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Free group automorphisms with many fixed points at infinity

ANDRÉ JÄGER

MARTIN LUSTIG

A concrete family of automorphisms ˛n of the free group Fn is exhibited, for any
n � 3 , and the following properties are proved: ˛n is irreducible with irreducible
powers, has trivial fixed subgroup, and has 2n� 1 attractive as well as 2n repelling
fixed points at @Fn . As a consequence of a recent result of V Guirardel there can not
be more fixed points on @Fn , so that this family provides the answer to a question
posed by G Levitt.

20E36; 57M05

1 Introduction

Let Fn be a free group of finite rank n� 2. It is well known that every automorphism
˛ of Fn induces a homeomorphism @˛ on the Gromov boundary @Fn . Every fixed
point of @˛ is either attracting or repelling (= attracting for @˛�1/ or it belongs to
@Fix.˛/, which embedds into @Fn , as the fixed subgroup Fix.˛/D fw 2Fn j˛.w/D

wg is quasiconvex in Fn . Notice that Fix.˛/ acts on the set of attracting fixed
points FixC.@˛/ of @˛ . After various proofs that Fix.˛/ is finitely generated and that
FixC.@˛/=Fix.˛/ is finite for all ˛ 2Aut.Fn/ (see Gersten [7], Cooper [3], Goldstein
and Turner [8], Cohen and Lustig [2], Paulin [15], Gaboriau, Levitt, and Lustig [6] etc),
the following improvement of Bestvina and Handel’s Theorem [1] (also known as the
the Scott Conjecture) has been given by Gaboriau, Jaeger, Levitt and Lustig [4]:

rk.Fix.˛//C
1

2
#.FixC.@˛/=Fix.˛// � n

It follows in particular that, if Fix.˛/ is trivial, then the total set of fixed points
Fix.@˛/D FixC.@˛/[FixC.@˛�1/ at @Fn is finite and satisfies

# Fix.@˛/ � 4n:

It seems a natural question (posed originally to us by G Levitt) to ask whether automor-
phisms exist with trivial fixed subgroup which satisfy equality in this last formula, and
if not, what the best possible bound is. In particular, one would like to know the answer
to this question for the class of irreducible automorphisms ˛ with irreducible powers
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(iwip), ie, ˛t does not map any non-trivial proper free factor of Fn to a conjugate of
itself, for any t � 1. Since then, it has been shown by Guirardel [9] (see also Handel
and Mosher [10]) that iwip automorphisms can never satisfy equality, see Remark 6.1.

In view of these results, this paper gives an answer to Levitt’s question. We consider
the following family of automorphisms:

˛nW Fn ! Fn

a1 7! a1a2 : : : an

a2 7! a2a1a2

a3 7! a3a1a2a3
:::

an 7! ana1a2a3 : : : an:

Theorem 1.1 For any n � 3 the automorphism ˛n is irreducible with irreducible
powers, has trivial fixed subgroup, and has precisely 4n�1 distinct fixed points at @Fn .
Among these there are 2n� 1 attractive ones and 2n repelling ones. The same is true
for all positive powers of ˛n .

The result and some related material will be discussed in the last section of this paper.
Note also that an earlier version of this paper, containing already the main result, was
ciculated as preprint in 1998.

2 The attracting fixed points of @˛n

Consider the following set of 2n� 1 infinite words, notice that they are all positive
or negative and hence reduced, and check that they are fixed by ˛n . Here a positive
(or a negative) word is a word in the given basis with only positive (or only negative)
exponents. Similarly, a positive automorphism of Fn is an automorphism for which
the image of a given basis consists entirely of positive words in this basis.

X1 D a1a2a3 : : : an˛n.a2a3 : : : an/˛
2
n.a2a3 : : : an/˛

3
n.a2a3 : : : an/ : : :

X2 D a2a1a2˛n.a1a2/˛
2
n.a1a2/˛

3
n.a1a2/ : : :

X3 D a3a1a2a3˛n.a1a2a3/˛
2
n.a1a2a3/˛

3
n.a1a2a3/ : : :

X4 D a4a1a2a3a4˛n.a1a2a3a4/˛
2
n.a1a2a3a4/˛

3
n.a1a2a3a4/ : : :

:::
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Xn D ana1a2a3 : : : an˛n.a1a2a3 : : : an/˛
2
n.a1a2a3 : : : an/

˛3
n.a1a2a3 : : : an/ : : :

Y2 D a�1
2

a�1
1

a�1
2
˛n.a

�1
1

a�1
2
/˛2

n.a
�1
1

a�1
2
/˛3

n.a
�1
1

a�1
2
/ : : :

Y3 D a�1
3

a�1
2

a�1
1

a�1
3
˛n.a

�1
2

a�1
1

a�1
3
/˛2

n.a
�1
2

a�1
1

a�1
3
/ : : :

Y4 D a�1
4

a�1
3

a�1
2

a�1
1

a�1
4
˛n.a

�1
3

a�1
2

a�1
1

a�1
4
/˛2

n.a
�1
3

a�1
2

a�1
1

a�1
4
/ : : :

:::

Yn D a�1
n a�1

n�1
: : : a�1

2
a�1

1
a�1

n ˛n.a
�1
n�1

: : : a�1
2

a�1
1

a�1
n /

˛2
n.a
�1
n�1

: : : a�1
2

a�1
1

a�1
n / : : :

As all ˛n.ai/ are positive and of length greater or equal to 2, it is easy to see that
for any finite initial subword X 0 of Xi (or of Yi ) the word ˛n.X

0/ is again an initial
subword of Xi (or of Yi ), and it is strictly longer. Hence all the above words define
attractive fixed points of @˛n , see [4, Section I]. From the sign of the exponents and
from the initial letter it is easy to observe that they are pairwise distinct.

We will show in Section 4 that Fix.˛�1
n / D Fix.˛n/ D f1g. Actually, we will show

in Section V that there are non-trivial fixed and not even periodic conjugacy classes
of ˛n . Hence, in view of the inequality from [4] stated in the Introduction, it could
theoretically be that ˛n or a power of ˛n has one more attractive fixed point on @Fn .
However, for a proper power of ˛n this couldn’t be the case, as then the whole ˛n –orbit
of this point would be fixed, thus giving more attractive fixed points than the above
inequality from [4] allows. For ˛n itself this is excluded by the fact that there are only
2n� 1 total occurences of any ai in any reduced word ˛n.ai/, and this number is an
upper bound for the number of Fix.˛n/–orbits of attracting fixed points in @Fn , as has
been shown in [2, Theorem 2] (where one uses of [4, Proposition 1.1] for translation
into our terminology).

3 The repelling fixed points of @˛n

In order to compute the inverse of ˛n we first define iteratively x0 D a�1
1

and, for any
k with 0� k � n� 1, xkC1 D an�kx2

k
: We now notice that:

˛n.x0/ D .a1a2 : : : an/
�1;

˛n.anx0/ D an;

˛n.x1/ D .a1a2 : : : an�1/
�1;

˛n.an�1x1/ D an�1;
:::
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˛n.xn�2/ D .a1a2/
�1;

˛n.a2xn�2/ D a2;

˛n.xn�1/ D a�1
1

Hence ˛�1
n is given by a1 7! x�1

n�1
; an�k 7! an�kxk .k D 0; : : : ; n� 2/: It is easy to

see from the above computations that, if we replace the basis element a1 by its inverse
a�1

1
D x0 , one obtains ˛�1 again as positive automorphism, with respect to the new

basis fx0; a2; a3; : : : ; ang.

In order to describe the attractive fixed points of ˛�1
n , we need some further notation.

Define

yk D xn�1x�1
k x�1

0 .k D 0; : : : ; n� 2/

y D xn�1x�1
0(�)

z D x�1
0 a�1

n a�1
n�1 : : : a

�1
2 xn�1

and notice that these are all positive words in the above defined new basis. We now
define the infinite words

Xk D an�kxk˛
�1
n .xk/˛

�2
n .xk/˛

�3
n .xk/ : : :

Yk D an�kx�1
0 y�1

k ˛�1
n .y�1

k /˛�2
n .y�1

k /˛�3
n .y�1

k / : : :and

for k D 0; : : : ; n� 2 , as well as

Y D x�1
0 y�1˛�1

n .y�1/˛�2
n .y�1/˛�3

n .y�1/ : : :

Z D x�1
0 xn�1˛

�1
n .z/˛�2

n .z/˛�3
n .z/ : : :and

We first compute that these words are all fixed by ˛�1
n : For the Xk , the Yk and Y this

follows directly from the given definition of ˛�1
n , using in particular ˛�1

n .x0/D xn�1

and the definitions (�). For Z it follows from the following computation:

˛�1
n .x�1

0
xn�1/ D x�1

n�1
˛�1

n .a2 : : : an/xn�1˛
�1
n .z/

D x�2
n�2

a�1
2
˛�1

n .a2/˛
�1
n .a3 : : : an/xn�1˛

�1
n .z/

D x�1
n�2

˛�1
n .a3 : : : an/xn�1˛

�1
n .z/

D x�2
n�3

a�1
3
˛�1

n .a3/˛
�1
n .a4 : : : an/xn�1˛

�1
n .z/

D x�1
n�3

˛�1
n .a4 : : : an/xn�1˛

�1
n .z/

:::

D x�1
1
˛�1

n .an/xn�1˛
�1
n .z/

D x�1
0

xn�1˛
�1
n .z/

The fact that all these words are ˛�1
n –attracting is a direct consequence from the above

observation that the words defined in (�) are positive in the new basis.
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Free group automorphisms with many fixed points at infinity 325

Observe next that these infinite words are pairwise distinct: The words Xk and Z

are all eventually positive and start with a different letter (notice that the initial letter
x�1

0
of Z is not cancelled), and the same is true for the remaining ones, which are

all eventually negative. Notice however that, for nD 2, the two words Y0 and Y are
related by the equation

Y0 D a2x�1
0 a�1

2 x0Y;

and a2x�1
0

a�1
2

x0 2 Fix.˛2/D Fix.˛�1
2
/. In order to show that no such phenomenon

occurs for n � 3 it will be proved in Section III that Fix.˛n/ D Fix.˛�1
n / is trivial.

This implies, for n� 3, that @˛�1
n has 2n attracting fixed points on @Fn which are all

in distinct Fix.˛�1
n /–orbits.

4 The fixed subgroup of ˛n

In order to determine the fixed subgroup of ˛n we use the train track methods of
Bestvina and Handel [1]. As ˛n is positive, it follows that the standard rose Rn with
n leaves admits a train track representative f W Rn ! Rn of ˛n , given simply by
realizing the words ˛n.ak/ as reduced paths in Rn , with the unique vertex � of Rn

as initial and terminal point.

Recall [1] that any conjugacy class Œw� of Fn fixed by the outer automorphism y̨n
defined by ˛n is represented in the train track representative Rn by a loop  which
is a concatenation of indivisible Nielsen paths (INP’s). Hence, in order to show that
Fix.˛n/D f1g, it suffices to show that f does not have any INP’s. For this purpose
we first check for illegal turns in Rn : A straight forward inspection, comparing initial
and terminal subwords of the ˛n.ak/ reveals that there is only one illegal turn, given
by .xa1; xan/. Any INP in Rn must be of the form 1

�1
2

, such that 1 and 2 are
legal paths which both have terminal point at � and define there the above illegal turn.
Hence one of the i , say 1 , ends in a1 , while the other one, 2 , ends in an . Their
f –images have to be legal paths of the form f .1/D 13 and f .2/D 23 . Thus
3 ends in a1a2 : : : an .

Case 1 3Da1a2 : : : an . It follows that the second to last letter in 1 , which preceeds
a1 , has to have ˛n –image with terminal letter equal to a1 . But no such ak exists!

It follows that 3 ends in ana1a2 : : : an . Then the second to the last letter in 1 ,
preceding a1 , must be an or a1 .

Case 2 3 D ana1a2 : : : an . Then in either of the last two subcases the last letter of
1 would have to be an�1 , contradicting the above conditions.
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It follows that the second to last letter of 2 must be an�1 , and that 3 ends in
a1a2 : : : ana1a2 : : : an .

Case 3 3 D a1a2 : : : ana1a2 : : : an . In this case the last letter of 2 is an�1 , again
contradicting the above conditions.

It follows that the second to last letter of 1 is not ˛n but a1 , and the letter before
must be an�1 . At this point we know that 3 ends in an�1a1a2 : : : ana1a2 : : : an .

Case 4 3 D an�1a1a2 : : : ana1a2 : : : an . Then the last letter of 1 would be an�2 ,
contradicting the above conditions. It follows that the third to the last letter in 2 is
an�2 . But then the only one possibility left is:

Case 5 3 D a1a2 : : : an�1a1a2 : : : ana1a2 : : : an . Here the last letter of 1 would
be an�1 , contradicting the above conditions.

Notice that the argument in case 4 requires n� 3.

This sweeps out all possibilities, and hence proves that there is no INP in Rn with
respect to the train track map f , for n� 3.

In Section V we will also consider the question of whether there exists a path 1
�1
2

in Rn such that both i are legal, and f .1/D 23 , f .2/D 13 . The reader can
check without much difficulty, following precisely the same cases as above, that such
paths do not exist either.

5 The irreducibility of ˛n

If ˛n or a positive power of it were reducible, then there would be a non-trivial
proper free factor Fm of Fn which is left invariant (up to conjugation) by ˛t

n , for
some t � 1. Passing over to an even higher power and restricting possibly to another
proper free factor of Fm we can then assume that either ˛t

n induces the trivial outer
automorphism on Fm , or else ˛t

njFm
is irreducible with irreducible powers. The

first case is excluded by our results in Section V, as then ˛n would have at least one
non-trivial periodic conjugacy class. To rule out the second case we have to apply the
following irreducibility test, compare Bestvina and Handel [1] or Lustig [13; 14]:

Let f W �! � be a train track map in the sense of [1]. Replace every vertex v in �
by the 1–skeleton of a .k � 1/–simplex �.v/, where k is the number of edge gates at
v . (Recall that two edge germs dE and dE0 raying out of a vertex v belong to the
same gate if and only if for some t � 1 the paths f t .E/ and f t .E0/ have a non-tivial
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common initial subpath.) This replacement is done by glueing each such edge germ
dEi to the vertex v.dEi/ of �.v/ which represents the gate to which dEi belongs.
Now extend f by mapping every edge e of �.v/ which connects v.dEi/ to v.dEj / to
the edge of �.f .v// which connects v.f .dEi// to v.f .dEj //. If f .dEi/D f .dEj /,
then map the whole edge e to the vertex v.f .dEi//. Change the definition of f along
the edges of � so that for any edge Ei of � the image is a reduced path in the new
graph which agrees with the old f .Ei/ up to inserting precisely one of the “new”
edges (ie, the ones from the 1–skeletons of the .k � 1/–simplices �.v/) between any
two “old” edges which are adjacent in f .Ei/. This defines a new graph �1 and a new
map f1W �1! �1 .

We now omit from �1 all edges from the .k � 1/–simplices �.v/ which are not
contained in any image f t

1
.Ei/, for any of the old edges Ei and t � 1. Notice that

this is done by a finite check, as f1 is eventually periodic on the new edges. The
resulting graph �2 admits a self map f2 D f1j�2

W �2! �2 , and it is easy to see that
f2 inherits from f the properties of a train track map. Obviously there is a canonical
map � W �2!� , defined by the inclusion �2��1 and subsequent contraction of every
new edge of �1 . Our definitions give directly f2�D �f , up to possibly reparametrizing
f along the edges.

Proposition 5.1 (Irreducibility Criterion) Let f W �! � be a train track map in the
sense of [1], assume that its transition matrix is irreducible with irreducible powers, and
assume also that no f t

� with t � 1 fixes elementwise a proper free factor of �1� , up
to conjugacy. Then f� 2Out.�1�/ is an irreducible automorphism with irreducible
powers if and only if the induced map ��W �1�2! �1� on the fundamental groups is
surjective.

Proof We freely use in this proof some of the R–tree technology from [4] and from
[14, Sections 3–5], from which we also borrow the terminology. In particular, we
consider the ˛–invariant R–tree T with stretching factor � > 1 which is given by
the (up to scalar multiples) well defined Perron–Frobenius row eigen vector Ev� of the
transition matrix M.f / of the train track map f . It comes with an Fn –equivariant
map i W z�! T which is isometric on edges (and more generally on legal paths), if the
universal covering z� is provided with edge lengths as given by Ev� . Furthermore, there
is a homothety H W T ! T with stretching factor �, which ˛–twistedly commutes
with the Fn –action: It satisfies ˛.w/H DHwW T ! T for all w 2 Fn . If zf is the
lift of f to z� that also ˛–twistedly commutes with the Fn –action, then H and zf
commute via i , ie, Hi D i zf .
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We now assume that the map � is not surjective, ie, some of the 1–skeleta �1.v/ of the
simplices �.v/ decompose into more than one connected component, when passing
from �1 to �2 . We pass over to a new graph �3 in the following way:

For each of the simplices �.v/ we reconnect the connected components of �1.v/\�2

by adding a new center vertex c.v/ to �2 and connecting each connected component
by a central edge to c.v/. We extend the train track map f2 canonically to obtain again
a train track map f3W �3! �3 , and a “projection map” �3W �3! � with �3f3D f �3

(up to isotopy within the images of single edges). By construction, �3� is now surjective.
Note that the map f3 respects the partition of the edges of �3 into edges from �2 and
central edges.

We consider the universal covering z�3 and the canonical Fn –equivariant map i3W z�3!

T obtained from composing the lift of �3 to z� with the above map i . Just as for
� we can also consider the transition matrix for f3 and obtain in the analogous way
Perron–Frobenius edge lengths on z�3 to make the map i3 edge isometric. Of course,
the resulting “metric” on z�3 is only a pseudo-metric, as all of the newly introduced
central edges will get Perron–Frobenius length 0.

The usefulness of these “invisible” central edges however becomes immediately ap-
pearent: Each multipod Y .zv/, consisting of the lift to z�3 of a central vertex c.v/

with all adjacent central edges, is mapped by i3 to a single point Q.zv/D i.zv/ in T

(here zv 2 z� is the corresponding lift of the vertex v 2 � ), and the directions at this
point are in canonical bijection (given by the map i3 ) with the gates at zv and hence
with the endpoints of the multipod Y .zv/. We can Fn –equivariantly replace the point
Q.zv/ by the multipod Y .zv/, where every direction of T at Q.zv/ is attached at the
corresponding endpoint of Y .zv/. Again, we define the edge lengths throughout Y .zv/

to be 0, so that metrically the resulting tree T3 is the same as T .

We now observe that the homothety H3W T3 ! T3 , which T3 canonically inherits
from H W T ! T , can be shown to map on one hand the union Y of all Y .zv/ to
itself, but similarly also its complement T3 XY . This follows from the commutativity
equality i3 zf3 DH3i3 which is by the above construction inherited from the equation
i zf D Hi , and from the above observation that the subgraph �2 of �3 , as well as
its complement �3 X�2 , is kept invariant under the map f3 . As a consequence, we
can invert the situation, by considering the length function (also a row eigen vector of
M.f3/ !) which associates length 1 to every edge of Y , and length 0 to all other edges,
ie, contracting every complementary component of Y in T3 to a point. The resulting
space T �

3
is a simplicial R–tree with trivial edge stabilizers, and the map H3 induces

an isometry H�
3
W T �

3
! T �

3
which ˛–twistedly commutes with zf and commutes with

the induced map i�
3
W z�3! T �

3
. It follows that the Bass–Serre decomposition of Fn
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associated to this simplicial tree is ˛–invariant. In particular, the vertex groups of this
decomposition give a non-empty collection of non-trivial proper free factors of Fn

which is ˛–invariant, proving directly that ˛ is not iwip.

To prove the converse implication of the theorem we can now invert every step in the
construction given above: If ˛ is reducible and no positive power fixes elementwise
a free factor, there exists a simplicial tree as T �

3
, and this tree is given (compare [4])

by a row eigenvector for the top stratum of some relative train track representative
f0W �0! �0 of ˛ as in [1]. Modifying this train track representative as in [13] to get a
partial train track representative with Nielsen faces �W G! G , allows us, as above for
the graph �3 , to represent simultaneously both, the action on T �

3
as well as that on T ,

by row eigen vectors of M.�/. As a consequence one sees that the two trees come from
a common “refinement”, as given above by the tree T3 : Both, T �

3
and T , are defined

by a pseudo-metric on T3 which is troughout zero, on vice-versa complementary
H3 –invariant subforests of T3 . We now consider again the originally given train track
map f W � ! � and its local “blow-up” f1W �1 ! �1 . The H3 –invariance of the
two subforests translates (via the map i1W z�1 ! T induced by i ) into a non-trivial
f1 –invariant subgraph of the union of the �1.v/, with invariant complement �2 . The
connected components of this graph �2 are in 1–1 correcpondence with the Fn –orbits
of the zero-valued subforests of T3 defined by the row-eigen vector that gives T �

3
.

Thus the non-triviality of the latter translates directly into the fact that the injection
�1�2! �1�1 is non-surjective. This finishes the proof.

Remark 5.2 The Irreducibility Criterion (Proposition 5.1) can alternatively be derived
as consequence of the theory of limit laminations and their fundamental group, as
developed in [12]. We sketch now an outline of the “if"-direction:

Reducibility of f� or some positive power would give, as above explained for ˛n ,
a proper free factor Fm of Fn on which f t

� for some t � 1 acts as irreducible au-
tomorphism with irreducible powers. Such an automorphism has an expanding limit
lamination L with �1L�Fm . As Fm embeds as free factor into Fn , say �W Fm!Fn ,
we obtain �1.�.L//� �.Fm/¤ Fn (compare [12, Lemma 9.7]). On the other hand, it
follows from the irreducibility of the transition matrix of f W �! � that there is only
one expanding limit lamination L1.f /. Hence L1.f /D�.L/, and we can apply [12,
Korollar 7.7] with � D �2 (provided with an appropriate combinatorial labeling which
reflects �� ) to deduce �1.L

1.f //D Fn from the surjectivity of �� , thus yielding a
contradiction to the above derived statement �1.�.L//� �.Fm/¤ Fn .

In order to apply the Irreducibility Criterion 5.1 to the automorphism ˛n as given in
the Introduction, we first compute directly from the definition of the ˛n.ai/ that the
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transition matrix of f is irreducible with irreducible powers. Then we have to replace
the vertex � by part of the 1–skeleton of a .2n� 1/–simplex � D �.�/. We start
with the 0–skeleton, and introduce only those edges of � which are contained in the
f1 –image of any of the old edges. This gives two connected components, where one of
them contains only the vertex associated to the initial germ of a2 and the one associated
to the terminal germ of a1 , as well as a single new edge, say �, which connects them.
The other component contains all other vertices and a tree which connects them (with
the vertex asociated to the initial germ of a1 as “root” of the tree). Now we have to fill
in the forward f1 –orbit of the new edges introduced so far. But the f1 –image of �
connects the vertex of the initial germ of a2 to that of the terminal germ of an , so that
in �2 the subgraph which belongs to the .2n� 1/–simplex � is connected. Hence ��
is surjective.

6 End of the proof and some remarks

In this section we consider the outer automorphism y̨n induced by ˛n , and its inverse
y̨�1

n . In [4] an index for outer automorphisms of Fn has been defined as follows: Two
automorphisms of Fn are called isogredient (or in [4] similar), if they are conjugated
in Aut.Fn/ by an inner automorphism of Fn . Let S.y̨/ denote the set of isogredience
classes Œ˛0� of automorphisms ˛0 inducing the outer automorphism y̨0 D y̨ . We define

ind.y̨/ WD
X

Œ˛0�2S.y̨/

max.rk.Fix.˛0//C
1

2
#.FixC.@˛0/=Fix.˛0//� 1; 0/:

The main result of [4, Theorem 10 ], is equivalent to the inequality

ind.y̨/ � n� 1

for all y̨ 2 Out.F /.

Now, the outer automorphism y̨�1
n has maximal possible index n� 1, all concentrated

in one isogredience class of y̨�1
n , namely the one given by ˛�1

n , and here again all
concentrated in the term 1

2
#.FixC.@˛�1

n /=Fix.˛�1
n //, which counts the number of the

attractive fixed points at @Fn , as the fixed subgroup of ˛�1
n is trivial.

We remark at this point that, if X and Y are infinite words, both fixed by an auto-
morphism ˛ , and wX D Y for some w 2 Fn , then it follows from an elementary
combinatorial case checking that ˛.w/Dw . Hence we know that the index contribution
of the 2n attracting fixed points of ˛�1

n computed in Section II will be the same for all
positive powers of ˛�1

n : On the other hand (compare [1]), a fixed non-trivial conjugacy
class for some ˛�t

n ; t � 1, will be represented by a concatenation of INP’s of a train
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track representative of ˛�t
n , which would contribute at least one infinite attracting

fixed word in the same isogredience class of y̨�t
n which fixes the non-trivial word

read off from the concatenation of INP’s. Hence we would get another positive index
contribution for y̨�t

n , in contradiction to the above inequality for the index. Hence ˛�1

and thus ˛ can not have non-trivial periodic conjugacy classes.

Remark 6.1 Outer automorphisms of Fn with a positive power of index n� 1 which
are not geometric (ie, they are not induced by a homeomorphisms of a surface with
boundary) have been termed para-geometric in [4, Section VI], as, just as for geometric
automorphisms, their action on any forward limit tree is geometric (in the sense of
Gaboriau and Levitt [5]). Guirardel [9] shows that if for an iwip automorphism ˛

both, the (uniquely determined) forward and the backward limit trees are geometric
(” ind.y̨t /D ind.y̨�t /Dn�1 for some sufficiently large t �1), then ˛ is geometric.

To see whether the irreducible (and non-geometric !) automorphism ˛n itself is
parageometric or not we can either apply the result of Guirardel [9] quoted in the
Introduction, or else apply direct arguments which seem interesting in their own right,
as they are typical for similar computations for many other automorphisms:

We will compute the index of ˛n and that of its positive powers: From the previous
sections we know already that there is one isogredience class, given by ˛n , which
contributes 0 from Fix.˛n/ and 2n� 1 from FixC.@˛n/, adding properly up to an
index contribution of rk.Fix.˛n//C

1
2

#.FixC.@˛n/=Fix.˛n// � 1 D n � 3
2

. Hence
the only possibility for y̨n to have index n � 1 is if there is another isogredience
class, represented by some automorphism ˛0n , with index contribution of 1

2
. As we

have shown above that there is no non-trivial conjugacy class fixed by y̨n , the only
possibility is that this ˛0n has 3 attracting fixed points at @Fn . In this case the train
track representative f W Rn!Rn of y̨n has to have either another fixed point with 3

distinct fixed directions (= edge germs), but this is not the case as Rn has only one
vertex. Otherwise there must be two distinct fixed points in Rn , each with 2 fixed
directions, and they are connected by an INP. But we have shown in Section III that
INP’s do not exist for f W Rn!Rn . Hence it follows that ind.y̨n/D n� 3

2
.

The same arguments apply to all positive powers of ˛n , except that we have to rule out
also the possibility of periodic INP’s: If there is an INP for ˛t

n which is not an INP for
˛n , then its whole ˛n –orbit consists of INP’s for ˛t

n . As this would immediately give
a too large index for y̨t

n if the orbit consists of more than one INP, the only possibility
left is that there is an INP for ˛2

n , and ˛ fixes this path too, but reverses its orientation.
But this possibility has been ruled out in the last paragraph of Section III. Thus ˛n is
not parageometric (and also not geometric).
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To finish this discussion, we would like to point out a subtle point in which the non-
geometric and non-parageometric ˛n and the parageometric ˛�1

n differ, which is
characteristic for their classes:

For any parageometric automorphism (as y̨�1
n ) there is a stable train track representative

with a single illegal turn, namely the one at the tip of the unique INP, see [1]. If we
keep folding at this illegal turn, we get iteratively smaller and smaller copies of the train
track, thus realizing the inverse of the train track map by “continuous iterated folding”
(compare [11]). Now, if we consider the train track representative f W Rn! Rn of
the (non-parageometric !) y̨n from Section III, there is also a single illegal turn, and
if we keep folding there, it turns out that this will always be the case, as there will
never appear any other illegal turn. Thus the situation looks remarkably similar to
that in the parageometric case. There is, however, an interesting difference: If we
trace in Rn (or rather in the universal covering zRn ) the two “paths” which will be
folded together in this iterative folding procedure, we will see that these are not two
continuous arcs with the same initial point (as would be true in the parageometric case,
given there by the two subarcs of the INP which meet at the illegal turn), but much
rather there will be lots of (indeed infinitely many !) discontinuities in these “paths”.
Each of these will disappear eventually in the folding process, but initially they are
present. We believe that in these discontinuities the core information is encoded, for a
geometric understanding of the gap between the maximal index of a positive power of
the automorphism and the above upper bound n� 1.
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.4/ 28 (1995) 549–570 MR1341661

[6] D Gaboriau, G Levitt, M Lustig, A dendrological proof of the Scott conjecture for
automorphisms of free groups, Proc. Edinburgh Math. Soc. .2/ 41 (1998) 325–332
MR1626429

Geometry & Topology Monographs, Volume 14 (2008)



Free group automorphisms with many fixed points at infinity 333

[7] S M Gersten, Fixed points of automorphisms of free groups, Adv. in Math. 64 (1987)
51–85 MR879856

[8] R Z Goldstein, E C Turner, Fixed subgroups of homomorphisms of free groups, Bull.
London Math. Soc. 18 (1986) 468–470 MR847985

[9] V Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres,
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