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Some quadratic equations in the free group of rank 2

DACIBERG L GONÇALVES

ELENA KUDRYAVTSEVA

HEINER ZIESCHANG

For a given quadratic equation with any number of unknowns in any free group F ,
with right-hand side an arbitrary element of F , an algorithm for solving the problem
of the existence of a solution was given by Culler [8] using a surface method and
generalizing a result of Wicks [46]. Based on different techniques, the problem has
been studied by the authors [11; 12] for parametric families of quadratic equations
arising from continuous maps between closed surfaces, with certain conjugation
factors as the parameters running through the group F . In particular, for a one-
parameter family of quadratic equations in the free group F2 of rank 2, corresponding
to maps of absolute degree 2 between closed surfaces of Euler characteristic 0, the
problem of the existence of faithful solutions has been solved in terms of the value
of the self-intersection index �W F2 ! ZŒF2� on the conjugation parameter. The
present paper investigates the existence of faithful, or non-faithful, solutions of similar
families of quadratic equations corresponding to maps of absolute degree 0. The
existence results are proved by constructing solutions. The non-existence results are
based on studying two equations in ZŒ�� and in its quotient Q , respectively, which
are derived from the original equation and are easier to work with, where � is the
fundamental group of the target surface, and Q is the quotient of the abelian group
ZŒ� n f1g� by the system of relations g ��g�1 , g 2 � n f1g . Unknown variables of
the first and second derived equations belong to � , ZŒ�� , Q , while the parameters
of these equations are the projections of the conjugation parameter to � and Q ,
respectively. In terms of these projections, sufficient conditions for the existence, or
non-existence, of solutions of the quadratic equations in F2 are obtained.

20E05, 20F99; 57M07, 55M20, 20F05

1 Introduction

Equations in free groups have been extensively studied for many years: see Culler [8],
Hmelevskiı̆ [18; 19; 20], Lyndon [28; 29], Lyndon and Schupp [30, Sections 1.6 and 1.8],
Makanin [32], Razborov [37], Steinberg [41] and Wicks [46]; see also Gonçalves
and Zieschang [13], Grigorchuk and Kurchanov [14], Grigorchuk, Kurchanov and
Zieschang [15], Ol’shanskiı̆ [34], Osborne and Zieschang [36], and Zieschang [47; 48].
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For a given quadratic equation Q.z1; : : : ; zq/ D W with any number of unknowns
z1; : : : ; zq in any free group F with an arbitrary right-hand side W 2F , the problem of
the existence of a solution can be studied using Wicks forms (see Wicks [46], Culler [8]
and Vdovina [42; 43; 44]) which are due to the geometric approach of Culler [8].
Special case of quadratic equations has been studied by the authors [11; 12; 26] for
parametric families of quadratic equations which correpond to maps between closed
surfaces, see (11). Also the notions of faithful and non-faithful solutions of such
equations were there introduced, which correspond to the orientation-true maps and
the maps which are not orientation-true, respectively (see Definitions 2.1(C), 3.2(a)).
In particular, the problem of the existence of faithful solutions has been solved in [11;
12] in terms of the self-intersection index �W F2! ZŒF2�, for families of quadratic
equations with two unknowns in the free group F2 of rank 2, which correspond to
maps of non-vanishing absolute degree (Definition 3.4) between closed surfaces of
Euler characteristic 0. In this work, we study the existence of faithful, or non-faithful,
solutions of the latter quadratic equations, which correspond to maps of absolute degree
0.

Specifically, let F2 D ha; b j i be the free group of rank 2, v an element of F2 , and
# 2f1;�1g. We consider the following equations in F2 with the unknowns z1; z2 2F2 :

Œz1; z2�D vŒa; b�
#v�1

� Œa; b�;(1)

Œz1; z2�D v.a
2b2/#v�1

� a2b2;(2)

z2
1z2

2 D vŒa; b�
#v�1

� Œa; b�;(3)

z2
1z2

2 D v.a
2b2/#v�1

� a2b2:(4)

Here Œa; b�D aba�1b�1 , and the conjugation factor v 2 F2 is called the conjugation
parameter of the equation. The elements v , R".a; b/ 2 F2 , where R".a; b/ is defined
below, can be regarded as the coefficients of the equation, see Lyndon and Schupp [30,
Section 1.6]. The equations (1)–(4) have the form

(5) Qı.z1; z2/D v .R".a; b//
# v�1

�R".a; b/

where

Qı.z1; z2/D

8<:Œz1; z2�; ı DC ;

z2
1
z2

2
; ı D� ;

R".a; b/D

8<:Œa; b�; "DC ;

a2b2; "D� :

As in [11], we denote by w"W F2!f1;�1g the homomorphism with w".a/Dw".b/D
", called the orientation character, see Definition 2.1 and Remark 3.3. Recall [12] that
a solution .z1; z2/ of (5) is called faithful if w".z1/Dw".z2/D ı , and otherwise the
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solution is called non-faithful, compare Definition 2.1(C). Of course, every solution
of (1) is faithful, since "D ıDC1; every solution of (3) is non-faithful, since "DC1

and ı D�1.

We use the following geometric interpretations of the equations (1)–(4). These quadratic
equations have two unknowns in the free group F2 of rank 2. Such equations correspond
to mappings from a compact surface of Euler characteristic �1 having one boundary
component to the bouquet of two circles (see Culler [8]). The right-hand sides of
(1)–(4) have special form which arises from maps between two closed surfaces of Euler
characteristic 0, see Section 3. A solution is faithful if and only if the corresponding
map is orientation-true, see [11] or Lemma 3.1.

Some faithful solutions of the equation (4), whose corresponding maps are self-maps of
the Klein bottle, were listed in [12], see also Remark 2.2. The problem of the existence
of faithful solutions of (5) with w".v/D # was solved by the authors in [11] in terms
of the self-intersection index �.v/2ZŒF2� of the conjugation parameter v , see Remark
2.2. These results are illustrated in Table 1 for special values of v .

The goal of the present paper is to investigate the existence of faithful, or non-faithful,
solutions of equation (4) in the remaining cases formulated in detail as follows:

(6)
the solution is faithful and w".v/D�# , or

the solution is non-faithful.

Such solutions actually correspond to mappings of absolute degree 0 (see Definition 3.4
and Corollary 3.11). Our main results are given in Tables 2 and 4, for faithful solutions,
and in Tables 3 and 5, for non-faithful solutions, of an equation (8) which is equivalent
to (5). The results are formulated in terms of the projection xv 2 � of the conjugation
parameter v 2 F2 to the fundamental group � of the corresponding target surface via

p� W F2! � D F2=N; N D hhR".a; b/ii;

as well as in terms of pQ.V / 2 Q, which is the image of v�1
0
v 2 N under the

composition

(7) N
qN
�! ZŒ��

pQ

�!QD .ZŒ� n f1g�/=hgCg�1
jg 2 � n f1gi;

where v0 2 F2 is a suitable representative of xv 2 � in F2 , see (39) and (40), while
V WD qN .v

�1
0
v/ 2 ZŒ���N=ŒN;N �, see (25) and (26). Here hhu1;u2; : : :ii �G and

hu1;u2; : : :i � G denote the minimal normal subgroup and the minimal subgroup,
respectively, containing the elements u1;u2; : : : 2G of a group G .

To establish the non-existence results given in Theorem 3.14 and Tables 2 and 3,
we apply the Nielsen root theory for maps between closed surfaces (see Section 3),
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geometric results of Kneser [24] about maps of absolute degree 0 (see also Epstein [9]),
and algebraic results (see Zieschang [47; 48], Zieschang, Vogt and Coldewey [50] and
Ol’shanskiı̆ [34]; see also Kudryavtseva, Weidmann and Zieschang [26, Corollary 2.4])
on epimorphisms of surface groups to free groups (Lemma 3.1, Propositions 3.6 and 3.8).
These results allow us to reduce the problem of the existence of (faithful, or non-faithful,
resp.) solutions of the equation (5) in F2 satisfying the condition (6) to the problem of
the existence of a (faithful, or non-faithful, resp.) solution of the following equation in
the subgroup N D hh˛ˇ˛�"ˇ�1ii of F2 D h˛; ˇ ji:

(8) xyx�ıy�1
D v

�
˛ˇ˛�"ˇ�1

�#
v�1
�˛ˇ˛�"ˇ�1;

with the unknowns x 2N , y 2 F2 , see (1 0 )–(4 0 ) in Section 3.3, and Corollaries 3.11
and 3.9(A) (see also Theorem 3.14). Here the free generators a; b of F2D ha; b ji and
the unknowns z1; z2 are replaced by the new generators and unknowns via

(9)
˛ D a ˇ D b for "D 1; ˛ D ab; ˇ D b�1 for "D�1;

x D z1; y D z2 for ı D 1; x D z1z2; y D z�1
2 for ı D�1;

thus w".˛/ D 1, w".ˇ/ D ". A solution .x;y/ of (8) in N is called faithful if
w".y/D ı . We also prove (Remark 3.12) that any solution of (8) in N satisfies

xv D xyk and #ık
D�1 for some k 2 Z:

To establish further non-existence results (Tables 4 and 5), we apply the algebraic ap-
proach developed in this paper (see Section 4) to the remaining cases of the equation (8),
namely to those cases where the problem was not solved by the preceding methods (the
so called “mixed” cases in Tables 2 and 3, see Remark 3.16 and Definition 3.15). From
the equation (8) in N , two equations are derived using our algebraic approach, which
have solutions corresponding to solutions of (8) if the latter exist. The first derived
equation (Theorem 5.1) is

(10) .1� ıxy/zx D 1C#xv;

in the group ring ZŒ�� � N ab D N=ŒN;N � of � (see Proposition 4.1), with two
unknowns zx 2 ZŒ��, xy 2 � , and the parameter xv 2 � , see Theorem 5.1. A solution
.zx; xy/ of (10) is called faithful if w".xy/D ı , and it is called non-faithful otherwise.
For each solution of the equation (10) in the “mixed” cases (see above), we assign an
equation in the quotient Q of N , see (7), namely the equations (22 ), (32 ), (4nf

2
) and

(4f
2

), respectively, in Section 5.3. We use the fact that the quotient Q is isomorphic
to ŒN;N �=ŒF2; ŒN;N ��, see Proposition 4.5. The obtained in this way second derived
equation (Theorem 5.10) has unknowns X 2Q, Y 2 ZŒ��, a parameter pQ.V / 2Q

determined by the conjugation parameter v , see (7), and some unknown integers which
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are parameters of the solutions of (10). We find all values of the parameter pQ.V / for
which the second derived equation admits a solution (Theorems 6.4 and 6.8), and we
use the obvious fact that the non-existence of a (faithful or non-faithful) solution of
any of the derived equations implies the non-existence of a (faithful or non-faithful,
resp.) solution of the corresponding quadratic equation (8).

The paper is organized as follows. In Section 2, we consider more general quadratic
equations in free groups and briefly formulate some recent results of the authors about
faithful solutions of such equations, including the equation (5) with w".v/D # , which
correspond to maps of absolute degree 2. In Section 3, we recall results of [11; 12], and
Kudryavtseva, Weidmann and Zieschang [26] on the relationship between the quadratic
equations and the Nielsen root theory, and derive some properties of solutions of (5)
satisfying (6) from geometric results of Kneser [24] about maps having absolute degree
0 and algebraic results of Zieschang [47; 48], Zieschang, Vogt and Coldewey [50], and
Ol’shanskiı̆ [34] on homomorphisms of the surface groups to free groups. As a result,
we obtain Tables 2 and 3, and reduce our problem to study the single equation (8)
in N . In Section 4, we study some quotients of the subgroup N D hh˛ˇ˛��ˇ�1ii

of the free group F2 D h˛; ˇ ji of rank 2. In particular, we prove that the quotient
ŒN;N �=ŒF2; ŒN;N �� is isomorphic to the quotient Q in (7), see Proposition 4.5, and
we obtain a presentation for the quotient N=ŒF2; ŒN;N ��. In Section 5, we describe
and derive two equations, namely the first and the second derived equations, see above,
which are easier to work with than the original equation (8). The second derived
equation is constructed when the first derived equation admits a solution, while the
original quadratic equation does not necessarily admit a solution, see Example 6.11.
In Section 6, we investigate the existence of a solution of the second derived equation
in the “mixed” cases of Tables 2 and 3. The results of Sections 5 and 6 are summarized
in Tables 4 and 5 of Section 7.

It is not clear whether our results can be obtained using Wicks forms. The results
obtained here are entirely different from the type of results of Wicks [46] and Vdov-
ina [42; 43; 44] using the Wicks forms, since we are able to consider certain families
of equations at once, in contrast with methods which consider only one equation at the
time.
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2 Recent results on quadratic equations

In the free group Fr D ha1; : : : ; ar j i we consider quadratic equations of the form

Q.z1; : : : ; zq/D .v1Rv�1
1 /c1 � � � .v`Rv

�1
` /c` with RDR.a1; : : : ; ar /;

where Q and R are some “quadratic words” in variables z1; : : : ; zq and a1; : : : ; ar ,
respectively, q � 1, r � 1 and all cj ¤ 0 are integers, vj 2 Fr . Here z1; : : : ; zq

are considered as “unknowns”, while `; c1; : : : ; c` and v1; : : : ; v` are “given parame-
ters”. Without loss of generality, one takes Q and R to be products of squares z2

i or
commutators Œz2i�1; z2i �D z2i�1z2iz

�1
2i�1

z�1
2i

.

The following notation reflects the topological origin of the groups considered, namely
fundamental groups of surfaces with boundary, see also Lemma 3.1.

Definition 2.1 Let r; q be integers � 1 and "; ı 2 fC1;�1g; often we will use "; ı
only as signs C;�.

(A) Let Fr;" denote the free group Fr D ha1; : : : ; ar j i of rank r together with a
homomorphism w" WFr ! Z� D f1;�1g called the orientation character where

wCW aj 7! 1; w�W aj 7! �1 for 1� j � r:

We call Fr;" a free group with orientation character. Define

Qı.z1; : : : ; zq/D

8<:
Qq=2

iD1
Œz2i�1; z2i �; ı DC;Qq

iD1
z2

i ; ı D�;

and R".a1; : : : ; ar /D

8<:
Qr=2

iD1
Œa2i�1; a2i �; "DC;Qr

iD1 a2
i ; "D�:
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(B) In the group Fr;" we consider quadratic equations of the form

(11) Qı.z1; : : : ; zq/D
Ỳ
jD1

vj � .R".a1; : : : ; ar //
cj � v�1

j :

Here cj ¤ 0 are integers and vj 2 Fr ; of course, when ı DC or "DC then q or r ,
resp., is even. Now z1; : : : ; zq are considered as “unknowns”, while `; c1; : : : ; c` and
v1; : : : ; v` are “given parameters”.

(C) If w".zj /D ı , 1 � j � q , then the solution .z1; : : : ; zq/ is called faithful, and
otherwise it is called non-faithful. This gives the following restrictions for faithful
solutions: if "DC then ı must be C, if "D � and ı DC then the length of each
zj must be even, if " D ı D � then all lengths must be odd. Hence, one should
only consider .ı; "/ 2 f.C;C/; .�;�/; .C;�/g in the case of faithful solutions, and,
similarly, .ı; "/ 2 f.C;�/; .�;C/; .�;�/g in the case of non-faithful solutions.

Case ı " # conditions on v faithful solution .z1; z2/

(1) a + + C v D a .a2; b/

b v D a�1 .ba�1b�1a�1b�1; ba2b�1/

c v D an; jnj ¤ 1 ∅
(2) a + � � v D an, n odd .anb; b�2/

b C v D an, n even ∅
c v D .ab/n ∅

(3) � + arbitrary v ∅
(4) a � � C v D ab .aba; b/

b v D .ab/�1 .b�1ab3; b�2ab2/

c v D .ab/n, jnj ¤ 1 ∅
d v D an, n even ∅
e v D anb, n odd .anba2�n; b/

f � v D an, n odd .anb�1a�n; b/

Table 1: Faithful solutions of Qı.z1; z2/DvR".a; b/
#v�1R".a; b/ for some

values of v with w".v/D #

Many other values of v for which the equation has a faithful solution or not can be
obtained from the solutions listed in Table 1, by applying an automorphism to v of
the free group F2 which sends B WDR".a; b/ to B˙1 , as given in [12, Corollary 7.2]
and [11, Corollary 5.22].

Remark 2.2 In [11], the authors studied faithful solutions of the quadratic equa-
tion (11) in the case that all numbers w".vj /cj , 1 � j � `, have the same sign
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and A � .r�1/ D q � 2 C ` where A D jc1j C : : : C jc`j (that is, the value q is
“minimal”, see Propositions 3.6 and 3.7(A)). We gave an algebraic criterion (see [11,
Theorem 5.12], or [26, Theorem 5.17]) for the existence of a faithful solution of the
quadratic equation (11) in terms of the self-intersection indices �.v�1

1
vj /2ZŒFr;"nf1g�,

2 � j � `, and the intersection indices �.v�1
1
vi ; v

�1
1
vj / 2 ZŒFr;"�, 2 � j < i � `.

As an application, we investigated the existence of faithful solutions of the quadratic
equations (1)–(4) for some values of the conjugation parameter v with # D w".v/,
see [12, Corollary 7.2, Lemma 7.3], [11, Proposition 5.15, Corollary 5.22], or [26,
Proposition 5.21]. The latter condition is equivalent to the fact that the corresponding
maps have absolute degree 2, see Definition 3.4 and Corollary 3.11. These results
are summarized in Table 1 above. Some faithful solutions from [12, Corollary 7.2]
corresponding to maps of absolute degree 0 are given in Table 2, case (4a), and Table
4, case (4c).

3 Quadratic equations and Nielsen root theory

In Sections 3.1 and 3.2, we recall the notion of absolute degree of a map (Definition
3.4) and some results of [12] and [11] (see also [26]) about solutions of the quadratic
equation (11). Then, in Section 3.3, we apply some of these results (Lemma 3.1,
Propositions 3.6 and 3.8(A), (C), and Corollary 3.9(A)) to the equations (1)–(4) and
summarize the obtained results in Theorem 3.14 and Tables 2 and 3. Other results of
Sections 3.1 and 3.2 (Propositions 3.7 and 3.8(B), and Corollary 3.9(B), (C)) will not
be used in our applications and can be skipped in the first reading (see also Remark
3.10).

Every solution of the equation (11) provides a continuous map xf W SM1!
SM2 between

two closed surfaces (see below) with exactly ` roots having the multiplicities c1; : : : ; c` ,
see Section 3.2, [10], [11, 5.8, 5.21], or [12, Lemma 5.5(b)]. Here the closed surfaces
SM1 and SM2 correspond to the quadratic words Qı.z1; : : : ; zq/ and R".a1; : : : ; ar /,

respectively, and are defined as follows, see [11]. If "D 1, we denote SM2 WD Sr=2 ,
a closed orientable surface of genus r=2; if " D �1 then SM2 WD Nr , a closed non-
orientable surface of genus r (that is, the sphere with r crosscuts), thus NrC1 admits
Sr as an orientable two-fold covering. Similarly, we denote SM1 WD Sq=2 if ıD 1, and
SM1 WDNq if ı D�1.

In particular, the special quadratic equations (1)–(4) that we are going to study corre-
spond to maps between closed surfaces of Euler characteristic 0. We investigate the
existence of non-faithful solutions of these equations, and the existence of faithful
solutions of the equations with w".v/ D �# , see (6), which actually correspond to
mappings of absolute degree 0, see Corollary 3.11.
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Consider two compact surfaces M1 and M2 having, respectively, ` and one boundary
components, where M1 (respectively, M2 ) is obtained from SM1 (respectively, SM2 )
by removing the interiors of ` disjoint closed disks D1; : : : ;D` �

SM1 (respectively,
the interior of a closed disk D � SM2 ). Choose basepoints P1 2 @D1 , P2 2 @D . The
fundamental groups of the surfaces admit the following canonical presentations:

�1.M1;P1/D hb1; : : : ; bq; d1; : : : ; d` jQı.b1; : : : ; bq/d
�1
` : : : d�1

1 i

� FqC`�1;

�1.M2;P2/D ha1; : : : ; ar ; d jR".a1; : : : ; ar /d
�1
i

� Fr ;

(12)

�1. SM1;P1/D hb1; : : : ; bq jQı.b1; : : : ; bq/i D Fq=hhQı.b1; : : : ; bq/ii;

�1. SM2;P2/D ha1; : : : ; ar jR".a1; : : : ; ar /i D Fr=hhR".a1; : : : ; ar /ii;
(13)

which correspond to some “canonical systems of cuts” on surfaces, see [11] or [26].

A continuous map f W M1!M2 is called proper if @M1 D f
�1.@M2/, that is, the

boundary of the source is the preimage of the boundary of the target.

Lemma 3.1 ([12, Lemma 5.5], [26, Lemma 5.9]) The existence of a solution
.z1; : : : ; zq/ of the equation (11) is equivalent to the existence of a proper map f W M1!

M2 such that f .P1/ D P2 and the induced homomorphism f#W �1.M1;P1/ !

�1.M2;P2/ sends

f#.dj /D v
�1
1 vj � d

cj � v�1
j v1; 1� j � `:

Under this correspondence, the elements z1; : : : ; zq of a solution are considered as the
conjugates (with the conjugating factor v1 ) of the images under f# of the elements
b1; : : : ; bq of the canonical system of generators (12), that is v�1

1
ziv1 D f#.bi/, 1 �

i � q .

The solution .z1; : : : ; zq/ is faithful if and only if the map f is orientation-true.

3.1 Absolute degree of a continuous map

The next two definitions are excerpted from [26, Definitions 4.5, 4.6] and introduce
useful tools for studying continuous maps between manifolds of the same dimension.

Definition 3.2 (a) In a non-orientable manifold, the local orientation is either pre-
served or changed to the inverse when moved along a closed curve 
 ; according to
this property 
 is called orientation-preserving or orientation-reversing, respectively.
Homotopic (even homologic) curves are the same with respect to orientation. On
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a surface, a simple loop 
 is orientation-preserving if and only if 
 is two-sided;
otherwise the curve is one-sided. Following P Olum [35], a map f WM1 !M2 is
called orientation-true if orientation-preserving loops are sent to orientation-preserving
ones and orientation-reversing loops to orientation-reversing ones.

(b) Following Hopf [22], Olum [35] and Skora [39], we distinguish three types of
maps. A map f is of Type I if it is orientation-true. If f is not orientation-true and
does not map orientation-reversing loops to null-homotopic ones then f is of Type II.
The remaining maps are said to be of Type III; they are not orientation-true and map at
least one orientation-reversing loop to a null-homotopic one. Of course, the type of a
map can be determined by studying its effect on the fundamental group.

Remark 3.3 The orientation character w"W Fr;" ! Z� D f1;�1g defined in Defi-
nition 2.1(A) has the following geometric meaning. Consider the induced character
�1. xM2;P2/! f1;�1g, see (13), which will be again denoted by w" . For any closed
curve 
 on xM2 based at P2 , we have w".Œ
 �/ D 1 if 
 is orientation-preserving,
and w".Œ
 �/D �1 if 
 is orientation-reversing. Here Œ
 � 2 �1. xM2;P2/ denotes the
homotopy class of 
 .

For mappings between oriented closed manifolds, the notion deg.f /, the degree of
a map f , is well known, and there is a variety of ways to compute it. It is easily
generalized to compact oriented manifolds with boundary if one restricts oneself to
proper maps (see Lemma 3.1). For non-orientable manifolds one can also define the
notion of a degree, as done by H Hopf [22], H Kneser[24] and D B A Epstein [9].
We recall the definition for surfaces as given by R Skora [39]; see also Brown and
Schirmer [6].

Definition 3.4 (Absolute degree) Let f WM1!M2 be a proper map between com-
pact surfaces.

(a) The absolute degree of f , denoted by A.f /, is defined as follows. There are
three cases according to the type of the mapping f .

(I) f is of type I, that is, orientation-true. Let yMi D Mi and ki D 1 if Mi is
orientable and yMi be the 2–fold orientable covering of Mi and kiD2 otherwise.
In particular, yMi is an orientable ki –fold covering of Mi . Since f is orientation-
true, there exists a lift yf W yM1!

yM2 . After fixing orientations on yM1 and yM2 ,
the degree of yf is defined, and we put

A.f /D k2

k1

ˇ̌
deg. yf /

ˇ̌
:

(II) If f is of type II, we define A.f /D 0.
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(III) For f of type III, put ` D Œ�1.M2/ W f#.�1.M1//� and let xM2!M2 be the
`–fold (unbranched) covering corresponding to the subgroup f#.�1.M1//. Now
f has a lift xf WM1!

xM2 which induces an epimorphism on the fundamental
groups. Then A.f / is either ` or 0 depending on whether the map

xf�W Z2 DH2.M1; @M1IZ2/!H2. xM2; @ xM2IZ2/D

8<:Z2 if ` <1;

0 if `D1

is bijective or not, respectively.

In particular, if `D1, then A.f /D 0. Further, if A.f /¤ 0 then ` jA.f /.

(b) The geometric degree of f is the least non-negative integer d such that, for some
disk D �

ı

M 2 and map g properly homotopic to f , the restriction of g to g�1.D/ is
a d –fold covering. The geometric degree is never smaller than the absolute degree.

For branched or unbranched coverings, the definition of the absolute degree does not
give much new and the situation is much simpler.

Proposition 3.5 (a) Every covering, branched or unbranched, is orientation-true.

(b) The geometric and the absolute degree of a (branched or unbranched) covering
coincide and are equal to the order of the covering, that is, the number of leaves.

(c) The geometric and the absolute degree of any continuous map between closed
surfaces coincide.

Proof See Kneser [24].

3.2 Relation with the Nielsen root theory of maps

The geometric interpretation of solutions of (11) by means of proper maps f W M1!M2

between the compact surfaces M1 , M2 with non-empty boundary (see Lemma 3.1) can
be reformulated in terms of maps xf W SM1!

SM2 between the closed surfaces SM1 , SM2

obtained from M1 , M2 by attaching disks to the boundary components and radially
extending the map f to the disks, see [11, 5.21]. Now, the centers of the disks in SM1

form the preimage of the center c of the disk in SM2 .

The root problem for a map xf W SM1 !
SM2 and a point c 2 SM2 is to find a map xg

homotopic to xf which has the minimal number

MRŒ xf � WD min
xg' xf

jxg �1.c/j
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of roots xg �1.c/ among all mappings xg homotopic to xf . The roots of xf split into
Nielsen equivalence classes similar to the cases of the coincidence problem and inter-
section problem, see [11, 2.16] and [3, Definition 3.1]. It follows from Brooks [4],
Epstein [9] and Kneser [24] that the number NRŒ xf �D NCŒ xf ; c� of essential Nielsen
classes of roots (see Nielsen [33], or [3, Definition 3.6]) equals

(14) NRŒ xf �D

8<:Œ�1. SM2/ W xf#.�1. SM1//� if A. xf / > 0;

0 if A. xf /D 0;

where A. xf / denotes the absolute degree of xf . The map xf has the Wecken property
for the root problem if the general inequality

(15) NRŒ xf ��MRŒ xf �

is an equality. The root problem for closed surfaces was completely solved in [1; 2;
12], including the study of the Wecken property.

Based on the Kneser congruence and the Kneser inequality, see [24] or [26, Theo-
rem 4.20], and the geometric meaning of the equation (11), see Lemma 3.1, one obtains
the following propositions.

Proposition 3.6 ([12, Proposition 5.8] or [26, Proposition 5.12]) Suppose that equa-
tion (11) admits a solution .z1; : : : ; zq/, and let xf W SM1!

SM2 be the corresponding
map between closed surfaces admitting ` roots of multiplicities w".v1/c1; : : : ;w".v`/c` .
Let A WD w".v1/c1C : : :Cw".v`/c` . If A. xf / > 0 then A. xf / � r � q mod 2. If the
solution is faithful then A. xf /D jAj.

Let, for an element u 2 �1.M2/D Fr D ha1; : : : ; ar j i, the element

xu 2 �1. SM2/D Fr=hhR".a1; : : : ; ar /ii D ha1; : : : ; ar jR".a1; : : : ; ar /i

denote its image under the natural projection �1.M2/! �1. SM2/. Denote by H �

�1. SM2/ the subgroup generated by the elements xz1; : : : ;xzq . Denote by rank H the
the minimal cardinality of a set of generators for H [27, Section II.2]. If H is a free
group, or a free abelian group, this agrees with the usual definition of rank.

Proposition 3.7 Let, under the hypothesis of Proposition 3.6, A. xf / > 0. Then:

(A) A. xf / � .r � 2/ � q � 2 and A. xf / � .r � 1/ � q � 2CMRŒ xf � � q � 2C `. In
particular, if MRŒ xf �D `D j xf �1.c/j, then xf is a solution of the root problem for xf .

(B) If A. xf /�.r�2/Dq�2 then the solution is faithful, xf is homotopic to an jAj–fold
covering and MRŒ xf �D NRŒ xf �DA. xf /D jAj, thus xf has the Wecken property for the
root problem.
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(C) NRŒ xf �D Œ�1. SM2/ WH ��minf`;A. xf /g. Furthermore, consider the subdivision
of f1; : : : ; `g into `H D Œ�1. SM2/ W H � subsets where i; j belong to the same subset
iff xvixv

�1
j 2 H (that is, xvi and xvj belong to the same Reidemeister root class); then

each of these subsets is non-empty. If the solution is faithful then wı.ker xf#/ D f1g,
and the sum of w".vj /cj over all j belonging to the same subset equals A

`H
. If the

solution is non-faithful then each of these sums is odd, wı.ker xf#/ D f1;�1g, and
A. xf /D `H D NRŒ xf �DMRŒ xf �, thus xf has the Wecken property for the root problem.

Proof (A) Since A. xf / > 0, it follows from the Kneser inequality [24] that �. SM1/�

A. xf / ��. SM2/. Since �. SM1/D 2� q , �. SM2/D 2� r , this gives the first inequality.
Since the map xf has ` roots, we have MRŒ xf �� `. Applying the Kneser inequality to
a suitable proper map gW M 0

1
!M2 corresponding to a map xgW SM1!

SM2 , which is
homotopic to xf and has MRŒ xf � roots, one gets the inequality

�. SM1/�MRŒ xf ��G.g/ � .�. SM2/� 1/;

where G.g/ denotes the geometric degree of g , see Definition 3.4(b) and [39, The-
orem 4.1] (see also [12, Theorem 2.5(A)], in the case when xf is orientation-true).
On the other hand, G.g/ � G.xg/ D A.xg/ D A. xf /, due to Proposition 3.5(c). This
proves (A).

(B) Since A. xf / > 0, and the Kneser inequality [24]

�. SM1/�A. xf / ��. SM2/

becomes an equality, it follows from [24] that the map xf is homotopic to an A. xf /–fold
covering (this also follows from the classification of maps of positive absolute degree,
see [39, Theorem 1.1]). Therefore xf is orientation-true, and

MRŒ xf �� Œ�1. SM2/ W xf#.�1. SM1//�DA. xf /:

By Lemma 3.1, the solution is faithful. Hence, by Proposition 3.6, A. xf / D jAj.
Together with (14), (15), this proves the assertion.

(C) In the case of faithful solutions, this assertion follows from [12, Lemma 5.7] or [26,
Lemma 5.18(b)]. If the solution is non-faithful then the map xf is not orientation-true
with A. xf / > 0. Therefore xf has Type III (see Definition 3.2(b)) or, equivalently,
wı.ker xf#/ D f1;�1g. It follows from [26, Proposition 4.19] that every sum under
consideration is odd. Since the map xf is not orientation-true, it has the Wecken
property for the root problem, due to Kneser [23; 24] and (14), see also [9] or [12].
Indeed, Kneser [23; 24] proved that such xf can be deformed to a map having 0 or `H
roots depending on whether A. xf /D 0 or A. xf / > 0, and by (14) the latter number
coincides with NRŒ xf �. Therefore A. xf /D `H D NRŒ xf �DMRŒ xf �.
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By applying a suitable automorphism of the free group Fq , one obtains the following
presentation of the fundamental group of the closed surface SM1 , in addition to (13),
see Lyndon and Schupp [30, Chapter I, Proposition 7.6]:

�1. SM1;P1/D
˝
�1; : : : ; �Œ qC1

2
�
; �1; : : : ; �Œ q

2
�

ˇ̌
Qı.�1; : : : ; �Œ qC1

2
�
; �1; : : : ; �Œ q

2
�/
˛
;

where

Qı
�
�1; : : : ; �Œ qC1

2
�
; �1; : : : ; �Œ q

2
�

�
D

8̂̂̂̂
<̂
ˆ̂̂:

Q q
2

iD1
Œ�i ; �i �; ı D 1;�Q q

2
�1

iD1
Œ�i ; �i �

�
� Œ� q

2
; � q

2
��; ı D�1; q even;�Q q�1

2

iD1
Œ�i ; �i �

�
� �2

qC1
2

; ı D�1; q odd:

Here we use the notation

Œx;y� D xyx�1y�1; Œx;y�� D xyxy�1:

By applying the corresponding change of the unknowns, the equation (11) in Fr D

ha1; : : : ; ar ji rewrites in the following equivalent form:

(16) Qı.x1; : : : ;xŒ qC1
2
�
;y1; : : : ;yŒ q

2
�/D

Ỳ
jD1

vj � .R".a1; : : : ; ar //
cj � v�1

j ;

with the new unknowns x1; : : : ;xŒ qC1
2
�
;y1; : : : ;yŒ q

2
� 2 Fr . Similarly to Definition

2.1(C), a solution of the equation (16) is called faithful if

w".xi/D

(
1; 1� i � Œq

2
�;

�1; i D qC1
2
; ı D�1; q odd;

w".yi/D

(
1; 1� i � Œq�1

2
�;

ı; i D q
2
; q even:

Otherwise the solution is called non-faithful. Actually, a solution of (11) is faithful if
and only if the corresponding solution of (16) is faithful.

Suppose that, for a solution of (16), all xi 2N D hhR".a1; : : : ; ar /ii, 1 � i � ŒqC1
2
�.

(One easily shows that, in this case, both sides of the equation belong to N .) If one
restricts oneself only to such solutions of (16), the obtained equation will be refered to
as the equation (16) in the subgroup N of Fr . One checks that, for odd q , all solutions
of (16) in N are non-faithful, while, for even q , a solution is faithful if and only if
w".yi/D 1, 1� i � q

2
� 1, and w"

�
y q

2

�
D ı .

For every solution of (16) in Fr , consider the corresponding homomorphism

hW Fq D
˝
�1; : : : ; �Œ qC1

2
�
; �1; : : : ; �Œ q

2
�

ˇ̌ ˛
! Fr D

˝
a1; : : : ; ar

ˇ̌ ˛
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sending �i 7!xi , �i 7!yi . In particular, the subgroup H is the image of the composition

Fq
h
�! Fr

pr;"

�! Fr=hhR".a1; : : : ; ar /ii;

where pr;" is the projection, see (13). It follows from Lemma 3.1 that h D jv1
f# ,

where ju is the conjugation by the element u in Fr , that is ju.v/D uvu�1 , u; v 2Fr .

Proposition 3.8 Suppose that, under the hypothesis of Proposition 3.6, A. xf /D 0. De-
note by .x1; : : : ;xŒ qC1

2
�
;y1; : : : ;yŒ q

2
�/ the corresponding solution of the equation (16)

in Fr , let hW Fq! Fr be the corresponding homomorphism, and � WD rank H . Then:

(A) � � Œq
2
�, moreover there exists an automorphism ' of the free group Fq such that

the word Qı.�1; : : : ; �Œ qC1
2
�
; �1; : : : ; �Œ q

2
�/ 2 Fq is preserved under ' , and

h'.�i/ 2N D
˝˝
R".a1; : : : ; ar /

˛˛
for all 1� i � ŒqC1

2
�. In other words, for the solution

�
x0

1
; : : : ;x0

Œ qC1
2
�
;y0

1
; : : : ;y0

Œ q
2
�

�
of

the equation (16), which corresponds to the homomorphism h0 D h'W Fq! Fr , one
has x0i 2 N for all 1 � i � ŒqC1

2
�. The solutions

�
x1; : : : ;xŒ qC1

2
�
;y1; : : : ;yŒ q

2
�

�
and�

x0
1
; : : : ;x0

Œ qC1
2
�
;y0

1
; : : : ;y0

Œ q
2
�

�
of (16) are both faithful or both non-faithful.

(B) MRŒ xf � D NRŒ xf � D 0; in particular, xf has the Wecken property for the root
problem.

(C) Consider the subdivision of f1; : : : ; `g into subsets where i; j belong to the
same subset iff xvixv

�1
j 2 H (that is, xvi and xvj belong to the same Reidemeister

root class). If wı.ker xf#/ D fC1g then, for each i with 1 � i � `, the sum of
wı. xf

�1
# .xvixv

�1
j //cj over all j belonging to the subset containing i vanishes. Otherwise

(that is, if wı.ker xf#/D f1;�1g) each of these sums is even.

Proof (A), (B) Since A. xf / D 0, it follows from Kneser [24] that the map xf is
homotopic to a map which is not surjective (see also Epstein [9]), thus MRŒ xf �DNRŒ xf �D
0. We also obtain that xf is homotopic to a map whose image lies in the 1–skeleton of
the target SM2 , and therefore xf# admits a composition �1. SM1;P1/!F!�1. SM2;P2/

where the first homomorphism gW �1. SM1;P1/!F is an epimorphism to a free group
F . It follows that rank F � Œq

2
�, see Zieschang [47; 48], and Zieschang, Vogt and

Coldewey[50] in the case of orientable M1 , and from Ol’shanskiı̆ [34] in the general
case (see also Lyndon and Schupp [30, Proposition 7.13], or [26, Corollary 2.4]).
Therefore �D rank H � rank F �

�q
2

�
.

In the case of orientable M1 , it has been proved in [48] using the Nielsen method (see
also [50] or Grigorchuk, Kurchanov and Zieschang [15, Proposition 1.2]) that there
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exists a sequence of “elementary moves” of the system of generators �1; : : : ; �q=2 ,
�1; : : : ; �q=2 of Fq , and a corresponding sequence of “elementary moves” of the
“system of cuts” on SM1 (see above), such that the resulting system of generators
� 0

1
; : : : ; � 0

q=2
; �0

1
; : : : ; �0

q=2
is also canonical (this means, there exists an automorphism

' of Fq such that � 0i D '.�i/, �
0
i D '.�i/, and

Qı
�
� 01; : : : ; �

0
q=2; �

0
1; : : : ; �

0
q=2

�
DQı

�
�1; : : : ; �q=2; �1; : : : ; �q=2

�
in Fq ), and g.x� 0i/D 1 in F for all 1� i � q

2
. Here xu2�1. SM1;P1/ denotes the image

of u2Fq under the projection Fq!Fq=
˝˝
Qı.�1; : : : ; � q

2
; �1; : : : ; � q

2
/
˛˛
D�1. SM1;P1/.

In the general case (that is, when M1 is not necessarily oreintable), the existence of an
automorphism ' of Fq having the analogous properties was proved by Ol’shanskiı̆ [34,
Theorem 1].

Since g.x� 0i/D 1 in F , it follows xf#.x�
0
i/D 1 in �1. SM2;P2/. Hence f#.�

0
i/ 2N . This

gives h'.�i/D h.� 0i/D jv1
f#.�

0
i/ 2N .

Let us prove the latter assertion of (A). Since the automorphism ' preserves the
quadratic word Qı

�
�1; : : : ; �Œ qC1

2
�; �1; : : : ; �Œ q

2
�

�
, it also “preserves” the orientation

character wıW Fq ! f1;�1g, that is, wı D wı' , see Definition 2.1(A), Remark 3.3,
and Lyndon and Schupp [30, Chapter I, Proposition 7.6]. Now observe that the
solution

�
x1; : : : ;xŒ qC1

2
�;y1; : : : ;yŒ q

2
�

�
is faithful if and only if wı Dw"h. Similarly,�

x0
1
; : : : ;x0

Œ qC1
2
�
;y0

1
; : : : ;y0

Œ q
2
�

�
is faithful if and only if wı Dw"h0 . By the above, the

latter equality is equivalent to wı' D w"h' , and since ' is an automorphism, it is
equivalent to wı D w"h.

(C) In the case of faithful solutions, the assertion follows from [12, Lemma 5.7]
or [26, Lemma 5.18(b)]. If the solution is non-faithful then the map xf has Type II if
wı.ker xf#/D fC1g, and it has Type III if wı.ker xf#/D f1;�1g. Since A. xf /D 0, it
follows from [26, Proposition 4.19] that each sum under consideration vanishes if xf
has Type II, and it is even if xf has Type III.

Corollary 3.9 Under the hypothesis of Proposition 3.6, the following properties hold:

(A) Suppose that r D qD 2. If A. xf / > 0 then rank H D 2 and the solution is faithful.
If A. xf /D 0 then rank H � 1, moreover either ı D�1 and x 2N D hhR".a1; a2/ii,
or ı D 1 and x0 2N , for some solution .x0;y0/ which is faithful (resp. non-faithful)
if .x;y/ is faithful (resp. non-faithful). If x 2 N then A. xf / D 0 and the following
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implications hold:

.x;y/ is faithful () w".y/D ı;(17)

`D 2; c2 odd H) 9k 2 Z; c1 D

8<:�c2ı
k if xy ¤ 1 or ı D 1;

odd otherwise;
(18)

xv1xv
�1
2 D xyk :

Here .x;y/ D .x1;y1/ is the solution of (16) with r D q D 2 corresponding to the
solution .z1; z2/ of (5) via the standard transformation of unknowns, see (9).

(B) Suppose that either the solution .z1; : : : ; zq/ is non-faithful, or A D 0, or jAj �
.r�2/D q�2 (in particular, r D qD 2). Then the map xf W SM1!

SM2 has the Wecken
property for the root problem: MRŒ xf �D NRŒ xf �D jA. xf /j.

(C) Suppose the solution is faithful and A ¤ 0. Then jAj � .r � 1/ � q � 2C `,
furthermore:

If jAj � .r � 1/D q � 2C `, ` � 2 and w".vi/ci ¤ w".vj /cj for some pair of indices
1� i; j � `, then NRŒ xf � <MRŒ xf �D ` and, thus, xf does not have the Wecken property
for the root problem. If `0< jAj �.r�1/�qC2 then NRŒ xf �� `0< jAj �.r�1/�qC2�

MRŒ xf �, where `0 is the maximal number of disjoint subsets of f1; : : : ; `g such that the
union of the subsets is f1; : : : ; `g and the sum of w".vj /cj over all j belonging to the
same subset does not depend on the subset and, hence, equals A=`0 .

Proof (A) Let r D q D 2. Suppose that A. xf / > 0. By Proposition 3.7(B), the
solution is faithful and xf is homotopic to a covering. Therefore `H D A. xf / and
xf#W �1. SM1/! �1. SM2/ is a monomorphism, hence rank H D rank�1. SM1/D 2.

Suppose that A. xf /D 0. By Proposition 3.8(A), �D rank H � Œq
2
�D 1 and there exists

an automorphism ' 2 Aut.F2/ such that the relator ����ı��1 2 F2 is preserved by
' , and x0 WD h'.�/ 2 N ; moreover the corresponding solutions .x;y/ and .x0;y0/
are both faithful or both non-faithful. Thus ' is the desired automorphism when ıD 1.
In the case ı D�1, it is well known that the cyclic subgroup hx�i of h�; � j �����1i

(the fundamental group of the Klein bottle) generated by x� is characteristic, hence
'.�/ D �˙1�1 for some �1 2 hh�����1ii. Since h'.�/ 2 N and h.�1/ 2 N (since
h.�����1/D xyxy�1 equals the right-hand side of the equation, thus it belongs to
N ), it follows that x D h.�/ 2N .

Suppose that x 2 N . Then xx D 1, thus H D hxyi and rank H � 1. It follows from
the above that A. xf / D 0. The property (17) follows by observing that the solution
.x;y/D .h.�/; h.�// is faithful if and only if w".h.�//Dwı.�/ for any �2F2Dh�; � ji
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or, equivalently, for any � 2 f�; �g. For � D � , this equality holds, since h.�/D x 2N

and wı.�/D 1. For � D �, the equality is equivalent to w".y/D ı .

Let us prove (18). Since `D 2 and c2 is odd, it follows from Proposition 3.8(C) that
xv1xv
�1
2

belongs to the subgroup H Dhxyi and that c1Cc2 is even. Hence xv1xv
�1
2
D xyk ,

for some k 2 Z, and (18) is proved when xy D 1, ı D�1. Let us assume that xy ¤ 1

or ı D 1. If xy ¤ 1 then the kernel of the induced homomorphism

xf#W �1. SM1/D h�; � j ���
�ı��1

i ! � D �1. SM2/D h˛; ˇ j Bi; x� 7! xx; x� 7! xy;

is generated by x� . Since wı.x�/D 1, we have wı.ker xf#/DfC1g. If ıD 1, the equality
wı.ker xf#/D fC1g is obvious. Since xv1xv

�1
2
2 hxyi DH , it follows from Proposition

3.8(C) that wı. xf �1
# .xv1xv

�1
2
//c1C c2 D 0. On the other hand, we have xv1xv

�1
2
D xyk ,

thus
wı. xf

�1
# .xv1xv

�1
2 //D wı. xf

�1
# .xyk//D .wı.x�//

k
D ık :

This proves the equality c1ı
k C c2 D 0, and thereby completes the proof of (18).

(B) If the solution is non-faithful then xf has the Wecken property for the root problem,
due to Propositions 3.7(C) and 3.8(B). Suppose that the solution is faithful. Then, by
Proposition 3.6, A. xf /D jAj. If AD 0 or jAj � .r �2/D q�2 then xf has the Wecken
property for the root problem, due to Propositions 3.8(B) and 3.7(B).

(C) As above, A. xf /D jAj. It follows from Proposition 3.7(A), (C) that jAj �.r�1/�

q � 2CMRŒ xf � � q � 2C ` and NRŒ xf �D `H � `0 . Hence, NRŒ xf � � `0 < `DMRŒ xf �
in the first case, and NRŒ xf �� `0 < jAj � .r �1/�qC2�MRŒ xf � in the second case.

Remark 3.10 Another way of proving the property (18) is given below in Theorem
5.1, using the corresponding first derived equation (which is similar to (36)), rather
than Proposition 3.8(C). Both geometric and algebraic ways of proving Proposition
3.8(C) are given in [26, Proposition 4.19].

3.3 Applications to the quadratic equations (1)–(4)

Here we apply the results of Section 3.2 to study the existence of faithful, or non-
faithful, solutions .z1; z2/ of (5) satisfying the condition (6). For some values of
xv D p�.v/ 2 � D F2=hhR".a1; a2/ii, we give some explicit faithful and non-faithful
solutions in Tables 2 and 3, respectively, in terms of the new variables, as given in (9).
The non-existence results stated in Tables 2 and 3 will be based on the results of Section
3.2.

Corollary 3.11 A solution .z1; z2/ of (5) satisfies the condition (6) if and only if
the absolute degree A. xf / of the corresponding map xf W SM1!

SM2 (see Section 3.2)
vanishes.
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Proof Suppose that the solution .z1; z2/ does not satisfy the condition (6). Then the
solution is faithful and # ¤�w".v/, thus AD w".v/# C 1¤ 0. By Proposition 3.6,
this gives A. xf /D jAj> 0.

Suppose that A. xf / > 0. By Corollary 3.9(A), the solution is faithful. By Proposition
3.6, this implies A. xf /DjAjD jw".v/#C1j. Since the latter expression is positive, we
must have # ¤�w".v/. Therefore the solution does not satisfy the condition (6).

As in (8) and (9), let us rewrite the equations (1)–(4) in terms of the new generators ˛; ˇ
and the unknowns x;y , as given in (9). Thus RC.a; b/D Œa; b�D Œ˛; ˇ�, R�.a; b/D

a2b2 D ˛ˇ˛ˇ�1 , and we obtain the equation (8), which is written in detail as follows:

Œx;y�D vŒ˛; ˇ�#v�1
� Œ˛; ˇ�;(10)

Œx;y�D v.˛ˇ˛ˇ�1/#v�1
�˛ˇ˛ˇ�1;(20)

xyxy�1
D vŒ˛; ˇ�#v�1

� Œ˛; ˇ�;(30)

xyxy�1
D v.˛ˇ˛ˇ�1/#v�1

�˛ˇ˛ˇ�1:(40)

In the new generators, the fundamental group � D �" D �1. xM2/ and the projection of
F2 D h˛; ˇ ji to it have the form

p� W F2! � D F2=N; where N D hhBii; B D ˛ˇ˛�"ˇ�1:

As above, denote
xu WD p�.u/; u 2 F2:

Every element xu 2 � can be written in a unique way in the following canonical form:

(19) xuD x̨r x̌s; r; s 2 Z:

Remark 3.12 Let us apply Corollary 3.9(A) to study the existence of (faithful, or
non-faithful) solutions of the equations (1 0 )–(4 0 ) satisfying A. xf /D 0. Suppose that
.x;y/ is such a solution. In the case of the equations (3 0 ) and (4 0 ), we have ı D�1;
hence x 2N . In the case of the equations (1 0 ) and (2 0 ), we have ı D 1; hence there
exists a solution .x0;y0/ with x0 2N , where the solutions .x;y/ and .x0;y0/ are both
faithful or both non-faithful. Thus we can restrict ourselves to study the existence of
solutions .x;y/ of (1 0 )–(4 0 ) satisfying x 2N . Such solutions have the properties (17)
and (18), where one substitutes v1D v , v2D 1, c1D# , c2D 1. Thus the property (18)
has the following form for the equation (8), or (1 0 )–(4 0 ):

(20) xv D xyk ; #ık
D�1; for some k 2 Z:
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Notation 3.13 If F2 D ht1; t2 ji is a free group on two generators t1; t2 , let jujti

denote the sum of the exponents of ti which appear in a word u 2 F2 . In the case of
� D �� , denote by p˛

K
.u/ and p

ˇ
K
.u/, the exponents of x̨ , x̌, respectively, which

appear in the canonical form (19) of the element xu, thus p˛
K
.u/ WD r and p

ˇ
K
.u/ WD s ,

see (19). We also denote the projection p� W F2! � by pT , or pK , in the cases when
� is the fundamental group of the 2–torus T ("D 1), or the Klein bottle K ("D�1),
respectively. We will say that an element xu of an abelian group is divisible by 2 if
there exists an element xu1 of the group such that 2xu1 D xu. (Here the additive notation
for the group operation is used.)

The following Theorem 3.14 summarizes the above results about the existence of
faithful, or non-faithful, solutions satisfying (6) of the quadratic equation (8). It can
be regarded as the “first classification” of values of the conjugation parameter v with
respect to the property that the corresponding quadratic equation admits a (faithful, or
non-faithful) solution. These results are also summarized in Tables 2 and 3, and in the
explicit solutions given in Tables 4 and 5. The cases which are not completely solved
by Theorem 3.14 are marked as “mixed” cases in Tables 2 and 3.

Theorem 3.14 Let v 2F2Dh˛; ˇ ji, ı; "; # 2 f1;�1g. For the quadratic equation (8),
the existence of a faithful (resp. non-faithful) solution satisfying (6) is equivalent to the
existence of a faithful (resp. non-faithful) solution satisfying x 2N D hh˛ˇ˛�"ˇ�1ii.
The following results on the existence of such faithful and non-faithful solutions hold,
see Tables 2 and 3, respectively:

(1) The equation (1 0 ) has a faithful solution for any v 2 F2 and # D �1, see
Table 2(1) for a solution, while it has no non-faithful solution for any v 2 F2

and # 2 f1;�1g. So, in this case, the problem of the existence of solutions
satisfying (6) is completely solved.

(2) The equation (2 0 ) with w�.v/ D �# admits a faithful solution if and only if
# D �1, see Table 2(2a) for a solution. For non-faithful solutions of (2 0 ), we
have:
(a) If # D 1, there is no solution.
(b) If # D�1 and w�.v/D�1 then there is a solution, see Table 3(2b) for a

solution.
(c) If # D�1, w�.v/D 1 (thus p

ˇ
K
.v/ is even), and p˛

K
.v/¤ 0 then there is

no solution.
(d) If # D�1, w�.v/D 1 (thus p

ˇ
K
.v/ is even), and p˛

K
.v/D 0 then there is

an element v1 2 p�1
K
.pK .v//, for which the equation admits a solution, see

Table 5(2c,2d) for a solution.
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(3) The equation (3 0 ) has no faithful solution, while the following properties hold
for its non-faithful solutions:
(a) If # D 1, there is a solution, see Table 3(3a) for a solution.
(b) If # D�1 and pT .v/ is not divisible by 2, then there is no solution.
(c) If # D �1 and pT .v/ is divisible by 2, then there is an element v1 2

p�1
T
.pT .v//, for which the equation admits a solution, see Table 5(3c) for a

solution.

(4) The following properties hold for faithful solutions of the equation (4 0 ) with
w�.v/D�# :
(a) If w�.v/D�1 (thus p

ˇ
K
.v/ is odd) then there is a solution, see Table 2(4a)

for a solution.
(b) If w�.v/D 1 (thus p

ˇ
K
.v/ is even) and p˛

K
.v/¤ 0, then there is no solution.

(c) If w�.v/D 1 (thus p
ˇ
K
.v/ is even) and p˛

K
.v/D 0, then there is an element

v1 2 p�1
K
.pK .v//, for which the equation admits a solution, see Table 4(4d)

for a solution.
For non-faithful solutions of (4 0 ), the following properties hold:

(d) If w�.v/D�1 (thus p
ˇ
K
.v/ is odd) then there is no solution.

(e) If w�.v/D 1 (thus p
ˇ
K
.v/ is even) and # D 1, then there is a solution, see

Table 3(4b) for a solution.
(f) If w�.v/D 1 (thus p

ˇ
K
.v/ is even), # D �1, and moreover p

ˇ
K
.v/ is not

divisible by 4 or p˛
K
.v/ is odd, then there is no solution.

(g) If w�.v/D 1 (thus p
ˇ
K
.v/ is even), # D�1, p

ˇ
K
.v/ is divisible by 4, and

p˛
K
.v/ is even, then there is an element v1 2 p�1

K
.pK .v//, for which the

equation admits a solution, see Table 5(4d) for a solution.

(5) In each of the “mixed” cases 2d, 3c, 4c, 4g above, any solution with x 2 N

satisfies (17) and (20), which imply xv 2 hxy2i.

Proof By Corollary 3.11 and Remark 3.12, the existence of a solution satisfying (6)
is equivalent to the existence of a solution satisfying x 2N , where the solutions are
both faithful or both non-faithful. This proves the first desired assertion.

By direct calculations in the free group F2 , or in the abelianised F2 , one readily
obtains the following cases of Tables 2 and 3:

Table 2, cases (1), (2a), (2b), (3), (4a), and

Table 3, cases (1), (2a), (2b), (3a), (4b).

The corresponding arguments for each of these cases are given in the footnotes to these
cases in Tables 2 and 3.
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The following cases of Tables 2 and 3 are marked as “mixed” cases:

(21) Table 2, case (4c) and Table 3, cases (2d), (3c), (4e).

In each of these cases, an explicit value of the conjugation parameter v1 2 p�1
� .v/,

together with an explicit solution of the corresponding quadratic equation, are given
in Table 4, case (4d), and Table 5, cases (2c,2d), (3c), (4d), respectively. In the first
of these cases, the solution was given in [12, Corollary 7.2]. Other three cases are
justified by direct calculations in F2 (actually in N ). In the latter case, one also uses
the following relation which is a simple consequence of the relation x̨ x̌x̨ x̌�1 D 1, in
the fundamental group � D �� of the Klein bottle:

(22) .x̨r x̌2s/2 D x̨2r x̌4s; r; s 2 Z:

Let us prove (5) and the non-existence results stated in the remaining cases, namely:

Table 2, case (4b) and Table 3, cases (2c), (3b), (4a), (4c), (4d).

By Corollary 3.11 and Remark 3.12, we may assume that x 2 N D hhBii, and (17),
(20) hold. In particular, xx D 1, xv D xyk , for some k 2 Z.

Consider the cases (4b,c) of Table 2 and the cases (2c,d) of Table 3. Since the solution
is faithful (resp. non-faithful), we have w�.xy/D�1, see (17). We conclude that xy2 is
a power of x̌, by applying the canonical form (19) of elements in � D �� :

(23) .x̨r x̌2sC1/2 D x̌4sC2; r; s 2 Z:

Since xv D xyk , w�.xy/D�1, w�.xv/D 1, the integer k must be even. Therefore, xv is
a power of xy2 , thus also a power of x̌.

In the cases (4a), (4c) of Table 3, we have w�.xv/ D �1 and w�.xy/ D 1, since the
solution is non-faithful, see (17). This contradicts to xv D xyk .

In the cases (3b,c), (4d,e) of Table 3, we have ı D # D�1. It follows from the second
part of (20) that .�1/k D 1, thus k is even. This proves (5) and finishes the proof in
the case (3b) of Table 3. In the case (4d) of Table 3, we have w�.xy/D 1, since the
solution is non-faithful, see (17). Together with the relation (22), this shows that the
canonical form of xv D xyk is x̨2m x̌4n , for some m; n 2 Z.

Theorem 3.14 gives many cases for the values of xv 2 � such that all elements v1 2

p�1
� .xv/ simultaneously have (or simultaneously do not have, respectively) the following

property: the corresponding equation (8) has a solution satisfying (6), where the cases
of faithful and non-faithful solutions are considered separately, see Tables 2 and 3,
respectively. The remaining cases listed in (21) are marked in Tables 2 and 3 as “mixed”
cases because of the following.
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Case ı " # conditions on v faithful solution .x;y/
w".v/

(1) + + � C.i/ .vB�1v�1; v�1/.iv/

(2) a + � � C .vB�1v�1; v�1/.iv/

b C � ∅.ii/

(3) � + C.i/ ∅.iii/

(4) a � � C � .B; B�1v/.iv/

b � C p˛
K
.v/¤ 0 ∅.v/

c p˛
K
.v/D 0 “mixed” case, see Table 4

Table 2: Faithful solutions of xyx�ıy�1D vB#v�1B with BD˛ˇ˛�"ˇ�1 ,
w".v/D�#

Case ı " # conditions on v non-faithful solution .x;y/
w".v/

(1) + + C.i/ ∅.i/

(2) a C � C ˙ ∅.ii/

b � � .vB�1v�1; v�1/.iv/

c + p˛
K
.v/¤ 0 ∅.v/

d p˛
K
.v/D 0 mixed case, see Table 5(2)

(3) a � + C C.i/ .Œ˛; ˇ�; Œˇ; ˛�v/.iv/

b � C.i/ 2−pT .v/ ∅.v/
c 2jpT .v/ mixed case, see Table 5(3)

(4) a � � + � ∅.v/

b + .B;B�1v/.iv/

c � � ∅.v/

d + 4−p
ˇ
K
.v/ or 2−p˛

K
.v/ ∅.v/

e 4jp
ˇ
K
.v/ and 2jp˛

K
.v/ mixed case, see Table 5(4)

Table 3: Non-faithful solutions of xyx�ıy�1 D vB#v�1B with B D ˛ˇ˛�"ˇ�1

.i/Automatically for "DC1 .
.ii/The right-hand side of the equation (5) is not in ŒF2;F2� .
.iii/Automatically for "DC1 , ı D�1 .
.iv/Direct calculation.
.v/Using (17), and either (20) or the first derived equation (36), see Remark 3.10 and Theorem 5.1.

Definition 3.15 A family of quadratic equations (8), with the conjugation parameter
v running through the set p�1

� .xv0/, is called mixed (with respect to the property of the
existence of a faithful, respectively non-faithful, solution) if there exist two parameter
values v1; v2 2 p�1

� .xv0/ such that the equation with vD v1 has a faithful (respectively,
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non-faithful) solution, while the equation with v D v2 has no faithful (respectively,
non-faithful) solution.

3.4 Comments to Tables 2 and 3

As above, we rewrite the equation (5) in the equivalent form (8), in terms of the
new generators ˛; ˇ of F2 , and the new unknowns x;y , using the transformation of
variables (9). Thus the equations (1)–(4) are transformed to the equations (1 0 )–(4 0 ),
see Section 3.3. In Tables 2 and 3 above, we summarize the results of Theorem 3.14 on
the existence of faithful and non-faithful solutions of the latter equations, respectively.

Remark 3.16 The primary objective, for the remainder of this paper, is the study of
the four cases (21) of Tables 2 and 3 (the “mixed” cases), which are not completely
solved by Theorem 3.14. These cases are described in detail in Section 7. In Tables 4
and 5 below, we will show that the cases (21) are indeed the “mixed” cases with
respect to the property of the existence of a solution, see Definition 3.15. A complete
description of all words v1; v2 2 p�1

� .xv/ as in Definition 3.15, in a mixed case, does
not seem to be an easy task.

4 Some quotients of the normal closure of an element of a
free group

In this section, we denote by F a free group of finite rank � 2, B 2 F , N D hhBii,
and � D F=N . Thus, N is the normal closure of the element B , that is, the minimal
normal subgroup of F containing B , while � is a one-relator group. We will assume
that the word B is not a proper power of any element of F (although, in some of the
assertions, the hypothesis above can be made weaker). In particular, all assertions of
this section are valid if B is a strictly quadratic word in a set of free generators of F ,
see Lyndon and Schupp [30, Section I.7]. For F D Fr D ha1; : : : ; ar ji, such words
are automorphic images of the words RC.a1; : : : ; ar /, R�.a1; : : : ; ar /, r � 2, see
Definition 2.1(A) and [30, Chapter I, Proposition 7.6].

Consider the following normal subgroups of the group N :

N � ŒF;N ��N1 D ŒN;N �; ŒF; ŒF;N ��� ŒF; ŒN;N ��� ŒN; ŒN;N ��:

We will construct presentations of the quotients N=N1 , N1=ŒN;N1� and N=ŒN;N1�

(see Section 4.1), N1=ŒF;N1� and N=ŒF;N1� (see Section 4.2), and N=ŒF;N � and
ŒF;N �=ŒF; ŒF;N �� (see Section 4.3). It will follow that the first, second, fourth, and
sixth quotients are free abelian groups, the third and fifth quotients are the middle
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groups of extensions of free abelian groups, while the seventh one is isomorphic to
�ab D �=Œ�; ��, the abelianised group � . If N is the commutator subgroup ŒF;F �
then the latter quotient comes from the lower central series of the free group F , see
also Remark 4.6.

As in Section 3, we will denote by xu 2 F the class of an element u 2 F in � .

4.1 The groups N=N1 , N1=ŒN;N1�, and N=ŒN;N1�

Let us consider the short exact sequence

1!N1!N !N=N1! 1:

Here, as above, N D hhBii, B 2 F , and B is not a proper power of any element of
F . By the Nielsen–Schreier subgroup theorem [38], N is a free group, since it is a
subgroup of a free group. Furthermore, it follows from Lyndon [27, Section 7] that
N ab DN=N1 , the abelianised group N , is isomorphic to the free abelian group which
has a basis in a bijective correspondence with � DF=N , see [27, Introduction]. These
results are formulated in more detail as follows.

Proposition 4.1 (Lyndon [27]) Suppose that the relator B 2 F is not a proper power
of any element of a free group F . Consider the short exact sequence

(24) 1!N ! F
p�
�! �! 1;

where N D hhBii, the minimal normal subgroup which contains the relator B , while
� D F=N , a group with a single defining relation. Then the group N is free and
admits a free basis (for example, a Schreier basis) of the form Bu , u 2 W , where
W D s.�/ � F , and sW � ! F is a map with p�s D id� . Furthermore, N ab , the
abelianised group N , is isomorphic to the abelian group .ZŒ��;C/ of the group ring
ZŒ��. Moreover, there exists a short exact sequence

(25) 1! ŒN;N �
iN
�!N

qN
�! .ZŒ��;C/! 0;

where iN is the canonical inclusion, while qN is an epimorphism sending

(26) qN W N ! .ZŒ��;C/;
rY

iD1

Bni
ui
7�!

rX
iD1

nixui 2 ZŒ��;

for any ui 2 F , ni 2 Z, where Bu D uBu�1 , xuD p�.u/, u 2 F .

A similar assertion, for any element B 2 � , was proved by Cohen and Lyndon [7].
In the case when the relator B is a strictly quadratic word in the free generators
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a1; : : : ; ar of the group F D ha1; : : : ; ar ji, r � 2, for example B DR".a1; : : : ; ar /,
see Definition 2.1(A), an alternative proof of Proposition 4.1 can be obtained as
follows. The subgroup N is a free group, as explained above. In the case when B is
a strictly quadratic word, a free Schreier basis of N was explicitely constructed by
Zieschang [49], Zieschang, Vogt and Coldewey [50]; see also Kudryavtseva, Weidmann
and Zieschang [26, Proposition 4.9]. This immediately implies Proposition 4.1, see [26,
Corollary 4.12].

Proposition 4.2 Under the hypothesis of Proposition 4.1, consider the central short
exact sequence

1!N1=ŒN;N1�!N=ŒN;N1�!N=N1! 1:

Then N1=ŒN;N1��H2.N=N1/�ZŒJ �, a free abelian group with basis denoted by e�
where � runs over the set J D .� �� n�/=†2 , and †2 is the symmetric group in two
symbols, which acts on � �� n� by permutations of the coordinates. A presentation
of the group N1=ŒN;N1� is obtained as follows: for each � 2 .� �� n�/=†2 choose
a pair .�; �/ 2 � , denote �.�;�/ WD e� , �.�;�/ WD �e� , and denote by J1 the set of such
pairs .�; �/, thus J1 � � �� n�. Then there exists a short exact sequence

(27) 1! ŒN;N1�
iN1
�!N1

qN1
�! ZŒJ �! 0;

where iN1
is the canonical inclusion, while qN1

is an epimorphism sending

(28) qN1
W N1! ZŒJ �;

24 rY
iD1

Bni
ui
;

sY
jD1

B
mj
vj

35 7�! rX
iD1

sX
jD1

nimi�.xui ;xvj / 2 ZŒJ �;

where ui ; vj 2 F , 1� i � r , 1� j � s , and Bu D uBu�1 , u 2 F . Furthermore, the
group N=ŒN;N1� admits the following presentations:

(29) N=ŒN;N1�� hx� ; � 2 � j Œx� ; Œx�;x� ��; �; �; � 2 �i

�

*
e� ; � 2 .� �� n�/=†2;

x� ; � 2 �

ˇ̌̌̌
ˇ Œe� ; e� 0 �; Œe� ;x� �; �; �

0 2 .� �� n�/=†2; � 2 �;

Œx� ;x��e
�1
f�;�g

; .�; �/ 2 J1

+
;

where f�; �g 2 .� �� n�/=†2 denotes the class of .�; �/ 2 J1 in .� �� n�/=†2 .

Proof Recall that if 1!H !G!Q! 1 is a short exact sequence then we have a
5–term exact sequence

(30) H2.G/!H2.Q/!H=ŒG;H �!H1.G/!H1.Q/! 0;
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due to Stallings [40, Theorem 2.1]. Applying this to the short exact sequence

1!N1!N !N=N1! 1

we obtain that G D N , H D N1 , Q D N=N1 , thus the first and third homomor-
phisms in the 5–term sequence are trivial. It follows that the second homomorphism
H2.N=N1/!N1=ŒN;N1� is an isomorphism. Since Q� .ZŒ��;C/ is a free abelian
group, it follows from Brown [5, Theorem V.6.4] that H2.QIZ/�ƒ

2.Q/, the sub-
group of grade 2 of the graded ring ƒ.Q/ (the exterior graded ring of the group Q),
where Q is at grade 0. This proves the desired presentation for the group N1=ŒN;N1�.

To prove that (28) defines a homomorphism, let us first show that there exists a
unique homomorphism qN1

W N1 ! ZŒJ � satisfying (28). Denote by pN1
W N1 !

N1=ŒN;N1� the canonical projection. Consider the free basis Bu , u 2 W , of N

given by Proposition 4.1. It follows from Magnus, Karrass and Solitar [31, Theo-
rem 5.12] that the group N1=ŒN;N1� is a free abelian group, where the elements
pN1

.ŒBs.u/;Bs.v/�/ 2 N1=ŒN;N1�, .u; v/ 2 J1 , form a free abelian basis. Therefore
the map sending pN1

.ŒBs.u/;Bs.v/�/ 7! efu;vg , .u; v/2J1 , uniquely extends to a homo-
morphism 'N1

W N1=ŒN;N1�!ZŒJ �. Since 'N1
sends the above basis of N1=ŒN;N1�

to a basis of ZŒJ �, it is an isomorphism. The property (28) of the obtained projection
qN1
WD 'N1

pN1
follows from commutator calculus, see [31, Theorem 5.3].

Now the presentation (29) follows by observing that the natural epimorphism of
N=ŒN;N1� to the group in the right-hand side of (29) sending BuŒN;N1� 7! xxu ,
u 2 W , is well-defined. It has a trivial kernel, because one can easily construct its
inverse.

4.2 The groups N1=ŒF;N1� and N=ŒF;N1�

Here we will obtain the main results of this section, which will be applied in Section 5
to study the existence of solutions of the equations (1 0 )–(4 0 ) in the mixed cases, see
Remark 3.16.

Let us first recall some other facts from Lyndon [27] on the homology of one-relator
groups.

Lemma 4.3 (Lyndon [27, Theorem 2.1]) For any group � , the homology group
Hi.�;ZŒ��/ is trivial for i � 1, and isomorphic to Z for i D 0. Here the local
coefficients ZŒ�� is the ZŒ��–module corresponding to the action of � on ZŒ��, which
is given by the right multiplication.

The result above is also true if � acts on ZŒ�� by the left multiplication.
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Lemma 4.4 Under the hypothesis of Proposition 4.1, Hi.�/D 0, i � 3, while H2.�/

is either Z or 0. The latter group is 0 if and only if B 62 ŒF;F �.

Proof From [27, Corollaries 4.2 and 11.2] it follows that H i.�/D 0 for i � 3, while
H 2.�/ is a cyclic group, which is finite if and only if B 62 ŒF;F �. Using the universal
coefficient theorem, we ontain the desired assertion, see also Brown [5, Example II.4.3].

Remark that we will not use in this paper that Hi.�/D 0 for i � 4.

Now denote NF D ŒF;N1� where N1 D ŒN;N �. Similarly to (7), denote by Q

the quotient of the abelian group ZŒ� n f1g� by the system of relations g � �g�1 ,
g 2 � n f1g:

(31) QD .ZŒ� n f1g�/=hgCg�1
jg 2 � n f1gi:

Proposition 4.5 Under the hypothesis of Proposition 4.1, consider the central short
exact sequence

1!N1=NF !N=NF !N ab
! 1:

Then N1=NF �H2.F=N1/�Q� ZŒI �, for I D .�nf1g/=�, where the relation �
is given by identifying g with g�1 , for g 2 � n f1g. Moreover, there exists a short
exact sequence

(32) 1! ŒF;N1�
iNF
�!N1

qNF
�!Q! 0;

where iNF
is the canonical inclusion, while qNF

is an epimorphism sending

(33) qNF
W N1!Q;

"
rY

iD1

Bni
ui
;

sY
jD1

B
mj
vj

#
7�! pQ

 
rX

iD1

sX
jD1

nimixu
�1
i xvj

!
2Q;

where ui ; vi 2 F , pQW ZŒ��!Q is the projection. Furthermore, the group N=NF

admits the following presentations:

(34)

N=NF � hx� ; � 2 � j Œx� ;x��Œx�� ;x���
�1; Œx� ; Œx�;x� ��; �; �; � 2 �i

�

*
e� ; � 2 � n f1g;

x� ; � 2 �

ˇ̌̌̌
ˇ Œe� ; e� 0 �; Œe� ;x� �; �; �

0 2 � n f1g; � 2 �;

Œx� ;x��e
�1
��1�

; .�; �/ 2 � �� n�

+
:

Proof To establish the isomorphism N1=NF �H2.F=N1/, consider the 5–term exact
sequence

H2.F /!H2.F=N1/!N1=ŒF;N1�! F ab
! .F=N1/

ab
! 0
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obtained from the short exact sequence 1 ! N1 ! F ! F=N1 ! 1 by means
of (30). Since H2.F /D 0 and F ab! .F=N1/

ab is an isomorphism, it follows that
H2.F=N1/!N1=ŒF;N1�DN1=NF is an isomorphism.

To establish the isomorphism H2.F=N1/�Q, consider the Hochschild–Serre spectral
sequence [21] (also called the Lyndon–Hochschild–Serre spectral sequence) related
to the short exact sequence 1!N=N1! F=N1! �! 1. Recall that this spectral
sequence has the form

(35) E2
pq DHp.�;Hq.N=N1// H) HpCq.F=N1/;

where the local coefficients Hq.N=N1/ is the ZŒ��–module corresponding to the
action Adq

� W �! Aut.Hq.N=N1//, which is induced by the action Ad� jN=N1
W �!

Aut.N=N1/ given by conjugation: .gN / � .xN1/ D gxg�1N1 , g 2 F , x 2 N . By
Proposition 4.1, H1.N=N1/ � .ZŒ��;C/ and the action Ad1

� is given by the left
multiplication. Thus, from Lemma 4.3, we have that E2

p1
D Hp.�;ZŒ��/ D 0 for

p � 1. By Lemma 4.4, we have E2
30
DH3.�/D 0, which implies E2

02
DE1

02
.

Let us show that H2.F=N1/�E2
02

. If B 62 ŒF;F � then, by Lemma 4.4, E2
20
DE1

20
D

0, and thus we get H2.F=N1/ D E2
02

. Consider the remaining case, B 2 ŒF;F �.
Observe that both groups E2

20
DH2.�/ and E2

01
DH0.�;ZŒ��/ are isomorphic to

Z, due to Lemmas 4.4 and 4.3, respectively. On the other hand, the isomorphism
H1.F=N1/ � Fab � �ab � H1.�/ D E2

10
D E1

10
and (35) for p C q D 1 imply

E1
01
D 0. Thus the differential d2

20
W E2

20
! E2

01
is an isomorphism, and it follows

that H2.F=N1/�E2
02
DH0.�;H2.N

ab//.

Now, due to Proposition 4.2, H2.N
ab/ is isomorphic to ZŒJ �, where J D .� �

� n�/=†2 , and the corresponding action Ad2
� W � ! Aut.H2.N

ab// � Aut.ZŒJ �/
is given by � � ef�;�g D ef��;��g , for each pair .�; �/ 2 J1 , and � 2 � , where J1 �

� � � n � is chosen to be invariant under Ad2
� , see Proposition 4.2. Therefore

E2
02
DH0.�;H2.N

ab//�H0.�;ZŒJ �/ is isomorphic to the quotient of ZŒJ � by the
system of relations ef�;�g � ef��;��g , .�; �/ 2 J1 , � 2 � . Hence it is isomorphic to
ZŒI ��Q.

To prove that (33) defines a homomorphism qNF
, observe that the canonical projection

N1=ŒN;N1� ! N1=ŒF;N1� factors through the canonical projection of the group
N1=ŒN;N1� onto the quotient of N1=ŒN;N1� by the system of relations pN1

.n/ �

pN1
.gng�1/, n 2 N1 , g 2 F , where pN1

W N1! N1=ŒN;N1� is the canonical pro-
jection, see also Proposition 4.2. Due to the isomorphism N1=ŒN;N1�! ZŒJ � from
Proposition 4.2, we obtain the system of relations ef�;�g � ef��;��g , .�; �/ 2 J1 , � 2 � ,
on ZŒJ �. This system of relations determines the obvious equivalence relation �

Geometry & Topology Monographs, Volume 14 (2008)



248 Daciberg L Gonçalves, Elena Kudryavtseva and Heiner Zieschang

on the basis ef�;�g , .�; �/ 2 J1 , of ZŒJ �. Thus the desired quotient of ZŒJ � is the
free abelian group ZŒJ= ��, where the equivalence classes of � form a basis. This
gives the desired isomorphism N1=ŒF;N1�� ZŒJ=��D ZŒI �. Now (33) follows by
observing that the equivalence class of efxui ;xvj g D qN1

.ŒBui
;Bvj �/ in J corresponds to

pQ.xu
�1
i xvj /D qNF

.ŒBui
;Bvj �/ under the isomorphism ZŒI ��Q.

Now the presentation (34) follows by observing that the natural epimorphism of
N=ŒF;N1� to the group in the right-hand side of (34) sending BuŒF;N1� 7!xxu , u2W ,
is well-defined. It has a trivial kernel, because one can easily construct its inverse.

Remark 4.6 Our first derived equation is the “projection” of the equation (8) in N

to the quotient N ab D N=ŒN;N �, see Theorem 5.1. Our second derived equation is
the “projection” of the equation (8) to the quotient ŒN;N �=ŒF; ŒN;N ��, via choosing
suitable representatives of the solutions of the first derived equation, see Theorem 5.10.
Observe that the subgroup ŒN;N � is the second term �2.N / of the lower central series

�1.N /DN; � iC1.N /D ŒN; � i.N /�; i � 1;

of the group N , while the subgroup ŒF; ŒN;N �� is the third term �3
F
.N / of the lower

central series

�1
F .N /DN; � iC1

F
.N /D ŒF; � i.N /�; i � 1;

with respect to the action of the group F on N by conjugation, that is g �x D gxg�1 ,
g 2 F , x 2 N . We recall (see Hilton [16], or Hilton, Mislin and Roitberg [17,
Section II.2]) that if a group G acts on a group H then the lower central series with
respect to the action of G on H is defined as

�1
G.H /DH; � iC1

G
.H /D grf.g �x/yx�1y�1

j g 2G; x 2 � i.H /; y 2H g; i � 1:

Here g � x means the action of the automorphism defined by g on the element x ,
� i.H / is the usual lower central series of the group H , and gr S denotes the minimal
subgroup of H containing a subset S �H .

4.3 The groups N=ŒF;N � and ŒF;N �=ŒF; ŒF;N ��

Here we study the quotients corresponding to the subgroups N � ŒF;N �� ŒF; ŒF;N ��.
One can apply them to study existence of solutions of equations in free groups. However,
the results of this subsection are not used in our applications, and can be skipped in the
first reading.
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Proposition 4.7 Under the hypothesis of Proposition 4.1, the group N=ŒF;N � is
isomorphic to Z. Moreover, there exists a short exact sequence

1! ŒF;N �
i
�!N

"qN
�! Z! 0;

where i is the canonical inclusion, qN W N ! .ZŒ��;C/ is the epimorphism given
by (26), while "W ZŒ��! Z is the augmentation.

Proof The first assertion follows in a straightforward way from the 5–term exact
sequence obtained from the short exact sequence (24), namely 1!N!F!�!1, by
means of (30). In detail, if B 2 ŒF;F � then H2.F /D 0, F ab!�ab is an isomorphism,
and H2.�/�Z, due to Lemma 4.4. Therefore H2.�/!N=ŒF;N � is an isomorphism,
hence N=ŒF;N � � Z. Suppose that B 62 ŒF;F �. Then ker.F ab ! �ab/ � Z, and
H2.�/D 0, due to Lemma 4.4. Therefore N=ŒF;N �� ker.F ab! �ab/� Z.

To prove the second assertion, observe that the composition "qN W N !Z sends B 7!1,
hence it is an epimorphism. Next we show that the kernel of "qN equals ŒF;N �. The
inclusion ker."qN / � ŒF;N � follows from the fact that ŒF;N � is generated by the
elements Œu;Bv � 2 ŒF;N �, u; v 2 F , due to commutator calculus, while Œu;Bv � D
BuvB

�1
v is mapped to 1� 1D 0 under "qN , thus Œu;Bv � 2 ker."qN /. The converse

inclusion follows by observing that any element u 2 ker."qN / has the form u D

B
c1
u1
: : :B

cr
ur

, for some r; c1; : : : ; cr 2Z, r �0, u1; : : : ;ur 2F , where c1C: : :Ccr D0.
Clearly, the projection of u to the quotient N=ŒF;N � equals the projection of the
element Bc1 : : :Bcr D B0 D 1 to N=ŒF;N �, thus u 2 ŒF;N �.

Proposition 4.8 Under the hypothesis of Proposition 4.1,

ŒF;N �=ŒF; ŒF;N ���H2.F=ŒF;N �/�H1.�/� �
ab:

Moreover, there exists a short exact sequence

1! ŒF; ŒF;N ��
iF
�! ŒF;N �

qF
�! �ab

! 0;

where iF is the canonical inclusion, qF is an epimorphism sending qF W Œn;g� 7!

"qN .n/ �pab.xg/ 2 �
ab , n 2N , g 2F . Here one uses an additive notation for the group

operation in �ab , pabW �!�ab denotes the canonical projection, qN W N ! .ZŒ��;C/
is the epimorphism defined by (26), "W ZŒ��! Z is the augmentation.

Proof Let us prove the first assertion. Consider the 5–term exact sequence

H2.F /!H2.F=ŒF;N �/! ŒF;N �=ŒF; ŒF;N ��! F ab
! .F=ŒF;N �/ab

! 0
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obtained from the short exact sequence 1! ŒF;N �! F ! F=ŒF;N �! 1 by means
of (30). Since H2.F /D 0 and F ab! .F=ŒF;N �/ab is an isomorphism, it follows that
H2.F=ŒF;N �/! ŒF;N �=ŒF; ŒF;N �� is an isomorphism.

Similarly to the proof of Proposition 4.5, consider the Hochschild–Serre spectral
sequence related to the short exact sequence 1! N=ŒF;N �! F=ŒF;N �! � ! 1.
Since N=ŒF;N �� Z by Proposition 4.7, the spectral sequence has the form

E2
pq DHp.�;Hq.N=ŒF;N �//�Hp.�;Hq.Z// H) HpCq.F=ŒF;N �/;

similarly to (35), where the local coefficients Hq.Z/ is the trivial ZŒ��–module. Since
H0.Z/�H1.Z/�Z and Hq.Z/D 0 for q � 2, while the homology of � vanishes in
dimension 3 (due to Lemma 4.4), the only possible non-vanishing E2 terms are those
with q D 0; 1 and p ¤ 3. In particular, E2

02
D 0, E2

30
DH3.�/D 0, and therefore

E1
11
DE2

11
DH1.�/.

Let us show that E1
20
D E3

20
D 0. If B 62 ŒF;F � then, by Lemma 4.4, E2

20
D

H2.�/ D 0. Suppose that B 2 ŒF;F �. Then E2
20
D H2.�/ � Z by Lemma 4.4,

moreover the projection .F=ŒF;N �/ab!H1.�/DE2
10

is an isomorphism. Therefore
d2

20
W E2

20
!E2

01
is an isomorphism, hence E1

20
DE3

20
D 0.

Since E2
02
D 0 and E3

20
D 0, we have the desired isomorphism H2.F=ŒF;N �/ �

E1
11
DE2

11
DH1.�/.

Let us prove the second assertion. We shall represent elements of the quotient
ŒF;N �=ŒF; ŒF;N �� by elements of ŒF;N �, identified under the congruence relation
g1 � g2 modulo ŒF; ŒF;N ��, and shall write g1 � g2 whenever g1g�1

2
2 ŒF; ŒF;N ��.

Observe that every element w 2 ŒF;N � can be written in the form w � ŒB;u�, for
some u 2 F , due to the following congruences: ŒBu; v�� ŒB;u

�1vu� and ŒB;uv�D
ŒB;u�Œu; ŒB; v��ŒB; v�� ŒB;u�ŒB; v� for any u; v 2 F .

Let us show that there exists an epimorphism pW �ab! ŒF;N �=ŒF; ŒF;N �� sending
pab.xu/ 7!pF .ŒB;u�/, u2F , where pF W ŒF;N �! ŒF;N �=ŒF; ŒF;N �� is the canonical
projection. To show that such a map p is well-defined, we use commutator calculus
and the following observations. Using ŒB;Bv �D ŒB; Œv;B��2 ŒN; ŒF;N ��� ŒF; ŒF;N ��,
v 2 F , one shows that ŒN;N � � ŒF; ŒF;N ��, which implies ŒB;un�� ŒB;u�ŒB; n��

ŒB;u� for any u2F and n2N . Furthermore, using one of the Witt–Hall identities (see
Magnus, Karrass and Solitar [31, Theorem 5.1, (11)]) one can show that ŒN; ŒF;F ���
ŒF; ŒF;N ��, which implies ŒB;uf 0�� ŒB;u�ŒB; f 0�� ŒB;u� for any u 2 F and f 0 2
ŒF;F �. The map p is a homomorphism, since ŒB;uv�� ŒB;u�ŒB; v� for any u; v 2 F ,
see above. Therefore the map p is an epimorphism.
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Since �ab� ŒF;N �=ŒF; ŒF;N ��, and �ab is a finitely-generated abelian group, it follows
that any epimorphism �ab ! ŒF;N �=ŒF; ŒF;N �� is an isomorphism. Therefore the
epimorphism p is an isomorphism. It follows that the composition p�1pF W ŒF;N �!

�ab is an epimorphism and satisfies the desired properties.

5 Derived equations in ZŒ�� and ZŒ� n f1g�=�

The quadratic equations under consideration are the equations (1 0 )–(4 0 ) of Section 3.3
with two unknowns x 2 N , y 2 F2 in the free group F2 D h˛; ˇ ji of rank 2, see
Theorem 3.14. Actually these equations are in the subgroup N D hhBii where B D

˛ˇ˛�"ˇ�1 . To prove some further non-existence results, we will apply the algebraic
approach developed in Section 4. For each of the equations (2 0 ), (3 0 ) and (4 0 ) in N ,
we will construct two derived equations, which are in fact “projections” of the equation
to the abelian quotients N=N1 and N1=ŒF2;N1�, respectively, described in Section
4, see Propositions 4.1 and 4.5, where N1 D ŒN;N �. The first derived equation is an
equation in the group ring ZŒ�� of the fundamental group � D �" D F2=N of the
corresponding target surface (this group ring, as an abelian group, is isomorphic to the
abelianised group N , see Proposition 4.1). The second derived equation is an equation
in the quotient Q of ZŒ��, see (7), and it is obtained by “projecting” the equation to
this quotient (actually, to N1=ŒF2;N1��Q, see Proposition 4.5), via choosing suitable
representatives of the solutions (if there exists any) of the first derived equation.

5.1 The first derived equation

Here we will construct the first derived equation for each of the equations (2 0 ), (3 0 )
and (4 0 ) of Section 3.3. Due to Theorem 3.14, or Corollaries 3.9(A) and 3.11, we
can assume, without loss of generality, that x 2 N , for a solution .x;y/ of (8). So,
the left-hand side of the equation (8) is the product of x and yx�ıy�1 where both
elements belong to N . The right-hand side is also the product of two elements of N ,
whose projections to N abDN=ŒN;N �� .ZŒ��;C/ are #xv and 1, respectively, where
xv D p�.v/ and p� W F2! � is the projection, see (25), (26). So, we can project both
sides of the equation to N ab DN=ŒN;N �, and we get:

Theorem 5.1 Suppose that .x;y/ is a solution of the equation (8) with x 2 N D

hh˛ˇ˛�"ˇ�1ii, y 2 F2 D h˛; ˇ ji. Let zx D qN .x/ 2 ZŒ��, xy D p�.y/ 2 � D F2=N

be the images of x , y under the projections qN W N ! .ZŒ��;C/�N ab DN=ŒN;N �

and p� W F2! � , respectively. Here the natural identification of N ab , the abelianised
group N , with the group .ZŒ��;C/ is given by (25), (26). Then the pair .zx; xy/ satisfies
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the following equation called the first derived equation:

(36) .1� ıxy/zx D 1C#xv

in the group ring ZŒ��, with the “unknowns” xy 2 � and zx 2 ZŒ��. Moreover, the
properties .17/, .20/ are valid. Furthermore, any solution .zx; xy/ of .36/ satisfies .20/.

Proof The group N ab is isomorphic to the abelian group .ZŒ��;C/, see Proposition
4.1. Under this isomorphism, the element B D ˛ˇ˛�"ˇ�1 2 N is identified with
1 2 � � ZŒ��, and Bu with xu 2 � � ZŒ��, thus the right-hand side of the equation
is identified with 1C #xv . Moreover, the conjugation of Bu D uBu�1 , u 2 F2 , by
an element z 2 F2 equals Bzu , which is identified with xzxu 2 � � ZŒ��. It follows
that the projection of the left-hand side to N ab equals zx � ıxyzx D .1� ıxy/zx , which
gives (36). The properties (17), (20) are due to Remark 3.12.

Let us derive the property (20) from (36). Suppose that .zx; xy/ 2ZŒ���� is a solution
of (36). Consider the left action of the infinite cyclic group hti�Z on � via t �gD xyg ,
g 2� . Consider the orbits OgDZ �g , g 2� . For any zx 2ZŒ��, denote by zxg 2ZŒOg�

the image of zx under the projection ZŒ��! ZŒOg�, g 2 � . It follows from (36) that
.1�ıxy/zx1D 1C#xv if xv 2O1 , and .1�ıxy/zx1D 1 if xv 62O1 . Since the augmentation
of the left-hand side is even, this implies xv 2O1 D hxyi, thus xv D xyk for some k 2 Z.
If xy D 1 and ı D �1, the property (20) is now obvious, since it is equivalent to
1D 1k and .�1/k# D�1, for some k 2 Z. In the remaining case ( xy ¤ 1 or ı D 1),
consider the homomorphism �W hxyi ! Z� D f1;�1g � Z sending xy 7! ı (it is well-
defined, since � is a torsion free group). By extending � linearly to the group ring
ZŒhxyi�, one obtains the �–twisted augmentation "�W ZŒhxyi�!Z. From above, we have
.1�ıxy/zx1D1C# xyk , where zx1 2ZŒhxyi�, a Laurent polynomial in xy . Since �–twisted
augmentation of the left-hand side vanishes, we have 0 D "�.1C # xy

k/ D 1C #ık .
This completes the derivation of (20) from (36).

5.2 Solutions of the first derived equation in the “mixed” cases

Here we study separately the solutions of the first derived equation (36) in the mixed
cases described in Remark 3.16 and Definition 3.15, see also Tables 2 and 3. Recall
that, for any solution .zx; xy/ 2 .ZŒ��/�� of the first derived equation (36) in a mixed
case, xv belongs to the cyclic subgroup of � D �" generated by xy2 , see Theorem
3.14(5). We will call a solution .zx; xy/ of (36) faithful if w".xy/D ı , see (17).

Case of the equation (2 0 ) Here ı D 1, "D�1. We will only consider non-faithful
solutions of (36) for # D�1, v 2F2 such that xvD pK .v/D x̌

2n , n 2Z, see Remark
3.16. Denote cL D ˇ˛

�L , L 2 Z.
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Lemma 5.2 For the equation (2 0 ) with # D�1, the non-faithful solutions of the first
derived equation .36/ are described by

(21) .1� xy/zx D 1� xv; where w�.xy/D�1;

in ZŒ��, with the unknowns zx 2 ZŒ��, xy 2 � , where � D �� . For v satisfying
xv D pK .v/D x̌

2n , n 2 Z, the solutions of the equation (21 ) are given by

xy D xc`L D .x̨
L x̌/`; zx D

1� xc2n
L

1� xc`
L

D

8̂<̂
:

1Cxc`
L
Cxc2`

L
C : : :Cxc2n�`

L
; n=` > 0;

0; nD 0;

�xc �`
L
� xc �2`

L
� : : :� xc2n

L
; n=` < 0;

where L 2 Z is arbitrary, and ` runs over the set of all odd divisors of n. For nD 0

we assume that ` is any odd number.

Proof The equation (21 ) follows from Theorem 5.1. Suppose xy D x̨L x̌` . Because
the solution is non-faithful, it follows that ` is odd. Since xv D x̌2n belongs to the
subgroup generated by xy , it follows that xv D xyk D .x̨L x̌`/k , for some k 2 Z. This
implies that ` is a divisor of 2n. Thus xy has the form given by the second part of the
Lemma. It follows by a straightforward calculation that all values of .zx; xy/ given by
Lemma are solutions. That they are the only solutions follows from the fact that the
group ring ZŒ��� has no zero divisors, since �� is a solvable torsion free group, see
Kropholler, Linnell and Moody [25, Theorem 1.4].

Remark 5.3 Later, the following representatives .xL;`;yL;`/2N�F2 of the solutions
.zx; xy/ of (21 ) from Lemma 5.2 will be used:

yL;` D c`L D .ˇ˛
�L/`;

xL;` D

8̂̂̂<̂
ˆ̂:

Bc2n�`
L

Bc2n�2`
L

Bc2n�3`
L

: : :Bc`
L

B; n=` > 0;

1; nD 0;

B�1

c2n
L

B�1

c
2nC`
L

B�1

c
2nC2`
L

: : :B�1

c�2`
L

B�1

c�`
L

; n=` < 0;

where B D ˛ˇ˛ˇ�1 , ` ¤ 0 is any odd number if n D 0, or any odd divisor of n

if n¤ 0, thus the number of factors in the expression for xL;` is even and equal to
2jn=`j.

Case of the equation (3 0 ) Here ıD�1, "D 1, and all solutions are non-faithful. We
will consider only the case where # D �1 and xv D pT .v/ D x̨

2m x̌2n , see Remark
3.16.

If jmjC jnj> 0, let us denote d D gcd.m; n/ and c D ˛m=dˇn=d .
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Lemma 5.4 For the equation (3 0 ) with # D �1, the solutions of the first derived
equation .36/ are described by

(31) .1C xy/zx D 1� xv

in ZŒ��, with the unknowns zx 2 ZŒ��, xy 2 � , where � D �C . For v satisfying
xvD pT .v/D x̨

2m x̌2n , m; n 2Z, jmjCjnj> 0, all solutions of this equation are given
by

xy D xc`;

zx D
1� xc2d

1Cxc`
D

8<:1� xc`Cxc2` � : : :Cxc2d�2` � xc2d�`; ` > 0;

xc �` � xc �2`C : : :� xc2dC2`Cxc2dC` � xc2d ; ` < 0;

where ` ¤ 0 is any divisor of d D gcd.m; n/, xc D x̨m=d x̌n=d . If v satisfies xv D
pT .v/D 1 then all solutions are given by zx D 0 and xy 2 � is any element.

Proof The equation (31 ) follows from Theorem 5.1. Let xvD x̨2m x̌2n and xyD x̨r x̌s ,
m; n; r; s 2 Z. Suppose jmj C jnj > 0. Since xv belongs to the subgroup generated
by xy2 , it follows that xv D xy2k D x̨2kr x̌2ks , for some k 2 Z. This implies kr Dm,
ks D n, thus k is a divisor of d , and xy D x̨m=k x̌n=k D xc` where `D d=k . Thus xy
has the form given by the second part of the Lemma. It follows by a straightforward
calculation that all values of .zx; xy/ given by Lemma are solutions. That they are the
only solutions follows from the fact that the group ring ZŒ�C� has no zero divisors.

Suppose mD nD 0, thus xvD 1, and the right-hand side of the equation (31 ) vanishes.
Since 1C xy ¤ 0 in ZŒ�� for any xy 2 � , it follows that zx D 0, since the group ring
ZŒ�C� has no zero divisors, since it is a polynomial ring.

Remark 5.5 Suppose that xv ¤ 1, thus xv D x̨2m x̌2n with jmj C jnj > 0. Denote
d D gcd.m; n/, c D ˛m=dˇn=d , B D ˛ˇ˛�1ˇ�1 . Later, the following representatives
.x`;y`/ 2N �F2 of the solutions .zx; xy/ of (31 ) from Lemma 5.4 will be used:

y` D c`;

x` D

8<:Bc2d�2`Bc2d�4` : : :Bc2`BB�1
c`

B�1
c3` : : :B

�1
c2d�3`B

�1
c2d�` ; ` > 0;

B�1
c2d B�1

c2dC2` : : :B
�1
c�4`B

�1
c�2`Bc�`Bc�3` : : :Bc2dC3`Bc2dC` ; ` < 0;

where `¤ 0 is any divisor of d , thus the number of factors in the expression for x` is
even and equal to 2d=j`j.

For xvD 1, we will use the representatives xL;`D 1 and yL;`D ˛
Lˇ` , where L; `2Z.

Actually L; ` coincide with the exponents in the canonical form of xy 2 �C , see (19).
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Case of the equation (4 0 ) Here ı D "D �1. First we consider the case of faithful
solutions where # D�1 and xv D pK .v/D x̌

2n , see Remark 3.16.

As above, we denote cL D ˇ˛
�L .

Lemma 5.6 For the equation (4 0 ) with # D �1, the faithful solutions of the first
derived equation .36/ are described by

(4f
1
) .1C xy/zx D 1� xv; where w�.xy/D�1;

in ZŒ��, with the unknowns zx 2 ZŒ��, xy 2 � , where � D �� . For v satisfying
xv D pK .v/D x̌

2n , n 2 Z, the solutions of this equation are given by

xy D xc`L D .x̨
L x̌/`;

zx D
1� xc2n

L

1Cxc`
L

D

8̂̂<̂
:̂

1� xc`
L
Cxc2`

L
� : : :Cxc2n�2`

L
� xc2n�`

L
; n=` > 0;

0; nD 0;

xc �`
L
� xc �2`

L
C : : :Cxc2nC`

L
� xc2n

L
; n=` < 0;

where L 2 Z is arbitrary, and ` runs over the set of all odd divisors of n. For nD 0

we assume that ` is any odd number. Compare Lemma 5.2.

Proof Similar to that of Lemma 5.2.

Remark 5.7 Later, the following representatives .xL;`;yL;`/2N�F2 of the solutions
.zx; xy/ of (4f

1
) from Lemma 5.6 will be used:

yL;` D c`L;

xL;` D

8̂̂̂<̂
ˆ̂:

Bc2d�2`
L

Bc2d�4`
L

: : :Bc2`
L

BB�1

c`
L

B�1

c3`
L

: : :B�1

c2d�3`
L

B�1

c2d�`
L

; n=` > 0;

1; nD 0;

B�1

c2d
L

B�1

c
2dC2`
L

: : :B�1

c�4`
L

B�1

c�2`
L

Bc�`
L

Bc�3`
L

: : :B
c

2dC3`
L

B
c

2dC`
L

; n=` < 0;

where cL D ˇ˛
�L , B D ˛ˇ˛ˇ�1 , ` ¤ 0 is any odd number if n D 0, or any odd

divisor of n if n¤ 0, thus the number of factors in the expression for xL;` is even and
equal to 2jn=`j. Compare Remarks 5.3 and 5.5.

Now consider the case of non-faithful solutions where # D �1 and xv D pK .v/ D

x̨2m x̌4n , see Remark 3.16. If jmjCjnj>0, we denote dDgcd.m; n/, cD˛m=dˇ2n=d .
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Lemma 5.8 For the equation (4 0 ) with # D�1, the non-faithful solutions of the first
derived equation (36) are described by

(4nf
1

) .1C xy/zx D 1� xv; where w�.xy/D 1;

in ZŒ��, with the unknowns zx 2 ZŒ��, xy 2 � , where � D �� . For v satisfying
xv D pK .v/ D x̨

2m x̌4n , m; n 2 Z, jmj C jnj > 0, all non-faithful solutions of this
equation are given by the same formulae as in Lemma 5.4:

xy D xc`;

zx D
1� xc2d

1Cxc`
D

8<:1� xc`Cxc2` � : : :Cxc2d�2` � xc2d�`; ` > 0;

xc �` � xc �2`C : : :� xc2dC2`Cxc2dC` � xc2d ; ` < 0;

where ` ¤ 0 is any divisor of d D gcd.m; n/, xc D x̨m=d x̌2n=d . If v satisfies xv D
pK .v/D 1 then all non-faithful solutions are given by: zxD 0 and xy 2� is any element
satisfying w�.xy/D 1.

Proof Similar to that of Lemma 5.4 (see also the end of the proof of Lemma 5.2).

Remark 5.9 Suppose that xv ¤ 1, thus xv D x̨2m x̌4n with jmj C jnj > 0. Denote
d D gcd.m; n/, c D ˛m=dˇ2n=d , B D ˛ˇ˛ˇ�1 . We will later use the following
representatives .x`;y`/ 2 N �F2 of the solutions .zx; xy/ of (4nf

1
) from Lemma 5.8.

We define these representatives by the same formulae as in Remark 5.5.

For xvD 1, we will use the following representatives: xL;` D 1, yL;` D ˛
Lˇ2` , where

L; ` 2Z. Actually L; 2` coincide with the exponents in the canonical form of xy 2 �� ,
see (19).

5.3 The second derived equation in the “mixed” cases

In order to find further properties of the solutions of the equations (2 0 ), (3 0 ) and (4 0 )
in the “mixed” cases (see Section 3.3, Tables 2 and 3, Remark 3.16, and Definition
3.15), we will construct the second derived equation (22 ) (resp. (32 ) or (4f

2
), (4nf

2
))

for the equation (2 0 ) (resp. (3 0 ), or (4 0 )). More specifically, for every solution of one
of the first derived equations (21 ), (31 ), (4f

1
), and (4nf

1
) (see Lemmas 5.2, 5.4, 5.6

and 5.8) we will construct an equation in the free abelian group Q, see (7), which is
the quotient

(37) QDQ" D .ZŒ� n f1g�/=hgCg�1
j g 2 � n f1gi; with � D �" D F2=N;

of the free abelian group ZŒ� n f1g� by the system of relations g ��g�1 , g 2 � n f1g,
where N WD hh˛ˇ˛�"ˇ�1ii. (This quotient is isomorphic to ŒN;N �=ŒF2; ŒN;N ��, see
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Proposition 4.5.) Consequently, we will obtain (in Theorem 5.10) an equation, which
we will call the second derived equation, in two unknown “polynomials” X 2 Q,
Y 2 ZŒ��, and some integer unknowns which enumerate the solutions of the first
derived equation.

As an application of the second derived equation, we will obtain the non-existence
results stated in Tables 4 and 5, see Section 7. For this, we will use the following
property of the derived equations, which follows from Theorems 5.1 and 5.10: the
non-existence of a solution of either the first or the second derived equation implies the
non-existence of a (faithful or non-faithful) solution of the corresponding quadratic
equation (8) in N .

Case of the equation (2 0 ) Here ıD 1, "D�1, and we may assume that # D�1 and
xvD x̌2n 2� , n2Z, � D�� , see Table 3 and Remark 3.16. We consider the following
pair of derived equations (corresponding to non-faithful solutions). The first derived
equation is (21 ) in ZŒ��, � D�� , with the unknowns xy 2� and zx 2ZŒ��, see Lemma
5.2. By this Lemma, the solutions have the form xyD xyL;`D x̨

L x̌`; zxD zxL;`D
1�x̌2n

1�x̨L x̌`

for all L; ` 2 Z such that

(38) ` j n if n¤ 0; and ` is odd

(the latter condition corresponds to the fact that a solution to be found is non-faithful).
Our second derived equation will be the following equation in the quotient QDQ� ,
see (37):

(22) pQ

 
1� x̌�2n

1� x̌�`
�'L.Y /

!
D pQ

 
'L.V /�

1� x̌�2n

1� x̌2
x̌

1� x̨L

1� x̨
C

1� x̌�2n

1� x̌`

!
;

where pQW ZŒ�� ! ZŒ� n f1g� ! Q is the projection, ' 2 Aut.F2/ denotes the
automorphism sending ˛ 7! ˛ , ˇ 7! ˇ˛ , and BDB�D ˛ˇ˛ˇ

�1 7!B , as well as the
induced automorphism of Q. The parameter V 2 ZŒ�� of the equation (22 ) is defined
via

(39) v D v0

Y
Bni
vi
; V D

X
nixvi ; v0 D ˇ

2n;

see (26), while the unknowns are .L; `;X;Y / with L; ` 2 Z as in (38), and X 2Q,
Y 2 ZŒ��. Remark that the unknown X does not contribute to the equation (22 ), thus
X can be arbitrary.

In the special case nD 0, the second derived equation (22 ) has the form 0D pQ.V /

with the unknowns L; ` 2 Z, ` odd, and X 2 Q, Y 2 ZŒ��. Since no unknown
contributes to this equation, a solution exists if and only if pQ.V /D 0, moreover if
pQ.V /D 0 then arbitrary values of the unknowns determine a solution.
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Case of the equation (3 0 ) Here ı D �1, " D 1, and we may assume that # D �1

and xv D x̨2m x̌2n 2 � , m; n 2 Z, � D �C , see Table 3 and Remark 3.16. For the
equation (3 0 ) (it has only non-faithful solutions) we consider the following pair of
derived equations. The first derived equation is (31 ) in ZŒ��, � D �C , with the
unknowns xy 2 � and zx 2ZŒ��, see Lemma 5.4. By this Lemma, for jmjC jnj> 0 the
solutions have the form xy D xy` D xc`; zx D zx` D 1�xc2d

1Cxc`
where d D gcd.m; n/, ` 2 Z

such that ` j d , and c D ˛m=dˇn=d 2 � , while for mD nD 0 the solutions have the
form xy D xyL;` D x̨

L x̌`; zx D zxL;` D 0 where L; ` 2Z. Our second derived equation
will be the following equation in the quotient QDQC , see (37):

(32)

8̂<̂
: 2X �pQ

 
1� xc �2d

1Cxc �`
�Y

!
DpQ

 
V C

1� xc �2d

1� xc2`

!
if jmjC jnj> 0;

2XDpQ.V / if mD nD 0;

where pQW ZŒ��! ZŒ� n f1g�!Q is the projection. The parameter V 2 ZŒ�� of the
equation (32 ) is defined similarly to above, with � D �C , B DBCD ˛ˇ˛

�1ˇ�1 , via

(40) v D v0

Y
Bni
vi
; V D

X
nixvi ; v0 D

(
c2d ; jmjC jnj> 0;

1; mD nD 0;

while the unknowns are either .`;X;Y / with ` 2 Z, ` j d , X 2 Q, Y 2 ZŒ�� if
jmjC jnj> 0, or .L; `;X;Y / with L; ` 2 Z, X 2Q, Y 2 ZŒ�� if mD nD 0.

In the special case mD nD 0, the second derived equation (32 ) has the form 2X D

pQ.V / with the unknowns L; ` 2 Z, X 2Q, Y 2 ZŒ��. It admits a solution if and
only if 2 j pQ.V /, moreover for 2 j pQ.V / the value of X is uniquily determined,
while the unknowns .L; `;Y / take arbitrary values, in order to determine a solution.

Case of the equation (4 0 ), non-faithful solutions Here ı D " D �1, and we may
assume that # D�1 and xv D x̨2m x̌4n , m; n 2 Z, � D �� , see Table 3 and Remark
3.16. We consider the following pair of derived equations (corresponding to non-faithful
solutions). The first derived equation is (4nf

1
) in ZŒ��, � D �� , with the unknowns

xy 2 � and zx 2 ZŒ�� such that w�.xy/ D 1, see Lemma 5.8. By this Lemma, for
jmj C jnj > 0 the solutions have the form xy D xy` D xc`; zx D zx` D 1�xc2d

1Cxc`
where

d D gcd.m; n/, ` 2Z such that ` j d , and c D ˛m=dˇ2n=d 2 � , while for mD nD 0

the solutions have the form xy D xyL;` D x̨
L x̌2`; zx D zxL;` D 0 where L; ` 2 Z. Our

second derived equation will be the following equation in the quotient Q D Q� ,
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see (37):

(4nf
2

)

8̂<̂
: 2X �pQ

 
1� xc �2d

1Cxc �`
�Y

!
DpQ

 
V C

1� xc �2d

1� xc2`

!
if jmjC jnj> 0;

2XDpQ.V / if mD nD 0:

Here the projection pQ and the polynomial V 2 ZŒ�� are defined as in (40) with
� D �� , B D B� D ˛ˇ˛ˇ�1 , c D ˛m=dˇ2n=d , while the unknowns are either
.`;X;Y / with ` 2 Z, ` j d , X 2Q, Y 2 ZŒ�� if jmjC jnj> 0, or .L; `;X;Y / with
L; ` 2 Z, X 2Q, Y 2 ZŒ�� if mD nD 0.

In the special case m D n D 0, the second derived equation (4nf
2

) has the form
2X D pQ.V / with the unknowns L; ` 2 Z, X 2Q, Y 2 ZŒ��. As above, it admits a
solution if and only if 2 j pQ.V /, moreover for 2 j pQ.V / the value of X is uniquily
determined, while the unknowns .L; `;Y / take arbitrary values, in order to determine
a solution.

Case of the equation (4 0 ), faithful solutions Here ı D "D�1, and we may assume
that # D �1 and xv D x̌2n , n 2 Z, � D �� , see Table 2 and Remark 3.16. We
consider the following pair of derived equations (corresponding to faithful solutions).
The first derived equation is (4f

1
) in ZŒ��, � D �� , with the unknowns xy 2 � and

zx 2 ZŒ�� such that w�.xy/D�1, see Lemma 5.6. By this Lemma, the solutions have
the form xy D xyL;` D x̨

L x̌`; zx D zxL;` D
1�x̌2n

1Cx̨L x̌`
where L; ` 2 Z satisfy (38) (the

latter condition in (38) corresponds to the fact that a solution to be found is faithful).
Our second derived equation will be the following equation in the quotient QDQ� ,
see (37):

(4f
2
) 2'L.X /�pQ

�
1� x̌�2n

1� x̌�`
�'L.Y /

�
D pQ

�
'L.V /�

1� x̌�2n

1� x̌2
x̌

1� x̨L

1� x̨
C

1� x̌�2n

1� x̌2`

�
:

Here the projection pQ , the automorphism ' of Q, and the polynomial V 2 ZŒ�� are
defined as in (39), while the unknowns are .L; `;X;Y / with L; ` 2 Z as in (38), and
X 2Q, Y 2 ZŒ��.

In the special case nD 0, the second derived equation (4f
2

) has the form 2X D pQ.V /

with the unknowns L; ` 2 Z, ` odd, and X 2 Q, Y 2 ZŒ��. As above, it admits a
solution if and only if 2 j pQ.V /. Moreover, if 2 j pQ.V / then the value of X is
uniquily determined, while the unknowns .L; `;Y / take arbitrary values, in order to
determine a solution.
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Theorem 5.10 Under the hypothesis of Theorem 5.1, suppose that v0 2 F2 is the
representative of xv 2 � , as in .39/ or .40/, and .x;y/ is a solution of one of the
equations (2 0 ), (3 0 ) or (4 0 ) from Section 3.3, in a “mixed” case, see Remark 3.16
and Tables 2 and 3. Let .xL;`;yL;`/ be the corresponding representative, given by
Remarks 5.3, 5.5, 5.7 and 5.9, of the solution .zx; xy/ 2 .ZŒ��/�� of the corresponding
first derived equation (21 ), (31 ), (4f

1
) or (4nf

1
) (see Lemmas 5.2, 5.4, 5.6 and 5.8) where

the subscript L is not necessarily present. Let X 2Q, Y;V 2 ZŒ�� be the images of
the elements x�1

L;`
x 2 ŒN;N �, y�1

L;`
y; v�1

0
v 2N under the projections qNF

W ŒN;N �!

Q� ŒN;N �=ŒF2; ŒN;N �� and qN W N ! .ZŒ��;C/�N ab , respectively:

X D qNF
.x�1

L;`x/ 2Q; Y D qN .y
�1
L;`y/ 2 ZŒ��; V D qN .v

�1
0 v/ 2 ZŒ��;

where the natural identifications N ab � .ZŒ��;C/ and ŒN;N �=ŒF2; ŒN;N ���Q are
given by (25), (26), and (32), (33). Then the quadruple .L; `;X;Y / (or the triple
.`;X;Y /, respectively) satisfies the corresponding equation (22 ), (32 ), (4f

2
) or (4nf

2
),

described above, called the second derived equation.

5.4 Derivation of the second derived equation

Here we give a proof of Theorem 5.10, that is we derive the equations (22 ) and (32 )
from the equations (2 0 ) and (3 0 ), respectively, and the equations (4f

2
) and (4nf

2
) from

the equation (4 0 ), in the “mixed” cases, see Section 3.3 and Remark 3.16.

The following three technical Lemmas will be useful for deriving the second derived
equations (22 ) and (4f

2
) from the equations (2 0 ) and (4 0 ), respectively.

Lemma 5.11 In the free group F2 D h˛; ˇ ji, put B D ˛ˇ˛ˇ�1 and denote Bu D

uBu�1 , u 2 F2 . Then, for any L 2 Z,

˛Lˇ˛Lˇ�1
D

(
B˛L�1B˛L�2 : : :B˛B; L� 0;

B�1
˛LB�1

˛LC1 : : :B
�1
˛�1 ; L< 0:

If N D hhBii and � D �� D F2=N then, under the projection qN W N !

.ZŒ��;C/�N ab DN=ŒN;N �, see (25), (26), the element ˛Lˇ˛Lˇ�1 is mapped to
qN .˛

Lˇ˛Lˇ�1/D 1�x̨L

1�x̨
.

Proof Let us calculate ˛Lˇ˛Lˇ�1 . For L� 0 we prove the formula by induction.
For LD 0; 1 the formula is obviously true. From the formula for L � 1 we get the
formula for LC 1 as follows:

˛LC1ˇ˛LC1ˇ�1
D ˛.˛Lˇ˛Lˇ�1/˛�1˛ˇ˛ˇ�1

D ˛.B˛L�1B˛L�2 : : :B˛B/˛�1
�B
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D .B˛LB˛L�1 : : :B˛2B˛/B D B˛LB˛L�1 : : :B˛B:

Using the above formula, we get the formula for L< 0:

˛Lˇ˛Lˇ�1
D ˛L.˛�Lˇ˛�Lˇ�1/�1˛�L

D ˛L.B˛�L�1B˛�L�2 : : :B˛B/�1˛�L

D ˛L.B�1B�1
˛ : : :B�1

˛�L�2B�1
˛�L�1/˛

�L
D B�1

˛LB�1
˛LC1 : : :B

�1
˛�2B�1

˛�1 :

In the abelianised group N , which is identified with .ZŒ���;C/, see Proposition 4.1,
we have

qN .˛
Lˇ˛Lˇ�1/DqN .B˛L�1B˛L�2 : : :B˛B/D x̨L�1

Cx̨
L�2
C: : :Cx̨C1D

1� x̨L

1� x̨

if L� 0, and

qN .˛
Lˇ˛Lˇ�1/D qN .B

�1
˛LB�1

˛LC1 : : :B
�1
˛�1/D�x̨

L
� x̨

LC1
� : : :� x̨ �1

D
1� x̨L

1� x̨

if L< 0.

Remark 5.12 Under the assumptions of Lemma 5.11, one can prove the following
generalization of the formulae from this Lemma, for arbitrary L; ` 2Z where ` is odd:

˛Lˇ`˛Lˇ�`D

8<:
QL

kD1

h�Q.`�1/=2
iD1

B�1
˛LC1�kˇ`�2i

�Q.`�1/=2
jD0

B˛L�kˇ2j

i
; ` > 0;QL

kD1

h�Q.�`�1/=2
iD0

B˛LC1�kˇ`C2i

�Q.�`�1/=2
jD1

B�1
˛L�kˇ�2j

i
; ` < 0

if L� 0, and

˛Lˇ`˛Lˇ�`D

8̂<̂
:
Q�1

kDL

h�Q0
jD.1�`/=2 B�1

˛kˇ�2j

�Q�1
iD.1�`/=2 B˛kC1ˇ`C2i

i
; ` > 0;Q�1

kDL

h�Q�1
jD.1C`/=2 B˛kˇ2j

�Q0
iD.1C`/=2 B�1

˛kC1ˇ`�2i

i
; ` < 0

if L < 0. Observe that the formulae for L < 0 can be easily obtained from the
formulae for L> 0 via the identity ˛Lˇ`˛Lˇ�` D ˛L.˛�Lˇ`˛�Lˇ�`/�1˛�L . The
above formulae (for L> 0) can be proved either by straightforward calculations, or
geometrically, by identifying the subgroup N D hhBii with the fundamental group of
a suitable covering of the punctured Klein bottle, and interpreting elements of N as
based loops on this covering, considered up to the based homotopy. In more detail, we
consider a punctured Klein bottle K� DK n

ı

D with base point P 2 @D , where K is
the Klein bottle, and D � K a closed disk. We interprete K as the quotient of the
Euclidean plane zK by the free action of the group � D F2=N on zK by isometries
of the plane, in a usual way. We can also identify �1.K;P /D � , �1.K

�;P /D F2 ,
and the element B D ˛ˇ˛ˇ�1 2 F2 with the homotopy class of the (suitably oriented)
boundary circle @K� . Consider the covering zK� of K� corresponding to the subgroup
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N D hhBii. It is a punctured plane with infinitely many punctures, moreover the
inclusion K� ,!K lifts to an inclusion zK� ,! zK . Let us consider a based loop 

on K� , whose homotopy class equals Œ
 �D ˛Lˇ`˛Lˇ�` 2 F2 . Since Œ
 � 2N , this
loop lifts to the covering zK� . The obtained based loop z
 on zK� can be considered as
a rectangle of “width” L and “height” ` on the plane zK . Representing the elements
Bu , u 2 F2 , by suitable based loops on zK� , one can decompose the element Œz
 � 2N

into the product of Bu , u 2 F2 , in many different ways. One can check that the above
formulae give one of the ways for such a decomposition.

Lemma 5.13 Suppose n;L 2 Z, n¤ 0, cL D ˇ˛
�L , B D ˛ˇ˛ˇ�1 . Then

ˇ�2nc2n
L D

8<:
Qn�1

jD0 ˇ
1�2nC2j .˛�Lˇ˛�Lˇ�1/ˇ2n�2j�1; n> 0;Q�n

jD1 ˇ
1�2n�2j .˛�Lˇ˛�Lˇ�1/�1ˇ2nC2j�1; n< 0;

thus the element ˇ�2nc2n
L
2F2 belongs to the subgroup N DhhBii. If �D��DF2=N

then, under the projection qN W N ! .ZŒ��;C/�N abDN=ŒN;N �, see (25), (26), the
element ˇ�2nc2n

L
is mapped to qN .ˇ

�2nc2n
L
/D�x̌1�x̌�2n

1�x̌2
�

1�x̨�L

1�x̨
.

Proof Suppose n> 0. Then

ˇ�2nc2n
L D ˇ

1�2n
�.˛�Lˇ˛�Lˇ�1/�ˇ2.˛�Lˇ˛�Lˇ�1/ˇ�2

�ˇ4.˛�Lˇ˛�Lˇ�1/ˇ�4

� � �ˇ2n�4.˛�Lˇ˛�Lˇ�1/ˇ4�2n
�ˇ2n�2.˛�Lˇ˛�Lˇ�1/ˇ2�2n

�ˇ2n�1

D ˇ1�2n
�

0@n�1Y
jD0

ˇ2j .˛�Lˇ˛�Lˇ�1/ˇ�2j

1A �ˇ2n�1

D

n�1Y
jD0

ˇ1�2nC2j .˛�Lˇ˛�Lˇ�1/ˇ2n�2j�1
2N

by Lemma 5.11. In the abelianised group N , which is identified with .ZŒ���;C/, see
Proposition 4.1, we obtain

qN .ˇ
�2nc2n

L /D x̌1�2n
�

n�1X
jD0

x̌2j qN .˛
�Lˇ˛�Lˇ�1/

which, by Lemma 5.11, equals

x̌1�2n
�

n�1X
jD0

x̌2j 1� x̨ �L

1� x̨
D x̌

1�2n
�
1� x̌2n

1� x̌2
�
1� x̨ �L

1� x̨
D � x̌

1� x̌�2n

1� x̌2
�
1� x̨ �L

1� x̨
:
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Suppose n< 0. Then we have

ˇ�2nc2n
L D ˇ

�2n.ˇ˛�L/2n
D ˇ�2n.˛Lˇ�1/�2n

D ˇ1�2n
�ˇ�2.ˇ˛Lˇ�1˛L/ˇ2

�ˇ�4.ˇ˛Lˇ�1˛L/ˇ4
�ˇ�6.ˇ˛Lˇ�1˛L/ˇ6

� � �ˇ2nC2.ˇ˛Lˇ�1˛L/ˇ�2n�2
�ˇ2n.ˇ˛Lˇ�1˛L/ˇ�2n

�ˇ2n�1

D ˇ1�2n
�

0@ �nY
jD1

ˇ�2j .˛�Lˇ˛�Lˇ�1/�1ˇ2j

1A �ˇ2n�1

D

�nY
jD1

ˇ1�2n�2j .˛�Lˇ˛�Lˇ�1/�1ˇ2nC2j�1
2N

by Lemma 5.11. In the abelianised group N , which is identified with .ZŒ���;C/, see
Proposition 4.1, we obtain

qN .ˇ
�2nc2n

L /D�x̌1�2n
�

�nX
jD1

x̌�2j qN .˛
�Lˇ˛�Lˇ�1/

which, by Lemma 5.11, equals

� x̌
1�2n
�

�nX
jD1

x̌�2j 1� x̨ �L

1� x̨
D x̌

1�2n
�
1� x̌2n

1� x̌2
�
1� x̨ �L

1� x̨
D� x̌

1� x̌�2n

1� x̌2
�
1� x̨ �L

1� x̨
:

Derivation of (32 ) Here B D ˛ˇ˛�1ˇ�1 , N D hhBii. As in Lemma 5.4, we assume
that xv D x̨2m x̌2n , m; n 2 Z.

Suppose jmjCjnj>0, thus vD c2dPv where cD˛m=dˇn=d , dDgcd.m; n/, Pv 2N ,
thus Pv D

Q
B

ni
vi
D
Qr

iD1 B
ni
vi

, see (40). It follows from Lemma 5.4 that any solution
.x;y/ of (3 0 ) has the form x D x`� , y D y`�, for some ` 2Z with ` j d , � 2 ŒN;N �,
and � 2N , where x`;y` are given by Remark 5.5. The equation (3 0 ) has the form

xyxy�1
D c2dPv B�1 P�1

v c�2d B:

Thus, the equation has the following form in the new unknowns `; �; �:

(41) x`� y`� x`� �
�1y�1

` D c2dPv B�1 P�1
v c�2d B:

We will start by analyzing both sides of this equality modulo ŒF2; ŒN;N ��, and we will
complete by using the presentation (33) of ŒN;N �=ŒF2; ŒN;N ��. We shall represent
elements of N=ŒF2; ŒN;N �� by elements of N , identified under the congruence relation
g1�g2 modulo ŒF2; ŒN;N ��, and shall write g1�g2 whenever g1g�1

2
2 ŒF2; ŒN;N ��.

Geometry & Topology Monographs, Volume 14 (2008)



264 Daciberg L Gonçalves, Elena Kudryavtseva and Heiner Zieschang

The right-hand side of (41) modulo ŒF2; ŒN;N �� equals

c2dPv B�1 P�1
v c�2d B D c2d ŒPv;B

�1�B�1c�2dB

� c2dB�1c�2dBŒPv;B
�1�D B�1

c2d BŒPv;B
�1�:

The left-hand side of (41) modulo ŒF2; ŒN;N �� equals

(42) �2x`y`x`y
�1
` �y`Œx

�1
` ; ��y�1

` � �
2x`y`x`y

�1
` Œx�1

` ; ��;

since the elements � , Œx�1
`
; �� belong to ŒN;N � and, hence, they commute with any

element of F2 in the quotient F2=ŒF2; ŒN;N ��. Let us calculate x`y`x`y
�1
`

in the
quotient F2=ŒF2; ŒN;N ��. We have, by Remark 5.5,

x`y`x`y
�1
` D

�
Bc2d�2`Bc2d�4` : : :Bc2`B �B�1

c`
B�1

c3` : : :B
�1
c2d�3`B

�1
c2d�`

�
� c`

�
�
Bc2d�2`Bc2d�4` : : :Bc2`B �B�1

c`
B�1

c3` : : :B
�1
c2d�3`B

�1
c2d�`

�
� c�`

D Bc2d�2`Bc2d�4` : : :Bc2`B �B�1
c2`B

�1
c4` : : :B

�1
c2d�2`B

�1
c2d

� B�1
c2d B �

dỲ
jD1

ŒB;B�1
c2j` � if ` > 0I(43)

x`y`x`y
�1
` D

�
B�1

c2d B�1
c2dC2` : : :B

�1
c�4`B

�1
c�2` �Bc�`Bc�3` : : :Bc2dC3`Bc2dC`

�
� c`

�
�
B�1

c2d B�1
c2dC2` : : :B

�1
c�4`B

�1
c�2` �Bc�`Bc�3` : : :Bc2dC3`Bc2dC`

�
� c�`

D B�1
c2d B�1

c2dC2` : : :B
�1
c�4`B

�1
c�2` �BBc�2` : : :Bc2dC4`Bc2dC2`

� B�1
c2d B �

� d
`
�1Y

jD1

ŒB�1
c�2j` ;B� if ` < 0:(44)

Therefore, after cancelling the common factor B�1
c2d B from the both sides, the equation

has the following form in the quotient F2=ŒF2; ŒN;N ��:

�2
�

0@ dỲ
jD1

ŒB;B�1
c2j` �

1A � Œx�1
` ; ��� ŒPv;B

�1� for ` > 0;

�2
�

0@� d
`
�1Y

jD1

ŒB�1
c�2j` ;B�

1A � Œx�1
` ; ��� ŒPv;B

�1� for ` < 0:

Both sides of the latter equation belong to N1 D ŒN;N �. After identification of
N1=ŒF2;N1� with Q D .ZŒ� n f1g�/= �, see Proposition 4.5, and denoting X D

qNF
.�/ 2 Q � N1=ŒF2;N1�, Y D qN .�/ 2 ZŒ��, V D qN .Pv/ 2 ZŒ��, we get,
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using (33) and Lemma 5.4, the equation

(45)

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2X CpQ

0@ dX̀
jD1

xc �2j`
�

1� xc �2d

1Cxc �`
�Y

1AD pQ.V /; ` > 0;

2X CpQ

0@�� d
`
�1X

jD0

xc2j`
�

1� xc �2d

1Cxc �`
�Y

1AD pQ.V /; ` < 0;

which coincides with the desired equation (32 ) for jmjC jnj> 0.

Consider the case m D n D 0, that is xv D 1. We have v D Pv 2 N where Pv DQ
B

ni
vi
D
Qr

iD1 B
ni
vi

. It follows from Lemma 5.4 that any solution .x;y/ of (3 0 ) has
the form x D xL;`� , y D yL;`� with xL;` D 1, yL;` D ˛

Lˇ` , for some L; ` 2 Z,
� 2 ŒN;N �, and �2N , see Remark 5.5. Similarly to above, we obtain the equation (41)
where x`;y`; c

2d are replaced by xL;` D 1, yL;` , 1, respectively. It follows from
xL;` D 1 that xL;`yL;`xL;`y

�1
L;`
D 1 and Œx�1

L;`
; �� D 1, hence the left-hand side

modulo ŒF2; ŒN;N �� equals �2 . As above, the right-hand side modulo ŒF2; ŒN;N ��

equals ŒPv;B�1�. After identification of N1=ŒF2;N1� with QD ZŒ� n f1g�=�, and
denoting X D qNF

.�/ 2Q�N1=ŒF2;N1�, Y D qN .�/ 2ZŒ��, V D qN .Pv/ 2ZŒ��,
we get, using (33), the desired equation

2X D pQ.V /:

This finishes the derivation of (32 ) from (3 0 ).

Derivation of (4nf
2

) Here B D ˛ˇ˛ˇ�1 , N D hhBii. As in Lemma 5.8, we assume
that xv D x̨2m x̌4n , m; n 2 Z.

Suppose jmj C jnj > 0, thus v D c2dPv where c D ˛m=dˇ2n=d , d D gcd.m; n/,
Pv 2 N , thus Pv D

Q
B

ni
vi
D
Qr

iD1 B
ni
vi

. It follows from Lemma 5.8 that any non-
faithful solution .x;y/ of (4 0 ) has the form x D x`� , y D y`� for some ` 2 Z with
` j d , � 2 ŒN;N �, and � 2N , where x`;y` are given by Remark 5.9.

The rest of the derivation is similar to that of (32 ).

Derivation of (22 ) Here BD˛ˇ˛ˇ�1 , N DhhBii. As in Lemma 5.2, we assume that
vD ˇ2nPv , where Pv D

Q
B

ni
vi

, n; ni 2Z, vi 2F2 . By this Lemma, any non-faithful
solution .x;y/ of (2 0 ) has the form x D xL;`� , y D yL;`� for L; ` 2 Z as in (38),
� 2 ŒN;N �, and � 2N , where xL;`;yL;` are given by Remark 5.3. The equation (2 0 )
has the form

xyx�1y�1
D ˇ2nPv B�1 P�1

v ˇ�2n B:
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Thus, the equation has the following form in the new unknowns L; `; �; �:

xL;`� yL;`� �
�1x�1

L;` �
�1y�1

L;` D ˇ
2nPv B�1 P�1

v ˇ�2n B:

As above, we will analyze both sides of this equality modulo ŒF2; ŒN;N ��, and will
write g1 � g2 whenever g1g�1

2
2 ŒF2; ŒN;N ��.

The right-hand side modulo ŒF2; ŒN;N �� equals

ˇ2nPv B�1 P�1
v ˇ�2n B D ˇ2nŒPv;B

�1�B�1ˇ�2nB

� ˇ2nB�1ˇ�2nBŒPv;B
�1�D B�1

ˇ2nBŒPv;B
�1�:(46)

The left-hand side modulo ŒF2; ŒN;N �� equals

ŒxL;`;yL;`� �yL;`ŒxL;`; ��y
�1
L;` � ŒxL;`;yL;`� � ŒxL;`; ��;

since the elements � , ŒxL;`; �� belong to ŒN;N � and, hence, they commute with
any element of F2 in the quotient F2=ŒF2; ŒN;N ��. Let us calculate ŒxL;`;yL;`� in
F2=ŒŒN;N �;F2�. Denote cLDˇ˛

�L , thus zxL;`D
1�xc2n

L

1�xc`
L

and xyL;`Dxc
`
L

. For n=`� 0

we have, by Remark 5.3,

ŒxL;`;yL;`�D
�
Bc2n�`

L
Bc2n�2`

L
: : :Bc`

L
B
�
� c`L �

�
B�1B�1

c`
L

: : :B�1

c2n�2`
L

B�1

c2n�`
L

�
� c�`L

D Bc2n�`
L

Bc2n�2`
L

: : :Bc`
L

B �B�1

c`
L

B�1

c2`
L

: : :B�1

c2n�`
L

B�1

c2n
L

� B�1

c2n
L

B �

2 nỲ
jD1

ŒB;B�1

c
j`

L

�;

while for n=` < 0 we have, by Remark 5.3,

ŒxL;`;yL;`�D
�
B�1

c2n
L

B�1

c
2nC`
L

: : :B�1

c�2`
L

B�1

c�`
L

�
� c`L �

�
Bc�`

L
Bc�2`

L
: : :B

c
2nC`
L

Bc2n
L

�
� c�`L

D B�1

c2n
L

B�1

c
2nC`
L

: : :B�1

c�2`
L

B�1

c�`
L

�BBc�`
L
: : :B

c
2nC2`
L

B
c

2nC`
L

� B�1

c2n
L

B �

�2 n
`
�1Y

jD1

ŒB�1

c
�j`

L

;B�:
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Therefore, after multiplying the both sides by B�1Bc2n
L

, the equation has the following
form in the quotient F2=ŒF2; ŒN;N ��: 2 nỲ

jD1

ŒB;B�1

c
j`

L

�

!
� ŒxL;`; ��� B�1

ˇ2nBc2n
L
� ŒPv;B

�1� for n=`� 0;

 �2 n
`
�1Y

jD1

ŒB�1

c
�j`

L

;B�

!
� ŒxL;`; ��� B�1

ˇ2nBc2n
L
� ŒPv;B

�1� for n=` < 0:

Observe that

(47) B�1
ˇ2nBc2n

L
D ˇ2nŒB�1; ˇ�2nc2n

L �ˇ�2n
� ŒB�1; ˇ�2nc2n

L � 2 ŒN;N �;

due to Lemma 5.13. In particular, both sides of the obtained equation belong to N1 D

ŒN;N �. After identification of N1=ŒF2;N1� with QDZŒ�nf1g�=�, see (32), (33), and
denoting X D qNF

.�/ 2Q�N1=ŒF2;N1�, Y D qN .�/ 2ZŒ��, V D qN .Pv/ 2ZŒ��,
we get, using Lemma 5.13 and (33), the equation

(48) pQ

 
�

1� xc �2n
L

1� xc`
L

C
1� xc �2n

L

1� xc �`
L

�Y

!
D pQ

 
V C x̌

1� x̌�2n

1� x̌2
�
1� x̨ �L

1� x̨

!
:

Since the automorphism 'L sends xcLD x̨
L x̌ 7! x̌, x̌ 7! x̌x̨L , and leaves fixed x̨ and

x̌2 , we obtain, after applying the automorphism 'L to both sides of the latter equation,
the desired equation (22 ).

Derivation of (4f
2

) Here B D ˛ˇ˛ˇ�1 , N D hhBii. As in Lemma 5.6, we assume
that v D ˇ2nPv , where Pv D

Q
B

ni
vi

, n 2 Z. By this Lemma, any faithful solution
.x;y/ of (4 0 ) has the form x D xL;`� , y D yL;`� for L; ` 2Z as in (38), � 2 ŒN;N �,
and � 2 N , where xL;`;yL;` are given by Remark 5.7. The equation (4 0 ) has the
left-hand side similar to that of (3 0 ) and the right-hand side as in (2 0 ):

xyxy�1
D ˇ2nPv B�1 P�1

v ˇ�2n B:

Thus, the equation has the following form in the new unknowns L; `; �; �:

xL;`� yL;`� xL;`� �
�1y�1

L;` D ˇ
2nPv B�1 P�1

v ˇ�2n B:

As above, we will analyze both sides of this equality modulo ŒF2; ŒN;N ��, and will
write g1 � g2 whenever g1g�1

2
2 ŒF2; ŒN;N ��.

As in (46), the right-hand side modulo ŒF2; ŒN;N �� equals B�1
ˇ2nBŒPv;B

�1�. Sim-
ilarly to (42), one shows that the left-hand side modulo ŒF2; ŒN;N �� is equal to
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�2xL;`yL;`xL;`y
�1
L;`
Œx�1

L;`
; ��. Moreover, using Remark 5.7, we have, similarly to (43)

and (44),

xL;`yL;`xL;`y
�1
L;` �

8̂̂̂<̂
ˆ̂:

B�1

c2n
L

B �
Qn

`

jD1
ŒB;B�1

c
2j`

L

�; n=`� 0;

B�1

c2n
L

B �

�n
`
�1Y

jD1

ŒB�1

c
�2j`

L

;B�; n=` < 0:

Therefore, after multiplying the both sides by B�1Bc2n
L

, the equation has the following
form in the quotient F2=ŒF2; ŒN;N ��:

�2
�

 nỲ
jD1

ŒB;B�1

c
2j`

L

�

!
� Œx�1

L;`; ��� B�1
ˇ2nBc2n

L
� ŒPv;B

�1� for n=`� 0;

�2
�

 �n
`
�1Y

jD1

ŒB�1

c
�2j`

L

;B�

!
� Œx�1

L;`; ��� B�1
ˇ2nBc2n

L
� ŒPv;B

�1� for n=` < 0:

By (47), both sides of the obtained equation belong to N1D ŒN;N �. After identification
of N1=ŒF2;N1� with Q D .ZŒ� n f1g�/= �, see Proposition 4.5, and denoting X D

qNF
.�/2Q�N1=ŒF2;N1�, Y DqN .�/2ZŒ��, V DqN .Pv/2ZŒ��, we get, similarly

to (45) for the left-hand side, and to (48) for the right-hand side, the equation

2X �pQ

 
1� xc �2n

L

1� xc2`
L

C
1� xc �2n

L

1Cxc �`
L

�Y

!
D pQ

 
V C x̌

1� x̌�2n

1� x̌2
�
1� x̨ �L

1� x̨

!
:

Since the automorphism 'L sends xcLD x̨
L x̌ 7! x̌, x̌ 7! x̌x̨L , and leaves fixed x̨ and

x̌2 , we obtain, after applying the automorphism 'L to both sides of the latter equation,
the desired equation (4f

2
).

This finishes the proof of Theorem 5.10.

6 Solutions of the second derived equations

In this section we give a necessary and sufficient condition for each of the second
derived equations (22 ), (32 ), (4f

2
) and (4nf

2
), see Section 5.3, to have a solution. As a

consequence, we will describe, in each of the mixed cases, many infinite families of
v ’s for which the equation (8) has no solution, see Remark 3.16 and Tables 4 and 5.
Unfortunately it is not true that if the second derived equation has a solution then the
original equation also has a solution, see Example 6.11. As we noticed in Remark
3.16, for a given xv 2 � which corresponds to a mixed case, it is not an easy task to
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classify all the elements in p�1.xv/ with respect to the property that the corresponding
equation (8) has a solution or has no solution. In fact we do not know xv for which the
answer is completely known.

In the following three assertions, we list some identities in the quotient Q D ZŒ� n
f1g�=�, see (37) and (31), which will be used for solving the second derived equations
(22 ), (32 ), (4f

2
) and (4nf

2
).

As above, � D�˙ denotes the group �"Dh˛; ˇ j ˛ˇ˛�"ˇ�1i, "2 f1;�1g, and xu2�
denotes the class of an element u 2F2D h˛; ˇ ji in � . Consider the natural projection
pQW ZŒ��!Q, see (7). It has the kernel

(49) K D ker pQ D ZŒf1g�˚hfgCg�1
j g 2 � n f1ggi;

where hSi denotes the minimal abelian subgroup of .ZŒ��;C/ containing a subset
S � ZŒ��. We will represent elements of Q by elements of ZŒ��, identified under
the congruence relation X1 � X2 modulo K , and shall write X1 � X2 whenever
X1�X2 2K .

Lemma 6.1 For any x 2 � , k 2 Z, the following congruences in ZŒ�� hold modulo
K :

(a)
1�x2k

1�x
x1�k

� xk ; (b)
1�x2k

1�x2
x1�k

� 0; (c)
1�x2k

1�x2
x�k
� x�k :

Proof (a) The difference of the left-hand side and the right-hand side equals

x1�k �xk

1�x
D

x1�k �x

1�x
C

x� 1

1�x
C

1�xk

1�x
D

x�k � 1

x�1� 1
� 1C

1�xk

1�x
� 0I

1�x2k

1�x2
x1�k

D

8̂̂<̂
:̂

x1�k Cx3�k C : : :Cxk�3Cxk�1 � 0; k > 0;

0; k D 0;

�x�1�k �x�3�k � : : :�xkC3�xkC1 � 0; k < 0I

(b)

1�x2k

1�x2
x�k
D

8̂̂<̂
:̂

x�k Cx2�k C : : :Cxk�4Cxk�2 � x�k ; k > 0;

0; k D 0;

�x�2�k �x�4�k � : : :�xkC2�xk � x�k ; k < 0:

(c)

This completes the proof.
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Corollary 6.2 For any x 2 � D �� and n;L; `; k;m 2 Z with ` j n and ` odd, the
following congruences in ZŒ��� hold modulo K :

x̌n �
1� x̌2n

1� x̨L x̌`
x̨

L x̌`�n if n is even;(a)

1�x2k

1�x2
x2m
�

1�x2k

1Cx
�
x2m�x1�k

1�x
�

1�x2k

1�x
�
x2mC .�1/kx1�k

1Cx
;(b)

1� x̌2n

1� x̌2`
x̌2k`
x̨

m
�

1� x̌2n

1� x̨L x̌`
�

x̌2k`C x̨L x̌`�n

1C x̨L x̌`
x̨

m if n is even:(c)

Lemma 6.3 For any n;L; ` 2 Z with ` j n and ` odd, there exists Z1 2 ZŒ���
satisfying the following congruence in ZŒ��� modulo K , for any m 2 Z:

1� x̌�2n

1� x̌2
x̌x̨

m
� .1� x̌2n/ �Z1 � x̨

m
C

8<:0; n even;

x̌n x̨m; n odd:

Proof If n is even, we put Z1 WD �
1�x̌n

1�x̌2
x̌1�2n ; then

.1� x̌2n/ �Z1 � x̨
m
D

1� x̌�2n

1� x̌2
.1� x̌n/ x̌x̨m

�
1� x̌�2n

1� x̌2
x̌x̨

m;

where the latter congruence is due to Lemma 6.1(b). If n is odd, we put Z1 WD

�
1�x̌n�1

1�x̌2
x̌1�2n ; then

.1� x̌2n/ �Z1 � x̨
m
D

1� x̌�2n

1� x̌2
.1� x̌n�1/ x̌x̨m

�
1� x̌�2n

1� x̌2
x̌x̨

m
� x̌

n
x̨

m;

where the latter congruence is due to Lemma 6.1(c).

Denote Q0 DQ˝Z2 , and consider the natural projection

(50) pQ0 W Z2Œ��!Q0 � .Z2Œ� n f1g�/=hgCg�1
j g 2 � n f1gi;

compare (7). In this section, we will only consider the unsolved case xv ¤ 1.

Case of the equations (32 ) and (4nf
2

) Observe that these equations have similar form,
where (32 ) is in QC , while (4nf

2
) is in Q� , see Section 5.3.

More specifically, for the equation (32 ), we have B D Œ˛; ˇ�, � D �C , Q D QC ,
xvD x̨2m x̌2nDxc2d 2� , where xcD x̨m=d x̌n=d , m; n2Z, jmjCjnj>0, dDgcd.m; n/.
For the equation (4nf

2
), we have B D ˛ˇ˛ˇ�1 , � D �� , QDQ� , xv D x̨2m x̌4n D
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xc2d 2 � , where xc D x̨m=d x̌2n=d , m; n 2 Z, jmjC jnj> 0, d D gcd.m; n/, thus xc is
orientation-preserving, and is not a proper power of an orientation-preserving element
of � D �� .

Observe that the existence of a solution .`;X;Y / of the equation (32 ) in QDQC
is equivalent to the existence of a solution .`;Z0/ of the following equation in Q0 D

Q˝Z2 , with the same ` jd and V 0 WDV mod 22Z2Œ�C�, Z0 WDZ mod 22Z2Œ�C�

where Z D xc`�2d �Y C xc
�2d�xc`�d

1�xc`
:

(x32) pQ0

 
1� xc2d

1Cxc`
�Z0

!
D pQ0.V

0/;

due to Corollary 6.2(b).

Similarly, the existence of a solution .`;X;Y / of the equation (4nf
2

) in Q DQ� is
equivalent to the existence of a solution .`;Z0/ of the following equation in Q0 D

Q˝Z2 , with the same ` jd and V 0 WDV mod 22Z2Œ���, Z0 WDZ mod 22Z2Œ���

where Z D xc`�2d �Y C xc
�2d�xc`�d

1�xc`
:

(x4 nf
2

) pQ0

 
1� xc2d

1Cxc`
�Z0

!
D pQ0.V

0/:

In the following Theorem 6.4 and Proposition 6.5, we will formulate necessary and
sufficient conditions for each of the equations (x32 ) and (x4 nf

2
) to have a solution, when

xv ¤ 1.

Denote xu D xcd 2 � D �" , thus xv D xu2 . Consider the left actions on � of the free
groups G D ht; i ji, yG D hyt ;yi ji of rank 2, where the actions of the generators t; i and
yt ;yi are defined by

t �g D xcg; i �g D g�1; g 2 �;(51)

yt �g D xug D xcdg; yi �g D g�1; g 2 �:(52)

Clearly, yG can be considered as a subgroup of G , with the inclusion map yG ,! G ,
yt 7! td , yi 7! i . Denote Og WDG �g and yOg WD

yG �g , the orbits of an element g 2 �

under the actions of G and yG , respectively. Clearly yOh �Og for any g 2 � , h 2Og .
Define the yG –augmentation

(53) y"gW Z2Œ yOg�! Z2;

rX
kD1

mkxuk 7!

rX
kD1

mk ; mk 2 Z2; xuk 2
yOg; g 2 �;

the restriction of the usual augmentation Z2Œ��!Z2 to the subgroup Z2Œ yOg��Z2Œ��.
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Theorem 6.4 Suppose xc 2 � , d 2N , V 2 ZŒ�� are defined by the element v 2 F2 ,
xv D xc2d ¤ 1, as in .40/. Consider the actions .51/, .52/ of the groups G; yG on � .
Each of the equations (x32 ), (x4 nf

2
) has the following properties:

(A) For every fixed ` j d , the corresponding equation with the unknown Z0 2 Z2Œ��

splits into the system of independent equations in the subspaces .Z2ŒOg n f1g�/= �

with the unknowns Z0g 2 Z2ŒOg�, where g 2 � .

(B) The following conditions are pairwise equivalent:

(i) the equation admits a solution;

(ii) the equation admits a solution with `D d ;

(iii) for every h2 � n yO1 , the projection yV 0
h

of the element V 0 WD V mod 22Z2Œ��

to the subspace Z2Œ yOh� has vanishing yG –augmentation: y"h. yV
0

h
/D 0.

Proof (A) Clearly, the equivalence g � g�1 , g 2 � n f1g, on � n f1g induces an
equivalence relation on Og n f1g, for each orbit Og . Moreover, two elements of
Z2Œ� nf1g� are equivalent if and only if their projections to each subspace Z2ŒOg nf1g�

are equivalent. Since 1�xc2d

1Cxc`
� Z0 belongs to Z2ŒOg� whenever Z0 2 Z2ŒOg�, the

induced equations in the quotients of Z2ŒOg n f1g� by � are pairwise independent (for
every fixed `).

(B) Consider the natural projection pQ0 W Z2Œ��!Q0 DQ˝Z2 , see (50). It has the
kernel

K0 D ker pQ0 D Z2Œf1g�˚hfgCg�1
j g 2 � n f1ggi;

where hSi denotes the minimal abelian subgroup of .Z2Œ��;C/ containing a subset
S � Z2Œ��, compare (49). Similarly to Lemma 6.1, Corollary 6.2 and Lemma 6.3, we
will represent elements of Q0 by elements of Z2Œ��, identified under the congruence
relation X1 �X2 modulo K0 , and shall write X1 �X2 whenever X1�X2 2K0 .

(i) H) (ii) Suppose that .`;Z0/ is a solution. Then the left-hand side equals

1� xc2d

1Cxc`
�Z0 D

1� xc2d

1Cxcd
�
1Cxcd

1Cxc`
�Z0:

Since the right-hand sides of (x32 ) and (x4 nf
2

) do not depend on `, the pair .d; 1Cxcd

1Cxc`
�Z0/

is a solution.

(ii) H) (iii) Suppose .d;Z0/ is a solution, thus

.1� xcd / �Z0 � V 0:
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It follows that V 0 D U 0CW 0 , where U 0 is a linear combination of the elements of
the form .1� xcd /g1 , g1 2 � , while W 0 2K is a linear combination of the elements
of the form g2Cg�1

2
and g3 , g2 2 � n f1g, g3 D 1 2 � .

Take any h2�n yO1 . It follows that yV 0
h

is a linear combination of .1�xcd /g1 , g2Cg�1
2

,
and g3 , where g1 2

yOh , g2 2
yOh n f1g, g3 D 1 2 � \ yOh . Since g3 D 1 62 yOh , the

coefficient at g3 in this linear combination vanishes. Therefore the augmentation of
this linear combination vanishes, thus y"h. yV

0
h
/D 0.

(iii) H) (i) Suppose y"h. yV
0

h
/D 0 for any h 2 � n yO1 . Since yV 0

h
2Z2Œ yOh�, and yOh is

an orbit with respect to the action of the group yG on � , it follows from y"h. yV
0

h
/D 0 that

yV 0
h

is a linear combination of the elements of the form .1�xcd /g1 and g2Cg�1
2

, where
g1 2

yOh , g2 2
yOh nf1g. Similarly, since one of the elements yV 0

1
; yV 0

1
C1 2Z2Œ yO1� has

vanishing yG –augmentation, it follows that yV 0
1

is a linear combination of the elements of
the form .1�xcd /g1 , g2Cg�1

2
, and g3 , where g1 2

yO1 , g2 2
yO1 nf1g, g3D 1 2 yO1 .

This immediately gives yV 0
h
� .1� xcd / � yZ0

h
, for some yZ0

h
2 Z2Œ yOh�, for every h 2 � .

Since V 0 equals the sum of yV 0
h
2 Z2Œ yOh� over all yG–orbits yOh � � , we obtain the

desired decomposition V 0 � .1� xcd / �Z0 , for some Z0 2 Z2Œ��. Hence .d;Z0/ is a
solution.

Proposition 6.5 Suppose xu 2 � , w".xu/ D 1, xv D xu2 , where � D �" D h˛; ˇ j

˛ˇ˛�"ˇ�1i. Consider the corresponding action .52/ of the group yG on � . Then the
orbits yOh , h 2 � , under this action have the following form:

(A) Suppose "D 1 and xuD x̨m x̌n , m; n 2 Z. Then, for hD x̨p x̌q , p; q 2 Z, one
has

yOh D fxu
kh˙1

j k 2 Zg D fx̨pCkm x̌qCkn
j k 2 Zg[ fx̨ �pCkm x̌�qCkn

j k 2 Zg:

(B) Suppose " D �1, thus xu D x̨m x̌2n , m; n 2 Z. If w�.h/ D 1 then h D x̨p x̌2q ,
for some p; q 2 Z, and

yOh D fxu
kh˙1

j k 2Zg D fx̨pCkm x̌2qC2kn
j k 2Zg[ fx̨ �pCkm x̌�2qC2kn

j k 2Zg:

If w�.h/D�1 then hD x̨p x̌2qC1 , for some p; q 2 Z, and

yOh D fx̨
km x̌.2kC4r/nh˙1

j k;r 2 Zg

D fx̨
pCkm x̌2qC1C.2kC4r/n

j k;r 2 Zg[ fx̨pCkm x̌�.2qC1/C.2kC4r/n
j k;r 2 Zg;

moreover, in the latter case, the set of all such orbits is in one-to-one correspondence
with the set Zjmj ˚Zjnj , where one denotes Z0 D Z, Z1 D f0g; in particular, the
number of such orbits is either jmnj if mn¤ 0, or infinite if mnD 0.
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Proof (A) Suppose h D x̨p x̌q , and denote xOh D fxu
kh˙1 j k 2 Zg. Obviously,

h 2 xOh , and xOh is invariant under the action of yG (since � D �C is abelian), hence
yOh �

xOh . The converse inclusion follows from the fact that any element of xOh is
obtained from h or h�1 by the left multiplication by xuk , for some k 2Z. This proves
yOh D

xOh .

The equality of the two presentations for the set yOh follows from the fact that the
group � D �C is abelian.

(B) Suppose w�.h/D 1, thus hD x̨p x̌2q . Denote xOhDfxu
kh˙1 jk 2Zg. Obviously,

h 2 xOh . Since w�.xu/D w�.h/D 1, the elements xu and h commute, therefore xOh is
invariant under the action of yG , hence yOh �

xOh . The converse inclusion follows from
the fact that any element of xOh is obtained from h or h�1 by the left multiplication
by xuk , for some k 2 Z. This proves yOh D

xOh .

The equality of the two presentations for the set yOh follows from the fact that the
subgroup of � D �� generated by x̨; x̌2 is abelian.

Suppose now w�.h/D�1, thus hD x̨p x̌2qC1 . Denote

xOh D fx̨
pCkm x̌2qC1C.2kC4r/n

j k; r 2Zg[ fx̨pCkm x̌�.2qC1/C.2kC4r/n
j k; r 2Zg:

Obviously h 2 xOh . Let us show that xOh is invariant under the action of yG . Since x̌2

commutes with any element of � D �� , and x̨p x̌ D x̌x̨ �p , we have, for any s 2 Z,

xus
� x̨

pCkm x̌2qC1C2.kC2r/n
D .x̨m x̌2n/s � x̨pCkm x̌2qC1C2.kC2r/n

D x̨
sm x̌2sn

� x̨
pCkm x̌2qC1C2.kC2r/n

D x̨
pC.sCk/m x̌2qC1C2.sCkC2r/n

2 xOh;

.x̨pCkm x̌2qC1C.2kC4r/n/�1
D x̨

pCkm x̌�.2qC1/�.2kC4r/n
2 xOh;

and similarly xus � x̨pCkm x̌�.2qC1/C2.kC2r/n 2 xOh , .x̨pCkm x̌�.2qC1/C.2kC4r/n/�1 2

xOh . Therefore yOh �
xOh . The converse inclusion follows by observing that

x̨
pCkm x̌2qC1C.2kC4r/n

D ytk
� x̨

p x̌2qC1C4rn
D ytkyiyt�ryiytr

� x̨
p x̌2qC1

2 yOh;

therefore any element of xOh belongs to the orbit yOh of hD x̨p x̌2qC1 under the action
of yG . This proves yOh �

xOh and, hence, yOh D
xOh .
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The equality of the two presentations for the set yOh follows from the identities

x̨
km x̌.2kC4r/n

� hD x̨km x̌.2kC4r/n
� x̨

p x̌2qC1

D x̨
pCkm x̌2qC1C.2kC4r/n;

and x̨
km x̌.2kC4r/n

� h�1
D x̨

km x̌.2kC4r/n
� x̌
�.2qC1/

x̨
�p

D x̨
pCkm x̌�.2qC1/C.2kC4r/n:

This completes the proof.

Case of the equations (22 ) and (4f
2

) For each of the equations (22 ) and (4f
2

), see
Section 5.3, we have B D ˛ˇ˛ˇ�1 , � D �� , Q D Q� , xv D x̌2n , n 2 Z. Both
equations have the unknowns .L; `;X;Y / with L; `2Z as in (38), X 2Q, Y 2ZŒ��.

Observe that the existence of a solution .L; `;X;Y / of the equation (22 ) in QDQ�
is equivalent to the existence of a solution .L; `;Z/ of the following equation in Q,
with the same V 2ZŒ���, L; `2Z satisfying (38), and with ZDxc`�2n

L
Y Cxc �2n

L
CC ,

xcL D
x̌x̨ �L D '�L. x̌/, C 2 ZŒ���:

(x22) pQ

 
1� x̌2n

1� x̌`
�'L.Z/

!
D pQ.'

L.V //C

8<:0; n even;

�pQ

�
x̌n 1�x̨L

1�x̨

�
; n odd;

where C is determined by Lemma 6.3. As in (22 ), this equation is equivalent to
0D pQ.V / if nD 0.

Similarly, the existence of a solution .L; `;X;Y / of the equation (4f
2

) in Q DQ�
is equivalent to the existence of a solution .L; `;Z0/ of the following equation in
Q0DQ˝Z2 , with the same L; `2Z satisfying (38), with V 0 WDV mod 22Z2Œ���,

Z0 WDZ mod 22Z2Œ���, and with ZDxc`�2n
L

Y C
xc �2n
L
C.�1/nxc`�n

L

1Cxc`
L

CC , C 2ZŒ���

from above:

(x4f
2
) pQ0

 
1� x̌2n

1� x̌`
�'L.Z0/

!
D pQ0.'

L.V 0//C

8<: 0; n even;

�pQ0

�
x̌n 1�x̨L

1�x̨

�
; n odd;

due to Corollary 6.2(b). This equation is equivalent to 0D pQ0.V
0/ if nD 0.

Below (see Theorem 6.8 and Proposition 6.10), we will formulate necessary and
sufficient conditions for each of the equations (x22 ), (x4f

2
) to have a solution, when

xv ¤ 1.

From now on, for the remainder of this section, let us fix an integer n¤ 0, and denote
by s the exponent of 2 in the prime factorization of jnj; put �D n

jnj
2s , `maxD

jnj
2s D

n
�

,
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the greatest odd divisor of n. Consider the left actions on � D �� of the groups

GL WD
˝
tL; i j i

2; .tLi tL/
2; .i tL/

4
˛
;

yGL WD
˝
ytL;yi j yi

2; .ytLyiytL/
2; .yiytL/

4
˛
;

zGL WD
˝
zt ;zi ; zjL j

zi2; zj 2
L; .
zi zjL/

2; .zizt/2; .zjLzt/
2
˛
� Z Ì 2

.Z2˚Z2/;

 2W Z2˚Z2! Aut.Z/;  2.zi/.zt/ WD zt
�1
DW  2.zjL/.zt/;

zG WD
˝
zt ;zi j zi2; .zizt/2

˛
� Z Ì 1

Z2;  1W Z2! Aut.Z/;  1.zi/.zt/ WD zt
�1;

where L 2 Z, and the actions of the generators zt ;zi ; zjL , ytL;yi , and tL; i are defined by

tL �g D x̨
L x̌g; i �g D g�1; g 2 �;(54)

ytL �g D x̨
L x̌`maxg; yi �g D g�1; g 2 �;(55)

zt �g D x̌2ng; zi �g D g�1; zjL �g D x̨
L x̌`max.x̨L x̌`maxg/�1; g 2 �:(56)

Clearly, we have the inclusions zG � zGL ,! yGL ,! GL with zt 7! yt 2�
L

, ytL 7! t
`max
L

,
zi 7! yi 7! i , zjL 7! ytLyiytL , which respect the actions.

This provides the following alternative approach for defining the groups zG , zGL , yGL .
We will henceforth identify these groups with the corresponding subgroups of the group
GL by denoting

zt D yt
2�
L
D t2n

L DW t; ytL D t
`max
L

; zi Dyi D i; zjL D ytLiytL DW jL:

Thus the subgroups zG � zGL �
yGL �GL admit the following presentations by means

of generators and defining relations:

yGL WDhytL; i j i
2; .ytLiytL/

2; .iytL/
4
i;

zGL WDht; i; jL j i
2; j 2

L; .ijL/
2; .i t/2; .jLt/2i � Z Ì 2

.Z2˚Z2/;

zG Dht; i j i2; .i t/2i � Z Ì 1
Z2:

Observe that the defined in this way group zG depends on L. However the above
presentations of the groups by means of generators and defining relations provide an
obvious group isomorphism GL � GL0 for L;L0 2 Z. Although this isomorphism
does not respect the actions of GL;GL0 on � if L¤L0 (since these actions determine
different orbits), the induced isomorphism of the corresponding subgroups zG � GL

and zG � GL0 respects the actions. This gives the natural identification of different
subgroups zG �GL , respecting their actions on � .
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One easily checks that

i � . x̌2q
x̨

p/D x̌�2q
x̨
�p; jL � . x̌

2q
x̨

p/D x̌�2q
x̨

p;(57)

i � . x̌2qC1
x̨

p/D x̌�.2qC1/
x̨

p; jL � . x̌
2qC1
x̨

p/D x̌�.2qC1/
x̨
�p�2L;

t � . x̌q x̨p/D x̌qC2n
x̨

p; ytL � . x̌
2q
x̨

p/D x̌2qC`max x̨
p�L;

tL � . x̌
2q
x̨

p/D x̌2qC1
x̨

p�L:

Denote Og;L WDGL �g , yOg;L WD
yGL �g , zOg;L WD

zGL �g , and zOg WD
zG �g , the orbits

of an element g 2 � under the actions of GL , yGL , zGL , and zG , respectively. Clearly
zOh �

zOg;L �
yOf;L �Oe;L for any e 2 � , f 2Of;L , g 2 yOf;L , h 2 zOg;L .

An element g 2 � (together with its orbit zOg ) is called zG–regular if g has a trivial
stabilizer with respect to the action of zG on � (thus Stab zG.g/Df1g, so the natural map
zG! zG �g is bijective). Otherwise g (together with its orbit zOg ) is called zG –singular.

Lemma 6.6 An element g 2 � is zG–singular if and only if either w�.g/ D 1 and
gD x̌nk (thus nk is even), or w�.g/D�1 and gD x̌nk x̨m (thus nk is odd), for some
k;m 2 Z. Moreover, the stabilizer Stab zG.g/ of a zG–singular element g D x̌nk x̨m

under the action of zG is the cyclic subgroup of zG generated by the element tk i 2 zG .
Here the element tk i is conjugate in zG either to the element i if k is even, or to the
element t i if k is odd.

In the case of the equation (x4f
2

), we define the augmentations

(58) z"gW Z2Œ zOg�! Z2; z"g;LW Z2Œ zOg;L�! Z2; y"g;LW Z2Œ yOg;L�! Z2;

called the zG –augmentation, zGL –augmentation, and yGL –augmentation, respectively,
as the restrictions of the usual augmentation Z2Œ��! Z2 to Z2Œ zOg�, Z2Œ zOg;L�, and
Z2Œ yOg;L�, respectively, for every g 2 � .

In order to define similar augmentations in the case of the equation (x22 ), the following
constructions will be useful. Consider the character

�LW GL! Z� D f1;�1g; tL 7! �1; i 7! �1;

thus ytLD t
`max
L
7! �1, t D t2n

L
7! 1. Denote � WD �Lj zG

. For every zG –regular element
g 2 � , define the �–twisted zG –augmentation

(59) z"gW ZŒ zOg�! Z; r �g 7! �.r/; r 2 zG;

by the linear extension of the latter formula. The �–twisted zG–augmentation z"g is
well-defined for any zG –regular element g 2� , since the equality r1 �gD r2 �g implies
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r�1
1

r2 2 Stab zG.g/D f1g, hence r1 D r2 . We also have z"r �g D �.r/z"g , for any r 2 zG ,
and for any zG –regular element g 2 � .

An element g 2 � (together with its zGL –orbit) is called zGL –defective, or sim-
ply defective, if there exists r 2 Stab zGL

.g/ with �L.r/ D �1. In other words,
�L.Stab zGL

.g//Df1;�1g for defective g , and �L.Stab zGL
.g//Df1g for non-defective

g . For every element g 2 � , define the �L –twisted zGL –augmentation

(60) z"g;LW ZŒ zOg;L�!

(
Z; g non-defective;

Z2;g defective;
r �g 7!

(
�L.r/ 2 Z;

1 2 Z2;
r 2 zGL;

by the linear extension of the latter formula. If n is odd, we similarly define the
�L –twisted yGL –augmentation

(61) y"g;LW ZŒ yOg;L�!

(
Z; g non-defective;

Z2;g defective;
r �g 7!

(
�L.r/ 2 Z;

1 2 Z2;
r 2 yGL;

by the linear extension of the latter formula. One easily checks that

y"g;L. yVg;L/D z"g;L. zVg;L/�z"h;L. zVh;L/ where h WD x̨L x̌ng; n odd;

z"g;L. zVg;L/D

8̂̂<̂
:̂
z"g. zVg/; g 2 f.x̨L x̌/k j k 2 Zg;

z"g. zVg/ mod 2; g 2 f x̌2kn x̨m j k;m 2 Z; m¤ 0g;

z"g. zVg/Cz"ijL�g.
zVijL�g/; otherwise:

(62)

Observe that, if an element g 2 � is defective, then all elements h 2 zOg;L (as well as
h 2 yOg;L if n is odd) are also defective (since �L.r/D �L.srs�1/ for any r; s 2 zGL ),
furthermore z"h;L D z"g;L is the usual augmentation on ZŒ zOg;L� reduced modulo 2.
For non-defective g 2 � , the �L –twisted zGL –augmentation z"g;L is well-defined,
since the equality r1 � g D r2 � g implies r�1

1
r2 2 Stab zGL

.g/, hence �L.r
�1
1

r2/ D 1

and �L.r1/ D �L.r2/. We have z"r �g;L D �L.r/z"g;L , for any r 2 zGL , and for any
non-defective g 2 � .

Lemma 6.7 An element g 2 � D �� is defective if and only if gD x̌nk x̨m for some
k;m 2 Z. In particular, all zG –singular elements are defective.

Proof The assertion easily follows from the following formulae for the stabilizer
Stab zGL

.g/ of an element g 2 � D �� . Suppose that g is not of the form x̌nk x̨m ,

k;m 2 Z. If g D .x̨L x̌/k , k 2 Z, then Stab zGL
.g/ is the cyclic subgroup of zGL

generated by ijL ; otherwise Stab zGL
.g/ D f1g. Therefore �L.Stab zGL

.g// D f1g,
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hence g is non-defective. Suppose that g D .x̨L x̌/nk x̨m , k;m 2 Z. If m¤ 0 then
Stab zGL

.g/ is the cyclic subgroup of zGL generated by tk i (if nk is odd) or by tkjL (if

nk is even); otherwise Stab zGL
.g/ is generated by two elements ijL , tk i . Therefore

�L.Stab zGL
.g//D f1;�1g, hence g is defective.

Denote Z WD Z, V 0 WD V 2 ZŒ�� for the equation (x22 ), and Z WD Z2 , V 0 WD V

mod 2 2 Z2Œ�� for the equation .x4f
2
/, where � D �� . For any g 2 � D �� , denote

by zV 0g , zV 0
g;L

, yV 0
g;L

, and V 0
g;L

the projections of the element V 0 2 Z Œ�� to Z Œ zOg�,

Z Œ zOg;L�, Z Œ yOg;L�, and Z ŒOg;L�, respectively.

Theorem 6.8 Suppose n 2 Z n f0g and V 2 ZŒ�� are defined by an element v 2 F2 ,
xvD x̌2n¤ 1, as in .39/. For every L2Z, consider the left actions .54/, .55/, .56/ of
the groups zG � zGL �

yGL �GL on � , and the corresponding (twisted) augmentations
z"g , z"g;L , y"g;L , see .58/, .59/, .60/, .61/. Each of the equations (x22 ) and (x4f

2
) has

the following properties:

(A) For every fixed L; ` 2Z as in .38/, the corresponding equation with the unknown
Z0 2 Z Œ�� splits into the system of independent equations in the subspaces .Z ŒOg;L n

f1g�/=� with the unknowns Z0g 2 Z ŒOg;L�, where g 2 � .

(B) The following conditions (i), (ii) and (iii) are pairwise equivalent:

(i) the equation admits a solution;

(ii) the equation admits a solution with `D `max ;

(iii) the following conditions (iii1 ) and (iii2 ) hold for ` WD`max (compare Lemmas 6.6
and 6.7):
(iii1 ) If n is even then, for every pair of elements g; h 2 � n f x̌kn j k 2 Zg
(thus both g; h are zG –regular) with hD x̌2`r g , r 2 Z, one has

z"g. zV
0

g/D z"h. zV
0

h/ 2 ZI

(iii2 ) There exists L 2 Z satisfying the following conditions. For every pair of
elements g; h 2 � with g 62 f x̌2`k x̨m j k;m 2Zg, w�.g/D 1, and hD x̨L x̌`g

(thus both g; h are non-defective), one has

z"g;L. zV
0

g;L/D z"h;L. zV
0

h;L/ 2 Z:

Moreover, if n is odd then, for every m 2 N , the pair of elements g D x̨m ,
hD x̨L x̌ng (thus both g; h are defective) satisfies the following equality in Z2 :

z"g;L. zV
0

g;L/Cz"h;L. zV
0

h;L/D

8<:1; 0<m� P .L/;

0; m> P .L/
P .L/ WD

8<:L� 1; L� 1;

�L; L� 0:
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Remarks 6.9 (A) Condition (iii) is equivalent to the following condition:

(iv) the following conditions (ive ) and (ivo ) hold (compare Lemmas 6.6 and 6.7):
(ive ) Suppose that n is even, and put ` WD`max . Then, for every pair of elements
g; h 2 � nf x̌kn j k 2Zg (thus both g; h are zG –regular) with hD x̌2`r g , r 2Z,
one has

z"g. zV
0

g/D z"h. zV
0

h/ 2 Z:
Moreover, there exists L 2 Z such that, for every pair of elements g; h 2 �

with g 62 f x̌2`k x̨m j k;m 2 Zg, w�.g/ D 1, and h D x̨L x̌`g (thus both g; h

are non-defective), one has

z"g;L. zV
0

g;L/D z"h;L. zV
0

h;L/ 2 Z:

(ivo ) Suppose that n is odd. Then there exists L 2 Z satisfying the following
conditions. For every element g 2 � n f x̌2nk x̨m j k;m 2 Zg with w�.g/D 1

(thus both g; x̨L x̌ng are non-defective), one has

y"g;L. yV
0

g;L/D 0 2 Z:

Moreover, if g D x̨m with m 2N (thus both g; x̨L x̌ng are defective), then

y"g;L. yV
0

g;L/D

(
1; 0<m� P .L/;

0; m> P .L/
in Z2:

(B) Condition (iii1 ) (respectively, the first part of (ive )) is equivalent to the similar
condition where g; h run through the sets g 2 f x̌2k x̨m j �` < 2k < `; m> 0g[f x̌2k j

0< 2k <`g[f x̌2kC1 x̨m j 0< 2kC1� `; m2Zg (thus g is automatically zG –regular),
and hD x̌2`r g is zG –regular with 1� r < jnj=`.

(C) The first part of the condition (iii2 ) (respectively, the second part of (ive ) or the
first part of (ivo )) is equivalent to the similar condition where g runs through the set
f x̌2k x̨m j 0< 2k < `max; m� 0g.

Proof (A) Similar to the proof of Theorem 6.4(A).

(B) (i) H) (ii) Suppose that .L; `;Z0/ is a solution. Then the left-hand side equals

1� x̌2n

1� x̌`
�'L.Z0/D

1� x̌2n

1� x̌`max
�
1� x̌`max

1� x̌`
�'L.Z0/:

Since the right-hand sides of (x22 ) and (x4f
2

) do not depend on `, the triple�
L; `max; '

�L
�

1�x̌`max

1�x̌`

�
�Z0

�
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is a solution.

(ii) H) (iii) Consider the case of the equation (x22 ). Suppose .L; `max;Z/ is a
solution, and denote ` WD `max . Observe that, under the assumption ` D `max , the
equation (x22 ) is equivalent to the following congruence in ZŒ��� modulo K :

(63) V �
1� x̌2n

1� x̨L x̌`
� .ZCC1/C

(
0; n even;

�
1�x̨L

1�x̨
; n odd;

where C1 WD 0 if n is even, C1 WD
1�x̨L

1�x̨
if n is odd and > 0, C1 WD �x̨

L x̌�n 1�x̨L

1�x̨

if n is odd and < 0. The first summand of the right-hand side of this congruence is a
linear combination of the elements 1�x̌2n

1�x̨L x̌`
f 2ZŒ��, f 2 � , with integer coefficients,

and thus a linear combination of the elements

U D .1C x̌2`C x̌4`C : : :C x̌2jnj�2`/.1C x̨L x̌`/f; f 2 �:

In particular, it is a linear combination of the elements 1�x̌2n

1�x̌2`
f , f 2 � , and thus a

linear combination of the elements

W D .1C x̌2`C x̌4`C : : :C x̌2jnj�2`/f; f 2 �:

In order to prove (iii1 ), consider the polynomial W 2 ZŒ�� from above and observe
that, for any zG –regular element hr WD

x̌2`rf , r 2Z, the �–twisted zG –augmentation
of zWhr

2 ZŒ zOhr
� (based at hr ) equals

(64) z"hr
. zWhr

/D�z"h�1
r
. zWh�1

r
/D

(
1; q even and p ¤ 0, or ` − q;

0; q odd or p D 0, and ` j q;

where f D x̌q x̨p , the “canonical” form of f 2 � , similar to (19). Obviously, for
any element h 2 � n fhr ; h

�1
r j r 2 Zg, the �–twisted zG –augmentation of zWh (based

at h) vanishes. Observe also that the right-hand side of (64) does not depend on r .
This shows that the element W 2 ZŒ�� satisfies the condition (iii1 ). For n even, this
implies that V also satisfies (iii1 ), since V is a linear combination of such elements
W , together with the elements f Cf �1 , f 2 � n f1g, and 1 2 � .

In order to prove (iii2 ), let us consider the integer L and the polynomial U 2ZŒ�� from
above. Recall that U has the form U D .1C x̌2`C x̌4`C: : :C x̌2jnj�2`/.1Cx̨L x̌`/�f ,
for some f 2 � , f D x̌q x̨p , p; q 2 Z. Take any g 2 � n f x̌2`r x̨m j r;m 2 Zg with
w�.g/ D 1; thus the elements g and h WD ytL � g D x̨

L x̌`g are automatically non-
defective, see Lemma 6.7. If g belongs to the set Sf;L WD f.x̨

L x̌`/rf j r 2 Zg then
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` − q , thus the �L –twisted zGL –augmentation of zUg;L 2 ZŒ zOg;L� (based at g ) equals

z"g;L. zUg;L/D z"jL�g�1;L.
zUjL�g�1;L/

D�z"g�1;L.
zUg�1;L/D�z"jL�g;L.

zUjL�g;L/D 1 2 Z:

If g;g�1; jL � g; jL � g
�1 62 Sf;L then the �L –twisted zGL –augmentation of zUg;L

(based at g ) vanishes. Observe that g 2 Sf;L if and only if hD ytL �g 2 Sf;L , for any
g 2� (without assumption w�.g/D 1). Hence g�1 2Sf;L if and only if jL �h2Sf;L ;
jL �g 2 Sf;L if and only if h�1 2 Sf;L ; jL �g

�1 2 Sf;L if and only if jL �h
�1 2 Sf;L .

Together with the above properties of the �L –twisted zGL –augmentation, this proves the
desired equality z"g;L. zUg;L/D z"h;L. zUh;L/ 2 Z, thereby proving the first part of (iii2 )
for the element U 2ZŒ��. Therefore V also satisfies the first part of (iii2 ), since V is
a linear combination of such elements U , together with the elements f Cf �1 , x̨r ,
and 1 2 � , where f 2 � n f1g, r 2 Z.

Suppose that n is odd, and take any element g D x̨m with m 2N . Denote, similarly
to above, h WD x̨L x̌ng (thus both g; h are defective). It is obvious that z"g;L. zUg;L/D

0 2 Z2 if and only if g;g�1 62 Sf;L , moreover z"h;L. zUg;L/ D 0 2 Z2 if and only if
h; jL � h 62 Sf;L . Since g;g�1 62 Sf;L is equivalent to h; jL � h 62 Sf;L , we obtain
z"g;L. zUg;L/Cz"h;L. zUh;L/D 0. Therefore z"g;L. zVg;L/Cz"h;L. zVh;L/D z"g;L. zDg;L/C

z"h;L. zDh;L/ where D WD �1�x̨L

1�x̨
2ZŒ��, since V �D is a linear combination of such

elements U , together with the elements f Cf �1 , f 2 � n f1g, and 1 2 � . One easily
computes

z"h;L. zDh;L/D 0; z"g;L. zDg;L/D

(
1; 0<m� P .L/;

0; m> P .L/
in Z2:

This completes the proof of (iii2 ).

Consider the case of the equation (x4f
2

). Suppose .L; `max;Z
0/ is a solution, and denote

` WD `max . It follows from (x4f
2

) that the congruence (63) in Z2Œ��� holds modulo K0 ,
where the coefficients are reduced modulo 2. It follows from the case of (x22 ) that V 0

satisfies the mod 2 analogue of the condition (iii).

(iii) H) (i) Let us consider the case of the equation (x22 ). Suppose n is odd, put
` WD `max D jnj.

Step 1 For every L 2 Z and for every polynomial V 2 ZŒ��, there exists a (unique)
presentation satisfying the following congruence modulo K :

(65) V WD V C
1� x̨L

1� x̨
� U CW1CW2CW3CR;
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where U is a linear combination of .1� x̌2n/h, h 2 � , while W1;W2;W3;R 2 ZŒ��
have the form

W1 D

X
m>0; 0<2k<`

.aCgm;k
gm;k C a�gm;k

ijL �gm;k C bCgm;k
hm;k C b�gm;k

ijL � hm;k/;

W2 D

X
0<2k<`

.ag0;k
g0;k C bg0;k

h0;k/;

W3 D

X
m>0

.agm;0
gm;0C bCgm;0

hm;0C b�gm;0
ijL � hm;0/;

RD b1h0;0;

where gm;k WD
x̌2k x̨m , hm;k WD x̨

L x̌`gm;k , and a˙g ; b
˙
g ; ag; bg2Z with the additional

condition that b1; b
C

x̨m 2 f0; 1g, b�
x̨m 2 fax̨m � bC

x̨m ; ax̨m � bC
x̨m C 1g, m > 0 (these

coefficients correspond to zG –singular elements hm;0 ). Here uniqueness follows from
the equalities

aCg D z"g.zVg/; a�g D z"ijL�g.
zVijL�g/;

bCg D z"h.zVh/; b�g D z"ijL�h.
zVijL�h/; h WD x̨L x̌`g;

while agDz"g.zVg/ for W2;W3 ; bgDz"h.zVh/ for W2 ; furthermore bCg mod 2Dz"h.zVh/

and b�g mod 2D z"ijL�h.
zVijL�h/ 2Z2 for zG –singular hD hm;0 in W3;R, where z"h is

defined similarly to the case of zG –regular h, by reducing mod 2.

Step 2 Observe that every summand of the sums W1;W2;W3 has the form

aCgC a�ijL �gC bChC b�ijL � h

� aCg� a�.jL �gC hC h�1/C bCh� b�.jL � hCgCg�1/

D .aC� b�/gC .bC� a�/h� a�.h�1
C jL �g/� b�.g�1

C jL � h/;(66)

where w�.g/D 1 and h WD x̨L x̌`g . Here a˙ WD a˙g , b˙ WD b˙g for W1 ; aC WD ag ,
a� WD 0, bC WD bg , b� WD 0 for W2 ; aC WD ag , a� WD 0, b˙ WD b˙g for W3 .
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Let us show that aC�b�DbC�a� , provided that L2Z is taken as in the condition (iii).
Indeed, from the above formulae for a˙g , b˙g , we have that, for W1 and W2 ,

aC� b�� .bC� a�/D aCC a�� .bCC b�/

D aCg C a�g � .b
C
g C b�g /

D z"g.zVg/Cz"ijL�g.
zVijL�g/� .z"h.zVh/Cz"ijL�h.

zVijL�h//

D z"g;L.zVg;L/�z"h;L.zVh;L/

D y"g;L.yVg;L/;

see (62). Now, if L 2 Z is taken as in the condition (iii), then the latter expression
vanishes, due to (ivo ) or (iii2 ). Similarly, for g D x̨m , m > 0, as in W3 , we obtain
.bCg C b�g � ag/ mod 2 D y"g;L.yVg;L/ D 0 2 Z2 , due to (62) and the second part
of (iii2 ). Since bCg C b�g � ag 2 f0; 1g, see above, we have ag D bCg C b�g .

Since aC� b� D bC� a� , the expression (66) equals

.aC�b�/.1Cx̨L x̌`/g�a�.1Cx̨L x̌`/h�1
�b�.1Cx̨L x̌`/jL � hD .1Cx̨

L x̌`/Zg;

where Zg WD .a
C� b�/g� a�h�1� b�jL � h.

Step 3 For the remainder term R, observe that h0;0 D x̨
L x̌` � 1C x̨L x̌` . This

shows that every summand in the right-hand side of (65) is divisible (modulo K ) by
1C x̨L x̌` . Hence it is also divisible by 1�x̌2n

1�x̨L x̌`
, since `D jnj. This means that V

has the form (63) and therefore (x22 ) admits a solution.

Suppose that n is even and that V 2 ZŒ�� satisfies (iii1 ), or the first part of (ive ). Put
` WD `max .

Step 1 For every L 2 Z and for every polynomial V 2 ZŒ�� satisfying (iii1 ), there
exists a (unique) presentation satisfying the following congruence modulo K :

(67) V � U CW1CW2CW3CR;
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where U is a linear combination of .1� x̌2n/h, h 2 � , while W1;W2;W3;R 2 ZŒ��
have the form

W1 D

X
m>0;

0<2k<`

1� x̌2n

1� x̌2`
.aCgm;k

gm;k C a�gm;k
ijL �gm;k C bCgm;k

hm;k C b�gm;k
ijL � hm;k/;

W2 D

X
0<2k<`

1� x̌2n

1� x̌2`
.ag0;k

g0;k C bg0;k
h0;k/;

W3 D

X
m>0

1� x̌2n

1� x̌2`
agm;0

gm;0;

RD ag0;n=2
g0;n=2 D a x̌n x̌

n;

where gm;k WD
x̌2k x̨m , hm;k WD x̨

L x̌`gm;k , a˙g ; b
˙
g ; ag; bg 2 Z with the additional

condition that a x̌n 2 f0; 1g (this coefficient corresponds to the zG–singular elements
x̌.2qC1/n , q 2 Z). Here uniqueness follows from the equalities

aCg D z"g. zVg/; a�g D z"ijL�g.
zVijL�g/;

bCg D z"h. zVh/; b�g D z"ijL�h.
zVijL�h/; h WD x̨L x̌`g;

moreover ag D z"g. zVg/ (as an equality modulo 2 if g D x̌n ), bg D z"h. zVh/ (observe
that, for any g; h as in W1;W2;W3 , and for any q 2 Z, the elements x̌2`qg; x̌2`qh

are zG–regular). Here g0;n=2 D
x̌n appears in the remainder term R (corresponding

to the case k DmD 0), since the condition (iii1 ), or the first part of (ive ), poses no
restriction to the coefficients of V at x̌.2qC1/n , q 2 Z. Actually, V admits similar
presentations, with the additional terms

1� x̌2n

1� x̌2`
.bCgm;0

hm;0C b�gm;0
ijL � hm;0/� 0 in W3; m> 0;

and
1� x̌2n

1� x̌2`
.a1C b1h0;0/� a1

x̌n in R;

where the coefficients b˙gm;0
, a1 , b1 are arbitrary integers. In the presentation (67),

these terms are omitted, in order to have uniqueness.
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Step 2 Fix arbitrary g 2 � , q 2 Z, denote zg WD x̌2`qg , zzg WD x̌�2`qg , h WD x̨L x̌`g .
One easily observes

AijL �gDijL � zg; zhD
B
x̨L x̌`gDx̨L x̌`zg; AijL � hDijL �

zhDijL � x̨
L x̌`zg;

eg�1D.zzg/�1; eh�1D.
zzh/�1; AjL �gDjL �

zzg; AjL � hDjL �
zzh:

Hence, by applying to each summand of the sums W1;W2 the arguments of Step 2
of the case of n odd, it follows that the condition (iii2 ), or the second part of (ive ),
implies

1� x̌2n

1� x̌2`
.aCg gCa�g ijL �gCbCg hCb�g ijL �h/�

1� x̌2n

1� x̌2`
.1Cx̨L x̌`/EgD

1� x̌2n

1� x̨L x̌`
Eg;

for some Eg 2 ZŒ��, where g 2 � as in W1;W2 . Therefore W1CW2 D
1�x̌2n

1�x̨L x̌`
E ,

for E WD
P

g Eg .

Step 3 For the term W3 , we observe that

1� x̌2n

1� x̌2`
x̨

m
�

1� x̌2n

1� x̨L x̌`
F;

for some F 2 ZŒ��, due to Corollary 6.2(c). For the remainder term R, we observe
that

x̌n �
1� x̌2n

1� x̨L x̌`
x̨

L x̌`�n;

due to Corollary 6.2(a). This shows that every summand of the right-hand side of (67) is
divisible (modulo K ) by 1�x̌2n

1�x̨L x̌`
. This means that V has the form (63), therefore (x22 )

admits a solution.

For the equation (x4f
2

), the implication (iii) H) (i) immediately follows from the case
of the equation (x22 ).

Define the notions of a defective zG–orbit and a defective yGL –orbit, similarly to the
definition of a defective zGL –orbit, see above (60). Below we consider a set S as a
subset of the abelian group ZŒS �.

Proposition 6.10 Suppose that xv D xu2� D x̌2n in the group

� D �� D h˛; ˇ j ˛ˇ˛ˇ
�1
i;

where n 2 Z n f0g, xuD x̌` , �D n
jnj

2s , s � 0, `D `max > 0 odd, nD �`. Consider
the corresponding actions .55/, .56/ of the groups zG � zGL �

yGL on � . Then the
orbits zOh , zOh;L , yOh;L , h 2 � , under these actions have the following form:
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(A) For hD x̌2q x̨p , p; q 2 Z, one has

zOh D fxv
kh˙1

j k 2 Zg D f x̌2qC2kn
x̨

p
j k 2 Zg[ f x̌�2qC2kn

x̨
�p
j k 2 Zg;

zOh;L D fxv
kh˙1

j k 2 Zg[ fxvk
x̨

L x̌`h˙1
x̨

L x̌�` j k 2 Zg

D f x̌
2qC2kn

x̨
p
j k 2 Zg[ f x̌�2qC2kn

x̨
�p
j k 2 Zg

[ f x̌
2qC2kn

x̨
�p
j k 2 Zg[ f x̌�2qC2kn

x̨
p
j k 2 Zg;

yOh;L D fxu
2kh˙1

j k 2 Zg t fxu2k.x̨L x̌`h/˙1
j k 2 Zg

D .f x̌2qC2k`
x̨

p
j k 2 Zg[ f x̌�2qC2k`

x̨
�p
j k 2 Zg/

t .f x̌�2q�`C2k`
x̨

p�L
j k 2 Zg[ f x̌2qC`C2k`

x̨
p�L
j k 2 Zg/:

(B) For hD x̌2qC` x̨p , p; q 2 Z, one has

zOh D fxv
kh˙1

j k 2 Zg D f x̌2qC`C2kn
x̨

p
j k 2 Zg[ f x̌�2q�`C2kn

x̨
p
j k 2 Zg;

zOh;L D fxv
kh˙1

j k 2 Zg[ fxvk
x̨

L x̌`h˙1
x̨

L x̌�` j k 2 Zg

D f x̌
2qC`C2kn

x̨
p
j k 2 Zg[ f x̌�2q�`C2kn

x̨
p
j k 2 Zg

[ f x̌
2qC`C2kn

x̨
�p�2L

j k 2 Zg[ f x̌�2q�`C2kn
x̨
�p�2L

j k 2 Zg;

yOh;L D fxu
2kh˙1

j k 2 Zg t fxu2k.x̨L x̌�`h/˙1
j k 2 Zg

D .f x̌2qC`C2k`
x̨

p
j k 2 Zg[ f x̌�2q�`C2k`

x̨
p
j k 2 Zg/

t .f x̌2qC2k`
x̨

pCL
j k 2 Zg[ f x̌�2qC2k`

x̨
�p�L

j k 2 Zg/:

(C) For any h 2 F2 , let us enumerate consecutively the subsets appearing in the above
decompositions of the orbits zOh , zOh;L and yOh;L , thus the decompositions have the
forms

zOh D Sh;1[Sh;2;

zOh;L D Sh;3[Sh;4[Sh;5[Sh;6;

yOh;L D .Sh;7[Sh;8/t .Sh;9[Sh;10/:

Then, for any non-defective orbit, the restriction to this orbit of the corresponding
twisted augmentation (based at h) sends Sh;2kC1! 1, Sh;2k !�1, see (59), (60)
and (61).

Proof The above presentations of the orbits zOh follow from Proposition 6.5 with
"D�1, xuD x̌2n . In other cases, the proof is similar to the proof of Proposition 6.5,
using (54)–(57).
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Example 6.11 Let us investigate existence of non-faithful solutions of the equation (2 0 )
with v D B˛B˛�1 , B D ˛ˇ˛ˇ�1 , # D �1, see Section 3.3. Observe that this is a
“mixed” case (see Table 3) with xvD 12� , V D˛C˛�1 2ZŒ��, thus pQ.V /D 02Q.
This means that the first and the second derived equations (21 ) and (22 ) admit solutions,
see Section 5.3 and Lemma 5.2. However, we will use the method of Wicks [46] to show
that the equation (2 0 ) does not admit non-faithful solutions. In more detail, consider the
cyclically reduced word W obtained from the right-hand side vB�1v�1B D Œv;B�1�

of the equation (2 0 ). For each word Wi obtained from W by cyclic permutation, see
below, we will find all presentations of this word in the form abca�1b�1c�1 due
to Wicks, see [46]. We will observe that the corresponding “canonical” solutions
.x;y/D .ab; cb/ are faithful. This allows one to conclude that the equation (2 0 ) with
v D B˛B˛�1 , B D ˛ˇ˛ˇ�1 , # D�1 has only faithful solutions.

Here Wi D ViUi where Ui ;Vi are the subwords of W which are defined by the
properties W D UiVi , jUi j D i , and jW j D jUi jC jVi j, where j � j means the length
of the word. The cyclically reduced word W has the form

W D xxyxy�1x�1yxy�1xyx�1y�1x�1x�1yx�1y�1xyx�1y�1x�1yxy�1;

and it has length 26. By a straightforward calculation, the words Wi ;WiC13 with i D

0; 1; 6; 7; 8; 9; 10, and only such, have the Wicks form abca�1b�1c�1 , or ded�1e�1 ,
with non-empty subwords a; b; c; d; e :

W DW0 with .a; b; c/D .˛; ˛ˇ˛ˇ�1˛�1ˇ˛ˇ�1˛; ˇ˛�1ˇ�1/I

W1 with .a; b; c/D .˛ˇ˛ˇ�1˛�1ˇ˛ˇ�1˛; ˇ˛�1ˇ�1; ˛�1/I

W6 with .d; e/D .ˇ˛ˇ�1; ˛ˇ˛�1ˇ�1˛�1˛�1ˇ˛�1ˇ�1˛/I

W7 with .d; e/D .˛; ˇ�1˛ˇ˛�1ˇ�1˛�1˛�1ˇ˛�1ˇ�1˛ˇ/I

W8 with .d; e/D .ˇ�1˛ˇ˛�1ˇ�1˛�1˛�1ˇ˛�1ˇ�1˛ˇ; ˛�1/I

W9 with .d; e/D .˛ˇ˛�1ˇ�1˛�1˛�1ˇ˛�1ˇ�1˛; ˇ˛�1ˇ�1/I

W10 with .a; b; c/D .ˇ˛�1ˇ�1; ˛�1; ˛�1ˇ˛�1ˇ�1˛ˇ˛�1ˇ�1˛�1/:

Here the Wicks form for the word WiC13 is obtained from the Wicks form of Wi in
the obvious way.

Example 6.12 Similarly to Example 6.11, one can investigate existence of solutions
of the equations (3 0 ) and (4 0 ) with v D B˛B˛�1 , # D �1, where B D ˛ˇ˛�1ˇ�1

for (3 0 ), while B D ˛ˇ˛ˇ�1 for (4 0 ), see Section 3.3. In this case, one considers the
“non-orientable” forms abcbac�1 and a2bc2b�1 , due to Wicks [45].
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7 Tables for the “mixed” cases of Tables 2 and 3

In this section, we summarize the main results of Sections 5 and 6 in two tables below.
Table 4 deals with faithful solutions in the so called “mixed” case (4c) of Table 2, while
Table 5 deals with non-faithful solutions in the “mixed” cases (2d), (3c), (4e) of Table
3, see Remark 3.16. Observe that # D�1, w".v/D 1 in all “mixed” cases.

Specifically, we denote B D ˛ˇ˛�"ˇ�1 2 F2 D h˛; ˇ ji and study the equation

xyx�ıy�1
D vB�1v�1B

in the group N DhhBii with two unknowns x 2N , y 2F2 . A solution of this equation
is called faithful if w".y/ D ı . The parameters "; ı 2 f1;�1g and the conjugation
parameter v 2 F2 of the equation are not arbitrary, but run through the following
families, corresponding to the “mixed” cases, see Remark 3.16 and Definition 3.15:

“Mixed” case for faithful solutions (case (4c) of Table 2):

(4) ı D "D�1, xv D x̌2n , n 2 Z.

“Mixed” cases for non-faithful solutions (cases (2d), (3c), (4e) of Table 3):

(2) ı D 1, "D�1, xv D x̌2n , n 2 Z;

(3) ı D�1, "D 1, xv D x̨2m x̌2n , m; n 2 Z;

(4) ı D "D�1, xv D x̨2m x̌4n , m; n 2 Z.

As above, xv 2 � denotes the class of v 2 F2 in � D F2=N . In each of these four
“mixed” cases, let us write the element v in the following canonical form:

v D ˇ2n
Y

Bni
vi
I

v D ˇ2n
Y

Bni
vi
I

v D c2d
Y

Bni
vi
; c D ˛m=dˇn=d if jmjC jnj> 0; v D

Y
Bni
vi

if mD nD 0I

v D c2d
Y

Bni
vi
; c D ˛m=dˇ2n=d if jmjC jnj> 0; v D

Y
Bni
vi

if mD nD 0I

respectively, where
Q

B
ni
vi
D
Qr

iD1 B
ni
vi

, vi 2 F2 , ni 2Z, Bvi
D viBv

�1
i , 1� i � r ,

d D gcd.m; n/ if jmjC jnj> 0.

Denote Z D Z if ı D 1, Z D Z2 if ı D�1. Denote by xu 2 � D F2=N the image of
u2F2 under the projection F2!� , by V 2ZŒ�� the polynomial V D

P
nixvi 2ZŒ��,

and by V 0 2 Z Œ�� either V 0 WD V if ı D 1 or V 0 WD V mod 2 if ı D�1. Consider
the actions on � of the groups zG � zGL �

yGL , L 2 Z, in the first two “mixed” cases,
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Case ı " conditions on v faithful solution .x;y/

(4) a � � v D ˇ2n
Q

B
ni
vi

nD 0, pQ0.V
0/¤ 0 ∅.iii/

b n 2 Z n f0g, V 0 does not ∅.iii/
satisfy (iv) of Remarks 6.9(A)

c v D u2 w�.u/D�1 .Œu2B�1;u�1�;u�1/,
.Œu;B�1�;B�1uB/.i/

d v D .˛ˇ/2n n 2 Z .Œ.˛ˇ/2n; ˇ�; ˇ/.i/

e v D .˛ˇ˛ˇ�1/m w�.u/D�1 .1; u/.i/

Table 4: Mixed cases for faithful solutions of xyxy�1 D vB�1v�1B where
B D ˛ˇ˛ˇ�1 , pK .v/D x̌

2n

Case ı " conditions on v non-faithful solution .x;y/

(2) a + � v D ˇ2n
Q

B
ni
vi

nD 0, pQ.V /¤ 0 ∅.iii/

b n 2 Znf0g, V does not ∅.iii/
satisfy (iv) of 6.9(A)

c v D u2k w�.u/D�1, k 2 Z .u2k.uB/�2k ;B�1u�1/.i/

d v D Bˇ2n n 2 Z ..˛ˇ˛/2nˇ�2n; ˇ2n.˛ˇ˛/1�2n/.i/

e v D ˇ2B˛ .Bˇ2˛B�1
ˇ2 B�1

ˇ2˛
B�1
ˇ2˛2ˇ�1 ;

B�2B�1
˛ ˛2ˇ�1/.i/.ii/

f v D ˇ2B˛k k 2 Z, k ¤ 0; 1 ∅.ii/.iii/

g v D B˛B˛�1 ∅.ii/

(3) a � + v D
Q

B
ni
vi

pQ0.V
0/¤ 0 ∅.iii/

b v D c2d
Q

B
ni
vi

9g 2 �n yO1, y"g. yV
0
g/¤ 0 ∅.iii/

c v D u2 .Œu2B�1;u�1�;u�1/,
.Œu;B�1�;B�1uB/.i/

(4) a � � v D
Q

B
ni
vi

pQ0.V
0/¤ 0 ∅.iii/

b v D c2d
Q

B
ni
vi

9g 2 �n yO1, y"g. yV
0
g/¤ 0 ∅.iii/

c v D Bm m 2 Z, w�.u/D 1 .1;u/.i/

d v D u2 w�.u/D 1 .Œu2B�1;u�1�;u�1/,
.Œu;B�1�;B�1uB/.i/

Table 5: Mixed cases for non-faithful solutions of xyx�ıy�1 D vB�1v�1B

where B D ˛ˇ˛�"ˇ�1 and (due to Table 3) pK .v/ D x̌
2n in Case (2),

pT .v/D x̨
2m x̌2n in Case (3), pK .v/D x̨

2m x̌4n in Case (4); if jmjCjnj> 0

in Case (3) or (4), one denotes d WD gcd.m; n/ and c WD ˛m=dˇn=d or
c WD ˛m=dˇ2n=d (respectively).

.i/Direct calculation.
.ii/Using the Wicks forms (see Wicks [46], Vdovina [42; 44], Culler [8] and Example 6.11).
.iii/There is no solution of the second derived equation, see Theorems 5.10, 6.4, 6.8, and Remarks 6.9.
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see (55) and (56), and the action of the group yG in the remaining two “mixed” cases,
see (52). Consider the corresponding orbits zOg , zOg;L , yOg;L , and yOg , g 2 � , see
Propositions 6.5 and 6.10. Consider the corresponding augmentations (or the twisted
augmentations in the case of the equation (2)

z"gW Z Œ zOg�! Z; z"g;LW Z Œ zOg;L�! Z;

y"g;LW Z Œ yOg;L�! Z or Z2; y"gW Z2Œ yOg�! Z2;

see (58), (59), (60), (61) and (53). Here g 2 � as in (ive ), (ivo ) of Remarks 6.9(A) in
the first two “mixed” cases, while g 2 � n yO1 in the other two “mixed” cases. Consider
the quotients Q and Q0 as in (7) and (50), and the projections pQW ZŒ��!Q and
pQ0 W Z2Œ��!Q0 .

Many of the non-existence results in Tables 4 and 5 follow from the non-existence of a
solution of the corresponding second derived equation, see Theorems 5.10, 6.4 and 6.8,
and Remarks 6.9.
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