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The first Alexander ZŒZ�–modules of surface-links
and of virtual links

AKIO KAWAUCHI

We characterize the first Alexander ZŒZ�–modules of ribbon surface-links in the
4–sphere fixing the number of components and the total genus, and then the first
Alexander ZŒZ�–modules of surface-links in the 4–sphere fixing the number of
components. Using the result of ribbon torus-links, we also characterize the first
Alexander ZŒZ�–modules of virtual links fixing the number of components. For
a general surface-link, an estimate of the total genus is given in terms of the first
Alexander ZŒZ�–module. We show a graded structure on the first Alexander ZŒZ�–
modules of all surface-links and then a graded structure on the first Alexander ZŒZ�–
modules of classical links, surface-links and higher-dimensional manifold-links.

57M25; 57Q35, 57Q45

1 The first Alexander ZŒZ�–module of a surface-link

For every non-nagative partition g D g1Cg2C :::Cgr of a non-negative integer g ,
we consider a closed oriented 2–manifold F D F r

g D F r
g1;g2;:::;gr

with r components
Fi .i D 1; 2; :::; r/ such that the genus g.Fi/ of Fi is gi . The integer g is called the
total genus of F and denoted by g.F /. An F –link L is the ambient isotopy class of a
locally-flatly embedded image of F into S4 , and for r D 1 it is also called an F –knot.
The exterior of L is the compact 4–manifold ED S4nintN.L/, where N.L/ denotes
the tubular neighborhood of L in S4 . Let pW zE!E be the infinite cyclic covering
associated with the epimorphism 
 W H1.E/! Z sending every oriented meridian of
L in H1.E/ to 1 2 Z. An F –link L is trivial if L is the boundary of the union of
disjoint handlebodies embedded locally-flatly in S4 . A ribbon F –link is an F –link
obtained from a trivial F r

0
–link by surgeries along embedded 1–handles in S4 (see

Kawauchi, Shibuya and Suzuki [12, page 52]). When we put the trivial F r
0

–link in
the equatorial 3–sphere S3 � S4 , we can replace the 1–handles by mutually disjoint
1–handles embedded in the 3–sphere S3 without changing the ambient isotopy class
of the ribbon F –link by an argument of [12, Lemma 4.11] using a result of Hosokawa
and Kawauchi [2, Lemma 1.4]. Thus, every ribbon F –link is described by a disk–arc
presentation consisting of oriented disks and arcs intersecting the interiors of the disks
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354 Akio Kawauchi

transversely in S3 (see Figure 1 for an illustration), where the oriented disks and the
arcs represent the oriented trivial 2–spheres and the 1–handles, respectively.

Figure 1: A ribbon F2
1;1

–link

Let ƒ D ZŒZ� D ZŒt; t�1� be the integral Laurent polynomial ring. The homology
H�. zE/ is a finitely generated ƒ–module. Specially, the first homology H1. zE/ is
called the first Alexander ZŒZ�–module, or simply the module of an F –link L and
denoted by M.L/. In this paper, we discuss the following problem:

Problem 1.1 Characterize the modules M.L/ of F r
g –links L in a topologically

meaningful class.

In Section 2, we discuss some homological properties of F r
g –links. Fixing r and g ,

we shall solve Problem 1.1 for the class of ribbon F r
g –links in Section 3. We also solve

Problem 1.1 for the class of all F r
g –links not fixing g as a collorary of the ribbon case

in Section 3. In Section 4, we characterize the first Alexander ZŒZ�–modules of virtual
links by using the characterization of ribbon F r

1;1;:::;1
–links. In Section 5, we show a

graded structure on the first Alexander ZŒZ�–modules of all F r
g –links by establishing

an estimate of the total genus g in terms of the first Alexander ZŒZ�–module of an
F r

g –link. In fact, we show that there is the first Alexander ZŒZ�–module of an F r
gC1

–
link which is not the first Alexander ZŒZ�–module of any F r

g –link for every r and
g . In Section 6, we show a graded structure on the first Alexander ZŒZ�–modules of
classical links, surface-links and higher-dimensional manifold-links. We mention here
that most results of this paper are announced in [11] without proofs. A group version
of this paper is given in [10].

2 Some homological properties on surface-links

The following computation on the homology H�.E/ of the exterior E of an F r
g –link

L is done by using the Alexander duality for .S4;L/:
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Lemma 2.1

Hd .E/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Zr�1 .d D 3/

Z2g .d D 2/

Zr .d D 1/

Z .d D 0/

0 .d ¤ 0; 1; 2; 3/:

For a finitely generated ƒ–module M , let TM be the ƒ–torsion part, and BM D

M=TM the ƒ–torsion-free part. Let ˇ.M / be the ƒ–rank of the module M , namely
the Q.ƒ/–dimension of the Q.ƒ/–vector space M ˝ƒQ.ƒ/, where Q.ƒ/ denotes
the quotient field of ƒ. Let

DM Dfx 2M j 9fi 2ƒ.iD1; 2; :::; s.= 2// with .f1; :::; fs/D 1 and fix D 0g;

which is the maximal finite ƒ–submodule of M (cf Kawauchi [5, Section 3]), where the
notation .f1; :::; fs/ denotes the greatest common divisor of the Laurent polynomials
f1; :::; fs . We note that DM contains all finite ƒ–submodules of M , which is a
consequence of M being finitely generated over ƒ. Let TDM D TM=DM , and
EqM DExt

q
ƒ
.M; ƒ/. The following proposition is more or less known (see J Levine

[14] for Sn –knot modules and [5] in general):

Proposition 2.2 We have the following properties (1)–(5) on a finitely generated
ƒ–module M .

(1) E0M D homƒ.M; ƒ/Dƒˇ.M / ,

(2) E1M DE2M D 0 if and only if M is ƒ–free,

(3) there are natural ƒ–exact sequences 0!E1BM !E1M !E1TM ! 0 and
0! BM !E0E0BM !E2E1BM ! 0;

(4) E1BM DDE1M ,

(5) E1TM D homƒ.TM;Q.ƒ/=ƒ/ and E2M DE2DM D homZ.DM;Q=Z/.

The d th ƒ–rank of an F r
g –link L is the number ˇd .L/ D ˇ.Hd . zE//. We call the

integer �.L/ D r � 1� ˇ1.L/ the torsion-corank of L, which is shown to be non-
negative in Lemma 2.5. We use the following notion:

Definition 2.3 A finitely generated ƒ–module M is a cokernel-free ƒ–module of
corank n if there is an isomorphism M=.t � 1/M Š Zn as abelian groups.
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The corank of a cokernel-free ƒ–module M is denoted by cr.M /. We shall show in
Corollary 3.3 that a ƒ–module M is a cokernel-free ƒ–module of corank n if and
only if there is an FnC1

g –link L for some g such that M.L/DM . The following
lemma implies that the cokernel-free ƒ–modules appear naturally in the homology of
an infinite cyclic covering:

Lemma 2.4 Let pW zX ! X be an infinite cyclic covering over a finite complex X .
If Hd .X / is free abelian, then the ƒ–modules Hd . zX /, THd . zX / and TDHd . zX / are
cokernel-free ƒ–modules. In particular, if H1.X / Š Zr and zX is connected, then
H1. zX / is cokernel-free of corank r � 1.

Proof By Wang exact sequence, the sequence

Hd . zX /
t�1
! Hd . zX /

p�
!Hd .X /

@
!Hd�1. zX /

is exact, which also induces an exact sequence

THd . zX /
t�1
! THd . zX /

p�
!Hd .X /;

for .t � 1/THd . zX / D THd . zX /\ .t � 1/Hd . zX /. Since Hd .X / is free abelian, we
have also the induced exact sequence

TDHd . zX /
t�1
! TDHd . zX /

p�
!Hd .X /;

obtaining the desired result of the first half. The second half follows from the calculation
that

imŒp�W H1. zX /!H1.X /�D kerŒ@W H1.X /!H0. zX /�Š Zr�1:

From Lemmas 2.1 and 2.4, we see that the ƒ–modules H�. zE/, TH�. zE/ and
TDH�. zE/ are all cokernel-free ƒ–modules for every F r

g –link L. On these ƒ–
modules, we make the following calculations by using the dualities on the homology
H�. zE/ in [5]:

Lemma 2.5

(1) ˇ1.L/D ˇ3.L/5 r � 1 and ˇ2.L/D 2.g� �.L//,

(2) Hd . zE/D 0 for d ¤ 0; 1; 2; 3, H0. zE/Šƒ=.t � 1/ƒ and H3. zE/Šƒ
ˇ1.L/ ,

(3) cr.M.L//D r � 1 and cr.TM.L//D cr.TDM.L//D �.L/,

(4) cr.H2. zE//D 2g� �.L/ and cr.TH2. zE//D cr.TDH2. zE//D �.L/.
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Proof Since the covering @ zE! @E is equivalent to the product covering F �R!

F � S1 , we see that H�.@ zE/ is a torsion ƒ–module. Then the zeroth duality of
[5] implies ˇ1.L/ D ˇ3.L/. The second duality of [5] implies E2.H3. zE// D 0

and the first duality of [5] implies E1.H3. zE// D 0, meaning that H3. zE/ is a ƒ–
free module of ƒ–rank ˇ1.L/. Since H3.E/ D Zr�1 , the Wang exact sequence
implies ˇ3.L/5 r � 1. Hk. zE/D 0 for k ¤ 0; 1; 2; 3 and H0. zE/Šƒ=.t � 1/ƒ are
obvious. By Lemma 2.1, the Euler characteristic �. zEIQ.ƒ// of the Q.ƒ/–homology
H�. zEIQ.ƒ// is calculated as follows:

�. zEIQ.ƒ//D�2ˇ1.L/Cˇ2.L/D �.E/D 2��.F /D 2� 2r C 2g:

Hence we have ˇ2.L/D 2.g.F /� �.L//, and (1) and (2) are proved. To see (3), the
Wang exact sequence induces a short exact sequence

0!M.L/=.t � 1/M.L/! Zr
! Z! 0;

showing that M.L/=.t �1/M.L/ŠZr�1 and cr.M.L//D r �1. Let TM.L/=.t �

1/TM.L/ Š Zs by Lemma 2.4. Then we see that BM.L/=.t � 1/BM.L/ has the
Z-rank r �1� s by considering in the principal ideal domain ƒQDQŒZ�DQŒt; t�1�

(although it may have a non-trivial integral torsion). This Z–rank is also equal to ˇ1.L/,
because BMQ D BM ˝ƒƒQ Šƒ

ˇ1.L/
Q and hence BMQ=.t � 1/BMQ ŠQˇ1.L/ .

Thus,

cr.TM.L//D s D r � 1�ˇ1.L/D �.L/:

Since cr.TM.L//Dcr.TDM.L// is obvious, we have (3). To see (4), let H2. zE/=.t�

1/H2. zE/ Š Zu by Lemma 2.4. Since H2.E/ D Z2g by Lemma 2.1, the kernel of
t � 1W TH1. zE/! TH1. zE/ has the Z–rank 2g � u, which is equal to the Z–rank
�.L/ of the cokernel of t �1W TH1. zE/! TH1. zE/ by considering it over ƒQ . Thus,
cr.H2. zE// D u D 2g � �.L/. Next, let TH2. zE/=.t � 1/TH2. zE/ Š Zv . Then
BH2. zE/=.t � 1/BH2. zE/ has the Z–rank u� v . Since ˇ2.L/ D 2.g � �.L//, we
have u � v D 2.g � �.L// and cr.TH2. zE// D v D �.L/. Since cr.TH2. zE// D

cr.TDH2. zE//, we have (4).

The following corollary follows directly from Lemma 2.5.

Corollary 2.6 An F r
g –link L has ˇ�.L/D 0 if and only if ˇ1.L/D 0 and gD r�1.
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3 Characterizing the first Alexander ZŒZ�–modules of rib-
bon surface-links

For a finitely generated ƒ–module M , let e.M / be the minimal number of ƒ–
generators of M . The following estimate is given by Sekine [17] and Kawauchi [7]
for the case r D 1 where we have �.L/D 0:

Lemma 3.1 If L is a ribbon F r
g –link, then we have

g = e.E2M.L//C �.L/:

Proof Since L is a ribbon F r
g –link, there is a connected Seifert hypersurface V for

L such that H1.V / and H1.V; @V / are torsion-free. In fact, we can take V to be
a connected sum of r handlebodies and some copies, say n copies, of S1 �S2 (cf
[12]). Then we have H1.V /D ZnCg and H2.V /D ZnCr�1 . Let E0 be the compact
4–manifold obtained from E by splitting it along V . Let zV and zE0 be the lifts of V

and E0 by the infinite cyclic covering pW zE!E , respectively. By the Mayer-Vietoris
exact sequence, we have the following exact sequence

0! B!H1. zV /!H1. zE
0/!H1. zE/! 0;

where B denotes the image of the boundary operator z@W H2. zE/! H1. zV /. Since
H1.V /Š ZnCg , we have H1. zV /Šƒ

nCg . We note that

H1.E
0/ŠH1.S

4
�V /ŠH2.S

4;S4
�V /ŠH 2.V /Š ZnCr�1;

so that H1. zE
0/ŠƒnCr�1 . Using that ƒ has the graded dimension 2, we see that B

must be a free ƒ–module whose ƒ–rank is calculated from the exact sequence to be

.nCg/� .nC r � 1�ˇ1.L//D g� �.L/:

Since by definition E2M.L/ D E2H1. zE/ is a quotient ƒ–module of E0B Š

ƒg��.L/ , we have e.E2M.L//5 g� �.L/.

The following theorem is our first theorem, which shows that the estimate of Lemma
3.1 is best possible and generalizes [7, Theorem 1.1].

Theorem 3.2 A finitely generated ƒ–module M is the module M.L/ of a ribbon
F r

g –link L if and only if M is a cokernel-free ƒ–module of corank r � 1 and
g = e.E2M /C �.M /. Further, if a non-negative partition g D g1Cg2C :::Cgr is
arbitrarily given, then we can take a ribbon F r

g –link L with g.Fi/D gi for all i .
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Proof The “only if”part is proved by Lemmas 2.5 and 3.1. We show the “if”part.
Let M=.t � 1/M Š Zn . We construct a ribbon FnC1

g –link L with M.L/DM and
g D e.E2M /C �.M / and observe that the module M.L/ is independent of a choice
of the partitions g D g1C g2C :::C gr in our construction. This will complete the
proof, since an FnC1

g0 –link L0 with g0 > g and M.L0/DM can be obtained from L

by taking suitable connected sums of L with g0�g trivial F1
1

–knots. The proof will
be done by establishing the following three steps:

(1) Finding a nice ƒ–presentation matrix B for M .

(2) Constructing a finitely presented group G and an epimorphism 
 W G!Z which
induces a ƒ–isomorphism Ker
=ŒKer
;Ker
 �ŠM .

(3) Applying T. Yajima’s construction to find a ribbon F r
g –link L with a prescribed

disk–arc presentation such that �1.S
4nL/DG .

In (2), recall that Ker
=ŒKer
;Ker
 � has a natural ƒ–module structure with the t –
action meant by the conjugation of any element g 2 G with 
 .g/ D 1 2 Z. This
ƒ–module is calculable from the group presentation of G by the Fox calculus (see
Kawauchi [4] and H Zieschang [20]). We shall show how to construct a desired
Wirtinger presented group G from the ƒ–presentation B of M by this inverse process,
so that we can establish (3). Let mD e.E2M / and ˇ D ˇ.M /. We take a ƒ–exact
sequence

0!ƒk
!ƒmCk

!ƒm
!E2M ! 0

for some k = 0, which induces a ƒ–exact sequence

0!ƒm
!ƒmCk

!ƒk
!E2E2M DDM ! 0:

On the other hand, using D.M=DM /D 0, we have E2.M=DM /D 0 and hence we
have a ƒ–exact sequence

0!ƒs
!ƒsCˇ

!M=DM ! 0

for some s = 0. Thus, we have a ƒ–exact sequence

0!ƒm
!ƒmCkCs

!ƒkCsCˇ
!M ! 0:

Let B D .bij / be a ƒ–matrix of size .k C s C ˇ;mC k C s/ representing the ƒ–
homomorphism ƒmCkCs!ƒkCsCˇ . Since M=.t � 1/M D Zn , we can assume

B.1/D

�
Eu O12

O21 O22

�
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by base changes of ƒmCkCs and ƒkCsCˇ , where Eu is the unit matrix of size
u D k C s C ˇ � n, and O12;O21;O22 are the zero matrices of sizes .u;m� ˇC
n/; .n;u/; .n;m � ˇ C n/, respectively. Let b0j D �†

kCsCˇ
iD1

bij , and BC D .bij /

.0 5 i 5 kC sCˇ; 1 5 j 5 mC kC s/ We take cij 2ƒ so that

bij D

8̂<̂
:
.t � 1/cij .j > u/

.t � 1/cij C ıij .i > 0; 1 5 j 5 u/

.t � 1/cij � 1 .i D 0; 1 5 j 5 u/

Let 
 be the epimorphism from the free group G0 D< x0;x1; :::;xkCsCˇ > onto Z
defined by 
 .xi/ D 1, and 
CW ZŒG0�! ZŒZ� D ƒ the group ring extension of 

with 
C.xi/D t . Using that †kCsCˇ

iD0
cij D 0, an algorithm of A Pizer [15] enables us

to find a word wj in G0 such that 
 .wj /D 0 and the Fox derivative


C.@wj=@xi/D cij .j D 1; :::;mC kC s/

for every i . Let

Rj D

(
xjwj x�1

0
w�1

j .1 5 j 5 u/

xhwj x�1
h
w�1

j .uC 1 5 j 5 mC kC s/;

where we can take any h for the xh in every Rj with uC 1 5 j 5 mC k C s .
Then the finitely presented group G D< x0;x1; :::;xkCsCˇ jR1;R2; :::;RmCkCs >

has the Fox derivative 
C.@Rj=@xi/D bij for every i; j . We note that G=ŒG;G�D

Z1CkCsCˇ�u D Z1Cn . Let 
�W G! Z be the epimorphism induced from 
 . Then
Ker
�=ŒKer
�;Ker
�� Š M: By T Yajima’s construction in [19], there is a ribbon
FnC1

g –link L with �1.S
4nL/DG (hence M.L/DM ) so that, in terms of a disk–

arc presentation of a ribbon surface-link, the generators xi .i D 0; 1; :::; k C sC ˇ/

correspond to the oriented disks Di .i D 0; 1; :::; k C sC ˇ/, respectively, and the
relation Rj W w

�1
j xjwj D x0 (or w�1

j xhwj D xh , respectively) corresponds to an
oriented arc j̨ which starts from a point of @Dj (or @Dh , respectively), terminates
at a point of @D0 (or @Dh , respectively), and is described in the following manner:
When wj is written as x

"1

j1
x
"2

j2
� � � ("i D˙1), the arc j̨ should be described so that it

first intersects the interior of the disk Dj1
in a point with sign "1 . Next, it intersects

the interior of the disk Dj2
in a point with sign "2 . This process should be continued

in the order of the letters xji
appearing in wj until they are exhausted. Thus, the arc

j̨ is constructed. Then we have

g DmC kC s�uDmC .n�ˇ/D e.E2M /C �.M /:
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The arbitrariness of h for the xh in Rj with uC 1 5 j 5 mC k C s guarantees
us to construct a 2–manifold FnC1

g D FnC1
g1;g2;:::;gnC1

corresponding to any partition
g D g1Cg2C :::CgnC1 .

The following corollary comes directly from Lemmas 2.4, 2.5 and Theorem 3.2.

Corollary 3.3 A finitely generated ƒ–module M is a cokernel-free ƒ–module of
corank n if and only if there is an FnC1

g –link L with M.L/DM for some g .

The following corollary gives a characterization of the modules M.L/ of ribbon
FnC1

g –links L with ˇ�.L/D 0.

Corollary 3.4 A cokernel-free ƒ–module M of corank n is the module M.L/ of a
ribbon FnC1

g –link L with ˇ�.L/D 0 (in this case, we have necessarily g D n) if and
only if ˇ.M /D 0 and DM D 0.

Proof For the proof of “if”part, we note that E2M D E2DM D 0 and hence
e.E2M / C �.M / D n. By Theorem 3.2, we have a ribbon FnC1

n –link L with
M.L/ D M . Since ˇ.M / D 0, we see from Corollary 2.6 that ˇ�.L/ D 0. For
the proof of “only if”part, we note g D n by Corollary 2.6. Hence by Lemma 3.1,
n = e.E2M /C �.M /. Since ˇ.M /D 0 means �.M /D n, we have e.E2M /D 0,
so that E2M D 0 which is equivalent to DM D 0.

Here are two examples which are not covered by Corollary 3.4.

Example 3.5 For a cokernel-free ƒ–module M of corank n with ˇ.M /D 0 (so that
�.M /D n) and DM D 0, we have the following examples (1) and (2).

(1) Let M 0DM ˚ƒ=.tC1; a/ for an odd a = 3. Since E2M 0Šƒ=.tC1; a/¤ 0,
the ƒ–module M 0 is not the module M.L/ of a ribbon FnC1

g –link L with ˇ�.L/D0.
On the other hand, ƒ=.t C 1; a/ is wel-known to be the module of a non-ribbon F1

0
–

knot K (for example, the 2–twist-spun knot of the 2–bridge knot of type .a; 1/) and
M is the module M.L/ of a ribbon FnC1

n –link L with ˇ�.L/D 0 by Corollary 3.4.
Hence M 0 is the module M.L0/ of a non-ribbon FnC1

n –link L0 (taking a connected
sum L#K ) with ˇ�.L0/D 0.

(2) Let M 00 DM ˚ƒ=.2t � 1; a/ for an odd a = 5. Although M 00 is cokernel-free
of corank n and ˇ.M 00/D 0, we can show that M 00 is not the module M.L/ of any
FnC1

g –link L with ˇ�.L/D 0. To see this, suppose M 00 DM.L/ for an FnC1
g –link

L. Since ƒ=.2t � 1; a/ is not ƒ–isomorphic to ƒ=.2t�1 � 1; a/ D ƒ=.t � 2; a/,
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the ƒ–module DM 00 D ƒ=.2t � 1; a/ is not t –anti isomorphic to the ƒ–module
E2DM 00 D homZ.DM 00;Q=Z/Šƒ=.2t � 1; a/ and hence by the second duality of
[5] there is a t –anti isomorphism

� W DM 00
!E1BH2. zE; @ zE/:

This implies that ˇ2.L/D ˇ.H2. zE; @ zE//¤ 0. Thus, M 00 is not the module M.L/

of any FnC1
g –link L with ˇ�.L/D 0. On the other hand, there is a ribbon FnC1

nC1
–link

L00 with M.L00/DM 00 by Theorem 3.2, because e.E2M 00/D e.ƒ=.2t � 1; a//D 1

and hence e.E2M 00/C �.M 00/D 1Cn. In this case, we have ˇ2.L
00/D 2 by Lemma

2.5.

4 A characterization of the first Alexander ZŒZ�–modules of
virtual links

Figure 2: A real or virtual crossing point

The notion of virtual links was introduced by L H Kauffman [3]. A virtual r –link
diagram is a diagram D of immersed oriented r loops in S2 with two kinds of crossing
points given in Figure 2, where the left or right crossing point is called a real or virtual
crossing point, respectively. A virtual r –link ` is the equivalence class of virtual r –link

Figure 3: R-moves and Virtual R-moves
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diagrams D under the local moves given in Figure 3 which are called R-moves for the
first three local moves and virtual R-moves for the other local moves. A virtual r –link
is called a classical r –link if it is represented by a virtual link diagram without virtual
crossing points. The group �.`/ of a virtual r –link ` is the group with Wirtinger
presentation whose generators consist of the edges of a virtual link diagram D of `
and whose relations are obtained from D as they are indicated in Figure 4. It is easily

a a

d d

b bc c

aD d; b D a�1ca aD d; b D c

Figure 4: Relations

checked that the Wirtinger group �.`/ up to Tietze equivalences is unchanged under the
R-moves and virtual R-moves. Figure 5 defines a map � 0 from a virtual r –link diagram
to a disk–arc presentation of a ribbon F r

1;1;:::;1
–link. S Satoh proved in [16] that this

or

Figure 5: Definition of the map � 0

map � 0 induces a (non-injective) surjective map � from the set of virtual r –links onto
the set of ribbon F r

1;1;:::;1
–links. For example, the map � sends a nontrivial virtual

knot into a trivial F1
1

–knot in Figure 6, where non-triviality of the virtual knot is
shown by the Jones polynomial (see [3]) and triviality of the F1

1
–knot is shown by an

argument of [2] on deforming a 1–handle. It would be an important problem to find a
finite number of local moves generating the preimage of � (see [16]). T Yajima in [19]
gives a Wirtinger presentation of the group �1.S

4nL/ of a ribbon F r
g –link L. From

an analogy of the constructions, we see that the map � induces the same Wirtinger

Geometry & Topology Monographs, Volume 14 (2008)



364 Akio Kawauchi

Figure 6: A non-trivial virtual knot sent to the trivial F1
1

–knot

presentation of a virtual r –link diagram D and the disk–arc presentation � 0.D/. Thus,
we have the following proposition which has been independently observed by S G Kim
[13], S Satoh [16], and D Silver and S Williams [18] in the case of virtual knots:

Proposition 4.1 The set of the groups of virtual r –links is the same as the set of the
groups of ribbon F r

1;1;:::;1
–links.

For a virtual r –link `, let 
 W �.`/!Z be an epimorphism sending every generator of a
Wirtinger presentation to 1, which is independent of a choice of Wirtinger presentations.
The first Alexander ZŒZ�–module, or simply the module of a virtual r –link ` is the
ƒ–module M.`/D Ker
=ŒKer
;Ker
 �. The following corollary comes directly from
Proposition 4.1.

Corollary 4.2 The set of the modules of virtual r –links is the same as the set of the
modules of ribbon F r

1;1;:::;1
–links.

The following theorem giving a characterization of the modules of virtual r –links
comes directly from Theorem 3.2 and Corollary 4.2.

Theorem 4.3 A finitely generated ƒ–module M is the module M.`/ of a virtual
r –link ` if and only if M is a cokernel-free ƒ–module of corank r � 1 and has
e.E2M /5 1Cˇ.M /.

Here is one example.

Example 4.4 The ribbon F2
1;1

–link in Figure 1 is the � –image of a virtual 2–link `
illustrated in Figure 7 with group �.`/D .x;y j xD .yx�1y�1/x.yx�1y�1/�1;y D

.x�1yx�1/y.x�1yx�1/�1/ and module M.`/ D ƒ=..t � 1/2; 2.t � 1//. Since
DM.`/ D ƒ=..t � 1/; 2/ ¤ 0, the virtual 2–link ` is not any classical 2–link. In
fact, if ` is a classical link with M.`/ a torsion ƒ–module, then we must have
DM.`/ D 0 by the second duality of [5] (cf [6]). It is unknown whether there is a
classical link ` such that t � 1W DM.`/! DM.`/ is not injective (cf [6]), but this
example means that such a virtual link exists.

Geometry & Topology Monographs, Volume 14 (2008)



The first Alexander ZŒZ�–modules of surface-links and of virtual links 365

Figure 7: A virtual 2–link sent to the ribbon F2
1;1

–link in Figure 1

We see from Theorem 4.3 that M is the module of a virtual knot (ie, a virtual 1–link)
if and only if M is a cokernel-free ƒ–module of corank 0 and has e.E2M /5 1, for
we have ˇ.M /D 0 for every cokernel-free ƒ–module of corank 0. For a direct sum
on the modules of virtual knots, we obtain the following observations.

Corollary 4.5

(1) For the module M of every virtual knot with e.E2M / D 1, the n.> 1/–fold
direct sum M n of M is a cokernel-free ƒ–module of corank 0, but not the
module of any virtual knot.

(2) For the module M of every virtual knot and the module M 0 of a virtual knot
with e.E2M 0/D 0, the direct sum M ˚M 0 is the module of a virtual knot.

Proof The module M n is obviously cokernel-free of corank 0. Using that E2M n D

.E2M /n , we see that e.E2M n/ 5 n. If E2M has an element of a prime order
p , then we consider the non-trivial ƒp –module .E2M /p D E2M=pE2M , where
ƒp D Zp ŒZ�D Zp Œt; t

�1� which is a principal ideal domain. Using e..E2M /p/D 1,
we have

e.E2M n/D e..E2M /n/= e...E2M /p/
n/D n

and hence e.E2M n/D n> 1. By Theorem 4.3, M n is not the module of any virtual
knot, proving (1). For (2), the module M ˚M 0 is also cokernel-free of corank 0.
Since E2M 0 D 0, we have E2.M ˚M 0/DE2M and by Theorem 4.3 M ˚M 0 is
the module of a virtual knot, proving (2).
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5 A graded structure on the first Alexander ZŒZ�–modules
of surface-links

Let Ar
g be the set of the modules M.L/ of all F r

g –links L, and Ar Œ2�D[C1
gD0

Ar
g .

In this section, we show the properness of the inclusions

Ar
0 �A

r
1 �A

r
2 � � � � �A

r
n � � � � �Ar Œ2�:

To see this, we establish an estimate of the total genus g by the module of a general
F r

g –link. To state this estimate, we need some notions on a finite ƒ–module. A finite ƒ–
module D is symmetric if there is a t –anti isomorphism DŠE2DD homZ.D;Q=Z/,
and nearly symmetric if there a ƒ–exact sequence

0!D1!D!D�!D0! 0

such that Di.i D 0; 1/ are finite ƒ–modules with .t � 1/Di D 0 and D� is a finite
symmetric ƒ–module. For a general F r

g –link L, we shall show the following theorem:

Theorem 5.1 If M is the module M.L/ of an F r
g –link L, then we have a nearly

symmetric finite ƒ–submodule D �DM such that g = e.E2.M=D//=2C �.M /.

Proof Let F r
g D F r

g1;g2;:::;gr
. Let Li be the F1

gi
–component of L, and @iE the

component of the boundary @E corresponding to Li . We parametrize @iE as Li �S1

so that the natural composite

H1.Li � 1/!H1.@iE/!H1.E/


! Z

is trivial. Let Vi be the handlebody of genus gi . We construct a closed connected
oriented 4–manifold X DE[ .[r

iD1
Vi �S1/ obtained by pasting @iE to Li �S1 D

.@Vi/�S1 . Then the infinite cyclic covering pW zE!E associated with 
 extends to
an infinite cyclic covering pX W

zX !X , so that .pX /
�1.Vi �S1/D Vi �R1 . Since

H�. zX ; zE/Š˚
r
iD1

H�..Vi ; @Vi/�R1/, the exact sequence of the pair . zX ; zE/ induces
a ƒ–exact sequence

0! T1!H1. zE/
i�
!H1. zX /! 0

where .t � 1/T1 D 0: This exact sequence induces a ƒ–exact sequence

(5.1.1) 0!D1!DH1. zE/
iD
�
!DH1. zX /!D0! 0

for some finite ƒ–modules Di.i D 0; 1/ with .t � 1/Di D 0.

To see (5.1.1), it suffices to prove that the cokernel D0 of the natural homomorphism
iD
� W DH1. zE/ ! DH1. zX / has .t � 1/D0 D 0. For an element x 2 DH1. zX /, we
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take an element x0 2 H1. zE/ with i�.x
0/ D x . Since there is a positive integer n

such that .tn� 1/x D 0, the element .tn� 1/x0 2H1. zE/ is the image of an element
in T1 . Hence .tn � 1/.t � 1/x0 D 0. Also, since there is a positive integer m such
that mx D 0, we also see that m.t � 1/x0 D 0, so that .t � 1/x0 is in DH1. zE/ and
iD
� ..t � 1/x0/D .t � 1/x . This means .t � 1/D0 D 0, showing (5.1.1).

By the second duality in [5], there is a natural t –anti epimorphism � W DH1. zX /!

E1BH2. zX / whose kernel D� DDH1. zX /
� is symmetric. Then

e.E2.DH1. zX /=D
�//D e.E2E1BH2. zX //5 ˇBH2. zX /;

where the later inequality is obtained by using Proposition 2.2. Since H�. zX ; zE/ is
ƒ–torsion, we see from Lemma 2.5 that

ˇBH2. zX /D ˇ2.L/D 2.g� �.L//:

In (5.1.1), the ƒ–submodule D D .iD
� /
�1.D�/ � DH1. zE/ D DM.L/ induces a

ƒ–exact sequence 0 ! D1 ! D ! D� ! D0
0
! 0 for a finite ƒ–module D0

0

with .t � 1/D0
0
D 0, so that D is nearly symmetric. Using that iD

� induces a ƒ–
monomorphism DM.L/=D!DH1. zX /=D

� , we see that there is a ƒ–epimorphism
E2.DH1. zX /=D

�/!E2.DM.L/=D/, so that

e.E2.DM.L/=D//5 e.E2.DH1. zX /=D
�//5 2.g� �.L//:

Thus, we have g = e.E2.DM.L/=D//=2C �.L/.

For an application of this theorem, it is useful to note that every finite ƒ–module D has
a unique splitting Dt�1˚Dc (see [9, Lemma 2.7]), where Dt�1 is the ƒ–submodule
consisting of an element annihilated by the multiplication of some power of t � 1 and
Dc is a cokernel-free ƒ–submodule of corank 0. As a direct consequence of this
property, we see that if D is nearly symmetric, then Dc is symmetric. Then we can
obtain the following result from Theorem 5.1.

Corollary 5.2 For every r = 1, we have

Ar
0 ¤Ar

1 ¤Ar
2 ¤Ar

3 ¤ � � �¤Ar
n ¤ � � �¤Ar Œ2�

and the set Ar Œ2� is equal to the set of finitely generated cokernel-free ƒ–modules of
corank r � 1, so that Ar Œ2�\Ar 0 Œ2�D∅ if r ¤ r 0 .

Proof We have Ar
g �Ar

gC1
for every g by a connected sum of a trivial F1

1
–knot. Let

L0 be a trivial F r
0

–link whose module M.L0/Dƒ
r�1 . Let K be a ribbon F1

1
–knot

with M.K/Dƒ=.2t�1; k/ for a prime k = 5. This existence is given by Theorem 3.2.
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For every positive integer n, let Ln be an F r
n –link obtained by a connected sum of L0

and n copies of K , and MnDƒ
r�1˚.ƒ=.2t�1; k//n . Then we have M.Ln/DMn .

We show that if Mn is the module of an F r
g –link L, then g = n=2. To see this, we note

that �.Mn/D 0, DMn D .ƒ=.2t � 1; k//n D .DMn/c does not admit any non-trivial
symmetric submodule, and e.E2Mn/D n. Hence g = e.E2Mn/=2C �.Mn/D n=2

by Theorem 5.1. This means that among the modules Mn.gC 1 5 n 5 2gC 1/ there
is a member Mn in Ar

gC1
but not in Ar

g . In fact, if MgC1 62 Ar
g , then MgC1 is

a desired member. If MgC1 2 Ar
g , then we take the largest n.= g C 1/ such that

Mn 2 Ar
g . Since M2gC1 62 Ar

g , we have n < 2gC 1. Let L0 be an F r
g –link with

M.L0/DMn , and L00 an F r
gC1

–knot which is a connected sum of L0 and K . Then
MnC1 DM.L00/ is in Ar

gC1
but not in Ar

g . The characterization of Ar Œ2� follows

directly from Corollary 3.3, so that if r ¤ r 0 , then Ar Œ2�\Ar 0 Œ2�D∅.

6 A graded structure on the first Alexander ZŒZ�–modules
of classical links, surface-links and higher-dimensional
manifold-links

An n–dimensional manifold-link with r components is the ambient isotopy class of
a closed oriented n–manifold with r components embedded in the .nC 2/–sphere
SnC2 by a locally-flat embedding. A 1–dimensional manifold-link with r components
coincides with a classical r –link even when we regard it as a virtual link by a result
of M Goussarov, M Polyak and O Viro [1]. Let EY D SnC2nintN.Y / for a tubular
neighborhood N.Y / of Y in SnC2 . Since H1.EY / Š Zr has a unique oriented
meridian basis, we have a unique infinite cyclic covering pW zEY ! EY associated
with the epimorphism 
 W H1.EY /! Z sending every oriented meridian to 1. The
first Alexander ZŒZ�–module, or simply the module of the manifold-link Y is the ƒ–
module M.Y /DH1. zEY /. Let Ar Œn� denote the set of the modules of n–dimensional
manifold-links with r components by generalizing the case nD 2. Let RAr

g be the
set of the modules of ribbon F r

g –links. By Theorem 3.2 and Corollary 3.3, we have
Ar Œ2�D[C1

gD0
RAr

g . Let VAr Œ1� denote the set of the modules of virtual r –links. By
Theorem 3.2 and Corollary 4.2, we have VAr Œ1�DRAr

r . For the set Ar Œ1�, we further
consider the subset Ar

gŒ1�DAr Œ1�\Ar
g . We have Ar

gŒ1��Ar
gC1

Œ1��Ar Œ1� for every
g = 0. Taking a split union of classical knots with non-trivial Alexander polynomials,
we see that the set Ar

0
Œ1� is infinite. We have the following comparison theorem on the

modules of classical r –links, F r
g –links and higher-dimensional manifold-links with

r components, which explains why we consider the strictly nested class of classical
and surface-links for the classification problem of the Alexander modules of general
manifold-links.
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Theorem 6.1

Ar
0Œ1�¤Ar

1Œ1�¤� � � ¤Ar
r�1Œ1�DA

r Œ1�¤ RAr
r�1 ¤ RAr

r D VAr Œ1�

¤Ar
r ¤ � � �¤Ar

n ¤ � � �¤Ar Œ2�DAr Œ3�DAr Œ4�D � � � :

Proof By Lemma 2.4 and Corollary 3.3, we have Ar Œ2� � Ar Œn� for every n = 1.
To see that Ar Œn� � Ar ŒnC 1�, we use a spinning construction. To explain it, let
M.Y / 2 Ar Œn� for a manifold-link Y . We choose an .nC 2/–ball BnC2

o � SnC2

such that the pair .BnC2
o ;Yo/ .YoD Y \BnC2

o / is homeomorphic to the standard disk
pair .D2 �Dn; 0�Dn/, where Dn denotes the n–disk and o denotes the origin of
the 2–disk D2 . Let BnC2 D cl.SnC2nBnC2

o / and Y 0 D cl.Y nYo/. We construct an
.nC 1/–dimensional manifold link Y C � SnC3 by

Y C D Y 0 �S1
[ .@Y 0/�D2

� BnC2
�S1

[ .@BnC2/�D2
D SnC3:

Then the fundamental groups �1.EY / and �1.EYC/ are meridian-preservingly iso-
morphic by van Kampen theorem and hence M.Y / D M.Y C/. This implies that
Ar Œ1� � RAr

r�1
and Ar Œ2� D Ar Œ3� D Ar Œ4� D � � � . Let g be an integer with

0 < g 5 r � 1. Let ` be a classical .gC 1/–link with M.`/ a torsion ƒ–module.
Then M.`/DM.L/ for a ribbon F

gC1
g –link L by the spinning construction. The

ƒ–module M 0 DM.`/˚ƒr�1�g is in Ar Œ1� as the module of a split union `C of
` and a trivial .r � 1 � g/–link and in RAr

g � Ar
g as the module of a split union

LC of L and a trivial F
r�1�g
0

–link. Hence M 0 is in Ar
gŒ1�. If M 0 DM.L0/ for

an F r
s –link L0 , then we have �.L0/D .r � 1/� .r � 1�g/D g and by Lemma 2.5

ˇ2.L
0/ D 2.s � �.L0// D 2.s � g/ = 0. Hence s = g . Thus, M 0 is not in Ar

g�1
.

This shows that Ar
g�1

Œ1�¤Ar
gŒ1� and RAr

g�1
¤ RAr

g . This last proper inclusion also
holds for every g = r . In fact, by taking M D .ƒ=.t �1//r�1˚ .ƒ=.tC1; a//g�rC1

for an odd a = 3, we have .E2M /C �.M /D .g� r C 1/C .r � 1/D g: Since M is
cokernel-free and cr.M /D r�1, we have M 2RAr

gnRAr
g�1

by Theorem 3.2. Next,
let M DM.L/ 2RAr

g have .E2M /C �.M /D g and pDM D 0 for an odd prime
p . Let K be an S2 –knot with M.K/D ƒ=.t C 1;p/ (see Example 3.5 (1)). Then
we have M 0 DM ˚ƒ=.t C 1;p/DM.L#K/ 2Ar

g for a connected sum L#K of L

and K . Then we have .E2M 0/C �.M 0/D gC 1 and M 0 62RAr
g by Theorem 3.2.

Thus, RAr
g ¤Ar

g for every g . The properness of AŒ1�¤ RAr
r�1

follows by a reason
that the torsion Alexander polynomial of every classical r –link in [8] is symmmetric,
but there is a ribbon S2 –knot with non-symmetric Alexander polynomial (see [10] for
the detail).
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On the inclusion Ar Œ1� � Ar Œ2�, we note that the invariant �1.`/ in [8] is equal
to the torsion-corank �.L/ for every classical r –link ` and every F r

g –link L with
M.`/DM.L/.
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