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Minimizing coincidence numbers
of maps into projective spaces

ULRICH KOSCHORKE

In this paper we continue to study (‘strong’) Nielsen coincidence numbers (which
were introduced recently for pairs of maps between manifolds of arbitrary dimensions)
and the corresponding minimum numbers of coincidence points and pathcomponents.
We explore compatibilities with fibrations and, more specifically, with covering
maps, paying special attention to selfcoincidence questions. As a sample application
we calculate each of these numbers for all maps from spheres to (real, complex,
or quaternionic) projective spaces. Our results turn out to be intimately related to
recent work of D Gonçalves and D Randall concerning maps which can be deformed
away from themselves but not by small deformations; in particular, there are close
connections to the Strong Kervaire Invariant One Problem.

55M20; 55Q40, 57R22

1 Introduction and statement of results

This work is dedicated to the memory of Heiner Zieschang who contributed so substan-
tially to many areas of topology and, in particular, to coincidence theory in codimen-
sions 0 (see for example Bogatyi, Gonçalves, Kudryavtseva and Zieschang [2; 5] and
the references given there, as well as their very clear and helpful survey article [1]).

In this paper we study coincidences in higher codimensions. As in our paper [14] we
will use geometric methods which involve (nonstabilized) normal bordism theory and
path spaces. It was shown in [12] that a similar approach can also be applied fruitfully
to certain knotting and linking phenomena – another subject which Heiner Zieschang
investigated for many years.

Let f1; f2W M ! N be (continuous) maps between smooth connected manifolds
without boundary of arbitrary positive dimensions m and n, M being compact. Our
interest centers around coincidence spaces such as

(1.1) C.f1; f2/D fx 2M j f1.x/D f2.x/g:
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374 Ulrich Koschorke

We want to determine the minimum number of coincidence points

(1.2) MC.f1; f2/ WD minf#C.f 01; f
0

2/ j f
0

1 � f1; f
0

2 � f2g

and the minimum number of coincidence components

(1.3) MC C.f1; f2/ WD minf#�0.C.f
0

1; f
0

2// j f
0

1 � f1; f
0

2 � f2g

(compare [14] for the details concerning these and the following definitions).

Generically the map .f1; f2/W M !N �N is smooth and transverse to the diagonal
�D f.y;y/ 2N �N j y 2N g. Then the coincidence locus

(1.4) C D C.f1; f2/ D .f1; f2/
�1.�/ � M

is a closed smooth .m�n/–dimensional submanifold of M . Its normal bundle �.C;M /

is described by a canonically arising vector bundle isomorphism

(1.5) xg#
W �.C;M /Š f �1 .TN /jC :

Moreover the obvious fiber projection from the space

(1.6) E.f1; f2/D f.x; �/ 2M �P .N / j �.0/D f1.x/; �.1/D f2.x/g

(where P .N / denotes the set of continuous paths, equipped with the compact–open
topology)) to M allows a canonical section zg over C :

(1.7) zg.x/ WD .x; constant path at f1.x/D f2.x//; x 2 C :

The resulting bordism class

(1.8) !#.f1; f2/ D ŒC; zg; xg#� 2 �#.f1; f2/

in the bordism set of such triples is our key invariant (see [14] for details).

1.9 Definition

(i) We call a pathcomponent A of the space E.f1; f2/ strongly essential if the
corresponding (partial) bordism class

!#
A.f1; f2/ WD ŒCA WD zg

�1.A/; zgjCA; xg
#
j�

is nontrivial.

(ii) We define the strong Nielsen number N #.f1; f2/ of f1 and f2 to be the number
of strongly essential pathcomponents A 2 �0.E.f1; f2//.
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Minimizing coincidence numbers of maps into projective spaces 375

1.10 Theorem (cf [14, 1.2 and 3.1]) The finite number N #.f1; f2/DN #.f2; f1/

depends only on the homotopy classes of f1 and f2 . We have:

0 � N #.f1; f2/ � MC C.f1; f2/�MC.f1; f2/ �1 :

If n ¤ 2, then also MC C.f1; f2/ � # �0.E.f1; f2/; if .m; n/ ¤ .2; 2/, then
MC.f1; f2/� #�0.E.f1; f2/ or MC.f1; f2/D1.

(Recall from [13, 2.1] that the cardinality #�0.E.f1; f2// can be interpreted as the
cardinality of a well known Reidemeister set.)

1.11 Definition We call the pair .f1; f2/ loose if the maps f1; f2 can be deformed
away from one another or, equivalently, if M.C /C.f1; f2/D 0.

We have the obvious implications

(1.12) .f1; f2/ is loose H) !#.f1; f2/D 0 H) N #.f1; f2/ D 0:

1.13 Question Do the converse implications hold? More generally: does the min-
imum coincidence number MC C.f1; f2/ coincide with the strong Nielsen number
N #.f1; f2/?

For example if N #.f1; f2/ D 0 then there are individual nulbordisms for each CA

(cf 1.9); but do they fit together to yield a disjointly embedded nulbordism for all of
C D q CA ?

The answer to Question 1.13 is positive for maps between spheres.

1.14 Example (cf [14, 1.12]) Consider maps f1; f2W S
m! Sn where m; n � 1,

and let A denote the antipodal involution. Then

MC C.f1; f2/DN #.f1; f2/D

�
0 if f1 �Aıf2 I

#�0.E.f1; f2// otherwise :

1.15 Remark Clearly N #;MC C and MC coincide for all f1; f2W M !N when-
ever m< n or, in case M D Sm , whenever mD 1 or nD 1 (compare eg [14, 1.3]).
Thus we will be mainly interested in situations where m� n� 2.

In this paper we give a new interpretation of our Nielsen numbers in terms of (liftings
to) covering spaces (see Section 3 below). As a sample application we compute Nielsen
and minimum coincidence numbers for all pairs of maps from spheres to projective
spaces.
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Let KD R;C or H denote the field of real, complex or quaternionic numbers, and
let d D 1; 2; or 4 be its real dimension. Let KP .n0/ and Vn0C1;2.K/, respectively,
denote the corresponding space of lines and of orthonormal 2–frames, respectively, in
Kn0C1 . The real dimension of N DKP .n0/ is n WD d � n0 .

Consider the diagram
(1.16)

: : : �! �m.Vn0C1;2.K//
pK�
����! �m.S

nCd�1/
@K
����! �m�1.S

n�1/ �! : : :??yp�

??yE

�m.KP .n0// �m.S
n/

determined by the canonical fibrations p and pK ; E denotes the Freudenthal suspen-
sion homomorphism.

In view of Example 1.14 and Remark 1.15 above (as well as of example 1.12 and the
appendix in [14]) the following result determines our Nielsen and minimum numbers
for all f1; f2W S

m!KP .n0/; m; n0 � 1. (Proofs will be given in Section 6 below).

1.17 Theorem Assume m; n0 � 2. Given Œfi � 2 �m.KP .n0//, there is a unique
homotopy class Œ zfi � 2 �m.S

nCd�1/ such that p�.Œ zfi �/ � Œfi � lies in the image of
�m.KP .n0� 1//; i D 1; 2. (Since this image is isomorphic to �m�1.S

d�1/, we may
assume that zfi is a genuine lifting of fi when KD R or when m > 2 and KD C/.
Define Œf 0i � WD Œpı zfi � 2 �m.KP .n0//.

Each pair of homotopy classes Œf1�; Œf2� 2 �m.KP .n0// satisfies precisely one of the
seven conditions which are listed in Table 1.18 below, together with the corresponding
Nielsen and minimum numbers.

Condition N #.f1;f2/ MC C.f1;f2/ MC.f1;f2/

1) f 01 � f 02; Œ
zf2� 2 ker @K 0 0 0

2) f 01 � f 02; Œ
zf2� 2 ker Eı@K� ker @K 0 1 1

3) K D R; f 0
1
� f 0

2
; zf2 6�Aı zf2 1 1 1

4) KDR; f 01 6� f
0

2; Œ
zf1�� Œ zf2� 2E.�m�1.S

n�1// 2 2 2

5) K D R; Œ zf1�� Œ zf2� 62 E.�m�1.S
n�1// 2 2 1

6) K D C or H; Œ zf1� D Œ zf2� 62 ker Eı@K 1 1 1

7) K D C or H; Œ zf1�¤ Œ zf2� 1 1 1
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Minimizing coincidence numbers of maps into projective spaces 377

1.18 Table Nielsen and minimum coincidence numbers of all pairs of maps f1; f2W

Sm!KP .n0/; m; n0 � 2: replace each (possibly base point free) homotopy class Œfi �

by a base point preserving representative and read off the values of N # and M.C /C .
(Here f 0

1
� f 0

2
means that f 0

1
; f 0

2
are homotopic in the basepoint free sense; A denotes

the antipodal map.)

1.19 Example (KDR; mD 11; nD 6, compare Gonçalves and Wong [8, Example
2.4]) According to Toda [16] and Paechter [15] we have in (1.16)

1

2
H W �11.S

6/
Š
�! ZI �10.S

5/Š Z2I �10.V7;2/D 0

where H denotes the Hopf invariant. Thus @K is surjective and E � 0 here.

Given maps f1; f2W S
11 ! RP .6/, the numbers N #.f1; f2/ and MC C.f1; f2/

differ precisely if f1 and f2 are homotopic and H. zfi/� 2.4/; i D 1; 2. In this case
!#.f1; f2/D 0 but the pair .f1; f2/ is not loose. �

In [13] we studied the looseness obstruction

(1.20) z!.f1; f2/ 2 �m�n.E.f1; f2/I z'/

which lies in a manageable normal bordism group (or, equivalently, in a stable homotopy
group) and is often accessible to computations. However already when N is a sphere
z! turned out not to be a complete looseness obstruction. In order to remedy this we
introduced !# as a “desuspended”version of z! which captures also nonstabilized
geometric coincidence data. As the counterexamples in 1.19 show we have not quite
desuspended far enough: if Œf1� D Œf2� 2 �11.RP .6// then the precise looseness
obstruction for .f1; f2/ is the homotopy class @R.Œ zf1�/, but !#.f1; f2/ is only as
strong as the (once!) suspended value E.@R.Œ zf1�/.

Example 1.19 implies that the first part of the first question as well as the second
question in 1.13 does not always have a positive answer. However, if M D Sm and N

is a projective space then N # has the following property (analogous to a norm on a
vector space).

1.21 Theorem Given any maps f1; f2W S
m ! KP .n0/ .where m; n0 � 1 and

KDR;C or H/, we have:

!#.f1; f2/D 0 if and only if N #.f1; f2/D 0

This follows from the fact that for m; n0 � 2 the Nielsen number vanishes only in
the selfcoincidence setting where f1 � f2 and automatically all pathcomponents of
E.f1; f2/ but one are strongly inessential (cf 5.1).
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Observe also that the weakness of the !# –invariant illustrated by Example 1.19 occurs
here only in the selfcoincidence setting. In contrast, in the root setting (where f2 is
constant) !#.f1;�/ is a complete looseness obstruction for all Œf1� 2 �m.KP .n0//

(compare [14, 6.5]).

For KDR let us give a more systematic treatment of the case 2 in Table 1.18.

1.22 Theorem Given a map f W Sm ! RP .n/; m; n � 2, let zf W Sm ! Sn be a
lifting. Then the following conditions are equivalent:

(1) !#.f; f /D 0, but .f; f / is not loose;

(2) @R.Œ zf �/¤ 0, but Eı@R.Œ zf �/D 0;

(3) . zf ; zf / is loose, but .f; f / is not loose;

(4) MC. zf ; zf / <MC.f; f /;

(5) MC C. zf ; zf / <MC C.f; f /;

(6) . zf ; zf / is loose but not by a small deformation.

This result settles a question raised in [14, 1.6]. More importantly, however, it relates
the completeness question concerning !# –invariants to fascinating recent work of D.
Gonçalves and D. Randall. They produced many maps zf W Sm! Sn which cannot be
deformed away from themselves by small homotopies but only via large deformations
which use all the space available in Sn (cf 1.22 (6)). For example all Whitehead
products of the form

Œ zf �D Œ�4kC2; �4kC2� 2 �8kC3.S
4kC2/; k D 1; 2; : : : ;

have this property (cf Gonçalves and Randall [6]). Moreover the existence of such
maps in dimension .m; n/ D .4k � 2; 2k/; k > 4, turns out to be equivalent to the
Strong Kervaire Invariant One Problem, ie, the existence of an element of order 2 with
Kervaire invariant one in the stable homotopy group �S

2k�2
(cf [7]); examples of such

maps exist in dimension 2k D 16; 32; 64.

2 Covering spaces and the pathcomponents of E.f1; f2/

Throughout this paper M;N; zN , and Q will denote smooth connected manifolds
(having the Hausdorff property and countable bases) without boundary, M being
compact; f1; f2; f; xf ; : : : W M !N will be (continuous) maps.

In this section we study the set �0.E.f1; f2// of pathcomponents of E.f1; f2/ (cf
(1.6)) with the help of coverings of N . We will need this when we discuss Nielsen
decompositions in Section 3.
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Consider the diagram

(2.1)

zN??yp

M
f1;f2
����! N

where p is a covering map. Pick base points x0 2M; y0i WD fi.x0/ 2N; i D 1; 2,
and zy02 2 p�1.fy02g/ � zN . For any path � joining y01 to y02 in N (ie .x0; �/ 2

E.f1; f2// define the subset

(2.2) �� WD fŒ�
�1.f1ı�/�.f2ı�/

�1� 2 �1.N;y02/ j Œ� � 2 �1.M;x0/ g

of �1.N;y02/, which consists of all homotopy classes of concatenated loops of the
form

y02
��1

����! y01

f1ı�
����! y01

�
����! y02

f2ı�
�1

�����! y02:

2.3 Example

(i) If fi�.�1.M //D 0; i D 1; 2 (eg, if M is simply connected), then �� D f0g;

(ii) if �1.N / is abelian and f1.x0/D f2.x0/ then

�� D .f1��f2�/.�1.M;x0//I

(iii) (root case) if f2 is constant, then �� is conjugated, via Œ� �, to f1�.�1.M;x0//;
whenever �1.N / is not commutative, here (and in other cases) �� may depend
strongly on � .

Now consider the map

 W pr�1.fx0g/D f.x0; �/ 2E.f1; f2/g �! p�1.fy0;1g/ � zN

defined on the fiber of the obvious projection prW E.f1; f2/!M (cf (1.6)) as follows:
let z� W I ! zN be the unique (continuous) lifting of � such that z�.1/D zy02 and put
 .x0; �/ WD z�.0/. (The reason for “lifting backwards”will be explained in remark 4.5.)
There is also the surjective map

qW pr�1
� .fx0g/ �! �0.E.f1; f2//

which assigns, to each element .x0; �/, the corresponding pathcomponent of E.f1; f2/.
When does  factor through q?
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2.4 Proposition  induces a welldefined bijection

‰W �0.E.f1; f2// ! p�1.fy0;1g/

if and only if

(�) �� D p�.�1. zN ; zy02// for all .x0; �/ 2E.f1; f2/

(This condition holds for example if M and zN are simply connected).

Proof Let .x0; �
0/; .x0; �/ be elements of E.f1; f2/ based at x0 .

First assume that they can be joined by a path .�;‚/ in E.f1; f2/. Then ‚ yields
homotopies from � 0 to .f1ı�/�.f2ı�/

�1 and from ��1� 0 to ��1.f1ı�/�.f2ı�/
�1

which leave the endpoints fixed. Clearly  .� 0/ D  .�/ precisely if ��1� 0 lifts to
a closed loop in zN starting and ending in zy02 . Thus  induces a welldefined map
on �0.E.f1; f2// if and only if �� � p�.�1. zN ; zy02// for all .x0; �/ 2 E.f1; f2/.
Surjectivity follows automatically since zN is connected.

Next suppose only that  .� 0/ D  .�/. If �� � p�.�1. zN ; zy02//, then Œ��1� 0� D

Œ��1.f1ı�/�.f2ı�/
�1� for some Œ� � 2 �1.M;x0/; this yields a path in E.f1; f2/

joining .x0; �
0/ to .x0; �/. Thus condition (�) in 2.4 implies also the injectivity of ‰ .

On the other hand, given .x0; �/ 2E.f1; f2/ and Œ� � 2 p�.�1. zN ; zy02//, put � 0 D �� .
If ‰ is injective, then there is a path in E.f1; f2/ from .x0; �

0/ to .x0; �/, and we
conclude again that Œ� �D Œ��1� 0� (and hence all of p�.�1. zN ; zy02//) lies in �� .

In the special case when fi�.�1.M //D 0; i D 1; 2, condition (�) in 2.4 holds if and
only if zN is simply connected (cf (2.2) and 2.3).

3 Nielsen numbers and covering spaces

In this section we use liftings to covering spaces in order to give a new description of
our Nielsen numbers. As a sample application we discuss maps into spherical space
forms.

In the setting of diagram (2.1) we assume that

(i) the group G of covering transformations of the covering space pW zN !N acts
transitively on the fibers of p (or, equivalently, p�.�1. zN // is a normal subgroup
of �1.N //; and

(ii) there are liftings zfi W M! zN of fi (or, equivalently, fi�.�1.M /�p�.�1. zN ///;

i D 1; 2.
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Any choice of such maps zfi (satisfying pı zfi D fi ) determines a homeomorphism

(3.1) �W E.f1; f2/  ! qg2G E.gı zf1; zf2/

(cf (1.6)) defined by �.x; �/D .x; z�/; .x; �/2E.f1; f2/, where z� is the unique lifting
of the path � such that z�.1/D zf2.x/; here the disjoint components E.gı zf1; zf2/ on
the right hand side correspond to open subsets of E.f1; f2/.

�, together with the obvious tangent isomorphism T zN Š p�.TN /, induces the map

(3.2) ��W �
#.f1; f2/ �!

Y
g2G

�#.gı zf1; zf2/:

(cf (1.8)). Clearly

(3.3) ��.!
#.f1; f2// D .!#.gı zf1; zf2//g2G

(cf (1.4)–(1.8)) and ��.Œ��/D .Œ��/g2G . Possibly �� is neither onto (eg when G is
infinite) nor injective (since the disjointness requirements in the definition of �#.f1; f2/,
concerning for example embedded bordisms, may not be preserved). However, if
E.gı zf1; zf2/ is pathconnected for all g 2G , ie, if the condition (�) in 2.4 holds, then
��.!

#.f1; f2// keeps track of strongly essential Nielsen components (compare 1.9).
We conclude:

3.4 Theorem Let pW zN !N be a covering space such that the group G of covering
transformations acts transitively on the fibers and let zfi W M ! zN be a lifting of
fi ; i D 1; 2: Assume that condition (�) (of Proposition 2.4) holds.

Then #�0.E.f1; f2//D #G and the strong Nielsen number of .f1; f2/ (cf 1.9) is given
by

N #.f1; f2/ D #fg 2G j !#.gı zf1; zf2/ ¤ 0g:

It is easy to see that condition (�) and the lifting condition are independent. For
example if zf W M ! zN and p are nontrivial coverings and �1.N / is abelian, then
f1; f2 WD pı zf have liftings, but (�) fails to hold (cf 2.3 (ii) and 2.4).

On the other hand consider the case where �1. zN /D 0 and f1.x0/D f2.x0/DW y0 .
Here G acts transitively; moreover (�) is satisfied if and only if f1� D f2� maps
�1.M;x0/ into the center of �1.N;y0/; thus if for example �1.N;x0/ is abelian and
f1 D f2 is a non-universal covering map, then no liftings zfi exist, but condition (�)
holds.

In any case all the assumptions in Theorem 3.4 are satisfied whenever both M and zN
are simply connected.
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3.5 Corollary (Spherical space forms) Given a free smooth action of a nontrivial
finite group G on Sn; n � 1, let N D Sn=G be the quotient manifold. Consider
maps f1; f2W M ! Sn=G where (i) M D Sm; m� 2; or (ii) M is simply connected,
having dimension m< 2n� 2.

Then f1 and f2 are homotopic whenever N #.f1; f2/¤ #G .

In particular, if n is odd then

N #.f1; f2/DMC C.f1; f2/D

(
#G if f1 6� f2 I

0 if f1 � f2 :

Proof Theorem 3.4 offers a new and more powerful approach when compared to the
treatment in [14] (see statement 1.13 there and its proof (preceding 6.13) which works
only if f1 or f2 is not coincidence producing, cf 5.8 (iii) below).

Our claim holds trivially when nD 1 since then f1 and f2 are nulhomotopic. Thus
we may assume that �1.S

n/D 0. Suppose N #.f1; f2/ < #G . Then there exist liftings
zf1; zf2W M ! Sn such that !#. zf1; zf2/D 0 (cf 3.4). Therefore . zf1; zf2/ is loose; this

follows from 1.14 in case (i) and from [14, 1.2 (iii)], and [13, 1.10] in case (ii). After a
homotopy zf1; zf2 are coincidence free. Thus zf1 is homotopic to Aı zf2 , and so is gı zf2

for every nontrivial element g 2G (cf Dold and Gonçalves [4, 2.10], or the beginning
of Section 8 in [13]; here A denotes the antipodal map). We conclude that

f1 D pı zf1 � pıgı zf2 D pı zf2 D f2:

If n is odd, f1 can be pushed away from itself along a nowhere zero vector field. In
view of Theorem 1.10 this completes the proof.

4 Fibrations and the !#–invariants

In this section we generalize �� (cf (3.2) and (3.3)). We use this to explore compatibil-
ities of our invariants with fibrations, eg, with the natural projections from spheres to
complex or quaternionic projective spaces.

Consider commuting diagrams

(4.1) Q

p

��
M

zfi

=={{{{{{{{ fi // N ;
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i D 1; 2, where p is a smooth locally trivial fibration. We want to compare the
!# –invariants of .f1; f2/ and of the pair . zf1; zf2/ of liftings.

Given a bordism class

c D Œ C �M; zgW C !E.f1; f2/; xg
#� 2 �#.f1; f2/

(compare (1.4)–(1.8)), let H W C �I!N be the homotopy from f1jC to f2jC which
is adjoint to zg , and let zH W C �I!Q be a lifting of H which ends at zH . ; 1/D zf2jC .
Then zf1jC and zH . ; 0/ determine sections of the pulled back fibration .f1jC /

�.p/.
Consider their transverse intersection locus C 0�C �M . The normal bundle �.C 0;C /
is canonically isomorphic to . zf1jC

0/�.TF /, the pullback of the tangent bundle along
the fibers of p ; together with xg#W �.C;M /Š f �

1
.TN /jC this yields a vector bundle

isomorphism

(4.2)
'
g

#
W �.C 0;M /Š zf �1 .TQ/jC 0

(compare (1.5)). Moreover the adjoint of zH j.C 0 � I/ determines a section
�
g over C 0

of the fibration E. zf1; zf2/!M (compare (1.6)). We obtain the bordism class

(4.3) �e�.Œc�/ D Œ C 0 �M;
�
g;
'
g

#
� 2 �#. zf1; zf2/ :

4.4 Proposition This construction yields a welldefined map

�e�W �
#.f1; f2/ �!�#. zf1; zf2/

which takes !#.f1; f2/ to !#. zf1; zf2/ and Œ�� to Œ��. In particular, if !#.f1; f2/ is
trivial then so is !#. zf1; zf2/.

In the special case where p is a covering map as in (3.1) and (3.2) �e� is the component
map of �� corresponding to the unit e of the group G of covering transformations.

The proof is fairly straight forward.

4.5 Remark In the definitions of  (cf 2.4), � (cf (3.1)), and �e� (cf (4.3)) we
lifted paths and homotopies “backwards”, starting at the end. This makes our construc-
tions more easily compatible with our convention to describe normal bundles such as
�.C;M / in terms of f �

1
.TN / (and not of f �

2
.TN /, cf (1.5)) and helps us to avoid

reframings as the ones necessitated for example in the definitions of ˛ and ˇ in [14,
(48)–(50)].

The following sample application of Proposition 4.4 will be needed in the proof of
Theorem 1.17.
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4.6 Corollary Let pW Sdn0Cd�1!KP .n0/; n0� 1, be the canonical fibration where
K D C or H (with real dimension d D 2 or 4/. Assume that M D Sm or that M

has dimension m < 2dn0 � 2. If the maps fi W M ! KP .n0/ allow genuine liftings
zfi to Sdn0Cd�1 (ie pı zfi D fi/; i D 1; 2, and if !#.f1; f2/D 0, then f1 and f2 are

homotopic.

Proof If !#. zf1; zf2/D0 (in view of 4.4) then the pair . zf1; zf2/ is loose and zf1�Aı zf2

(cf [14, 1.12, 1.14], [13, 1.2 (iii)], 1.10 and [4, 2.10]). Therefore f1 � pıAı zf2 D

pı zf2 D f2 .

5 Removing selfcoincidences

In view of results such as Corollaries 3.5 and 4.6 a closer look at the selfcoincidence
setting seems to be in order. Here we are dealing essentially with pairs of the form
.f; f /. Only the pathcomponent of E.f; f / which contains all elements of the
form .x; constant path/ (cf (1.6)) can possibly be strongly essential (cf 1.9). As a
consequence our invariants !# and N # turn out to be not as powerful here as in the
root case (where f1 or f2 is constant, compare eg [14, 6.5 b) (iv)]). Furthermore the
second part of the first question in 1.13 is easily answered.

5.1 Proposition Let f1; f2W M ! N be homotopic. Then MC C.f1; f2/ � 1;
moreover !#.f1; f2/ is trivial if and only if N #.f1; f2/D 0. In the special case where
M is a sphere MC.f1; f2/ equals MC C.f1; f2/.

Proof The coincidence space C.f1; f1/DM is pathconnected by assumption. If
.f1; f2/ is a generic pair of sufficiently close maps then CA (cf 1.9 (i)) is empty for all
but possibly one pathcomponent A of E.f1; f2/; the corresponding partial bordism
class, ie !#.f1; f2/, vanishes precisely when N #.f1; f2/D 0. If f1 and f2 are related
by an arbitrary (possibly “large”) homotopy, apply [14, 2.1].

If M D Sm the vector bundle f �
1
.TN / allows a section with at most one zero. This

yields a map f 0
2

such that #C.f1; f
0

2
/� 1 and f 0

2
� f2 .

Let � � TN be a sub–vectorbundle and let � 0 denote the image of its total space under
the composed diffeomorphism

(5.2) TN
Š
 ����

p1�

�.�;N �N / Š U � N �N

where U is a tubular neighbourhood of the diagonal � in N �N and p1� denotes
the vector bundle isomorphism induced by the first projection p1W N �N !N .
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5.3 Definition Given a map f W M ! N , we say .f; f / is loose by a small
�–deformation if for every metric on N and for every � > 0 there exists an �–
approximation xf W M ! N of f such that .f; xf /.M / � � 0 � �. If this holds
for � D TN we simply say that .f; f / is loose by a small deformation (compare [4]
or [7, Section 1]).

A homotopy lifting argument shows that .f; f / is loose by a small �–deformation
precisely if the pulled back vector bundle f �.�/ has a nowhere vanishing section over
M (compare [4]).

If M D Sm we can approach such phenomena using standard tools of homotopy
theory.

Assume m; n� 2 and consider the commuting diagram

(5.4)
�m.S

n/

: : : �m.STN / //

��

�m.N /
@ //

!#
77oooooo

�m�1.S
n�1/

incl� //

j�

��

E

OO

�m�1.STN /

��

: : : �m

�
zC2.N /

�
// �m.N /

@0 // �m�1 .N �fx0g/
incl0� // �m�1

�
zC2.N /

�
where the fibrations of the space STN of unit tangent vectors and of the configuration
space

(5.5) zC2.N / D f.y1;y2/ 2N �N j y1 ¤ y2g D N �N ��

over N yield the exact horizontal sequences; incl; incl0 (and E , resp.) denote fiber
inclusions (and the Freudenthal suspension, resp.). The downward pointing vertical
arrows are induced by a diffeomorphism as described in (5.2); in particular, j denotes
the inclusion of the boundary sphere of an n–ball in N around the basepoint x0 .

Given a homotopy class Œf �2�m.N /, how does its image under the boundary operator
@ in (5.4) compare to our looseness obstruction !#.f; f /? Recall that the path space
approach yields no added information in the selfcoincidence setting; hence !#.f; f /

is just as strong as the invariant

(5.6) !#.f; f / WD pr�.!
#.f; f // 2 �m.S

n/

defined by the framed bordism class of the zero set Z of a generic section s of
f �.TN / (cf [14, (43)–(45) and section 6]). We may assume that Z lies in the interior
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of a small ball B � Sm (over which f �.TN / is trivialized) and that s maps the
boundary @B Š Sm�1 to unit vectors (and thus defines a map sjW Sm�1 ! Sn�1/.
Then @.Œf �/D Œsj � and Z is framed bordant to sj�1.f�g/, � a regular value of sj. We
conclude:

5.7 Proposition For all Œf � 2 �m.N /, we have

!#.f; f / D ˙Eı@.Œf �/:

Given Œf � 2 �m.N /, consider the following conditions:

5.8

(i) .f; f / is loose by a small deformation; equivalently, @.Œf �/D 0;

(ii) .f; f / is loose (by any deformation);

(iii) there exists any map xf W Sm!N such that .f; xf / is loose (we say that f is not
coincidence producing, cf Brown and Schirmer [3]); equivalently, @0.Œf �/D 0;

(iii 0 ) !#.f; f /D 0.

Clearly (i) implies (ii). In turn, (ii) implies both (iii) and (iii 0 ).

5.9 Proposition The conditions (i) and (iii) are equivalent for all Œf � 2 �m.N / if and
only if the homomorphism

.j�; incl�/W �m�1.S
n�1/ �! �m�1.N �fx0g/˚�m�1.STN /

is injective (where incl denotes the fiber inclusion).

Indeed, this is the precise condition for the kernels of @ and @0D j�ı@ in (5.4) to agree.
In view of (5.6) and 5.7 we obtain similarly

5.10 Proposition The conditions (i) and (iii 0 ) are equivalent for all Œf � 2 �m.N / if
and only if the homomorphism

.E; incl�/W �m�1.S
n�1/ �! �m.S

n/˚�m�1.STN /

is injective.

In particular, if j� is injective on im @D ker incl� but E is not, then there is a map
f W Sm!N such that !#.f; f /D 0 but .f; f / is not loose by any deformation. In
the next section we will study such examples systematically in case N is a projective
space. They show that even the nonstabilized “desuspended”invariant !# (compare
[13]) can be (at least one desuspension) short of yielding complete looseness criteria.
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6 Maps into projective spaces

In this section we apply the previous discussion to the case M D Sm; N DKP .n0/

(where KDR; C or H), exploiting natural compatibilities with the canonical fiber
map

(6.1) pW SnCd�1
�!KP .n0/ :

This leads to a proof of Theorems 1.17, 1.21, and 1.22.

First we show that the inequalities of Theorem 1.10 hold here in full generality, without
an exception at the dimension nD 2 which is so critical in classical fixed point and
coincidence theory (cf Jiang [10; 11] and also [1; 2], and [5]).

6.2 Proposition For all maps f1; f2W S
m ! KP .n0/ (where m; n0 � 1 and K D

R; C or H/ we have:

(i) MC C.f1; f2/ � #�0.E.f1; f2//; and

(ii) MC.f1; f2/ � #�0.E.f1; f2// or MC.f1; f2/D1.

Proof In view of 1.10, 1.14, 1.15, and Jezierski [9, 4.0], 4.0 (see also [14, 6.14]) we
need to consider only the case when m> 2, N DRP .2/. Then �m�1.S

n�1/D 0 and
hence .f2; f2/ is loose (cf (5.4) and 5.8).

Thus MC C.f1; f2/ DMC C.f;�/ where Œf � D Œf1�� Œf2� (by [14, 6.2]). Given
liftings zf ; z�W Sm ! S2 of f and of the constant map, C. zf ; z�/ D zf �1.f�g/ is
generically a framed submanifold which we may make connected by a suitable surgery.
Taking also the inverse image of a nearby (and, after an isotopy, antipodal point) we see
that f �1.f�g/ consists of two “parallel” connected components. Hence MC C.f;�/ �

2 D #�0.E.f1; f2// (cf [13, 2.1]).

For the remainder of this section we assume that m; n0 � 2. Comparing the exact
homotopy sequences of the fibrations p (cf (6.1)) and pjW Sn�1! KP .n0 � 1/ we
see that �m.KP .n0// is the direct sum of p�.�m.S

nCd�1// and of the image of
�m.KP .n0� 1//; moreover p� is injective. Thus

(6.3) Œfi � D Œpı zfi � C Œf 00i �

where .f 00i ;�/ is loose (for � 62KP .n0� 1//; i D 1; 2. Clearly the pairs .f1; f2/ and
.f 0

1
; f 0

2
/ WD .pı zf1;pı zf2/ have identical !# –invariants as well as Nielsen and minimum

numbers (cf [14, 6.1 and 6.2]). Moreover since f 00i factors through KP .n0 � 1/ the
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corresponding pullback of the sphere bundle ST .KP .n0// allows a section; thus
@.Œf 00i �/D 0 and

(6.4) @.Œfi �/ D @.Œpı zfi �/ :

This reduces the proof of Theorem 1.17 to the case where fi D pı zfi D f
0

i ; i D 1; 2.

Now apply the discussion of the diagram (5.4) to the case N D KP .n0/. Clearly
j� is injective here since j agrees with pjSn�1 up to the homotopy equivalence
KP .n0/�fx0g �KP .n0� 1/. Thus the three looseness conditions (i), (ii), and (iii) in
5.8 are equivalent for all Œf � 2 �m.KP .n0/ (cf 5.9). They hold precisely if @.Œf �/D 0

and, in case Œf � D p�.Œ zf �/, precisely if @K.Œ zf �/ D 0. Indeed, the exact horizontal
sequences in the diagrams (1.16) and (5.4) are closely related via maps induced by p ;
in particular,

(6.5) @K D @ ı p� :

Here we observe that the vector bundle p�.T KP .n0// is isomorphic to the orthogonal
complement

(6.6) �K WD f.x; v/ 2 SnCd�1
�Kn0C1

j v ?K �x g � TSnCd�1

of the K–line bundle over SnCd�1 which is spanned by the locus vectors; eg �RDTSn .
The corresponding space S.�K/ of unit vectors is the Stiefel manifold Vn0C1;2.K/.

In view of Proposition 5.1 the following result implies Theorem 1.22.

6.7 Theorem Assume m; n0 � 2 and K D R; C or H . Given Œf � 2 �m.KP .n0//,
let Œ zf � 2 �m.S

nCd�1/ be the corresponding component in the decomposition (6.3).
Then the following conditions are equivalent:

(i) .f; f / is loose by a small deformation;

(ii) .f; f / is loose by any deformation;

(iii) f is not coincidence producing (cf 5.8, iii);

(iv) . zf ; zf / is loose by a small �K –deformation (cf 5.3);

(v) @K.Œ zf �/D 0.

(Note that “loose by a small �R –deformation” is the same as “loose by a small defor-
mation”).

Furthermore, consider also the following (possibly weaker) conditions:

(iii 0 ) !#.f; f /D 0 ;

Geometry & Topology Monographs, Volume 14 (2008)



Minimizing coincidence numbers of maps into projective spaces 389

(iii 00 ) !#. zf ; zf /D 0 ;

(iv 0 ) . zf ; zf / is loose; and

(v 0 ) E.@K.Œ zf �//D 0 .

If KDR, then all four conditions (iii 0 ) – (v 0 ) are equivalent. If KDC or H , we still
have the following implications:

.v 0 / ” .iii 0 / H) .iii 00 / ” .iv 0 / :

Proof The first claim follows from the previous discussion and is based essentially
on 5.9, (1.16), and the remark following 5.3.

If K D R then zf is a genuine lifting of f to a double cover. Clearly !#.f; f / D

!#. zf ; zf / (cf (5.6)). But these invariants contain just as much information as !#.f; f /

and !#. zf ; zf /. In view of 1.14, 4.4, 5.7, and (6.5) this completes the proof.

Proof of Theorems 1.17 and 1.21. In view of the discussion of (6.3) we may assume
that fi D f

0
i D pı zfi ; i D 1; 2. Also note that

#�0.E.f1; f2//D #�1.KP .n0//D

(
2 if K D R ;

1 if K D C or H ;

since �1.S
m/D 0 (cf [13, 2.1]).

First consider the case where N #.f1; f2/ < #�0.E.f1; f2//. Then f1 � f2 and
MC C.f1; f2/DMC.f1; f2/� 1 (cf 3.5, 4.6, and 5.1). According to Theorem 1.10
(and 5.1; 3.4, 1.14) we can distinguish (and characterize) the three special cases:

(1) N #.f1; f2/DMC C.f1; f2/D 0 (ie f1 � f2 and .f2; f2/ is loose);

(2) N #.f1; f2/<MC C.f1; f2/D1 (or, equivalently, f1�f2 and !#.f2; f2/D0

but .f2; f2/ is not loose);

(3) N #.f1; f2/DMC C.f1; f2/D 1 (or, equivalently, KDR; f1 � f2 and zf2 is
not homotopic to Aı zf2 ).

In view of Theorem 6.7 (and of the injectivity of p� ) these are just the first three cases
in Table 1.18.

In the remaining cases N #.f1; f2/ is equal to #�0.E.f1; f2// and hence also to
MC C.f1; f2/ and to MC.f1; f2/ (unless MC.f1; f2/ D1, cf 1.10 and 6.2). If
KDC or H and f1; f2 have only finitely many coincidence points we may deform zf1

away from zf2 along the fibers of p ; hence zf1 �Aı zf2; f1 � f2 and MC.f1; f2/� 1
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(cf 5.1 and [4, 2.10]). Finally assume K D R. According to 5.1 and [14, 6.2],
MC.f1; f2/ <1 if and only if MC.f1 � f2;�/ (and hence MC. zf1 �

zf2; z�// is
finite. Then zf1 �

zf2 is a suspended map (cf [14, 1.12 or 6.10]). Conversely any
suspended map (in the unreduced sense) maps only the two suspension poles in Sm to
the suspension poles in Sn , ie, to the fiber of the corresponding point in RP .n/. This
establishes Table 1.18.
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