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The first Alexander Z[Z]-modules of surface-links
and of virtual links

AKIO KAWAUCHI

We characterize the first Alexander Z[Z]-modules of ribbon surface-links in the
4—sphere fixing the number of components and the total genus, and then the first
Alexander Z[Z]-modules of surface-links in the 4—sphere fixing the number of
components. Using the result of ribbon torus-links, we also characterize the first
Alexander Z[Z]-modules of virtual links fixing the number of components. For
a general surface-link, an estimate of the total genus is given in terms of the first
Alexander Z[Z]-module. We show a graded structure on the first Alexander Z[Z]-
modules of all surface-links and then a graded structure on the first Alexander Z[Z]-
modules of classical links, surface-links and higher-dimensional manifold-links.

57M25; 57Q35, 57Q45

1 The first Alexander Z|[Z]-module of a surface-link

For every non-nagative partition g = g1 + g2 + ... + g, of a non-negative integer g,
we consider a closed oriented 2-manifold F = Fg = Fg . . with r components
F; (i =1,2,...,r) such that the genus g(F;) of F; is g;. The integer g is called the
total genus of F and denoted by g(F). An F-link L is the ambient isotopy class of a
locally-flatly embedded image of F into S*, and for r = 1 it is also called an F—knot.
The exterior of L is the compact 4-manifold E = S*\intN (L), where N (L) denotes
the tubular neighborhood of L in S*. Let p: E — E be the infinite cyclic covering
associated with the epimorphism y: H;(E) — Z sending every oriented meridian of
L in Hi{(E) to 1 € Z. An F-link L is trivial if L is the boundary of the union of
disjoint handlebodies embedded locally-flatly in S*. A ribbon F-link is an F-link
obtained from a trivial F§-link by surgeries along embedded 1-handles in S 4 (see
Kawauchi, Shibuya and Suzuki [12, page 52]). When we put the trivial F{J-link in
the equatorial 3—sphere S C S*, we can replace the 1-handles by mutually disjoint
1-handles embedded in the 3—sphere S* without changing the ambient isotopy class
of the ribbon F-link by an argument of [12, Lemma 4.11] using a result of Hosokawa
and Kawauchi [2, Lemma 1.4]. Thus, every ribbon F-link is described by a disk—arc
presentation consisting of oriented disks and arcs intersecting the interiors of the disks
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354 Akio Kawauchi

transversely in S3 (see Figure 1 for an illustration), where the oriented disks and the
arcs represent the oriented trivial 2—spheres and the 1-handles, respectively.

>—2

Figure 1: A ribbon F lzl—link

Let A = Z[Z] = Z[t,t™] be the integral Laurent polynomial ring. The homology
H, (E) is a finitely generated A-module. Specially, the first homology H; (E) is
called the first Alexander Z|[Z]-module, or simply the module of an F-link L and
denoted by M (L). In this paper, we discuss the following problem:

Problem 1.1 Characterize the modules M (L) of Fgz-links L in a topologically
meaningful class.

In Section 2, we discuss some homological properties of Fg-links. Fixing r and g,
we shall solve Problem 1.1 for the class of ribbon Fg —links in Section 3. We also solve
Problem 1.1 for the class of all Fg-links not fixing g as a collorary of the ribbon case
in Section 3. In Section 4, we characterize the first Alexander Z[Z]-modules of virtual
1’ 1ol —links. In Section 5, we show a
graded structure on the first Alexander Z[Z]-modules of all Fg-links by establishing
an estimate of the total genus g in terms of the first Alexander Z[Z]-module of an
Fg-link. In fact, we show that there is the first Alexander Z[Z]-module of an F' ; i1
link which is not the first Alexander Z[Z]-module of any F éf —link for every r and
g. In Section 6, we show a graded structure on the first Alexander Z[Z]-modules of
classical links, surface-links and higher-dimensional manifold-links. We mention here
that most results of this paper are announced in [11] without proofs. A group version

links by using the characterization of ribbon F

of this paper is given in [10].

2 Some homological properties on surface-links

The following computation on the homology Hy(E) of the exterior E of an Fg-link
L is done by using the Alexander duality for (S*, L):
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Lemma 2.1
/A (d =3)
7% (d=2)
H;(E)=13 Z" d=1
(d =0)
0 (d+#0,1,2,3).

For a finitely generated A—module M, let TM be the A —torsion part, and BM =
M/TM the A-torsion-free part. Let S(M) be the A-rank of the module M , namely
the Q(A)-dimension of the Q(A)-vector space M ® o Q(A), where Q(A) denotes
the quotient field of A. Let

DM ={xeM|3fieAi=1,2,..,5(=2)) with (f1,..., fy)=1 and fix =0},

which is the maximal finite A —submodule of M (cf Kawauchi [5, Section 3]), where the
notation ( f1, ..., fy) denotes the greatest common divisor of the Laurent polynomials
f1,.... fs. We note that DM contains all finite A—-submodules of M, which is a
consequence of M being finitely generated over A. Let TpM = TM /DM , and
EiM =FE xtj{ (M, A). The following proposition is more or less known (see J Levine
[14] for S”—knot modules and [5] in general):

Proposition 2.2 We have the following properties (1)—(5) on a finitely generated
A -module M .

(1) E°M =homp (M, A) = APM)
(2) E'M = E*M =0 ifand only if M is A—free,

(3) there are natural A —exact sequences 0 — E'BM — E'M — E'TM — 0 and
0— BM — E°E°BM — E?E'BM — 0,

(4) E'BM = DE'M,
(5) E'TM =homp(TM, Q(A)/A) and E*M = E?>DM =homgz(DM,Q/Z).

The d™ A—rank of an F}-link L is the number B4(L) = B(Hy(E)). We call the
integer t(L) =r — 1 — B1(L) the torsion-corank of L, which is shown to be non-
negative in Lemma 2.5. We use the following notion:

Definition 2.3 A finitely generated A—module M is a cokernel-free A—module of
corank n if there is an isomorphism M /(t — 1)M = 7" as abelian groups.
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356 Akio Kawauchi

The corank of a cokernel-free A—module M is denoted by cr(M'). We shall show in
Corollary 3.3 that a A—-module M is a cokernel-free A —module of corank 7 if and
only if there is an F é’,""l —link L for some g such that M (L) = M . The following
lemma implies that the cokernel-free A—modules appear naturally in the homology of
an infinite cyclic covering:

Lemma 2.4 Let p: X — X be an infinite cyclic covering over a finite complex X .
If H;(X) is free abelian, then the A —modules H; (1\7) THy (f) and Tp H; (/\7) are
cokernel-free A —modules. In particular, it H{(X) = Z" and X is connected, then
H (f ) is cokernel-free of corank r — 1.

Proof By Wang exact sequence, the sequence

Hy ('S By D Hy(x) S Hy_ (R

is exact, which also induces an exact sequence

THy(X)'S THy(X) % Hy(x),
for (1 — 1)THy(X) = THy(X) N (t — 1)Hy(X). Since Hy(X) is free abelian, we
have also the induced exact sequence
~ t—1 ~. Px
TpHy(X) — TpHu(X) — Hy(X),

obtaining the desired result of the first half. The second half follows from the calculation
that

im[p«: Hy(X) > H;(X)] = ker[d: Hy(X) —> Ho(X)] =2, O

From Lemmas 2.1 and 2.4, we see that the A-modules H*(E), T H*(E) and
Tp H«(E) are all cokernel-free A—modules for every Fg-link L. On these A-

modules, we make the following calculations by using the dualities on the homology
Hy(E) in [5]:

Lemma 2.5
(1) Bi(L)=B3(L) =r—1and B,(L) =2(g —t(L)),
(2) Hy(E)y=0ford #0,1,2,3, Hy(E) = A/(t —1)A and H3(E) =~ AP1(D)
B) crM(L)=r—1and cr(TM(L))=cr(TpM(L))=1(L),
4) cr(Hy(E)) =2g—1(L) and cr(THy(E)) = cr(TpHy(E)) = t(L).
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The first Alexander Z[Z)-modules of surface-links and of virtual links 357

Proof Since the covering JE — OF is equivalent to the product covering F' x R —
F x S, we see that H, (3E ) is a torsion A—module. Then the zeroth duality of
[5] implies B;(L) = B3(L). The second duality of [5] implies E2(H3 (E)) =0
and the first duality of [5] implies E'(Hs; (E)) =0, meaning that H; (E) isa A—
free module of A-rank f;(L). Since H3(E) = Z"~!, the Wang exact sequence
implies B3(L) < r —1. Hy(E) =0 for k #0,1,2,3 and Ho(E) = A/(t — 1)A are
obvious. By Lemma 2.1, the Euler characteristic X(E ; O(A)) of the Q(A)-homology
H, (E; Q(A)) is calculated as follows:

X(E: Q) = =2B1(L) + Bo(L) = X(E) = 2= x(F) = 2=2r +2¢.

Hence we have (L) =2(g(F)—1(L)), and (1) and (2) are proved. To see (3), the
Wang exact sequence induces a short exact sequence

0> M(L)/t—1)M(L)—>7Z" - 7Z — 0,

showing that M (L)/(t—1)M (L) =Z""! and cr(M(L))=r—1. Let TM(L)/(t —
1)TM (L) = Z° by Lemma 2.4. Then we see that BM(L)/(t — 1) BM (L) has the
Z-rank r — 1 — s by considering in the principal ideal domain Ag = Q[Z] = Q[t,t™!]
(although it may have a non-trivial integral torsion). This Z—rank is also equal to 81 (L),
because BMg = BM ®x Ag = AQ" and hence BMq/(t —1)BMg = Q#1(D).
Thus,

cr(TM(L)=s=r—1—-31(L)=1t(L).

Since cr(TM (L)) =cr(TpM (L)) is obvious, we have (3). To see (4), let H, (E)/(l—
I)Hz(f) ~ 7Z* by Lemma 2.4. Since H,(E) = Z?*¢ by Lemma 2.1, the kernel of
t—1: TH; (E) — TH,; (E) has the Z-rank 2g — u, which is equal to the Z-rank
7(L) of the cokernel of t — 1: TH; (E) — TH, (E) by considering it over Ag. Thus,
cr(Hy(E)) = u = 2¢ — t(L). Next, let THy(E)/(t — )THy(E) = Z°. Then
BHZ(E)/(Z — l)BHz(E) has the Z-rank u —v. Since B,(L) = 2(g — r(L)) we
have u —v = 2(g — (L)) and cr(THz(E)) =v = 1(L). Since cr(THz(E)) =
cr(Tp Hy (E)), we have (4). a

The following corollary follows directly from Lemma 2.5.
Corollary 2.6 An Fg -link L has B«(L) =0 ifand only if $;(L) =0 and g =r—1.
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358 Akio Kawauchi

3 Characterizing the first Alexander Z[Z]-modules of rib-
bon surface-links

For a finitely generated A-module M, let e(M) be the minimal number of A-—
generators of M . The following estimate is given by Sekine [17] and Kawauchi [7]
for the case r = 1 where we have (L) = 0:

Lemma 3.1 If L is aribbon F ; —link, then we have

gz e(EzM(L)) +7(L).

Proof Since L is aribbon Fg-link, there is a connected Seifert hypersurface V' for
L such that H{(V) and H,(V,dV) are torsion-free. In fact, we can take V to be
a connected sum of r handlebodies and some copies, say n copies, of ST x S? (cf
[12]). Then we have H; (V) = Z""¢ and H,(V)=Z"T"~!. Let E’ be the compact
4-manifold obtained from E by splitting it along V. Let V and E’ be the lifts of V
and E’ by the infinite cyclic covering p: E—>E, respectively. By the Mayer-Vietoris
exact sequence, we have the following exact sequence

0—>B— H(V)— H{(E")— H|(E) >0,

where B denotes the image of the boundary operator a: H, (E ) —> H1(17). Since
H{(V) = 7Z"%8, we have H;(V) = A8  We note that

H(E") = H\(S*—V)~ Hy(S*, S*— V)= H>(V) = 2" 1,

so that H;(E’) = A"t"=1, Using that A has the graded dimension 2, we see that B
must be a free A—module whose A -—rank is calculated from the exact sequence to be

(n+g)—n+r—1-p1(L))=g—1(L).

Since by definition E2M (L) = E 2HI(IE]') is a quotient A-module of E°B
A8 we have e(E2M (L)) < g —t(L).

o IR

The following theorem is our first theorem, which shows that the estimate of Lemma
3.1 is best possible and generalizes [7, Theorem 1.1].

Theorem 3.2 A finitely generated A —module M is the module M (L) of a ribbon
Fg—link L if and only if M is a cokernel-free A-module of corank r — 1 and

g = e(E*M) + t(M). Further, if a non-negative partition g = g1 + g» + ... + g, is
arbitrarily given, then we can take a ribbon Fg —link L with g(F;) = g; forall i.
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Proof The “only if”part is proved by Lemmas 2.5 and 3.1. We show the “if”’part.
Let M/(t—1)M =~ 7Z". We construct a ribbon Fg+1—link L with M(L) =M and
g =e(E?>M) + t(M) and observe that the module M (L) is independent of a choice
of the partitions g = g; + g> + ... + g, in our construction. This will complete the
proof, since an F é’f,’L 'link L" with g’ > g and M(L’) = M can be obtained from L

by taking suitable connected sums of L with g’ — g trivial F 11 —knots. The proof will
be done by establishing the following three steps:
(1) Finding a nice A—presentation matrix B for M .

(2) Constructing a finitely presented group G and an epimorphism y: G — Z which
induces a A —isomorphism Kery /[Kery, Kery] =~ M .

(3) Applying T. Yajima’s construction to find a ribbon Fg-link L with a prescribed
disk—arc presentation such that 71 (S*\L) = G.

In (2), recall that Kery /[Kery, Kery] has a natural A—module structure with the 7—
action meant by the conjugation of any element g € G with y(g) =1 € Z. This
A -module is calculable from the group presentation of G by the Fox calculus (see
Kawauchi [4] and H Zieschang [20]). We shall show how to construct a desired
Wirtinger presented group G from the A —presentation B of M by this inverse process,
so that we can establish (3). Let m = e(E?M) and B = B(M). We take a A —exact
sequence
0—> A > AHE A" S E2M 0

for some k£ = 0, which induces a A —exact sequence
0— A™ - A"k S A¥ 5 E2E2M = DM — 0.

On the other hand, using D(M/DM) = 0, we have E?(M/DM) = 0 and hence we
have a A —exact sequence

0> A > AP 5 M/DM -0
for some s = 0. Thus, we have a A —exact sequence
0— A™ — AMTkFs _ AkFSTB A s 0.

Let B = (b;j) be a A—matrix of size (k + s + B,m + k + s) representing the A—
homomorphism A71k+s s Ak+s+B _Since M/(t —1)M = Z", we can assume

. E* 0Oy,
B = ( 011 022)
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by base changes of A”tk+s and AK+s+8 where E* is the unit matrix of size

u=k+s+ B —n,and Oj,, Oy, Oy, are the zero matrices of sizes (u,m — p +
. k

n), (n,u), (n,m — B + n), respectively. Let by; = —Zi:ig_l—ﬂbl’j, and BT = (b;j)

O=izk+s+B,1=j=m+k+s) Wetake c¢;j € A so that

(t = Dcij (J >u)
bij = § (t = Dcij + &ij (i>0,1=j=u)
(t =)y — 1 (i=0.1%j=u

Let y be the epimorphism from the free group Go =< xg, X1, ..., Xk 4548 > onto Z
defined by y(x;) = 1, and yT: Z[G¢] — Z[Z] = A the group ring extension of y
with y ¥ (x;) = t. Using that Ef:g+ﬁCij = 0, an algorithm of A Pizer [15] enables us
to find a word w; in G¢ such that y(w;) = 0 and the Fox derivative

ytOw;/oxi)=cij(j =1,...m+k +5)

for every 7. Let
R — ijjxo_le_l 1=j=u)
I xhwjxh_le_l wu+1=j=m+k+s),

where we can take any / for the x; inevery R; with u +1=j =m+k + 5.
Then the finitely presented group G =< Xg, X1, ..., Xk 4548 | R1, Ray ey Ry joos >
has the Fox derivative ¥+ (dR;/dx;) = b;j for every i, j. We note that G/[G, G] =
Z\tktstB-u — 714n et y,: G — Z be the epimorphism induced from y. Then
Keryy /[Kerys, Keryx] = M. By T Yajima’s construction in [19], there is a ribbon
Fpti-ink L with 1 (S*\L) = G (hence M (L) = M) so that, in terms of a disk—
arc presentation of a ribbon surface-link, the generators x; (i =0,1,....k +s+ )
correspond to the oriented disks D; (i =0,1,...,k + s 4+ B), respectively, and the
relation R; : wj_lxj- w; = Xxo (or wj_lxhwj = Xy, respectively) corresponds to an
oriented arc o; which starts from a point of dD; (or 0Dy, respectively), terminates
at a point of dDg (or 0Dy, respectively), and is described in the following manner:
When w; is written as xfll xfzz --- (& = £1), the arc «; should be described so that it
first intersects the interior of the disk Dj, in a point with sign ;. Next, it intersects
the interior of the disk Dj, in a point with sign &,. This process should be continued
in the order of the letters x;, appearing in w; until they are exhausted. Thus, the arc
a; is constructed. Then we have

g=m+k+s—u=m+n—pB)=e(E*M)+t(M).
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The arbitrariness of /& for the x; in R; with u +1 = j = m + k + s guarantees

: n+1 _ pn+l1 ; 143
us to construct a 2-manifold Fg™" = Fg 'y . o corresponding to any partition

g§=8&11+&+ ...t &+1- o
The following corollary comes directly from Lemmas 2.4, 2.5 and Theorem 3.2.

Corollary 3.3 A finitely generated A —module M is a cokernel-free A —module of
corank n if and only if there is an F) é’,""l ~link L with M (L) = M for some g.

The following corollary gives a characterization of the modules M (L) of ribbon
Fptl-links L with (L) = 0.

Corollary 3.4 A cokernel-free A—module M of corank n is the module M (L) of a
ribbon F;,’“ ~link L with B«(L) = 0 (in this case, we have necessarily g = n) if and
only if B(M) =0 and DM = 0.

Proof For the proof of “if”’part, we note that E2M = E2DM = 0 and hence
e(E>M) + t(M) = n. By Theorem 3.2, we have a ribbon F"*!_link L with
M(L) = M. Since B(M) = 0, we see from Corollary 2.6 that B«(L) = 0. For
the proof of “only if’part, we note g = n by Corollary 2.6. Hence by Lemma 3.1,
nze(E*M)+t(M). Since B(M) =0 means (M) =n, we have e(E>M) =0,
so that E2M = 0 which is equivalent to DM = 0. O

Here are two examples which are not covered by Corollary 3.4.

Example 3.5 For a cokernel-free A—module M of corank n with S(M) = 0 (so that
(M) =n)and DM = 0, we have the following examples (1) and (2).

(1) Let M =M @®A/(t+1,a) foranodd a = 3. Since E2M’' = A/(t+1,a) #0,
the A—module M’ is not the module M (L) of aribbon F Z,‘“ —link L with B«(L)=0.
On the other hand, A /(¢ + 1, a) is wel-known to be the module of a non-ribbon F (} -
knot K (for example, the 2—twist-spun knot of the 2-bridge knot of type («a, 1)) and
M is the module M (L) of aribbon F"*!_link L with B«(L) = 0 by Corollary 3.4.
Hence M’ is the module M (L’) of a non-ribbon F”*!_link L’ (taking a connected
sum L#K) with B4«(L") =0.

(2) Let M" =M & A/(2t —1,a) for an odd a = 5. Although M" is cokernel-free
of corank n and B(M") = 0, we can show that M" is not the module M (L) of any
Fé',""l—link L with B4«(L) = 0. To see this, suppose M” = M(L) for an Fg+1—link
L. Since A/(2t —1,a) is not A—isomorphic to A/(2t™' —1,a) = A/(t —2,a),
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the A—module DM"” = A/(2t — 1,a) is not z—anti isomorphic to the A-module
E2DM" =homz(DM",Q/Z) = A/(2t — 1,a) and hence by the second duality of
[5] there is a 7—anti isomorphism

6: DM" — E'BH,(E ,dE).

This implies that S,(L) = B(H,(E,dE)) # 0. Thus, M" is not the module M (L)
of any F g+1 —link L with B,(L) = 0. On the other hand, there is a ribbon F’ }:’:11 —link
L" with M(L") = M" by Theorem 3.2, because e(E*M") =e(A/(2t —1,a)) =1
and hence e(E?>M") 4+ t(M") =1+ n. In this case, we have 8,(L") =2 by Lemma
2.5.

4 A characterization of the first Alexander Z[Z]-modules of

virtual links
KX
AN

Figure 2: A real or virtual crossing point

The notion of virtual links was introduced by L H Kauffman [3]. A virtual r—link
diagram is a diagram D of immersed oriented r loops in S2 with two kinds of crossing
points given in Figure 2, where the left or right crossing point is called a real or virtual
crossing point, respectively. A virtual r—link £ is the equivalence class of virtual r —link

o) 90 KK
o) E-)0 BKX
KoK KX

Figure 3: R-moves and Virtual R-moves
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diagrams D under the local moves given in Figure 3 which are called R-moves for the
first three local moves and virtual R-moves for the other local moves. A virtual r-link
is called a classical r—link if it is represented by a virtual link diagram without virtual
crossing points. The group m(£) of a virtual r-link £ is the group with Wirtinger
presentation whose generators consist of the edges of a virtual link diagram D of £
and whose relations are obtained from D as they are indicated in Figure 4. It is easily

a la
b c b c

d d

a=d,b=a"'ca a=d,b=c

Figure 4: Relations

checked that the Wirtinger group 7 (£) up to Tietze equivalences is unchanged under the
R-moves and virtual R-moves. Figure 5 defines a map o’ from a virtual r —link diagram

to a disk—arc presentation of a ribbon F7, -link. S Satoh proved in [16] that this

Figure 5: Definition of the map o’

map o’ induces a (non-injective) surjective map o from the set of virtual r—links onto
the set of ribbon FY ol —links. For example, the map o sends a nontrivial virtual
knot into a trivial F 11 —knot in Figure 6, where non-triviality of the virtual knot is
shown by the Jones polynomial (see [3]) and triviality of the F 11 —knot is shown by an
argument of [2] on deforming a 1-handle. It would be an important problem to find a
finite number of local moves generating the preimage of o (see [16]). T Yajima in [19]
gives a Wirtinger presentation of the group 71 (S*\L) of a ribbon F ¢ —link L. From
an analogy of the constructions, we see that the map o induces the same Wirtinger
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.

Figure 6: A non-trivial virtual knot sent to the trivial F 11 —knot

presentation of a virtual 7 —link diagram D and the disk—arc presentation ¢’(D). Thus,
we have the following proposition which has been independently observed by S G Kim
[13], S Satoh [16], and D Silver and S Williams [18] in the case of virtual knots:

Proposition 4.1 The set of the groups of virtual r —links is the same as the set of the
groups of ribbon F| | | -links.

For a virtual r-link £, let y: 7 (£) — Z be an epimorphism sending every generator of a
Wirtinger presentation to 1, which is independent of a choice of Wirtinger presentations.
The first Alexander Z[7Z)-module, or simply the module of a virtual r—link £ is the
A-module M (£) = Kery /[Kery, Kery]. The following corollary comes directly from
Proposition 4.1.

Corollary 4.2 The set of the modules of virtual r —links is the same as the set of the
modules of ribbon F{ | | —links.

The following theorem giving a characterization of the modules of virtual r—links
comes directly from Theorem 3.2 and Corollary 4.2.

Theorem 4.3 A finitely generated A —module M is the module M ({) of a virtual
r—link £ if and only it M is a cokernel-free A -module of corank r — 1 and has
e(E’M) =14 B(M).

Here is one example.

Example 4.4 The ribbon F 12,1 ~link in Figure 1 is the o —image of a virtual 2-link ¢
illustrated in Figure 7 with group w(£) = (x, y | x = (yx" 1y Hx(yx~1y=H~7 1 y =
(x"lyx Dy~ yx=H~1) and module M(£) = A/((t — 1)2,2(t — 1)). Since
DM ) = A/((t —1),2) # 0, the virtual 2-link £ is not any classical 2-link. In
fact, if £ is a classical link with M (£) a torsion A-module, then we must have
DM (£) = 0 by the second duality of [5] (cf [6]). It is unknown whether there is a
classical link £ such that t — 1: DM (£) — DM ({) is not injective (cf [6]), but this
example means that such a virtual link exists.
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Figure 7: A virtual 2-link sent to the ribbon F 12 . —link in Figure 1

We see from Theorem 4.3 that M is the module of a virtual knot (ie, a virtual 1-link)
if and only if M is a cokernel-free A—module of corank 0 and has e(E2M) < 1, for
we have B(M) = 0 for every cokernel-free A—module of corank 0. For a direct sum
on the modules of virtual knots, we obtain the following observations.

Corollary 4.5

(1) For the module M of every virtual knot with e(E*M) = 1, the n(> 1)—fold
direct sum M" of M is a cokernel-free A —module of corank 0, but not the
module of any virtual knot.

(2) For the module M of every virtual knot and the module M’ of a virtual knot
with e(E*M') = 0, the direct sum M @ M’ is the module of a virtual knot.

Proof The module M" is obviously cokernel-free of corank 0. Using that E2M" =
(E2M)", we see that e(E2M") < n. If E2M has an element of a prime order
p, then we consider the non-trivial A,-module (E M) p=E 2M/pE*M , where
Ap = Zp|Z) = Zp[t, ] which is a principal ideal domain. Using e((E2M),) =1,
we have

¢(E*M") = e((E*M)") Z e((E*M)p)") =1
and hence e(E2M"™) =n > 1. By Theorem 4.3, M" is not the module of any virtual
knot, proving (1). For (2), the module M @ M’ is also cokernel-free of corank 0.

Since E>M’ =0, we have E>(M @ M') = E?>M and by Theorem 4.3 M & M’ is
the module of a virtual knot, proving (2). |
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5 A graded structure on the first Alexander Z[Z]-modules
of surface-links

Let A} be the set of the modules M (L) of all Fg-links L, and A"[2] = U;E%Ag.
In this section, we show the properness of the inclusions

Ay CA]C A C---C A C---C A[2].

To see this, we establish an estimate of the total genus g by the module of a general
Fg-link. To state this estimate, we need some notions on a finite A-module. A finite A~

module D is symmetric if there is a #—anti isomorphism D =~ E?D =homgz(D,Q/Z),
and nearly symmetric if there a A —exact sequence

0—-D —-D—D"—>Dy—0

such that D;(i = 0, 1) are finite A-modules with (t —1)D; = 0 and D* is a finite
symmetric A-module. For a general Fg-link L, we shall show the following theorem:

Theorem 5.1 If M is the module M (L) of an F; —link L, then we have a nearly
symmetric finite A —submodule D C DM such that g = e(E*(M/D))/2 + t(M).
Proof Let Fg = Fg .. . . Let L; be the Fgli —component of L, and 9d; E the
component of the boundary dE corresponding to L;. We parametrize 9; E as L; x S
so that the natural composite

Hy(Lix 1) — H,(3; E) — H{(E) > Z

is trivial. Let V; be the handlebody of genus g;. We construct a closed connected
oriented 4—manifold X = E U (U/_,V; xS 1) obtained by pasting 0; E to L; x S! =
(0V;) x S1. Then the infinite cyclic covering p: E — E associated with y extends to
an infinite cyclic covering py: X — X, so that (py)~'(Vi x S!) = V; x R!. Since
Hy(X,E) =~ ©_ Hi((V;, 0Vi) x R'), the exact sequence of the pair (X, E) induces
a A —exact sequence

0T, — H(E) S H(X) =0

where (1 — 1)7T7 = 0. This exact sequence induces a A —exact sequence
:D
(5.1.1) 0 — D —>DH1(E)I—*>DH1(X)—>D0—>O

for some finite A—modules D;(i = 0,1) with (t —1)D; = 0.

To see (5.1.1), it suffices to prove that the cokernel Dg of the natural homomorphism
z'*D: DH(E) - DH;(X) has (t —1)Dg = 0. For an element x € DH;(X), we
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take an element x’ € HI(E) with i4(x") = x. Since there is a positive integer n
such that (" —1)x = 0, the element (" — 1)x’ € H; (E) is the image of an element
in T7. Hence (¢" — 1)(t — 1)x’ = 0. Also, since there is a positive integer m such
that mx = 0, we also see that m(f — 1)x’ = 0, so that (+ — 1)x’ is in DH;(E) and
iP((t—1)x") = (t — 1)x. This means (1 — 1) Dy = 0, showing (5.1.1).

By the second duality in [5], there is a natural ¢—anti epimorphism 6: DH, (X ) —>
E'BH,(X) whose kernel D* = DH;(X)? is symmetric. Then

e(E*(DH,(X)/D*)) = e(E*E' BH,(X)) = BBH,(X),

where the later inequality is obtained by using Proposition 2.2. Since H, (/\7 JE ) is
A —torsion, we see from Lemma 2.5 that

BBH,(X) = Bo(L) = 2(g —t(L)).

In (5.1.1), the A—submodule D = (i2)~'(D*) ¢ DH, (E) = DM (L) induces a
A—exact sequence 0 — Dy — D — D* — Dy — 0 for a finite A—module D
with (t —1)Dy = 0, so that D is nearly symmetric. Using that iD induces a A—
monomorphism DM (L)/D — DH, ()? )/ D*, we see that there is a A —epimorphism
E*(DH,(X)/D*)— EX(DM(L)/ D), so that

e(E*(DM(L)/ D)) = e(E*(DH,(X)/D*)) £ 2(g — (L))
Thus, we have g = e(E2(DM(L)/D))/2+t(L). ad

For an application of this theorem, it is useful to note that every finite A—module D has
a unique splitting D;_1 @ D, (see [9, Lemma 2.7]), where D;_ is the A—submodule
consisting of an element annihilated by the multiplication of some power of  — 1 and
D, is a cokernel-free A—submodule of corank 0. As a direct consequence of this
property, we see that if D is nearly symmetric, then D, is symmetric. Then we can
obtain the following result from Theorem 5.1.

Corollary 5.2 Forevery r = 1, we have
A S A S MG GG S AT
and the set A" 2] is equal to the set of finitely generated cokernel-free A —modules of

corank r — 1, so that A"2)N A" 2] = @ if r # 7.

Proof We have Aj C AZ, 4 forevery g by aconnected sum of a trivial F° ! —knot. Let

Lo be a trivial F§-link whose module M (Lg) = A" —1 Let K be aribbon F 11 —knot
with M(K)=A/(2t—1,k) foraprime k = 5. This existence is given by Theorem 3.2.
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For every positive integer 7, let L, be an F, —link obtained by a connected sum of L
and n copies of K, and M, =A""1@®(A/(2t—1,k))"*. Then we have M (L,) = M,,.
We show that if M, is the module of an F, éf —link L, then g = n/2. To see this, we note
that ©(M,) =0, DM,, = (A/(2t — 1,k))" = (DM,,), does not admit any non-trivial
symmetric submodule, and e(E2>M,) =n. Hence g = e(E*M,)/2+ t(M,) =n/2
by Theorem 5.1. This means that among the modules M,(g + 1 =n = 2g + 1) there
is a member M), in A}, butnotin Ag. In fact, if Mgy, & Ag, then Mgy is
a desired member. If My € Ag,, then we take the largest n(= g + 1) such that
My € Ay. Since Mygiq ¢ Ay, we have n <2g + 1. Let L’ be an Fg—link with
M(L')= M,,and L" an Fg ;—knot which is a connected sum of L’ and K. Then
My11 = M(L") is in Ay butnotin Ag. The characterization of .A”"[2] follows

directly from Corollary 3.3, so that if r # ¢/, then A"[2]N A" [2] = @. |

6 A graded structure on the first Alexander Z[Z]-modules
of classical links, surface-links and higher-dimensional
manifold-links

An n—dimensional manifold-link with r components is the ambient isotopy class of
a closed oriented n—manifold with » components embedded in the (n + 2)—sphere
S”*2 by alocally-flat embedding. A 1-dimensional manifold-link with r components
coincides with a classical r—link even when we regard it as a virtual link by a result
of M Goussarov, M Polyak and O Viro [1]. Let Ey = S"*2\intN(Y) for a tubular
neighborhood N(Y) of Y in S"*2. Since H,(Ey) = Z” has a unique oriented
meridian basis, we have a unique infinite cyclic covering p: Ey — Ey associated
with the epimorphism y: H;(Ey) — Z sending every oriented meridian to 1. The
first Alexander Z[Z)-module, or simply the module of the manifold-link Y is the A—
module M (Y) = H, (E y)- Let A"[n] denote the set of the modules of n—dimensional
manifold-links with r components by generalizing the case n = 2. Let RAj be the
set of the modules of ribbon Fg —links. By Theorem 3.2 and Corollary 3.3, we have
A'2] = U;‘:(’)RAZ,. Let V. A"[1] denote the set of the modules of virtual r—links. By
Theorem 3.2 and Corollary 4.2, we have V' A"[1] = RA”. For the set A" [1], we further
consider the subset AL [1] = A"[1]NAG. We have Ag[1] C AZ,H[I] C A”[1] for every
g = 0. Taking a split union of classical knots with non-trivial Alexander polynomials,
we see that the set Ag[1] is infinite. We have the following comparison theorem on the
modules of classical r-links, Fg-links and higher-dimensional manifold-links with
r components, which explains why we consider the strictly nested class of classical
and surface-links for the classification problem of the Alexander modules of general
manifold-links.
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Theorem 6.1
AN G AN G SA [II=A"[1]1G RA]_| G RA, = VA[l]

CALG - CA S SAR=APl=Ad] =

Proof By Lemma 2.4 and Corollary 3.3, we have A"[2] D A”"[n] for every n = 1.
To see that A"[n] C A”"[n + 1], we use a spinning construction. To explain it, let
M(Y) € A’[n] for a manifold-link Y. We choose an (n + 2)-ball B"+2 c S"+2
such that the pair (B"*2,Y,) (Y, =Y N B"*2) is homeomorphic to the standard disk
pair (D? x D", 0 x D™), where D" denotes the n—disk and o denotes the origin of
the 2—disk D?. Let B"T2 = cl(S"T2\B"*2) and Y’ = cl(Y\Y,). We construct an
(n + 1)—dimensional manifold link Y+ c §"*3 by

YT =Y'xS'U@Y')x D*c B" 2 x S'U(dB"+?)x D? = §"13.

Then the fundamental groups 7;(Ey) and 71 (Ey+) are meridian-preservingly iso-
morphic by van Kampen theorem and hence M(Y) = M(Y*). This implies that
A'[1] € RA)_, and A"[2] = A"[3] = A"[4] = ---. Let g be an integer with
0<g=r—1. Let £ be a classical (g + 1)-link with M (£) a torsion A-module.
Then M (£) = M (L) for a ribbon Fg 1 _Jink L by the spinning construction. The
A-module M’ = M(¢)® A"~17¢ is in A"[1] as the module of a split union £ of
¢ and a trivial (r —1— g)-link and in RA, C A} as the module of a split union
L+dLmMmmmd”ﬂmmJMwMunm@mmmsz@QM
an F]-link L', then we have t(L") = (r —1) — (r — 1 — g) = g and by Lemma 2.5
Ba(L') =2(s —t(L')) =2(s —g) = 0. Hence s = g. Thus, M’ is not in Apy
This shows that A;_l[l] G Ag[1] and RA;_1 S RAG . This last proper inclusion also
holds for every g = r. In fact, by taking M = (A/(t—1)) '@ (A/(t + 1,a))8 " !
for an odd @ = 3, we have (E2M)+t(M)=(g—r+1)+(r—1) =g. Since M is
cokernel-free and cr (M) =r —1, we have M € R.AZ,\R.AZ,_1 by Theorem 3.2. Next,
let M = M(L) € RA} have (E*M)+t(M) =g and pDM = 0 for an odd prime
p. Let K be an S?—knot with M(K) = A/(t + 1, p) (see Example 3.5 (1)). Then
wehave M' =M @ A/(t +1, p) = M(L#K) € Aj for a connected sum L#K of L
and K. Then we have (E*M') +t(M') =g+ 1 and M’ ¢ RAg by Theorem 3.2.
Thus, RA, G A} for every g. The properness of A[1]& RAJ_, follows by a reason
that the torsion Alexander polynomial of every classical r—link in [8] is symmmetric,
but there is a ribbon S2?-knot with non-symmetric Alexander polynomial (see [10] for
the detail). O
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On the inclusion A"[1] C A”[2], we note that the invariant «(£) in [8] is equal
to the torsion-corank t(L) for every classical r-link £ and every Fg-link L with
ME)=M(L).
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