of F . The reader will verify that since W

is a Q–homology F � I , we can choose bases of for H1.F1IZ/ and H1.F2IZ/ with
respect to which the matrix X of H1.F1/!H1.W /!H1.F2/ lies in SLˇ1.F /.Q/
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and the matrix Y of H1.F2/
'�
�!H1.F1/ lies in SLˇ1.F /.Z/. Now 'W

� is represented
by YX so the denominators of its entries are bounded above by some constant N .
Thus the coefficients of �W

' .t/D det.YX � tI/ have denominators bounded above by
N ˇ1.F / and since its degree is ˇ1.F /, the corollary follows from Theorem 3.1.

Remark 3.4 (1) The finite set P.M;W / described in the corollary depends on both
M and W . In the case when W Š F � I , the matrix X of the proof of Corollary
3.3 lies in SLˇ1.F /.Z/, so it is easy to see that P.M;W / depends only on M and the
Euler characteristic of the fibre.

(2) A given compact 3–manifold M can be the total space of infinitely many distinct
surface bundles over the circle. Moreover, there are cases where the Euler characteristic
of the fibres are unbounded. However, Theorem 3.1 provides the following constraint
on the monodromy of any such bundle structure on M .

Corollary 3.5 Given a compact 3–manifold M , there is a constant cM > 0 such
that the absolute values of the roots of the characteristic polynomial of the algebraic
monodromy of any surface bundle structure on M are pinched between 1=cM and cM .

Recall that an element ' 2 SL2.Z/ is called hyperbolic if jtrace.'/j> 2.

Corollary 3.6 A closed, connected, orientable 3–manifold M dominates only finitely
many Sol manifolds.

Proof First suppose that M dominates a torus bundle over the circle with hyperbolic
monodromy ' 2 SL2.Z/. Corollary 3.3 shows that there are only finitely many
possibilities for trace.'/, which is the negative of the coefficient of t in �T 2�I

' .t/. On
the other hand, there are only finitely many SL2.Z/ conjugacy classes of hyperbolic
elements of SL2.Z/ with a given trace (eg see Wang and Zhou [9, Lemma 8]). Since
the homeomorphism type of a torus bundle over the circle depends only on the conjugacy
class of its monodromy ' 2 SL2.Z/, it follows that a closed, connected, orientable
3–manifold can dominate at most finitely many torus bundles over the circle with
hyperbolic monodromy. But a closed, connected Sol manifold N is double covered by
such a bundle zN and so if M dominates N , some double cover of �M dominates zN .
Since M has only finitely many double covers, there are only finitely many possibilities
for zN , and therefore for N [4; 3].

It is known that if a closed, orientable 3–manifold dominates a manifold which admits
a geometric structure based on the geometries S3;N il , or eSL2 , then it dominates
infinitely many distinct such manifolds [8]. This is false for the remaining geometries.
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Corollary 3.7 A closed, orientable 3–manifold dominates at most finitely many
manifolds admitting an S2 �R;E3;H3;H2 �R, or Sol structure.

Proof The corollary holds for dominations of S2 �R and E3 manifolds since there
are only finitely many such spaces (see eg Scott [5]). It holds for dominations of
hyperbolic manifolds by Soma [6], for H2 �R manifolds by Wang and Zhou [9], and
for Sol manifolds by Corollary 3.6.
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