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Finite groups acting on 3–manifolds and cyclic branched
coverings of knots

MATTIA MECCHIA

We are interested in finite groups acting orientation-preservingly on 3–manifolds
(arbitrary actions, ie not necessarily free actions). In particular we consider finite
groups which contain an involution with nonempty connected fixed point set. This
condition is satisfied by the isometry group of any hyperbolic cyclic branched covering
of a strongly invertible knot as well as by the isometry group of any hyperbolic 2–
fold branched covering of a knot in S3 . In the paper we give a characterization of
nonsolvable groups of this type. Then we consider some possible applications to the
study of cyclic branched coverings of knots and of hyperelliptic diffeomorphisms of
3–manifolds. In particular we analyze the basic case of two distinct knots with the
same cyclic branched covering.

57M60; 57M12, 57S17

To the memory of Heiner Zieschang

1 Introduction

The following problem has been diffusely studied in the literature: which finite groups
admit an action on a homology 3–sphere. The choice of the coefficients of the homology
changes completely the situation.

If a finite group G acts freely on an integer homology 3–sphere (and in particular on the
standard 3–sphere S3 ), the group G has periodic cohomology of period four. Milnor
[14] gave a list of groups which are candidates for free actions on integer homology
3–spheres. This list consists of the finite subgroups of SO.4/ and the Milnor groups
Q.8n; k; l/. The recent results of Perelman imply that no group of type Q.8n; k; l/

acts on S3 [15; 16]. On the contrary some Milnor groups admit an action on an integer
homology 3–sphere [13].

If we admit arbitrary actions, the list of candidates is again comparable with the list
of finite subgroups of SO.4/. For example Reni and Zimmermann (see Zimmermann
[25] and Mecchia and Zimmermann [11]) characterized the nonsolvable groups acting
on integer homology 3–spheres; the unique simple group that admits an action on an
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integer homology 3–sphere is A5 (and it cannot act freely). For the standard 3–sphere,
Thurston’s orbifold geometrization theorem [1] implies that the finite groups with
nonfree actions are exactly the subgroups of SO.4/.

On the other hand, Cooper and Long [4] proved that every finite group admits an action
on a rational homology 3–sphere (and even a free action).

The class of Z2 –homology 3–spheres is intermediate between these two cases. This
class is interesting also because Z2 –homology 3–spheres appear more frequently than
integer homology 3–spheres; for example 2–fold branched coverings of knots in S3

are Z2 –homology 3–spheres. Dotzel and Hamrick [5] proved that every finite 2–group
acting on a Z2 –homology 3–sphere acts orthogonally on S3 . This property is not true
in general for solvable groups (already for integer homology 3–spheres). In [11] a list
of nonsolvable groups which are candidates for actions on Z2 –homology 3–spheres
was given; in this case the only simple groups, that occur, are the projective special
linear groups PSL.2; q/.

In the present paper we consider finite groups acting orientation-preservingly on 3–
manifolds which contain an involution with nonempty connected fixed point set. We
recall that any involution acting on a Z2 –homology 3–sphere has connected fixed
point set (maybe empty), so there are some relations with our situation. For example
the 2–fold branched coverings of knots satisfy both assumptions but in general the two
conditions give different classes of 3–manifolds.

In fact not all Z2 –homology 3–spheres admit the action of an involution with nonempty
fixed point set. For example if K is a hyperbolic knot in S3 without symmetries, for
coefficients sufficiently large, Dehn surgery along the knot gives a hyperbolic manifold
with trivial isometry group (by Thurston’s hyperbolic surgery theorem [24]); moreover
for p odd a p=q–surgery gives a Z2 –homology 3–sphere.

On the other hand all the 3–manifolds that are the n–fold cyclic branched covering of a
strongly invertible knot admit the action of an involution with nonempty and connected
fixed point set; it is easy to find examples of n–fold cyclic branched coverings of strongly
invertible knots that have nontrivial first Z2 –homology group (some computation of
first homology group can be found in [6]). The possibility to study the n–fold cyclic
branched coverings of strongly invertible knots is one of the motivations of this paper.
Another example of a 3–manifold admitting an involution with nonempty connected
fixed point set can be obtained by a 3–component link L admitting a symmetry t with
nonempty fixed point set which acts as a reflection on one component while exchanging
the remaining two (eg the Borromean rings); the 2–fold branched covering M of L

has nontrivial first Z2 –homology group (see Sakuma [21, Sublemma 15.4]) and the
lift of t is an involution with the desired property.
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Finite groups acting on 3–manifolds and cyclic branched coverings of knots 395

When we consider finite groups acting on 3–manifolds, the two different assumptions
imply different analyses. In fact for Z2 –homology 3–spheres we have some global
information about 2–groups which admit an action. In our case we can control directly
only the centralizer of the involution with nonempty connected fixed point set, thus it is
more difficult to pass to a global description of the group, even in the case of 2–groups.

A first step in this direction was obtained by Reni and Zimmermann.

Theorem 0 [18] Let G be a finite group of orientation-preserving diffeomorphisms
of a closed orientable 3–manifold; if G contains an involution with nonempty connected
fixed point set, then G has sectional 2–rank at most four (ie every 2–subgroup is
generated by at most four elements).

In this paper we try to analyze the whole group. We describe the structure of the group
“up to solvable sections”. The interest for nonsolvable groups is also motivated by
geometry. For example, if two knots have the same hyperbolic cyclic branched covering
M and the isometry group of M is solvable, then it is possible to describe the relation
between the two knots [18]. The problem is not completely solved if the isometry
group is not solvable.

We summarize part of the description in the following theorem; we recall that a group
E is semisimple if it is perfect and the factor group of E by its center is a direct product
of nonabelian simple groups (see Suzuki [23, Chapter 6.6] or Gorenstein, Lyons and
Solomon [8, p 16]).

Theorem 1 Let G be a finite group of orientation-preserving diffeomorphisms of a
closed orientable 3–manifold; we denote by O.G/ the maximal normal subgroup of
odd order and by E the maximal semisimple normal subgroup of G=O.G/. Suppose
that G contains an involution with nonempty connected fixed point set.

(1) If the semisimple group E is not trivial, it has at most two components and the
factor group of G=O.G/ by E is solvable. Moreover the factor group of E by
its center is either a simple group of sectional 2–rank at most four or the direct
product of two simple groups with sectional 2–rank at most two.

(2) If E is trivial, there exists a normal subgroup N of G such that N is solvable
and G=N is isomorphic to a subgroup of GL.4; 2/, the general linear group of
4� 4 matrices over the finite field with 2 elements.

The simple groups of sectional 2–rank at most four are classified by the Gorenstein–
Harada Theorem [7, p 6], an important part of the classification of finite simple groups.
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A well-known part of the classification, which was proved before then the Gorenstein–
Harada Theorem, is the classification of finite simple groups of 2–rank at most two (ie
every elementary 2–subgroup is generated by at most two elements) [7, p 6]; obviously
sectional 2–rank at most two implies 2–rank at most two.

More details are given in Section 3 where Theorem 1 is proved. If E is not trivial, the
structure of the solvable group .G=O.G//=E is well understood. Also in the second
case, if we suppose that the group G is not solvable, a short list of candidates for the
group G=N can be produced (the nonsolvable subgroups of GL.4; 2/Š A8 can be
easily deduced from [3]).

In the study of cyclic branched coverings of knots, we are mainly interested in the
case when the projection of the involution with nonempty connected fixed point set is
contained in E , the maximal semisimple normal subgroup. Under this condition the
list of candidates is much shorter.

Theorem 2 Let G be a finite group of orientation-preserving diffeomorphisms of a
closed orientable 3–manifold; we denote by O.G/ the maximal normal subgroup of
odd order and by E the maximal semisimple normal subgroup of G=O.G/. Suppose
that G contains an involution h with nonempty and connected fixed point set such
that the coset hO.G/ is contained in E ; then G=O.G/ has a normal subgroup D

isomorphic to one of the following groups:

PSL.2; q/; PSL.2; q/�Z2 or SL.2; q/�Z2
SL.2; q0/

where q and q0 are odd prime powers greater than four. The factor group .G=O.G//=D
contains, with index at most two, an abelian subgroup of rank at most four.

The group SL.2; q/ is the special linear group of 2� 2 matrices of determinant one
over the finite Galois field with q elements. The group SL.2; q/ is a perfect group
which has a unique involution; this involution generates its center Z , and the factor
group SL.2; q/=Z is the projective special linear group PSL.2; q/ (which is a simple
group for q � 4).

The group SL.2; q/ �Z2
SL.2; q0/ is a central product where the involutions in the

centers of SL.2; q/ and SL.2; q0/ are identified.

Theorem 2 is not simply a specialization of Theorem 1. We have to do some new work
to prove properties of E , using directly the fact that E contains the projection of h; we
need also more precise information about finite simple groups in the Gorenstein–Harada
list.
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Probably it is possible to exclude some groups with sectional 2–rank at most four also
in the general case considered in Theorem 1. A possible approach is to suppose that the
special involution is not in E and consider Z2 –extensions of the simple groups in the
Gorenstein–Harada list; some Z2 –extensions may have again sectional 2–rank at most
four. At the moment we are not sure if this approach case by case, that might be rather
technical and long, can produce a relevant reduction of the list of the possible groups.

As a corollary of Theorem 1 we can consider the case of semisimple groups (see Reni
and Zimmermann [18] for the case of simple groups).

Corollary Let G be a semisimple finite group of orientation-preserving diffeomor-
phisms of a closed orientable 3–manifold. If G contains an involution h with nonempty
and connected fixed point set, then G is isomorphic to one of the following groups:

PSL.2; q/ or SL.2; q/�Z2
SL.2; q0/

where q and q0 are odd prime powers greater than four.

We focus now on some applications. We describes first some results concerning actions
of finite groups on homology 3–spheres.

Let f be a nontrivial orientation-preserving periodic diffeomorphism of a 3–manifold
M . We say that f is hyperelliptic if the quotient orbifold M=f has underlying
topological space homeomorphic to S3 .

Using the structure of the finite 2–subgroups acting on Z2 –homology 3–spheres,
Reni [17] proved that, up to conjugacy, there are at most nine hyperelliptic involutions
acting on a hyperbolic Z2 –homology 3–sphere; we recall that a hyperelliptic involution
on a Z2 –homology 3–sphere has nonempty connected fixed point set. This is equivalent
to say that there exist at most nine inequivalent � –hyperbolic knots with the same
2–fold branched covering.

Boileau, Paoluzzi and Zimmermann [2] proved that, up to conjugacy, at most four
cyclic groups generated by a hyperelliptic diffeomorphism of odd prime order can act
on an irreducible integer homology 3–sphere. Thus an irreducible integer homology
3–sphere can be the cyclic branched covering with odd prime order of at most four
inequivalent knots. Also in this case a hyperelliptic diffeomorphism of prime order
has nonempty connected fixed point set. The characterization of the finite nonsolvable
groups which act on integer homology 3–spheres plays an important role in the proof
in the hyperbolic case. We remark that one of the basic steps in the proof of the upper
bound is the fact that hyperelliptic diffeomorphisms often commute and nonabelian
situations are, in some sense, exceptions that can be described.
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The commutativity of hyperelliptic diffeomorphisms corresponds in the language of
knots to the standard abelian construction.

The standard abelian construction Suppose M is the n–fold and m–fold cyclic
branched covering of two knots K and K0 , respectively. We denote by H and H 0

the cyclic transformation groups of K and K0 , respectively; the preimage zK (resp.
zK0 ) of K (resp. K0 ) in M is the fixed point set of H (resp. H 0 ). The groups H and

H 0 commute and they generate a group A of diffeomorphisms of M isomorphic to
Zn �Zm ; when nD m the group A has rank two and it is isomorphic to Zn �Zn .
Each element of the transformation group H (resp. H 0 ) induces a rotation on zK0

(resp. zK ), and the quotient orbifold M=A is the 3–sphere whose singular set is a link
LD xK[ xK0 , where xK (resp. xK0 ) is the projection of K (resp. K0 ).

We remark that by the positive solution to the Smith Conjecture both components of
L are trivial knots. On the other hand, starting from L, we can obtain K (resp. K0 )
taking the preimage of xK (resp. xK0 ) in the m–fold (resp. n–fold) cyclic branched
covering of xK0 (resp. xK ). This construction serves to study the relation between two
links with the same hyperbolic cyclic branched covering (see Reni and Zimmermann
[19] and Mecchia [10]). The standard abelian construction is the unique possibility in
many different situations.

Theorem [19] Let M be a hyperbolic 3–manifold. Suppose that M is the n–fold
and m–fold cyclic branched covering of inequivalent knots K and K0 , respectively,
such that m and n are not powers of two. Suppose that one of the following conditions
holds:

(1) n and m have a common prime divisor different from two;

(2) K is not strongly invertible and K is not self-symmetric with order n;

(3) The orientation-preserving isometry group of M is solvable.

Then K and K0 arise from the standard abelian construction.

A 2–component link is called symmetric if there exists an orientation-preserving
diffeomorphism of S3 which exchanges the 2–components of the link. A cyclic
symmetry of a knot K is a diffeomorphism of .S3;K/ of finite order and with nonempty
fixed point set F disjoint from K . The set F is an unknotted circle by the positive
solution to the Smith Conjecture. The quotient of S3 by a cyclic symmetry is again
the 3–sphere and F and K project to a 2–component link. We call a knot K self-
symmetric with order n if K admits a cyclic symmetry f of order n such that the
associated quotient link is symmetric.
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We use Theorem 2 to generalize point 2 of the previous Theorem. We want to in-
clude also the class of strongly invertible knots that is largely studied in knot theory.
Unfortunately the standard abelian construction does not remain the unique possibility.

Theorem 3 Let M be a hyperbolic 3–manifold. Suppose that M is the n–fold and
m–fold cyclic branched covering of two hyperbolic knots K and K0 , respectively, such
that m and n are not powers of two. Let G be the orientation-preserving isometry
group of M and O.G/ the maximal normal subgroup of odd order. If the knot K is
not self-symmetric with order n, then one of the following cases occurs:

(1) K and K0 arise from the standard abelian construction;

(2) G contains h, an involution with nonempty connected fixed point set, such that
hO.G/ is contained in the maximal normal semisimple subgroup of G=O.G/
(in particular Theorem 2 applies to G );

(3) All prime divisors of n and m are contained in f2; 3; 5; 7g and there exists a
normal subgroup N of G such that N is solvable and G=N is isomorphic to a
subgroup of GL.4; 2/.

The knots K and K0 in Theorem 3 are inequivalent. It follows from volume considera-
tions if n¤m, and from the fact that K is not self-symmetric if nDm.

As in the case of integer homology 3–spheres, the noncommuting situations are, in
some sense, exceptional. For integer homology 3–spheres there exists an universal
bound to the number of cyclic groups generated by a hyperelliptic diffeomorphism (with
connected nonempty fixed point set) of odd prime order; we propose the following:

Conjecture There exists a universal bound C such that any hyperbolic orientable
closed 3–manifold admits at most C nonconjugate cyclic groups generated by a
hyperelliptic diffeomorphism with connected nonempty fixed point set.

We remark that the condition about the fixed point set is necessary; in general, there is
no universal bound for hyperelliptic diffeomorphisms in hyperbolic 3–manifolds [20].
We recall that Cooper and Long [4] proved that every finite group admits an action on
a hyperbolic rational homology 3–sphere; to prove the conjecture the use of homology
may be insufficient. Probably we have to consider directly conditions about the fixed
point sets of the diffeomorphisms, for example the existence of involutions with
connected nonempty fixed point set (the hypothesis considered in this paper).
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2 Preliminary results

In this section we present some preliminary results about finite groups acting on
3–manifolds.

Proposition 1 Let G be a finite group of orientation-preserving diffeomorphisms of a
closed orientable 3–manifold and f an element in G with nonempty connected fixed
point set K . Then the normalizer NG.f / of the subgroup generated by f in G is
isomorphic to a subgroup of a semidirect product

Z2 Ë .Za �Zb/;

for some nonnegative integers a and b , where a generator of Z2 (an f –reflection, ie
acting as a reflection on K ) acts on the normal subgroup Za �Zb of f –rotations
(ie the elements acting as rotations on K ) by sending each element to its inverse. In
particular, NG.f / is solvable.

Proof See Mecchia and Zimmermann [12, Lemma 1].

Proposition 2 Let G be a finite group of orientation-preserving diffeomorphisms of a
closed orientable 3–manifold. If G is isomorphic to Z2 �Z2 �Z2 , there exists in G

an involution that either acts freely or has nonconnected fixed point set.

Proof By contradiction we suppose that the seven involutions in G have connected
and nonempty fixed point set. Let f be one of the involutions, by Proposition 1 the
group G contains four f –rotations and four f –reflections. We denote by r one
f –rotation of order two different from f and we denote by t one f –reflection, so
the four f rotations are Id, f; r and rf and the four f reflections are t; tf; t r and
tf r . Since the fixed point sets of f and t have nonempty intersection then the fixed
point sets of t and tf have nonempty intersection, then t is a tf –reflection. Now
we consider r and rf , both of them have nonempty connected fixed point set and
both the subgroups of r and rf –rotations coincide with the subgroup of f –rotations.
We deduce that t is an r –reflection and an rf –reflection and consequently t is an
r t –reflection and an rf t –reflection. It turns out that t acts as a reflection on the fixed
point set of each involution in G different from t and viceversa each involution in G

different from t acts as a reflection on the fixed point set of t ; so in G we have six
t –reflections and this is impossible by Proposition 1.

We conclude the section with a purely algebraic proposition that describes the centralizer
of an involution in the factor groups by odd order normal subgroups. This proposition
shows that, for an involution t , the quotient of the centralizer is the centralizer of the
projection of t in the quotient; its proof is elementary but we often use this fact.
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Proposition 3 Let t be an involution in a finite group G and let N be a normal
subgroup of G of odd order. Then the centralizer CG=N .tN / of the coset tN in G=N

is isomorphic to CG.t/=.CG.t/\N /; that is the factor group of the centralizer of t in
G by the intersection CG.t/\N .

Proof Indeed we prove the equality fcN jc 2CG.t/gDCG=N .tN / and then the thesis
follows from the Second Isomorphism Theorem.

The inclusion fcN jc 2 CG.t/g � CG=N .tN / is trivial.

We suppose that fN is contained in CG=N .tN / that is f tf �1N D tN , so there
exists k 2 N such that f tf �1 D tk . The subgroup ht;N i of G generated by t

and N has a Sylow 2–subgroup of order two, so all the involutions in ht;N i are
conjugate, in particular there exists an element g 2N such that gtg�1D tk . It follows
that g�1f is contained in CG.t/ and, since g 2 N , we have that f is contained in
fN DNf DN.g�1f /D .g�1f /N . The coset fN is contained in fcN jc 2CG.t/g

and the inclusion fcN jc 2 CG.t/g � CG=N .tN / is proved.

3 Proof of Theorem 1

We denote by xG the factor group G=O.G/ and by zE the factor group of E by its
center Z.E/.

Step 1 The maximal semisimple normal subgroup E has sectional 2–rank at most
four and it has at most two components. If E has two components, zE is the direct
product of two simple groups with sectional 2–rank two.

By Theorem 0, E has sectional 2–rank at most four and consequently zE has sectional
2–rank at most four. We recall that a minimal set of generators of a group means a
set of generators such that any proper subset does not generate the group. In general
we can have minimal sets of generators with different numbers of elements for the
same finite group but, by Burnside’s basis theorem [22, Theorem 1.16, p 92], any two
minimal sets of generators of a p–group contain the same number of elements.

Moreover, in the direct product of two groups, the union of a minimal set of generators
of the first group with a minimal set of generators of the second group is a minimal set
of generators of the direct product. It follows that the sectional 2–rank of the direct
product of two groups is equal or greater then the sum of the sectional 2–ranks of the
two direct factors. Since simple groups have sectional 2–rank at least two [23, p.144]
we get the thesis.
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Step 2 We denote by C the centralizer C xG.E/ of E in xG . If E is not trivial, then
C is solvable.

Since C is the centralizer of a normal subgroup, C is normal in G . The intersection
of C and E is Z.E/, the center of E . The center of E has order a power of two,
otherwise O.G/ is not maximal. We denote by D the group generated by C and E ;
the group D is a central product of E and C . By Theorem 0, the sectional 2–rank of
D is equal or smaller then four; it follows that D=Z.E/ has sectional 2–rank equal or
smaller then four. The factor group D=Z.E/ is isomorphic to E=Z.E/�C=Z.E/;
the sectional 2–rank of E=Z.E/ is at least two, so the sectional 2–rank of C=Z.E/

is at most two (see Step 1).

The maximal semisimple normal subgroup of C is trivial, otherwise E is not maximal.
We consider F.C / the generalized Fitting subgroup of C . We recall that the generalized
Fitting subgroup is the subgroup generated by the maximal semisimple normal subgroup
and by the Fitting subgroup; the Fitting subgroup is the maximal nilpotent normal
subgroup [23, p 452]. In this case, since the maximal semisimple normal subgroup of C

is trivial, F.C / coincides with the Fitting subgroup. Note that, since F.C / is nilpotent,
its Hall subgroup of maximal odd order is unique. Since F.C / is characteristic in C ,
the generalized Fitting subgroup F.C / is a 2–group, otherwise O.G/ is not maximal.
The group C acts on F.C / by conjugation. The centralizer CC .F.C // of F.C / in
C is contained in F.C / [23, Theorem 6.11, p 452] and in particular it is a 2–group;
the factor group C=CC .F.C // is a subgroup of the automorphism group of F.C /.
Let ˆ be the Frattini subgroup of F.C /; the factor group F.C /=ˆ is an elementary
abelian group. The totality of automorphisms that leave every element of F.C /=ˆ

invariant is a normal 2–subgroup of Aut.F.C // [22, Theorem 1.17, p 93]. Let T be
the subgroup of C of elements that act trivially on F.C /=ˆ; then T is a normal
2–subgroup and C=T is a subgroup of GL.d; 2/, where d is the rank of F.C /=ˆ.
Since F has sectional 2–rank at most four we have d � 4; if d � 2 the group GL.d; 2/
is solvable and the proof is finished.

Suppose that d D 3. The group GL.3; 2/ has order 23 � 3 � 7; any automorphism of
order seven permutes cyclically all the involutions in Z2 �Z2 �Z2 . In this case ˆ
cannot contain Z.E/ because F.C /=Z.E/ must have sectional 2–rank at most two.
At least one involution in F.C /=ˆ is the projection of an element in Z.E/ and it is
contained in the center of C ; this involution is fixed by conjugation by each element
of C and C=T cannot contain any element of order seven; C=T has order at most 24
and it is solvable.

Suppose finally that dD4. The group GL.4; 2/ has order 26 �32 �5�7; an automorphism
of order five does not centralize any involution of Z2 �Z2 �Z2 �Z2 (we have three
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orbits with five elements) and an automorphism of order seven centralizes exactly one
involution (two orbits with seven elements and one orbit with only one element). We
consider the group Z.E/ �ˆ generated by Z.E/ and ˆ. The group F.C /=.Z.E/ �ˆ/

must have rank at most two. It follows that at least three involutions in F.C /=ˆ are
projections of elements in the center of E . The group C=T cannot contain elements
of order five or seven and hence the order of C=T is product of powers of 2 and 3. By
Burnside’s Theorem [23, Theorem 4.25, p 216], any such group is solvable.

This finishes the proof of Step 2.

Step 3 If E is not trivial, xG=E is solvable.

The normal subgroup D is the subgroup generated by E and C D C xG.E/; we
consider the factor group xG=D that is isomorphic to a subgroup of Out.E/, the outer
automorphism group of E . If an automorphism of E acts trivially on zE DE=Z.E/,
it acts trivially on E ; this is a consequence of the three subgroups lemma [23, (6.3),
p 447; 9, Lemma 3.8, p 7] and of the fact that E is perfect. It follows that the group
Out(E ) is a subgroup of Out( zE ).

We recall that the outer automorphism group of a simple group is solvable (for a
discussion about this property, called the Schreier property, see [9, p 4]).

The group zE is either a simple group with sectional 2–rank at most four or the direct
product of two simple groups with sectional 2–rank at most two; in this last case
Out( zE ) contains, with index at most two, the direct product of the outer automorphism
groups of the two components [9, Lemma 3.23, p 13]. In any case Out( zE ) is solvable;
it follows that xG=D and hence xG=E are solvable.

Step 4 If E is trivial, there exists a normal subgroup N of G such that N is solvable
and G=N is isomorphic to a subgroup of GL.4; 2/.

We consider F. xG/ the generalized Fitting subgroup of xG ; since E is trivial, F. xG/

coincides with the Fitting subgroup. The subgroup F. xG/ does not contain any element
with odd order, otherwise O.G/ is not maximal. The generalized Fitting subgroup
contains C xG.F.

xG// its centralizer in xG [23, Theorem 6.11, p 452] and in particular
C xG.F.

xG// is a 2–group; the factor group of xG by C xG.F.
xG// is isomorphic to a

subgroup of Aut.F. xG//, the automorphism group of F. xG/.

We consider ˆ, the Frattini subgroup of F. xG/. As a consequence, the factor group
F. xG/=ˆ is an elementary group. The totality of automorphisms that leave every ele-
ment of F. xG/=ˆ invariant is a normal 2–subgroup of Aut.F. xG// [22, Theorem 1.17,
p 93]. The factor group xG contains xN , a normal 2–subgroup, such that xG= xN is

Geometry & Topology Monographs, Volume 14 (2008)



404 Mattia Mecchia

isomorphic to a subgroup of GL.d; 2/ where d is the rank of F. xG/=ˆ. We denote
by N the preimage of xN with respect to the projection of G onto xG ; we remark
that G=N is isomorphic to a subgroup of GL.d; 2/ and N=O.G/ is a 2–group. If G

contains an involution with nonempty connected fixed point set, Theorem 0 implies
that G has sectional 2–rank at most four and hence we can set d D 4.

4 Proof of Theorem 2

To simplify the notation we denote by xG the factor group G=O.G/ and we denote by
xg the coset gO.G/ where g is an element of G ; by hypothesis we have an involution
h in G with connected and nonempty fixed point set such that xh is contained in E ,
the maximal semisimple normal subgroup of xG .

In the proof we often use the following fact: by Proposition 1 and Proposition 3, if
we have an involution t in G with nonempty fixed point set, the centralizer C xG.xt/

of xt is isomorphic to subgroup of a semidirect product Z2 Ë .Za � Zb/ where a
generator of Z2 acts on the normal subgroup Za �Zb by sending each element to
its inverse. In particular C xG.

xh/ is isomorphic to CG.h/=.CG.h/ \O.G// and we
call xh–rotations (resp. xh–reflections) the elements of C xG.

xh/ that are projections of h–
rotations (resp. h–reflections); since O.G/ cannot contain h–reflections, this notation
is not ambiguous.

In the proof we call a group admissible if it has a subgroup of index at most two that is
isomorphic to a subgroup of a semidirect product Z2 Ë .Za �Zb/, where a generator
of Z2 acts on the normal subgroup Za �Zb by sending each element to its inverse.
We note that an admissible group is solvable and a subgroup or a factor group of an
admissible group is again admissible. We remark also that subgroups of xG , that contain
the centralizer C xG.

xh/ with index at most two, are admissible.

Step 1 The order of Z.E/, the center of E , is a power of two, the involution xh is
not contained in Z.E/ and either Z.E/ is cyclic or Z.E/ is elementary abelian of
order four and CE.xh/ is elementary abelian of order eight.

The order of Z.E/ is a power of two, otherwise O.G/ is not maximal. Since CE.xh/

is solvable, the center Z.E/ does not contain xh. Since xh 2 E , the center Z.E/

is a subgroup of CE.xh/, that is isomorphic to a subgroup of the semidirect product
Z2 Ë .Z2n �Z2m/. If Z.E/ contains an element with order strictly greater than two,
then Z.E/ can contain only xh–rotations and, since xh …Z.E/, the center Z.E/ can
contain only one involution; this fact implies that Z.E/ has to be cyclic.
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Suppose now that all the nontrivial elements in Z.E/ have order two. If Z.E/ is not
cyclic, it must contain an xh–reflection which thus must commute with the whole group
and we have only one possibility: Z.E/Š Z2 �Z2 and CE.xh/Š Z2 �Z2 �Z2 .

Step 2 We denote by zE the factor group E=Z.E/ and we denote by zh the coset
xhZ.E/. We consider C zE.zh/ the centralizer of zh in zE .

(1) If Z.E/ is not cyclic, then C zE.zh/ has order at most eight.

(2) If Z.E/ is cyclic, then C zE.zh/ contains with index at most two the factor group
CE.xh/=Z.E/.

In both cases C zE.zh/ is admissible.

We denote by P the subgroup f xf 2Ej 9 xg 2Z.E/ such that xf xh xf �1 D xhxgg that is
the preimage of C zE.zh/ with respect to the standard projection of E onto zEDE=Z.E/;
we recall that C zE.zh/D P=Z.E/.

If Z.E/ is the trivial group the thesis trivially holds.

We suppose that Z.E/ is cyclic and nontrivial; we denote by xz the unique involution
in Z.E/ and we get the following equality:

P D f xf 2Ej either xf xh xf �1
D xh or xf xh xf �1

D xhxzg:

In this case we obtain that C zE.zh/ contains with index at most two the factor group
CE.xh/=Z.E/.

Finally we suppose that Z.E/ is not cyclic. By Step 1, we have that Z.E/ŠZ2�Z2

and CE.xh/Š Z2 �Z2 �Z2 for the center contains an xh–reflection. The centralizer
CE.xh/ is a normal subgroup of P ; since CE.xh/ contains its centralizer in P , the factor
group P=CE.xh/ acts effectively on CE.xh/ by conjugation and P=CE.xh/ is isomorphic
to a subgroup of Aut .Z2�Z2�Z2/, the automorphism group of the elementary abelian
group of order eight. Moreover P=CE.xh/ leaves invariant elementwise Z.E/ Š

Z2 �Z2 that is a subgroup of index two in CE.xh/; this fact implies that P=CE.xh/ is
a subgroup of Z2 �Z2 . So C zE.zh/D P=Z.E/: has order at most eight. This finishes
the proof of Step 2.

Step 3 If E has one component, zE has only one conjugacy class of involutions.

In this case zE is a simple group with sectional 2–rank at most four and we apply the
Gorenstein–Harada classification of finite simple groups of sectional 2–rank at most
four (see Gorenstein [7, p 6] and Suzuki [23, Theorem 8.12, p 513]).
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The group zE contains zh and the centralizer of zh is admissible. We will show that
no group in the Gorenstein–Harada list which has more than one conjugacy class of
involutions contains an involution with an admissible centralizer.

The following list of groups contains all the simple groups with sectional 2–rank at most
four and more than one conjugacy class of involutions (the algebraic properties of the
simple groups can be found in the Atlas of finite groups [3], Sakuma [23, Chapter 6.5]
or Gorenstein [7]):

M12I PSp.4; q/; for q oddI J2I An; for 8� n� 11I

PSL.4; q/; PSU.4; q/; PSL.5; q/ and PSU.5; q/; for q odd:

We can rule out directly the following groups because the centralizer of any involution
in these groups is not solvable (for the groups of Lie type see Suzuki [23, 6.5.2, 6.5.7,
6.5.15]; for J2 see Gorenstein [7, p 99] or the Atlas of finite groups [3]):

J2I PSp.4; q/I PSL.4; q/ and PSU.4; q/; for q odd, q � 5I

PSL.5; q/ and PSU.5; q/; for q odd.

The Mathieu group M12 and the alternating groups An , for 8� n� 11, contain some
involutions with solvable centralizer but the centralizers of such involutions contain
S4 , that is not admissible ([3] for M12 ).

Finally, in the groups PSp.4; 3/, PSL.4; 3/ and PSU.4; 3/, the centralizer of each
involution contains a subgroup with a factor group isomorphic to the non admissible
group A4Š PSL.2; 3/Š PSU.2; 3/ [23, 6.5.2, 6.5.7, 6.5.15]. This concludes the proof.

Step 4 We denote by zS2 a Sylow 2–subgroup of zE ; if E has one component either
zS2 has sectional 2–rank two or zS2 is an elementary abelian group with eight elements.

Since by Step 3 the involutions in zE are all conjugate, we can suppose that zh is central
in zS2 , this implies that zS2 D C zS2

.zh/. We denote by E the preimage of E in G with
respect to the projection of G onto xG . We recall that we described Z.E/ in Step 1;
we consider three cases according to the structure of Z.E/. We remark also that a
2–group with order at most eight which is not elementary abelian of rank three, has
sectional 2–rank at most two, so when we will obtain that zS2 has order at most eight,
we will get the thesis.

Suppose first that Z.E/ is trivial. In this case zS2 is isomorphic to the Sylow 2–
subgroup of E . The involutions in E are all conjugate. In fact if we consider t and t 0

two involutions in E , we know that xt and xt 0 are conjugate in E , so there exists g in
O.G/ such that t is conjugate to t 0g . Since O.G/ has odd order, the group generated
by t 0 and O.G/ has Sylow 2–subgroup of order two and all the involutions in the
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group are conjugate; in particular t 0 and t 0g are conjugate. We can conclude that t and
t 0 are conjugate. All the involutions in E are conjugate to h, so all the involutions have
nonempty connected fixed point set; by Proposition 2, the group E cannot contain a
subgroup isomorphic to Z2�Z2�Z2 . Since, by Proposition 1, the Sylow 2–subgroup
of E is a subgroup of the semidirect product Z2 Ë .Z2a �Z2b /, we obtain that zS2 is
dihedral or abelian of rank two.

If Z.E/ is elementary abelian of order four, by Step 2 we have that zS2 D C zS2
.zh/ has

order at most eight and we get thesis.

Finally we suppose that Z.E/ is cyclic and nontrivial. We consider S2 the Sylow
2–subgroup of E , the center Z.E/ is contained in S2 and zS2 is the projection of S2 .
By Step 2 we can assume that .CS2

.xh/=Z.E// has index at most two in zS2 .

If Z.E/ contains an xh–reflection, by Proposition 1 the centralizer CE.xh/ has order at
most eight, and we conclude that .CS2

.xh/=Z.E// has order at most four and zS2 has
order at most eight.

So we can suppose that Z.E/ contains only xh–rotations. We denote by R the subgroup
of xh–rotations contained in the Sylow 2–subgroup of E ; the subgroup R contains
Z.E/.

We obtain that the factor group R=Z.E/ is cyclic. In fact, if R=Z.E/ has rank
two, we have an xh–rotation xf of order different than two such that xf … Z.E/ and
xf 2 2Z.E/. The coset xfZ.E/ contains no involution and the coset xhZ.E/ contains

two involutions for xh is not in the center; on the other hand since xfZ.E/ and xhZ.E/

represent two involutions in zE , they are conjugate and this gives a contradiction.

This concludes the proof in the case that .CS2
.xh/=Z.E//D zS2 .

On the other hand, if CS2
.xh/ does not contain any xh–reflection, zS2 contains a cyclic

subgroup of index at most two, so it has sectional 2–rank at most two and the proof is
finished.

So we can suppose the following two facts:

(1) CS2
.xh/ contains xt an xh–reflection;

(2) .CS2
.xh/=Z.E// has index two in zS2 D C zS2

.zh/; in this case there exist two
nontrivial elements xs in S2 and xc in Z.E/ such that xsxhxs�1 D xhxc .

Since xtZ.E/ is conjugate to xhZ.E/ and xtZ.E/ contains a number of involutions
equal to the order of Z.E/ (these elements are all reflections), we obtain that Z.E/

has order two. Since R=Z.E/ is cyclic, we have RŠZ2�Z2m . Moreover we obtain
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that mD 1; in fact, if R contains an element of order strictly greater than two, one
involution between xh and xhxc is characteristic in CS2

.xh/ (all the involutions which are
obtained as powers of elements of order strictly greater than two coincide) and this is
in contradiction with the existence of xs . We can conclude that CS2

.xh/ is an elementary
group of order eight and zS2 has order eight.

Step 5 If E has one component, E is isomorphic to PSL.2; q/, with q � 5.

By Step 3 the simple group zE DE=Z.E/ has only one conjugacy class of involutions
and by Step 4 zE has sectional 2–rank smaller than two or zS2 is an elementary abelian
group of order eight. In the Gorenstein–Harada list we find the following groups that
satisfy these properties and that were not already excluded in Step 3:

PSL.2; q/; for q odd and q � 5I PSL.3; q/ and PSU.3; q/ for q odd;
M11IA7I J1I PSL.2; 8/I 2G2.3

n/; for n> 1:

We recall that zE has to contain zh an involution with admissible centralizer.

In the groups J1 and 2G2.3
n/ for n> 1 the centralizer of an involution is isomorphic

to the non admissible group Z2 �PSL.2; q/ with q > 5 [23, p 514].

We can rule out PSL.3; q/ and PSU.3; q/ for q odd, q � 5, because the centralizer of
any involution in these groups is not solvable [23, 6.5.2, 6.5.15].

We consider the groups PSL.3; 3/, PSU.3; 3/ and M11 . The centralizer of any involu-
tion in these groups has a subgroup which has the alternating group A4Š PSL.2; 3/Š
PSU.2; 3/ as a factor group and so it is not admissible [23, 6.5.2, 6.5.15; 3].

The group PSL.2; 8/ does not admit central perfect extension [3]; in this case Z.E/

should be trivial. The Sylow 2–subgroup of PSL.2; 8/ is elementary abelian of order
eight, by the same argument used in Step 4 for the case of Z.E/ trivial we can exclude
this group.

We consider A7 . If Z.E/ is not trivial, the unique central extension of A7 with
center of order a power of two is A�

7
. The Sylow 2–subgroup of A�

7
is a quaternion

group of order eight and it contains a unique involution that is central in the group
and this is impossible. We can suppose that Z.E/ is trivial and E Š A7 . We
consider the centralizer of the involution xh in A7 ; we can suppose up to conjugation
that xh is the permutation .1; 2/.3; 4/. The centralizer contains .5; 6; 7/, .1; 3/.2; 4/
and .1; 2/.5; 6/; the involution .1; 3/.2; 4/ commutes with the element of order three
.5; 6; 7/, so .1; 3/.2; 4/ is an xh–rotation. On the other hand .1; 3/.2; 4/ and .1; 2/.5; 6/
do not commute and by Proposition 1, this cannot occur.
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Finally we consider the groups PSL.2; q/, with q � 5. The only central perfect
extension of PSL.2; q/ with nontrivial center of order a power of two is SL.2; q/, that
contains a unique involution that is central in the group and this is not possible. The
only remaining possibility is that Z.E/ is trivial and E is isomorphic to PSL.2; q/,
with q � 5.

Step 6 If E has two components, E is isomorphic to SL.2; q/�Z2
SL.2; q0/, with

q and q0 odd prime powers greater than four.

We consider zE D zA� zB where zA and zB are two simple groups. By Step 3 zA and zB
have sectional 2–rank two. The simple groups with this property are:

PSL.2; q/, for q odd and q � 5; M11 ; A7 ; PSL.3; q/ and PSU.3; q/, for q odd.

By Step 2 we recall that we have an involution zh in zE such that its centralizer is
admissible. We have that zhD .zhA; zhB/ where zhA 2

zA and zhB 2
zB . The centralizer

of C zE.zh/ is the direct product of C zA.
zhA/ and C zB.

zhB/. We remark that zhA and zhB

cannot be the identity of the group otherwise the centralizer of zh is not solvable, so
they are involutions. The two centralizers C zA.

zhA/ and C zB.
zhB/ must be admissible

groups. This condition excludes as components M11 , PSL.3; q/ and PSU.3; q/, with
q odd, because they do not contain any involution with admissible centralizer (see
Step 5).

So we obtain that zA an zB are isomorphic to PSL.2; q/ or A7 . If Z.E/ is trivial,
the centralizer of each involution in E contains an elementary abelian group of order
sixteen; moreover the group zE DE contains the involution xh and the centralizer of xh
cannot contain any elementary abelian group of order sixteen. We can suppose that
Z.E/ is not trivial, that is at least one between the components of E is not simple.
By Step 1, the center Z.E/ is a 2–group. The central perfect extensions of PSL.2; q/
and A7 with center with order a power of two are SL.2; q/ and A�

7
that contain a

unique involution that is central in the groups. So E cannot be a direct product of its
components otherwise the centralizer of each involution in E contains a nonsolvable
group. We obtain that E DA�Z2

B where A;B Š SL.2; q/ or A�
7

.

Finally we exclude A�
7

as a possible component. We consider xhD .xhA; xhB/, where
xhA 2A and xhB 2 B . The centralizer of xh contains the centralizer of xhA in A and the
centralizer of xhB in B . If one between xhA and xhB is the identity or is an element of
order two, the centralizer of xh is not solvable. To have an admissible centralizer for xh,
we have to suppose that both xhA and xhB have order four (note that xh has order two).
Any element of order four in A�

7
contains in its centralizer noncommuting elements of

order eight and three which contradicts Proposition 1 and Proposition 3 (see the Atlas
of finite groups [3] for the structure of A�

7
).
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Final step We denote by C D C xG.E/ the centralizer of E in xG . Since E is normal
in G , the group C is normal in G . Since C is contained in the normalizer of xh it is
isomorphic to a subgroup of the semidirect product Z2 Ë .Za �Zb/. The maximal
subgroup of odd order in C is unique and so is characteristic, thus it is normal in G . It
follows that C has to be a 2–group otherwise O.G/ is not maximal. We denote by D

the subgroup generated by E and C ; the subgroup D is a central product E�Z.E/C .
The factor group of xG by D is a subgroup of Out.E/, the outer automorphism group
of E .

Consider first the case E Š PSL.2; q/; in this case D D E � C . In E all the
involutions are conjugate, so the centralizer in xG of each involution of E is isomorphic
to a subgroup of the semidirect product Z2 Ë .Za �Zb/. The subgroup E contains
an elementary subgroup isomorphic to Z2 � Z2 ; the subgroup C centralizes each
involution in E . Since the only possible abelian 2–group with rank at least three,
contained in Z2 Ë .Za �Zb/, is the elementary abelian subgroup of order eight, then
either C is trivial or C Š Z2 . The outer automorphism group of PSL.2; q D pn/ is
isomorphic to Z2 �Zn [23, p 509].

Suppose now that E has two components; the factor group D=Z.E/ is isomorphic
to E=Z.E/�C=Z.E/. Since E=Z.E/ has sectional 2–rank four and D=Z.E/ has
sectional 2–rank at most four, it follows that C=Z.E/ has to be trivial and EDD . The
set of the components of E is uniquely determined by the group and any automorphism
of E induces a permutation on the set of its components [9, Theorem 3.5, p 7]; if
E DA�Z2

B , then the outer automorphism group of E contains with index at most
two a subgroup isomorphic to Out.A/�Out.B/ [9, Lemma 3.23, p 13]. The outer
automorphism group of SL.2; q/ is the same as that of PSL.2; q/ that is isomorphic
to Z2 �Zn . This concludes the proof.

5 Proof of Theorem 3

We denote by H (resp. H 0 ) the transformation group of K (resp. K0 ); each nontrivial
element of H (resp. H 0 ) fixes pointwise the same simple connected curve zK (resp.
zK0 ) in M that is the preimage of K (resp. K0 ) in M . Since M is hyperbolic, by

Thurston’s orbifold geometrization theorem [1], we can suppose, up to conjugation,
that the transformation groups are contained in G .

We note that zK and zK0 do not coincide, even after conjugation. If nDm it follows
from the fact that K and K0 are inequivalent. If n¤m and H 0 fixes pointwise zK we
obtain some nontrivial symmetries of the knot K which fix pointwise the knot and this
is impossible by the positive solution to the Smith Conjecture.
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For each prime divisor p of n (resp. m) we denote by Hp (resp. H 0p ) the Sylow
p-subgroup of H (resp. H 0 ).

Step 1 Suppose that a subgroup of H with order strictly greater than two normalizes
a subgroup of H 0 with order strictly greater than two, then H commutes elementwise
with H 0 ; in particular K and K0 arise from the standard abelian construction. The
same statement holds inverting the roles of K and K0 .

We denote by B the subgroup of H and by B0 the subgroup of H 0 . The subgroup
B normalizes B0 ; since B has order strictly greater than two, Proposition 1 implies
that B commutes elementwise with B0 . The group B0 fixes setwise zK ; if f 2 B0 we
obtain that fHf �1 fixes pointwise zK . Since there exists at most one cyclic group
of given order that fixes pointwise a connected curve, we obtain that B0 normalizes
H . By Proposition 1, the groups B0 and H commute elementwise. Using the same
argument as before we obtain that H and H 0 commute elementwise, this concludes
the proof.

Step 2 Let B be a subgroup of G and let p be an odd prime number such that p

divides the order of B \H or the order of B \H 0 . Then Sp , the Sylow p–subgroup
of B , is abelian of rank one or two; there are exactly one or two simple closed curves
in M that are fixed by some nontrivial element of Sp with connected fixed point set;
the normalizer NG.Sp/ of Sp in G is solvable.

Remark The statement of Step 2 may appear rather technical but it has the advantage
that, in this form, it applies directly throughout the remaining steps.

Without loss of generality, we suppose that p divides the order of B \H . Up to
conjugation we can suppose that Hp \B is contained in Sp .

We consider N DNSp
.Hp \B/ the normalizer of Hp \B in Sp . By Proposition 1

the group N is abelian of rank at most two. By Step 1 the group N projects to a
group of symmetries of K . Since M is hyperbolic, K is a hyperbolic knot and in
particular is not the unknotted circle. By the positive solution of the Smith conjecture,
N=.Hp\B/ is cyclic and there exists at most one connected simple closed curve fixed
pointwise by elements of N=.Hp \B/. An element of N , that is not contained in
Hp and has nonempty fixed point set, projects to a nontrivial symmetry of K with
nonempty fixed point set; moreover Hp \B fixes setwise the fixed point set of any
element of N . Thus in N there exists at most one maximal cyclic subgroup different
from Hp \B with nonempty connected fixed point set.
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If f is an element of Sp that normalizes N , it acts by conjugation on the set of
maximal cyclic subgroups with nonempty connected fixed point set. Since these groups
are at most two and p is odd, the action must be trivial and f normalizes Hp \B .
We have that NSp

.N /DN and by [22, Theorem 1.6, p 88] Sp DN .

Finally we consider the normalizer NG.Sp/ of Sp in G . The group NG.Sp/ acts by
conjugation on the set of maximal cyclic subgroups of Sp with nonempty connected
fixed point set. Since these groups are at most two, the normalizer NG.Sp/ contains
with index at most two NG.Hp/ that is solvable. This concludes the proof.

Step 3 Let B (resp. B0 ) be a subgroup of H (resp. H 0 ) such that the order of B

(resp. B0 ) is not a power of two. If B and B0 generate a subgroup B �B0 of G that
does not contain any involution with connected and nonempty fixed point set, then
K and K0 arise from the standard abelian construction. In particular if G does not
contain any involution with connected and nonempty fixed point set, then K and K0

arise from the standard abelian construction.

Let p be an odd prime number that divides the order of B , the subgroup H \ B

contains a nontrivial p–group. We denote by Sp a p–Sylow of B �B0 , Sp is abelian
of rank at most two.

If p divides also the order of B0 , we can suppose that a nontrivial subgroup of B and
a nontrivial subgroup of B0 are contained in the same Sylow p–subgroup of B �B0 .
By Step 1 this implies that K and K0 arise from the standard abelian construction.

We can suppose that an odd prime number q , different from p , divides the order of B0 .
By Step 2, we deduce that Sp contains exactly one or two maximal cyclic subgroups
with nonempty connected fixed point set; up to conjugation we can suppose that one of
these groups is Sp \H . We consider N the normalizer of Sp in B �B0 . The group
N acts by conjugation on the set of the maximal cyclic subgroups with nonempty
connected fixed point set; N contains with index at most two N0 , the normalizer of
Sp \H in B �B0 . We recall that H fixes pointwise zK that is a simple closed curve.

We prove that N0 is abelian. Suppose that N0 contains t , an involution with nonempty
fixed point set that acts as a reflection on zK . Since t fixes setwise zK , it normalizes
H and projects to a strong inversion of the knot K . Any strong inversion of K has
connected fixed point set; since K is connected, also t has connected fixed point set.
We suppose that B �B0 does not contain any involution with nonempty connected fixed
point set, so each element of the group N0 acts as a rotation on zK and it is abelian.

Now we prove that N D N0 . If N ¤ N0 , there exists an element f 2 N such that
f .Sp \H /f �1 ¤ .Sp \H /. The group f .Sp \H /f �1 and Sp \H commute
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elementwise. The fixed point set of f .Sp \H /f �1 is f . zK/, a simple closed curve
that is distinct from zK . We consider the group fHf �1 that fixes pointwise the
simple closed curve f . zK/; since f . zK/ is distinct from zK the groups fHf �1 and
H intersect trivially. Moreover by Step 1, the groups fHf �1 and H commute
elementwise. A generator of fHf �1 projects to a cyclic symmetry of K with order n

and with nonempty connected fixed point set. Finally we obtain also that the associated
quotient link is symmetric; in fact f normalizes the group generated by fHf �1 and
H and it projects to the quotient link exchanging the two components. If N ¤N0 , the
knot K should be self-symmetric and this is excluded by hypothesis.

We have obtained that the normalizer of Sp in B �B0 is abelian, in particular Sp is
contained in the center of its normalizer. By [23, Theorem 2.10, p 143] B �B0 splits as
a semidirect product U Ì Sp . We have supposed that there exists q different from p

such that q divides the order of B0 . Any Sylow q–subgroup is contained in U and Sp

acts by conjugation on the set of Sylow q–subgroups. Since p does not divide the order
of U , it follows that some orbit has only one element. We obtain a Sylow q–subgroup
Sq that is normalized by Sp ; up to conjugation we can suppose that the intersection
of Sq and B0 is not trivial. By Step 2 we obtain that Sp \B normalizes Sq \B0 ; by
Step 1 we obtain that K and K0 arise from the standard abelian construction.

Step 4 Let B (resp. B0 ) be a subgroup of H (resp. H 0 ) such that the order of B

(resp. B0 ) is not a power of two. If B and B0 generate a solvable subgroup B �B0 of
G , then K and K0 arise from the standard abelian construction.

As in step 3 we can suppose that there exist two different odd primes p and q , such
that p divides the order of B and q divides the order of B0 . By Sylow theorems
for solvable groups, we obtain that there exists A, a subgroup of B �B0 with order
p˛qˇ , that contains a Sylow p–subgroup and a Sylow q–subgroup of B �B0 . Up to
conjugation we can suppose that the intersection of A both with B and with B0 is
not trivial. The group A does not contain any involution, so applying Step 3 to A we
obtain that K and K0 arise from the standard abelian construction.

Step 5 If E is not trivial, either K and K0 arise from the standard abelian construction
or there exists in G an involution h with nonempty connected fixed point set such that
hO.G/ 2E .

If G does not contain any involution with nonempty connected fixed point set, by
Step 3 the knots K and K0 arise from the standard abelian construction.

We can suppose that G contains one involution with nonempty connected fixed point
set. We denote by E the preimage of E in G with respect to the projection of G onto
O=O.G/; by Theorem 1 the factor group G=E is solvable.
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Suppose that the group E does not contain any involution with nonempty connected
fixed point set. Let p be an odd prime number that divides n and let q be an odd
prime number that divides m. By the Sylow Theorem for solvable groups, there exists
a subgroup E 0 of G that contains E , with the following properties:

� E 0contains a Sylow p–subgroup and a Sylow q–subgroup of G ;
� the factor group E 0=E has order p˛qˇ .

All the involutions in E 0 are contained in E , so E 0 does not contain any involution with
nonempty connected fixed point set. Moreover, up to conjugation, we can suppose that
E 0 contains a covering transformation of order p (resp. q ) of K (resp. K0 ). By Step 3
the knots K and K0 arise from the standard abelian construction.

Step 6 If E is trivial, either K and K0 arise from the standard abelian construction or
there exists a normal subgroup N of G such that N is solvable and G=N is isomorphic
to a subgroup of GL.4; 2/. In this case if K and K0 do not arise from the standard
abelian construction all prime divisors of n and m are contained in f2; 3; 5; 7g:

If G does not contain any involution with connected fixed point set, by Step 3, the
knots K and K0 arise from the standard abelian construction.

If G contains an involution with connected fixed point set, by Theorem 1 there exists
a normal subgroup N of G such that N is solvable and G=N is isomorphic to a
subgroup of GL.4; 2/.

Finally we prove that, if the intersection group H \N contains a nontrivial element of
odd order, then K and K0 arise from the standard abelian construction. Let p be an
odd prime number that divides the order of H \N , let q be an odd prime number that
divides m. We can suppose that p is different from q , otherwise by Step 2 the knots
K and K0 arise from the standard abelian construction.

By the Sylow Theorem applied to G=N , there exists a subgroup N 0 of G that contains
N , with the following properties:

� N 0 is solvable;
� N 0 contains a Sylow q–subgroup of G .

By Step 4 the knots K and K0 arise from the standard abelian construction.

The same property holds if H 0\N contains a nontrivial element of odd order.

Since the order of GL.4; 2/ is 7 �5 �32 �26 , the Sylow p–subgroups of G are contained
in N when p ¤ 2; 3; 5; 7. So if K and K0 do not arise from the standard abelian
construction, all prime divisors of n and m are contained in f2; 3; 5; 7g:
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