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Remarks on the cohomology
of finite fundamental groups of 3–manifolds

SATOSHI TOMODA

PETER ZVENGROWSKI

Computations based on explicit 4–periodic resolutions are given for the cohomology
of the finite groups G known to act freely on S3 , as well as the cohomology rings
of the associated 3–manifolds (spherical space forms) M D S3=G . Chain approx-
imations to the diagonal are constructed, and explicit contracting homotopies also
constructed for the cases G is a generalized quaternion group, the binary tetrahedral
group, or the binary octahedral group. Some applications are briefly discussed.

57M05, 57M60; 20J06

1 Introduction

The structure of the cohomology rings of 3–manifolds is an area to which Heiner
Zieschang devoted much work and energy, especially from 1993 onwards. This could
be considered as part of a larger area of his interest, the degrees of maps between
oriented 3–manifolds, especially the existence of degree one maps, which in turn have
applications in unexpected areas such as relativity theory (cf Shastri, Williams and
Zvengrowski [41] and Shastri and Zvengrowski [42]). References [1; 6; 7; 18; 19;
20; 21; 22; 23] in this paper, all involving work of Zieschang, his students Aaslepp,
Drawe, Sczesny, and various colleagues, attest to his enthusiasm for these topics and
the remarkable energy he expended studying them.

Much of this work involved Seifert manifolds, in particular, references [1; 6; 7; 18; 20;
23]. Of these, [6; 7; 23] (together with [8; 9]) successfully completed the programme of
computing the ring structure H�.M / for any orientable Seifert manifold M with G WD

�1.M / infinite. Any such Seifert manifold M (apart from S1 �S2 and RP3#RP3 )
is irreducible, hence aspherical (ie, an Eilenberg–MacLane space K.G; 1/) by a well
known application of the Papakyriakopolous sphere theorem (see Hempel [24]), together
with the Hurewicz theorem applied to the universal cover �M . This means that H�.M /

is isomorphic to the group cohomology H�.G/, so algebraic techniques can be applied.
In particular, construction of a chain approximation to the diagonal (which we simply
call a “diagonal”) suffices to determine the ring structure with arbitrary coefficients.
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Most Seifert manifolds have infinite fundamental group: any Seifert manifold with
orbit surface not S2 or RP2 , or having at least four singular fibres, will have G

infinite. Nevertheless, the relatively small class of Seifert manifolds having finite
fundamental group is extremely important, indeed all known 3–manifolds with finite
fundamental group are Seifert, and pending recent work of Perelman [36], Kleiner–
Lott [29], Morgan–Tian [33] and Cao–Zhu [10], it seems very likely there are no others.
These Seifert manifolds all arise from free orthogonal actions of G on S3 , and the
resulting manifolds M D S3=G , known as spherical space forms, have been of great
interest to differential geometers since the nineteenth century; see Clifford [12], Killing
[27], Klein [28] and the book of Wolf [46]. In this paper we attempt, in a certain sense,
to complete the aforementioned programme of Zieschang and his colleagues to the
orientable Seifert manifolds with finite fundamental group, ie to the spherical space
forms. (The nonorientable case has little interest here, since a theorem of D B A Epstein
[15] asserts that Z2 is the only finite group that can be the fundamental group of a
nonorientable 3–manifold.)

It is important to note that, in contrast to the case where G is infinite, M is no longer
aspherical. Thus, H�.M / and H�.G/ are no longer isomorphic; indeed by a classical
theorem (see Cartan–Eilenberg [11]), H�.G/ is now 4–periodic. The collection of
all finite groups acting freely and orthogonally on S3 is clearly listed by Milnor [32],
based on earlier work of Hopf [26] and Seifert–Threlfall [39]. Ideally, for each such
group, one would like to have a 4–periodic resolution C together with a contracting
homotopy s and a diagonal �. For example, for the cyclic group Cn , this is done
(here C is 2–periodic) in [11].

In Section 2, we give some preliminaries about the groups involved and about the coho-
mology of groups, also setting up necessary definitions and notation. The generalized
quaternion groups Q4n are considered in Section 3. In this case, a 4–periodic resolution
was given in [11], together with the somewhat cryptic statement “the verification that
the homology groups are trivial involves some computations which will be omitted.”
This verification was partially done by Wall [45], and is completely done here, ie, we
give a contracting homotopy s for all n� 1. A diagonal for Q4n was first constructed
by Shastri–Zvengrowski [42]. The binary tetrahedral, octahedral, and icosahedral
groups (resp. P24 , P48 , P120 ) are discussed in Section 4. Again, explicit 4–periodic
resolutions, diagonals, and (for P24 , P48 ) contracting homotopies are given. The
remaining two families of groups P 0

8�3k and B2k.2nC1/ are considered in Section 5.
Some concluding remarks, further questions, and a brief discussion of applications, are
given in Section 6.

For the most part, the results in this paper are given without proof. This is partly
because, once explicit formulae are found, the proofs are in general fairly routine
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computations, but also because the verifications can often be quite lengthy, eg the
verification for the contracting homotopy and diagonal map in Section 4.2 takes about
100 pages. For full details, see Tomoda [43].

2 Preliminaries

In this section, we first discuss the groups that will be considered in the subsequent
sections, namely the known finite fundamental groups of 3–manifolds. In fact, every
such group G arises from a free orthogonal action on S3 , with the resulting manifold
S3=G an oriented Seifert manifold. These groups were found in 1926 by Hopf [25],
and in 1931–33 by Seifert–Threlfall [39; 40]. Further work in 1947 by Vincent [44]
considered the general case of free orthogonal actions on any sphere (only the odd
dimensional spheres are of interest, since only Z2 can act freely on an even dimensional
sphere; cf Brown [5]).

The groups acting on S3 were clearly listed (perhaps for the first time) by Milnor in
1958 [32], as mentioned in Section 1. We denote them Cn , Q4n , n � 1, P24 , P48 ,
P120 , B2k.2nC1/ , k � 2 and n� 1, P 0

8�3k , k � 1, following Milnor’s notation (except
that he denotes B2k.2nC1/ by D2k.2nC1/ ). The direct product of any of these groups
with a cyclic group of relatively prime order also acts freely and orthogonally on S3 .
In all cases, the subscript denotes the order of the group, written jGj. In Orlik’s 1972
book [35], a considerably simplified derivation of this list is given, but the shortest
proof seems to be in a paper of Hattori [17] (in Japanese). In the subsequent sections,
more details about each of these groups will be given, such as a finite presentation
and semidirect product structure. From the work of Milnor, Lee [30] and Madsen–
Thomas–Wall [31], there remains the question concerning one other family of groups,
Q.8n; k; l/ (see Section 6), that could act freely on S3 (or a homotopy S3 ). Current
work of Perelman [36], Kleiner–Lott [29], Morgan–Tian [33] and Cao–Zhu [10] will
resolve this question (in the negative), as well as settle the Poincaré conjecture and the
geometrization conjecture for 3–manifolds.

We now briefly outline some of standard material about the cohomology of groups,
following (chiefly) the book of Brown [5] as well as other standard texts such as
Adem–Milgram [2], Benson [3; 4] and Cartan–Eilenberg [11]. Let G be a finite group
and RD ZG denote its integral group ring. An exact sequence C of projective (left)
R–modules Cj , j � 0, and R–homomorphisms dj , j � 1,

C W � � �
dnC1

�! Cn
dn
�! Cn�1

dn�1
�! � � �

d2
�! C1

d1
�! C0

"� Z! 0 ;
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is called a projective resolution (in the subsequent sections, all resolutions will in fact
be free). Here, Z has the trivial R–module structure, and " is called the augmentation.
It is also an R–homomorphism, ie, ".g � x/ D ".x/, for all g 2 G , x 2 C0 . If A

is any (left) R–module, the cohomology of G with coefficients in A is simply the
cohomology of the cochain complex homR.C;A/, ie, H�.GIA/ WDH�.homR.C;A//.

A contracting homotopy s for C is a sequence of abelian group homomorphisms
s�1W Z ! C0 and sj W Cj ! CjC1 , j � 0 with "s�1 D 1Z , d1s0 C s0" D 1C0

,
djC1sj C sj�1dj D 1Cj

, j � 1. In general, sj is not an R–homomorphism. A
contracting homotopy exists for any projective resolution C .

The chain complex C˝C becomes a left R–module via the diagonal action g �.x˝y/D

gx˝gy for g 2G , x 2 Ci , y 2 Cj , which is then extended by linearity to all of R.
A diagonal (strictly speaking, chain approximation to the diagonal) is an R–chain map
�W C! C˝ C such that

C0 C0˝C0

Z Z� Z˝Z
? ?

-

-

" "˝ "

�0

1Z

commutes.

Using the resolution C and the diagonal map �, the calculation of the cohomology
H�.GIA/ with coefficients in any R–module A is quite routine, as well as the cup
products when A is an R–algebra. In this paper, we content ourselves with a single
illustration of this process, in the proof of Theorem 4.11, for GDP48 with coefficients
Z2 . The calculation in all other cases can easily be reconstructed in the same manner.

Exactness of a resolution can be proved by constructing a contracting homotopy. For
a single finite group G , exactness can also be proved by forgetting the R–module
structure and simply showing exactness as a sequence of abelian groups, which is
readily done with a computer (see Rotman [37, p 156]). The diagonal � can be used
to determine the ring structure in H�.GIA/, where A is any R–algebra. Although s

and � always exist, finding either one explicitly can be a very demanding calculation.
Once found, checking their required properties is relatively routine, although often
lengthy.

For a free resolution C , a contracting homotopy s can also be used to produce a diagonal
�. For example, following Handel [16], we first define a contracting homotopy zs for
C˝ C by

zs�1 D s�1˝ s�1
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zsn

 
nX

iD0

.ui ˝ vn�i/

!
D

nX
iD1

siui ˝ vn�i C s�1".u0/˝ sn.vn/; n� 0 ;

where ui 2 Ci , vn�i 2 Cn�i .

Then one defines �nW C! C˝ C recursively on each free generator �j of Cn by

�0 D s�1"˝ s�1";

�n.�j /D zsn�1�n�1dn.�j /;

and extends to all of Cn by R–linearity.

Definition 2.1 A finite group G is said to have periodic cohomology of period m, if
there exists a positive integer m and a u 2 H m.GIZ/ � ZjGj such that taking cup
product with u gives an isomorphism

u[ W H l.GIA/!H lCm.GIA/

for all l � 1 and for all R–modules A.

The element u is called the periodicity class and u [ is called the periodicity
isomorphism. This definition can be given in more elegant form, with the restriction
l � 1 removed, using Tate cohomology (see [11, p 260] and [5, p 153]).

Any finite group G acting freely on a sphere S2n�1 will have 2n–periodic cohomology,
indeed, it will have a 2n–periodic resolution [5]. Hence, the groups we study all have
4–periodic cohomology (with the cyclic groups Cn being 2–periodic). The resolutions
can be found by algebraic or geometric considerations. Algebraically, it is advantageous
to start with a balanced presentation (same number of generators and relations) for G ,
then techniques of Fox calculus will give C0 , C1 , and C2 routinely. For more details,
see [43, Sections 2.3–2.4].

The following sections consider the groups Q4n , P24 , P48 , P120 , B2k.2nC1/ , P 0
8�3k .

Based mainly on the dissertation of Tomoda [43], we construct (as far as possible) a
4–periodic resolution C for each of these groups together with a contracting homotopy
s and a diagonal �, as well as the cohomology ring H�.GIA/ for ADZ, or ADZp

for a suitably selected prime p (both as trivial G –modules). The cyclic groups Cn are
omitted since all this is completely done for Cn in [11], and the corresponding orbit
spaces S3=Cn are the well known lens spaces (RP3 for n D 2). We also omit the
products G �Cn of any of the groups G above with a cyclic group of relatively prime
order, since, for any groups G1 , G2 , K.G1 �G2; 1/DK.G1; 1/�K.G2; 1/ implies
that the cohomology ring H�.G1�G2/ of the direct product of two groups can easily be
determined using the Künneth theorem. Finally, for the associated spherical space form
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M DS3=G , note that �1.M /�G and �j .M /��j .S
3/, j � 2, from the homotopy

exact sequence. In particular, �2.M /D 0, so by attaching cells to M in dimensions 4

and higher, we see that the inclusion i W M ,!K.G; 1/ embeds M as the 3–skeleton of
K.G; 1/. It follows that i�W H l.GIA/!H l.M IA/ is an isomorphism for l � 2 and,
for lD3, a monomorphism H 3.GIA/�H 3.M IA/�A. Of course, H l.M IA/D0

for l � 4. Thus, it is not difficult to determine H�.M IA/ once H�.GIA/ is known.
The following theorem briefly summarizes the results on the ring structures H�.M IA/

for the spherical space forms M D S3=G (omitting the case G cyclic, as mentioned
above), with suitably chosen coefficient module(s) A. The subscript of any cohomology
class denotes its dimension. Since H l.M IA/D 0 for l > 3, products of cohomology
classes in total dimension greater than 3 are automatically 0, so these relations are
not explicitly written in the polynomial rings below and are simply indicated by the
superscript “?.” Further details, for each G , are given in the section devoted to that
group.

Theorem 2.2 Using the notational conventions above, we have the following:

(1) (cf Corollary 3.9) Let M D S3=Q4n , called a prism manifold [35].
If n is odd, then

H�.M IZ2/� Z2Œˇ
0
1; 
0
2; ı3�

?=.
�
ˇ01
�2
D 0; ˇ01

0
2 D ı3/:

If n� 0 .mod 4/, then

H�.M IZ2/� Z2Œˇ1; ˇ
0
1; 2; 

0
2; ı3�

?

�0B@ ˇ2
1
D ˇ1ˇ

0
1
D 2;

�
ˇ0

1

�2
D 2;

ˇ12 D ˇ1
0
2
D ˇ0

1
 0

2
D ı3;

ˇ0
1
2 D 0

1CA :
If n� 2 .mod 4/, then

H�.M IZ2/� Z2Œˇ1; ˇ
0
1; 2; 

0
2; ı3�

?

�0BBB@
ˇ2

1
D 2C 

0
2
; ˇ1ˇ

0
1
D  0

2
;�

ˇ0
1

�2
D 2;

ˇ12 D ˇ1
0
2
D ˇ0

1
 0

2
D ı3;

ˇ0
1
2 D 0

1CCCA :
(2) (cf Theorem 4.6) Let M D S3=P24 .

H�.M IZ3/� Z3Œˇ1; 2; ı3�
?=
�
ˇ2

1 D 0; ˇ12 D ı3

�
:

(3) (cf Theorem 4.13) Let M D S3=P48 .

H�.M IZ2/� Z2Œˇ1; 2; ı3�
?=
�
ˇ2

1 D 2; ˇ12 D ı3

�
:

H�.M IZ3/� Z3Œı3�
?:
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(4) (cf Theorem 4.16) Let M D S3=P120 . The 3–manifold M is called the
Poincaré homology sphere and H l.M /D 0 for all l except l D 0; 3. Thus, we
have H�.M IZ/� ZŒı3�

? and H�.M IZp/� Zp Œı3�
? .

(5) (cf Theorem 5.3) Let M D S3=P 0
8�3k . Then

H�.M IZ3/� Z3Œˇ1; 2; ı3�
?=
�
ˇ2

1 D 0; ˇ12 D�ı3

�
:

For p ¤ 3; H�.M IZp/� Zp Œı3�
?:

(6) (cf Theorem 5.6) Let M D S3=B2k.2nC1/ , also called a prism manifold. Then

H�.M IZ2/� Z2Œˇ1; 2; ı3�
?=
�
ˇ2

1 D 0; ˇ12 D ı3

�
:

For p 6D 2; H�.M IZp/� Zp Œı3�
?:

Remark 2.3 The above theorem includes all coefficients Zp , for those primes p of
interest in each case (namely, p divides the order of Gab DH1.M IZ/), as trivial R–
modules. For Z coefficients, see the corresponding section. There are other possibilities
for interesting (twisted) coefficients involving nontrivial R–modules; the authors hope
to consider these in future work.

3 Generalized quaternion groups

In this section, we compute the ring structure of the cohomology of the generalized
quaternion groups with Z and Z2 coefficients. A presentation of the generalized
quaternion groups is given by Q4n D hx;y jx

n D y2;xyx D yi, for n� 1. One may
also think of Q4n as a double cover of the dihedral group D2n D h�; � j �

n D �2 D

1; ��� D �i, using the exact sequence

1! C2

C
,!Q4n

p
�D2n! 1 ;

where C2 D f1;y
2g is the centre of Q4n and p.x/D � , p.y/D �. This is related to

the double cover Spin.3/� SO.3/, indeed there is a commutative diagram

1 ! C2

C
,! Q4n

p
� D2n ! 1

k #� #�

1 ! C2

C
,! Spin.3/

p
� SO.3/ ! 1 :

It is easy to show that

.Q4n/ab �

�
Z4; if n is odd ,
Z2˚Z2; if n is even .
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A 4–periodic resolution of Z over R D ZQ4n , n � 1, will now be constructed
(following Cartan–Eilenberg [11]). First define elements of R as follows:

pi WD
Pi�1

kD0 xk ; 0� i � n with p0 WD 0

qj WD
Pj�1

kD0
yk ; 0� j � 4 with q0 WD 0

L WD pn ;

N WD
P

g2Q4n
g :

Remark 3.1 For any finite group G , following standard usage, the norm is written
N WD

P
g2G g 2 ZG (just as we did above for Q4n ).

Proposition 3.2 A resolution C for Q4n is given by:

C0 D hai ".a/ D 1 ;

C1 D hb; b
0i d1.b/ D .x� 1/a ;

d1.b
0/ D .y � 1/a ;

C2 D hc; c
0i d2.c/ DLb� .yC 1/b0 ;

d2.c
0/ D .xyC 1/bC .x� 1/b0 ;

C3 D hdi d3.d/ D .x� 1/cC .1�xy/c0 ;

C4 D ha4i d4.a4/ DNd :

For any n � 4, we define Cn � Cn�4 with appropriate subscripts, similarly dn is
defined in the obvious way from dn�4 (note that in the above resolution, strictly
speaking, aD a0 , b D b1 , etc).

The resolution above is given in [11] without proof. Wall showed in [45] that the
chain complex C above is a resolution for n even via representation theory. The
following contracting homotopy verifies directly that the chain complex C above is
indeed a resolution of Z over ZQ4n , for all n � 1, thus completing the claim of
Cartan–Eilenberg and the work of Wall.

Proposition 3.3 Let 0 � i � n� 1 and 0 � j � 3. Then a contracting homotopy s

for C is given by:

s�1.1/ D a ;

s0.x
iyj a/ D pibCxiqj b0 ;

s1.x
ib/ D 0 ; 0� i � n� 2

s1.x
n�1b/ D c ;

s1.yb/ D .xn�1� 1Cxn�1y/cC .y �xn�1yL/c0 ;

s1.x
iyb/ D xi�1c0 ; 1� i � n� 1

s1.x
iy2b/ D xi.x� 1/c ; 0� i � n� 2
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s1.x
n�1y2b/ D�ycC .yLCy3�xn�1/c0 ;

s1.y
3b/ D�cCxn�1c0 ;

s1.x
iy3b/ D xi�1.1�xyCy2/c0 ; 1� i � n� 1

s1.x
iyj b0/ D 0 ; 0� j � 2

s1.x
iy3b0/ D�xi.yC 1/cCxiyLc0 ;

s2.x
ic/ D 0 ;

s2.x
iyc/ D .pn�i�1xiC1y �pn�1/d ;

s2.x
iy2c/ D .xn�1piC1Cpixy/d ;

s2.x
iy3c/ D .xiC1Ly3�pi/d ;

s2.x
ic0/ D 0 ; 0� i � n� 1

s2.yc0/ D 0 ;

s2.x
iyc0/ D�xi�1d ; 1� i � n� 1

s2.x
iy2c0/ D�xid ; 0� i � n� 2

s2.x
n�1y2c0/ D .xn�1CLy2Cpn�1xy/d ;

s2.y
3c0/ D 0 ;

s2.x
iy3c0/ D xi�1.xy � 1/d ; 1� i � n� 1

s3.y
3d/ D a4 ;

s3.x
iy3d/ D 0 ; otherwise.

The remaining sn , for n � 4, are then defined by periodic extension, for example,
s4.x

iyj a4/D pib5Cxiqj b0
5

, etc.

As mentioned in the Introduction, the proofs for this proposition and most of the
following ones are not given here, for full details, see Tomoda [43]. The following
defines a diagonal map �W C! C˝C for C through dimension 4. We remark that the
contracting homotopy s extends to higher dimensions by periodicity, as noted above,
but this is not true for �.

Proposition 3.4 A diagonal map � for C is given by:

�0.a/ D a˝ a ;

�1.b/ D b˝xaC a˝ b ;

�1.b
0/ D b0˝yaC a˝ b0 ;

�2.c/ D c˝y2aC
Pn�1

iD0.pib˝xib/C a˝ c � b0˝yb0 ;

�2.c
0/ D c0˝yaC b˝xybCxb0˝xybC a˝ c0C b˝xb0 ;

Geometry & Topology Monographs, Volume 14 (2008)



528 Satoshi Tomoda and Peter Zvengrowski

�3.d/ D c˝y2bC b˝xcC d ˝xy2a� c0˝y2b

�b˝xyc0�xb0˝xyc0C a˝ d � c0˝yb0 ;

�.a4/ D a˝ a4C
Pn�1

iD0

P3
jD0.pib˝xiyj d/

C
Pn�1

iD0

P3
jD0.x

iqj b0˝xiyj d/

Cc˝y2cC .xn�1� 1Cxn�1y/c˝xn�1y3c

C
Pn�2

iD0.x
i.x� 1/c˝xiC1y2c/�yc˝ c � c˝xn�1yc

�c˝y3c0� .xn�1� 1Cxn�1y/c˝x�1y2c0

�
Pn�2

iD0.x
i.x� 1/c˝xiC1y3c0/Cyc˝yc0

Cc˝xn�1y2c0C
Pn�1

iD0.x
i.yC 1/c˝xiyc0/

C.y �xn�1yL/c0˝x�1ycC
Pn�1

iD1.x
i�1c0˝xi�1yc/

C.yLCy3�xn�1/c0˝xny2cCxn�1c0˝x�1y3c

C
Pn�1

iD1.x
i�1.1�xyCy2/c0˝xi�1y3c/

�.y �xn�1yL/c0˝x�1y2c0�
Pn�1

iD1.x
i�1c0˝xi�1y2c0/

�.yLCy3�xn�1/c0˝xny3c0�xn�1c0˝x�1c0

�
Pn�1

iD1.x
i�1.1�xyCy2/c0˝xi�1c0/�

Pn�1
iD0.x

iyLc0˝xiyc0/

C
Pn�1

iD0..pn�i�1xiC1y �pn�1/d ˝xiy3b/

C
Pn�1

iD0..x
n�1piC1Cpixy/d ˝xib/

C
Pn�1

iD0..x
iC1Ly3�pi/d ˝xiyb/

�
Pn�1

iD1.�xi�1d ˝xiy3b/�
Pn�2

iD0.�xid ˝xib/

�.xn�1CLy2Cpn�1xy/d ˝xn�1b

�
Pn�1

iD1.x
i�1.xy � 1/d ˝xiyb/

�
Pn�1

iD1.�xi�1d ˝xiy2b0/�
Pn�2

iD0.�xid ˝xiy3b0/

�.xn�1CLy2Cpn�1xy/d ˝xiy3b0

�
Pn�1

iD1.x
i�1.xy � 1/d ˝xib0/

Ca4˝xn�1y3a :

Proposition 3.5 The cohomology groups of the generalized quaternion group Q4n ,
for n� 1, are given by:

H l.Q4nIZ/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z; if l D 0,
0; if l � 1 mod 4,�

Z2˚Z2;

Z4;

if l � 2 mod 4 and n even,
if l � 2 mod 4 and n odd,

0; if l � 3 mod 4,
Z4n; if l � 0 mod 4 and l > 0.
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Theorem 3.6 The cohomology ring H�.Q4nIZ/ has the following presentation:

H�.Q4nIZ/�

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

ZŒ2; 
0
2
; ˛4�

ı� 22 D 2 0
2
D 0D 4n˛4;

 2
2
D 0; 2

0
2
D  02

2
D 2n˛4

�
; if nD 4m;

ZŒ 0
2
; ˛4�=

�
4 0

2
D 0D 4n˛4; 

02
2
D n˛4

�
; if nD 4mC 1;

ZŒ2; 
0
2
; ˛4�

ı� 22 D 2 0
2
D 0D 4n˛4;

 2
2
D 0D  02

2
; 2

0
2
D 2n˛4

�
; if nD 4mC 2;

ZŒ 0
2
; ˛4�=

�
4 0

2
D 0D 4n˛4; 

02
2
D 3n˛4

�
; if nD 4mC 3 :

Proposition 3.7 The cohomology groups of the generalized quaternion group Q4n

with Z2 coefficients, for n� 1, are given by:

H l.Q4nIZ2/D

8<:
Z2 ; if l � 0; 1 mod 4,�

Z2˚Z2 ; if l � 2; 3 mod 4 and n even,
Z2 ; if l � 2; 3 mod 4 and n odd.

Theorem 3.8 For n� 0 .mod 4/, the cohomology ring H�.Q4nIZ2/ is given by:

H�.Q4nIZ2/� Z2Œˇ1; ˇ
0
1; 2; 

0
2; ı3; ˛4�

�0BBB@
ˇ2

1
D  0

2
D ˇ1ˇ

0
1
;
�
ˇ0

1

�2
D 2;

ˇ12 D ˇ1
0
2
D ˇ0

1
 0

2
D ı3;

ˇ0
1
2 D 0;

 2
2
D
�
 0

2

�2
D 2

0
2
D 0

1CCCA ;
and for n� 2 .mod 4/,

H�.Q4nIZ2/� Z2Œˇ1; ˇ
0
1; 2; 

0
2; ı3; ˛4�

�
0BBBBB@
ˇ2

1
D 2C 

0
2
; ˇ1ˇ

0
1
D  0

2
;�

ˇ0
1

�2
D 2;

ˇ12 D ˇ1
0
2
D ˇ0

1
 0

2
D ı3;

ˇ0
1
2 D 0;

 2
2
D
�
 0

2

�2
D 2

0
2
D 0

1CCCCCA :

For n odd, the cohomology ring H�.Q4nIZ2/ is given by:

H�.Q4nIZ2/� Z2Œˇ
0
1; 
0
2; ı3; ˛4�

� �
ˇ0

1

�2
D 0; ˇ0

1
 0

2
D ı3;

ˇ0
1
ı3 D 0;

�
 0

2

�2
D ˛4

!
:

Corollary 3.9 Let M D S3=Q4n . Then the following holds:

(1) H�.M IZ/�

�
ZŒ2; 

0
2
; ı3�

?=.22 D 2 0
2
D 0/ ; if n is even ;

ZŒ 0
2
; ı3�

?=.4 0
2
D 0/ ; if n is odd:
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(2) When n� 0.mod 4/,

H�.M IZ2/� ZŒˇ1; ˇ
0
1
; 2; 

0
2
; ı3�

?

�0B@ ˇ2
1
D 2 D ˇ1ˇ

0
1
;
�
ˇ0

1

�2
D 2;

ˇ12 D ˇ1
0
2
D ˇ0

1
 0

2
D ı3;

ˇ0
1
2 D 0

1CA :

(3) When n� 2.mod 4/,

H�.M IZ2/� ZŒˇ1; ˇ
0
1; 2; 

0
2; ı3�

?

�0B@ ˇ2
1
D 2C 

0
2
; ˇ1ˇ

0
1
D  0

2
;�

ˇ0
1

�2
D 2; ˇ

0
1
2 D 0;

ˇ12 D ˇ1
0
2
D ˇ0

1
 0

2
D ı3

1CA :

(4) When n is odd,

H�.M IZ2/� ZŒˇ01; 
0
2; ı3�

?=
� �
ˇ0

1

�2
D 0; ˇ0

1
 0

2
D ı3

�
:

4 Binary groups

In this section, we consider double covers (under the 2–fold covering Spin.3/�
SO.3/) of the tetrahedral, octahedral, and icosahedral groups, called respectively the
binary tetrahedral, binary octahedral, and binary icosahedral groups. The generalized
quaternion groups Q4n , considered in Section 3, could also be thought of as “binary
dihedral groups.”

4.1 Binary tetrahedral group

The binary tetrahedral group P24 can be considered as a double cover of the group of
rotational symmetries A4 of a regular tetrahedron (A4 is the alternating group on the
4 symbols f1; 2; 3; 4g). Thus, there is a commutative diagram of short exact sequences

1 ! C2

C
,! P24

p
� A4 ! 1

k #� #�

1 ! C2

C
,! Spin.3/

p
� SO.3/ ! 1 :

Following the book of Coxeter–Moser [13], we use the balanced presentation P24 D

hS;T jSTSDT 2;TST DS2i. It is easy to see that z WD .ST /2DT 3D .TS/2DS3 ,
and this element is central. Then C2Df1; zg is the centre of P24 . The homomorphism
p is given by p.S/D .1 2 3/ 2 A4 , p.T /D .1 2 4/ 2 A4 (note that p is not unique) .
It is easy to show .P24/ab � Z3 .

Other common presentations of P24 are hx;y jx2 D .xy/3 D y3;x4 D 1i and
hx;y jx2 D .xy/3 D y�3i. The equivalence can be established using x D ST

and y D T �1 .
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Proposition 4.1 A resolution C for P24 is given by:

C0 D hai ".a/ D 1 ;

C1 D hb; b
0i d1.b/ D .S � 1/a ;

d1.b
0/ D .T � 1/a ;

C2 D hc; c
0i d2.c/ D .T �S � 1/bC .1CTS/b0 ;

d2.c
0/ D .1CST /bC .S �T � 1/b0 ;

C3 D hdi d3.d/ D .S � 1/cC .T � 1/c0 ;

C4 D ha4i d4.a4/ DNd :

For any n� 4, we define Cn � Cn�4 with appropriate subscripts.

We now define a contracting homotopy for this resolution.

Proposition 4.2 A contracting homotopy s for the resolution C over ZP24 above is
given by:

s�1.1/ D a ;

s0.a/ D 0 ; s0.TSa/ D T bC b0 ;

s0.Sa/ D b ; s0.S
2a/ D .1CS/b ;

s0.Ta/ D b0 ; s0.T
2a/ D .1CT /b0 ;

s0.STa/ D Sb0C b ; s0.ST 2a/ D bCS.1CT /b0 ;

s0.TS2a/ D T .1CS/bC b0 ;

s0.S
2Ta/ D .1CS/bCS2b0 ;

s0.T
2Sa/ D T 2bC .1CT /b0 ;

s0.ST 2Sa/ D .1CST 2/bCS.1CT /b0 ;

s0.za/ D .1CST /bC .S CT 2/b0 ;

s0.zSa/ D zbC .1CST /bC .S CT 2/b0 ;

s0.zTa/ D zb0C .1CST /bC .S CT 2/b0 ;

s0.zSTa/ D z.bCSb0/C .1CST /bC .S CT 2/b0 ;

s0.zTSa/ D z.T bC b0/C .1CST /bC .S CT 2/b0 ;

s0.zS2a/ D z.S C 1/bC .1CST /bC .S CT 2/b0 ;

s0.zT 2a/ D z.T C 1/b0C .1CST /bC .S CT 2/b0 ;

s0.zST 2a/ D z.bCS.1CT /b0/C .1CST /bC .S CT 2/b0 ;

s0.zTS2a/ D z.T .1CS/bC b0/C .1CST /bC .S CT 2/b0 ;
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s0.zS2Ta/ D z..1CS/bCS2b0/C .1CST /bC .S CT 2/b0 ;

s0.zT 2Sa/ D z.T 2bC .1CT /b0/C .1CST /bC .S CT 2/b0 ;

s0.zST 2Sa/ D z..1CST 2/bCS.1CT /b0/C .1CST /bC .S CT 2/b0 ;

s1.b/ D 0 ;

s1.Sb/ D 0 ;

s1.T b/ D 0 ;

s1.ST b/ D c0 ;

s1.TSb/ D 0 ;

s1.S
2b/ D�Sc ;

s1.T
2b/ D 0 ;

s1.ST 2b/ D 0 ;

s1.TS2b/ D�TScC .T � 1/c0 ;

s1.S
2T b/ D Sc0 ;

s1.T
2Sb/ D�T 2c � c0 ;

s1.ST 2Sb/ D�ST 2c �ST c0 ;

s1.zb/ D 0 ;

s1.zSb/ D 0 ;

s1.zT b/ D 0 ;

s1.zST b/ D zc0 ;

s1.zTSb/ D 0 ;

s1.zS2b/ D .T CT 2C zS2T /cC .1CT 2S C zS C zS2/c0 ;

s1.zT 2b/ D 0 ;

s1.zST 2b/ D 0 ;

s1.zTS2b/ D .S2CT 2CS2T /cC .1CS2CST 2C zTS2/c0 ;

s1.zS2T b/ D zSc0 ;

s1.zT 2Sb/ D .S CTS2C zST 2S/cC .S CS2CTS2/c0 ;

s1.zST 2Sb/ D .S CTS CT 2S/cC .TS CT 2S C z/c0 ;

s1.b
0/ D 0 ; s1.TS2b0/ D�.T CT 2/c � .1CT 2S/c0 ;

s1.Sb0/ D 0 ; s1.S
2T b0/ D�Sc �S2c0 ;

s1.T b0/ D 0 ; s1.T
2Sb0/ D T c ;

s1.ST b0/ D 0 ; s1.ST 2Sb0/ D ST cC c0 ;

s1.TSb0/ D c ;

s1.S
2b0/ D 0 ;

s1.T
2b0/ D�c0 ;

s1.ST 2b0/ D�ST c0 ;
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s1.zb0/ D 0 ;

s1.zSb0/ D 0 ;

s1.zT b0/ D 0 ;

s1.zST b0/ D 0 ;

s1.zTSb0/ D zc ;

s1.zS2b0/ D 0 ;

s1.zT 2b0/ D .S CTS CT 2S C zS2T /cC .T 2S C zST C zS2T /c0 ;

s1.zST 2b0/ D .S CTS CT 2S C zS2T /cC .T 2S C zC zS2T /c0 ;

s1.zTS2b0/ D .S2T C z/cC .ST CS2T /c0 ;

s1.zS2T b0/ D .T CT 2C zS2T /cC .1CT 2S C zS/c0 ;

s1.zT 2Sb0/ D zT c ;

s1.zST 2Sb0/ D z.ST cC c0/ ;

s2.c/ D 0 ; s2.TSc/ D d ;

s2.Sc/ D 0 ; s2.S
2c/ D Sd ;

s2.T c/ D 0 ; s2.T
2c/ D 0 ;

s2.ST c/ D 0 ; s2.ST 2c/ D 0 ;

s2.TS2c/ D T .�1CS �T /d ;

s2.S
2T c/ D�S.1CS/d ;

s2.T
2Sc/ D T .1CT /d ;

s2.ST 2Sc/ D ST .1CT /d ;

s2.zc/ D 0 ;

s2.zSc/ D�.1CT CT 2C zS C zS2/d ;

s2.zT c/ D 0 ;

s2.zST c/ D 0 ;

s2.zTSc/ D�.S2CST 2CS2T CST 2S C zTS C zTS2/d ;

s2.zS2c/ D�.1CT CT 2C zS2/d ;

s2.zT 2c/ D .TS CT 2S C zST C zST 2C zS2T /d ;

s2.zST 2c/ D zS2T d ;

s2.zTS2c/ D�.S2CST 2CST 2S C zTS2/d ;

s2.zS2T c/ D 0 ;

s2.zT 2Sc/ D�.S CST CTS2C zT 2S C zST 2S/d ;

s2.zST 2Sc/ D�.TS CT 2S/d ;

s2.c
0/ D 0 ;

s2.Sc0/ D 0 ;

s2.T c0/ D d ;

s2.ST c0/ D 0 ;
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s2.TSc0/ D�.1CT CT 2/d ;

s2.S
2c0/ D 0 ;

s2.T
2c0/ D T d ;

s2.ST 2c0/ D ST d ;

s2.TS2c0/ D T .1CT CTS/d ;

s2.S
2T c0/ D S.1CS/d ;

s2.T
2Sc0/ D 0 ;

s2.ST 2Sc0/ D�ST .1CT CTS/d ;

s2.zc0/ D 0 ;

s2.zSc0/ D 0 ;

s2.zT c0/ D .1CT CT 2C z.1CS CS2//d ;

s2.zST c0/ D 0 ;

s2.zTSc0/ D S2T d ;

s2.zS2c0/ D 0 ;

s2.zT 2c0/ D .1CT CS2CT 2CST 2CS2T CST 2S

CzC zS C zT C zTS C zS2C zTS2/d ;

s2.zST 2c0/ D�.TS CT 2S C zST 2C zS2T /d ;

s2.zTS2c0/ D .�ST CS2/d ;

s2.zS2T c0/ D�.1CT CT 2/d ;

s2.zT 2Sc0/ D .S CS2CTS2C zST 2S/d ;

s2.zST 2Sc0/ D .TS CT 2S CTS2/d ;

s3.zT 2d/ D a4 :

Proposition 4.3 For the given resolution of C
"� Z over ZP24 , a diagonal map

�W C! C˝ C , through dimension 4, is given by:

�0.a/ D a˝ a ;

�1.b/ D b˝SaC a˝ b ;

�1.b
0/ D b0˝TaC a˝ b0 ;

�2.c/ D c˝S2aC a˝ cC b0˝T b� b˝SbCT b˝TSb0C b0˝TSb0 ;

�2.c
0/ D c0˝T 2aC a˝ c0C b˝Sb0� b0˝T b0CSb0˝ST bC b˝ST b ;

�3.d/ D d ˝ "aC a˝ d C b˝ScC c0˝T 2b0C b0˝T c0C c˝S2b ;

�4.a4/ D a4˝T 2aC a˝ a4C
P

g2P24
fs1.gb/˝gScC s0.ga/˝gd

Cs2.gc0/˝gT 2b0C s1.gb0/˝gT c0C s2.gc/˝gS2bg :

Theorem 4.4 The ring structure of the group cohomology H�.P24IZ/ is given by
H�.P24IZ/� ZŒ2; ˛4�=.

2
2
D 8˛4; 32 D 0D 24˛4/.
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Theorem 4.5 The ring structure of the group cohomology H�.P24IZ3/ is given
by H�.P24IZ3/ � Z3Œˇ1; 2; ı3; ˛4�=.ˇ

2
1
D 0; ˇ12 D ı3; ˇ1ı3 D 0;  2

2
D �˛4;

2ı3 D�ˇ1˛4/.

Theorem 4.6 Let M be a 3–dimensional Seifert manifold with �1.M /�P24 . Then
we have the following:

(1) H�.M IZ/� ZŒ2; ı3�
?=.32 D 0/.

(2) H�.M IZ3/� Z3Œˇ1; 2; ı3�
?=.ˇ2

1
D 0; ˇ12 D ı3/.

4.2 Binary octahedral group

The 2-2 presentation P48 D hT;U jU
2 D T U 2T;T U T D U T U i is given in [13].

A more familiar presentation is given by hS;T j S3 D T 4 D .ST /2i, setting T D T ,
U D TS�1 establishes an isomorphism.

The binary octahedral group P48 can be considered as a double cover of the rotation
group of a regular octahedron (or cube), which is the symmetric group S4 . Thus, there
is a commutative diagram of short exact sequences

1 ! C2

C
,! P48

p
� S4 ! 1

k #� #�

1 ! C2

C
,! Spin.3/

p
� SO.3/ ! 1 :

Here, C2 D f1; zg, where z D T 4 D U 4 , is the centre of P48 , and p.T /D .1 2 3 4/,
p.U /D .1 4 2 3/. One also has .P48/ab � Z2 .

Proposition 4.7 A 4–periodic resolution C for P48 is given by:

C0 D hai ".a/ D 1 ;

C1 D hb; b
0i d1.b/ D .T � 1/a ;

d1.b
0/ D .U � 1/a ;

C2 D hc; c
0i d2.c/ D .1CT U �U /bC .�1CT �U T /b0 ;

d2.c
0/ D .1CT U 2/bC .�1CT �U CT U /b0 ;

C3 D hdi d3.d/ D .1�T U /cC .U � 1/c0 ;

C4 D ha4i d4.a4/ DNd :

For any n� 4, we define Cn � Cn�4 with appropriate subscripts.

Let 0� i; j � 3 and w 2W DfT iU j ;T iU T;T iU 3T g0�i;j ;�3 . Then, every word in
P48 is either in W or zW . Let piD1CTC� � �CT i�1 and qjD1CUC� � �CU j�1 . In
particular, p0D0Dq0 . Write L for p4 and M for q4 . Define L0DL.1�U 3/cC.UC
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p3T U 3�T 2U T CT 2U 3T /c0 and M 0D .T CT U CU T CT U T /cC .1�U T /c0

so that d2.L
0/D .1C z/Lb and d2.M

0/D p4b� q4b0 . For further details regarding
the above normal form for the words in P48 and the proofs of the formulae for d2.L

0/,
d2.M

0/ (which require first deriving further relations in the group), as well as the proof
of the following proposition (which requires 100 pages of computations) see [43].

Proposition 4.8 A contracting homotopy for the chain complex C above is given by:

s�1.1/ D a ;

s0.T
iU j a/ D pibCT iqj b0 ;

s0.T
iU Ta/ D .pi CT iU /bCT ib0 ;

s0.T
iU 3Ta/ D .pi CT iU 3/bCT iq3b0 ;

s0.za/ D .1CT U 2/bC .T CT U CU 2CU 3/b0 ;

s0.zwa/ D s0.za/C zs0.wa/ ; where w 2W;

s1.T
ib/ D 0 ; 0� i � 2

s1.T
3b/ D �c0CM 0 ;

s1.T
iUb/ D 0 ;

s1.U
2b/ D .U 2� 1/c0C .zT 3M 0�L0/ ;

s1.T
iU 2b/ D T i�1c0 ; 1� i � 3

s1.T
iU 3b/ D 0 ;

s1.U T b/ D .U C zT 3U /cC .�1C zT 2C zT 3� zT 3U /c0

C.M 0�L0/ ;

s1.T U T b/ D .1CU /cC .�1CU 2/c0C .zT 3M 0�L0/ ;

s1.T
2U T b/ D .1CT /cCUc0 ;

s1.T
3U T b/ D .T CT 2/cCT Uc0 ;

s1.U
3T b/ D .U 3CT U 3/cC .�1�T U 3/c0 ;

s1.T U 3T b/ D .T U 3CT 2U 3/cC .�T U 2�T 2U 3/c0 ;

s1.T
2U 3T b/ D .T 2U 3CT 2U 3T /c � zT 3c0C .L0�T 2M 0/ ;

s1.T
3U 3T b/ D .T 3U 3CT 3U 3T /c � c0C .L0�T 3M 0/ ;

s1.zT ib/ D 0 ; 0� i � 2

s1.zT 3b/ D c0C .L0�M 0/ ;

s1.zT iUb/ D 0 ;

s1.zU 2b/ D .T 3CT U 2/c0�TM 0 ;

s1.zT iU 2b/ D zT i�1c0 ; 1� i � 3

s1.zT iU 3b/ D 0 ;

s1.zU T b/ D .T 2CT 3/cC .1CT 2U /c0�M 0 ;
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s1.zT U T b/ D .T 3C z/cC .1CT 3U /c0�M 0 ;

s1.zT 2U T b/ D .zC zT /cC zUc0 ;

s1.zT 3U T b/ D .zT C zT 2/cC zT Uc0 ;

s1.zU 3T b/ D .T 3U 3T C zU 3T /cC .�T C zU 3/c0C .L0� .1C z/M 0/ ;

s1.zT U 3T b/ D .zT U 3C zT U 3T /cC .1�T 2/c0C .L0� .1C zT /M 0/ ;

s1.zT 2U 3T b/ D .zT 2U 3C zT 3U 3/c � zT 3U 3c0C .L0� zT 2M 0/ ;

s1.zT 3U 3T b/ D .U 3C zT 3U 3/c �U 3c0C .L0� zT 3M 0/ ;

s1.T
iU j b0/ D 0 ; 0� i � 3; 0� j � 2

s1.T
iU 3b0/ D �c0C .1�T i/M 0 ;

s1.T
iU T b0/ D �T ic ; 0� i � 2

s1.T
3U T b0/ D �T 3c � c0CM 0 ;

s1.U
3T b0/ D �zT 3U 3cC .U 3� 1/c0C .�L0C zT 3M 0/ ;

s1.T
iU 3T b0/ D �T i�1U 3cCT iU 3c0C .T i�1�T i/M 0 ; 1� i � 3

s1.zT iU j b0/ D 0 ; 0� i � 3; 0� j � 2

s1.zT iU 3b0/ D c0C .L0� .1C zT i/M 0/ ;

s1.zT iU T b0/ D �zT ic ; 0� i � 2

s1.zT 3U T b0/ D �zT 3cC c0C .L0�M 0/ ;

s1.zU 3T b0/ D �zU 2cC .1C zU 2/c0C .�1CT 3� z/M 0 ;

s1.zT iU 3T b0/ D �zT i�1U 3cC zT iU 3c0C z.T i�1�T i/M 0 ; 1� i � 3

s2.T
ic/ D 0 ;

s2.Uc/ D 0 ;

s2.T
iUc/ D �T i�1d ; 1� i � 3

s2.U
2c/ D U 2d ;

s2.T
iU 2c/ D T i�1.U T CT q3/d ; 1� i � 3

s2.T
iU 3c/ D 0 ; 0� i � 1

s2.T
2U 3c/ D .T CT U CU T /d ;

s2.T
3U 3c/ D T 3U 3d ;

s2.U T c/ D .1CU C zT 3C zT 2U T C zT 3U T /d ;

s2.T U T c/ D �Ud ;

s2.T
2U T c/ D .�1CT CU T /d ;

s2.T
3U T c/ D .�T CT 2CT U T /d ;

s2.U
3T c/ D �T U 3d ;

s2.T U 3T c/ D .T CT U CU T �T 2U 3/d ;

s2.T
2U 3T c/ D �.1CT CU CT U CU T C zT 3U T /d ;

s2.T
3U 3T c/ D �T 3U 3d ;

s2.zT ic/ D 0 ;
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s2.zUc/ D .T CT U CU T �T 3/d ;

s2.zT iUc/ D �zT i�1d ; 1� i � 2

s2.zT 3Uc/ D zT 3d ;

s2.zU 2c/ D .�T �T U �U T C zC zU CT 3U T /d ;

s2.zT iU 2c/ D zT i�1.U T CT q3/d ; 1� i � 3

s2.zU 3c/ D z.U 2CU 3/d ;

s2.zT U 3c/ D zp2U 3d ;

s2.zT 2U 3c/ D zT 2U 3d ;

s2.zT 3U 3c/ D 0 ;

s2.zT iU T c/ D �T iC2.1�T �U T /d ; 0� i � 2

s2.zT 3U T c/ D �zT .1�U T CT 2/d ;

s2.zU 3T c/ D �zU 2d ;

s2.zT U 3T c/ D �zp2U 3d ;

s2.zT 2U 3T c/ D �.T CT U CU T C zT 2U 3C zT 3U 3/d ;

s2.zT 3U 3T c/ D �U 3d ;

s2.T
ic0/ D 0 ; 0� i � 2

s2.T
3c0/ D �.T CT U CU T /d ;

s2.T
iUc0/ D 0 ;

s2.U
2c0/ D 0 ;

s2.T
iU 2c0/ D T i�1.T CT U CU T /d ; 1� i � 3

s2.T
iU 3c0/ D 0 ; 0� i � 2

s2.T
3U 3c0/ D .T CT U CU T /d ;

s2.U T c0/ D z.T 2U T CT 3CT 3U T /d ;

s2.T U T c0/ D .�1�U CU T /d ;

s2.T
2U T c0/ D .�1CU T CT U T /d ;

s2.T
3U T c0/ D .�T CT U T CT 2U T /d ;

s2.U
3T c0/ D .zT 3q3CU CU 2C .T 2CT 3/U 3

C.1CT C zT 2C zT 3/U T C .T CT 2/U 3T /d ;

s2.T U 3T c0/ D .1Cp2U CU 2CT 3U 3C .2CT C zT 3/U T /d ;

s2.T
2U 3T c0/ D .�1CU T CT U T CT 3U 3/d ;

s2.T
3U 3T c0/ D .�1�T �T U CT U T �T U 2�T 3U 3T /d ;

s2.zT ic0/ D 0 ; 0� i � 2

s2.zT 3c0/ D �.1CU C zT 3U T /d ;

s2.zT iUc0/ D 0 ; 0� i � 1

s2.zT 2Uc0/ D z.T 2CT 3/d ;

s2.zT 3Uc0/ D .�q2C z.T 3CT 3U T //d ;

s2.zU 2c0/ D �.T CU T CT U �T 3U T � zq2/d ;
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s2.zT iU 2c0/ D z.T i CT iU CT i�1U T /d ; 1� i � 3

s2.zU 3c0/ D .T 3U 3C zU 2/d ;

s2.zT U 3c0/ D z.U 2CU 3/d ;

s2.zT 2U 3c0/ D z.U 3CT U 3/d ;

s2.zT 3U 3c0/ D zT 2U 3d ;

s2.zU T c0/ D 0 ;

s2.zT iU T c0/ D T i.�T CT U T CT 2U T /d ; 1� i � 2

s2.zT 3U T c0/ D z.�T CT U T CT 2U T /d ;

s2.zU 3T c0/ D .�1�T �T 2�T U �T 2U � zU 2

�T U 2�T 2U 2�T 3U 3T � zU 3T /d ;

s2.zT U 3T c0/ D .�1C .1C zL/q3� zU 2

C.LC zT 2p2/U
3C .p2CT 3C zL/U T

C.p3C zT 2p2/U
3T /d ;

s2.zT 2U 3T c0/ D .�1C .1C zTp3/q3CLU 3

C.p2C zL/U T C .p3C zT 3/U 3T /d ;

s2.zT 3U 3T c0/ D .zT 2p2C .1C zT 2p2/.U CU 2/

CTp3U 3C .p2C zTp3/U T Cp3U 3T /d ;

s3.zT U 3T d/ D Na4 ;

s3.gd/ D 0 ; if g ¤ zT U 3T :

Proposition 4.9 A diagonal map �W C! C˝ C for the group P48 is given by:

�0.a/D a˝ a ;

�1.b/D b˝TaC a˝ b ;

�1.b
0/D b0˝UaC a˝ b0 ;

�2.c/D b˝T UbCT b0˝T Ub� b0˝UbC b˝T b0C c˝T U Ta

�Ub˝U T b0� b0˝U T b0C a˝ c ;

�2.c
0/D c0˝U 2aC b˝T U 2bCT b0˝T U 2bCT Ub0˝T U 2bC a˝ c0

Cb˝T b0� b0˝Ub0C b˝T Ub0CT b0˝T Ub0 ;

�3.d/D a˝ d � b˝T UcC b0˝Uc0�T b0˝T Uc � c˝T U T b0

�c˝T 2U T bC c0˝U 2b0C d ˝U 3a ;

�4.a4/D
P

0�i;j�3fpibCT iqj b0g˝T iU j d

C
P3

iD0f.pi CT iU /bCT ib0g˝T iU T d

C
P3

iD0f.pi CT iU 3/bCT iq3b0g˝T iU 3T d C a˝Na4

�..zC zT /cC .1C zU /c0CL0� .1C zT i/M 0/˝ c

�.zT 2cC zT Uc0/˝T c

�..U � zT 2C zT 3U /cC .�1C zT 2C zT 3� zT 3U /c0CM 0�L0/˝T 2c

�..1CU � zT 3/cCU 2c0C .zT 3� 1/M 0/˝T 3c
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�..1CT /cC .U � 1/c0/˝ zc

�..T CT 2/cC .T U � 1/c0C .1�T /M 0/˝ zT c

�..T 2CT 3/cCT 2Uc0�T 2M 0/˝ zT 2c

�..T 3C z/cCT 3Uc0�T 3M 0/˝ zT 3c

�.c0CL0�M 0/˝Uc � .�c0CM 0/˝ zUc

�..T 2U 3CT 2U 3T /c � zT 3c0C .L0�T 2M 0//˝U 2c

�..T 3U 3CT 3U 3T /c � c0C .L0�T 3M 0//˝T U 2c

�.�zU 2cC .1C zU 2/c0C .�1CT 3� z/M 0/˝T 2U 2c

�.�zU 3cC zT U 3c0C z.1�T /M 0/˝T 3U 2c

�.�zT U 3cC zT 2U 3c0C z.T �T 2/M 0/˝ zU 2c

�.�zT 2U 3cC zT 3U 3c0C z.T 2�T 3/M 0/˝ zT U 2c

�..U 3CT U 3/cC .�1�T U 3/c0/˝ zT 2U 2c

�..T U 3CT 2U 3/cC .�T U 2�T 2U 3/c0/˝ zT 3U 2c

�.c0/˝U 3c � .T c0/˝T U 3c � .T 2c0/˝T 2U 3c

�..T 3CT U 2/c0�TM 0/˝T 3U 3c

�.zc0/˝ zU 3c � .zT c0/˝ zT U 3c � .zT 2c0/˝ zT 2U 3c � .U 2b/˝ zT 3U 3c

�.�zT 3cC c0C .L0�M 0//˝U T c

�.�c/˝T U T c � .�T c/˝T 2U T c � .�T 2c/˝T 3U T c

�.�T 3c � c0CM 0/˝ zU T c

�.�zc/˝ zT U T c � .�zT c/˝ zT 2U T c � .�zT 2c/˝ zT 3U T c

�.�U 3cCT U 3c0C .1�T /M 0/˝U 3T c

�.�T U 3cCT iU 3c0C .T �T 2/M 0/˝T U 3T c

�.�T 2U 3cCT 3U 3c0C .T 2�T 3/M 0/˝T 2U 3T c

�.�zU 2cC .1C zU 2/c0C .�1CT 3� z/M 0/˝T 3U 3T c

�.�zU 3cC zT U 3c0C z.1�T /M 0/˝ zU 3T c

�.�zT U 3cC zT 2U 3c0C z.T �T /M 0/˝ zT U 3T c

�.�zT 2U 3cC zT 3U 3c0C z.T 2�T 3/M 0/˝ zT 2U 3T c

�.�zT 3U 3cC .U 3� 1/c0C .�L0C zT 3M 0//˝ zT 3U 3T c

C.c0C .L0� .1C z/M 0//˝ c0C .c0C .L0� .1C zT /M 0//˝T c0

C.c0C .L0� .1C zT 2/M 0//˝T 2c0C .c0C .L0� .1C zT 3/M 0//˝T 3c0

C.�c0/˝ zc0C .�c0C .1�T /M 0/˝ zT c0

C.�c0C .1�T 2/M 0/˝ zT 2c0C .�c0C .1�T 3/M 0/˝ zT 3c0

C.�zT 3cC c0C .L0�M 0//˝U T c0C .�c/˝T U T c0

C.�T c/˝T 2U T c0C .�T 2c/˝T 3U T c0

C.�T 3c � c0CM 0/˝ zU T c0C .�zc/˝ zT U T c0

C.�zT c/˝ zT 2U T c0C .�zT 2c/˝ zT 3U T c0

C.�T U 3cCT U 3c0C .1�T /M 0/˝U 3T c0

C.�T U 3cCT 2U 3c0C .T �T 2/M 0/˝T U 3T c0

C.�T 2U 3cCT 3U 3c0C .T 2�T 3/M 0/˝T 2U 3T c0
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C.�zU 2cC .1C zU 2/c0C .�1CT 3� z/M 0/˝T 3U 3T c0

C.�zU 3cC zT U 3c0C z.1�T /M 0/˝ zU 3T c0

C.�zT U 3cC zT 2U 3c0C z.T �T 2/M 0/˝ zT U 3T c0

C.�zT 2U 3cC zT 3U 3c0C z.T 2�T 3/M 0/˝ zT 2U 3T c0

C.�zT 3U 3cC .U 3� 1/c0C .�L0C zT 3M 0//˝ zT 3U 3T c0

Cf�.T CU T CT U �T 3� zU /dg˝ b0Cfz.1CT U /dg˝T b0

Cfz.T CT 2CT 3CT 2U /dg˝T 2b0

Cf.1CU � zT 3U C zT 3U T /dg˝T 3b0

CfUdg˝ zb0Cf.1CT U /dg˝ zT b0Cf.T CT 2U /dg˝ zT 2b0

Cf.T 2CT 3U /dg˝ zT 3b0

CfzU 2dg˝Ub0�f.T CT U CU T /dg˝ zT 3Ub0

CfT 3U 3dg˝U 2b0CfzU 2dg˝T U 2b0Cfzp2U 3dg˝T 2U 2b0

Cfz.T 2U 3CT 3U 3/dg˝T 3U 2b0CfU 3dg˝ zU 2b0CfT U 3dg˝ zT U 2b0

�f.T CT U CU T �T 2U 3/dg˝ zT 2U 2b0Cf.T CT U CU T /dg˝ zT 3U 2b0

Cfdg˝U 3b0CfT dg˝T U 3b0CfT 2dg˝T 2U 3b0

�f.T CT U CU T �T 3/dg˝T 3U 3b0Cfzdg˝ zU 3b0CfzT dg˝ zT U 3b0

CfzT 2dg˝ zT 2U 3b0Cf.�q2C z.T 3CT 3U T //dg˝ zT 3U 3b0

Cf.�T 3CT 3U T C zU T /dg˝U T b0Cfz.�T CT U T CT 2U T /dg˝T U T b0

Cfz.T 2U T CT 3CT 3U T /dg˝T 2U T b0Cf.�1�U CU T /d/˝T 3U T b0

Cf.�1CU T CT U T /dg˝ zU T b0Cf.�T CT U T CT 2U T /dg˝ zT U T b0

Cf.�T 2CT 2U T CT 3U T /dg˝ zT 3U T b0

Cf�.1CT U T CT q3CT 3U 3/dg˝U 3T b0

Cf�.1C .T CT 2/q3CT 3U 3T /dg˝T U 3T b0

Cf�.1C .T CT 2CT 3/q3C zU 2CT 2U T CT 3U 3T C zU 3T /dg˝T 2U 3T b0

Cf.z.T CT 2CT 3/C .1C zT C zT 2C zT 3/U C .1C zT C zT 2C zT 3/U 2

C.LC zT 2C zT 3/U 3C .p2CT 3C zL/U T Cp3U 3T /dg˝T 3U 3T b0

Cf.z.T 2CT 3/C .1C zT 2C zT 3/U C .1C zT 2C zT 3/U 2CLU 3

C.p2C zT C zT 2C zT 3/U T C .p3C zT 3/U 3T /dg˝ zU 3T b0

Cf.zT 3C .1C zT 3/U C .1C zT 3/U 2C .T CT 2CT 3/U 3

C.1CT C zT 2C zT 3/U T Cp3U 3T /dg˝ zT U 3T b0

Cf.U CU 2C .T 2CT 3/U 3C .1CT C zT 3/U T

C.T CT 2/U 3T /dg˝ zT 2U 3T b0

Cf.1C .1CT /U CT 3U 3C .2CT C zT 3/U T /dg˝ zT 3U 3T b0

Cfzdg˝ bCfzT dg˝T bCfzT 2dg˝T 2bCfdg˝ zb

CfT dg˝ zT bCfT 2dg˝ zT 2b�f.T CT U CU T �T 3/dg˝ zT 3b

Cf.T 3� z�T 3U T /dg˝UbCfz.1�T �U T /dg˝T Ub

Cfz.T �T U T CT 3/dg˝T 2Ub

�f.1CU C zT 3C zT 2U T C zT 3U T /dg˝T 3Ub

CfUdg˝ zUb�f.�1CT CU T /dg˝ zT Ub
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�f.�T CT 2CT U T /dg˝ zT 2UbCf.T 2�T 3�T 2U T /dg˝ zT 3Ub

�fT 3U 3dg˝U 2b�fz.U 2CU 3/dg˝T U 2b�fzp2U 3dg˝T 2U 2b

�fzT 2U 3dg˝T 3U 2b�f.T CT U CU T /dg˝ zT 3U 2b

CfT 3U 3dg˝U 3bCfzU 2dg˝T U 3bCfzp2U 3dg˝T 2U 3b

Cf.T CT U CU T C zT 2U 3C zT 3U 3/dg˝T 3U 3bCfU 3dg˝ zU 3b

CfT U 3dg˝ zT U 3b�f.T CT U CU T �T 2U 3/dg˝ zT 2U 3b

Cf.1CT CU CT U CU T C zT 3U T /dg˝ zT 3U 3b

�f.T U T CT 2q3/dg˝U 3T b�f.T 2U T CT 3q3/dg˝T U 3T b

�f.�T �T U �U T C zC zU CT 3U T /dg˝T 2U 3T b

�fz.U T CT q3/dg˝T 3U 3T b�fz.T U T CT 2q3/dg˝ zU 3T b

�fz.T 2U T CT 3q3/dg˝ zT U 3T b�fU 2dg˝ zT 2U 3T b

�f.U T CT q3/dg˝ zT 3U 3T b

CNa4˝T 2U 3Ta :

Theorem 4.10 The ring structure of the group cohomology H�.P48IZ/ is given by
H�.P48IZ/� ZŒ2; ˛4�=.

2
2
D 24˛4; 22 D 0D 48˛4/.

As mentioned in the Preliminaries (Section 2), we will give the proof of the next
theorem to provide an example of how the cohomology ring is determined from the
resolution and diagonal map.

Theorem 4.11 The ring structure of the group cohomology H�.P48IZ2/ is given by
H�.P48IZ2/ � Z2Œˇ1; 2; ı3; ˛4�=.ˇ

2
1
D 2; 

2
2
D 0 D ı2

3
; ˇ12 D ı3; ˇ1ı3 D 0 D

2ı3/.

Proof We consider the coefficients Z2 as an R–algebra with trivial R–module
structure. The cochain complex homR.C;Z2/ is then generated by the dual classes ya,
yb , yb0 , yc , yc0 , yd , and ya4 , where, for example, yb.b/D 1, yb.b0/D 0, etc. We find, for
the coboundary @,

.@ya/ .b/D ya.d1b/D ya.TaC a/D 1C 1D 0

.@ya/ .b0/D ya.d1b0/D ya.UaC a/D 1C 1D 0 ;and

@yaD 0:hence,

@yb D yc; @yb0 D yc ;Similarly,

@yc D 0; @yc0 D 0 ;

@ yd D 0;

@ ya4 D 0:
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The cohomology therefore has generating classes and representative cocycles as shown
in the following table.

Dimension Cohomology class & representative cocycle
0 1D Œya�

1 ˇ1 D ŒybC yb0�

2 2 D Œyc0�

3 ı3 D Œ yd �

4 ˛4 D Œ ya4�D periodicity class

Since .ybC yb0/˝ .ybC yb0/D yb˝ybCyb˝ yb0C yb0˝ybC yb0˝ yb0 , it follows that ˇ2
1
D �2 ,

where � is the number of terms (mod 2) in �.c0/ of the form xb˝ yb , xb˝ yb0 ,
xb0˝yb , and xb0˝yb0 , for any x;y;2 P24 . Using Proposition 4.7, a simple count
shows that � D 7 D 1. Thus, ˇ2

1
D 2 . The cup products  2

2
D 0, ˇ12 D ı3 , and

ˇ1ı3 D 0 are computed similarly. Then, 2ı3 D ˇ
2
1
ı3 D ˇ1.ˇ1ı3/ D 0 as well as

ı2
3
D ˇ2

1
 2

2
D 0. Periodicity then determines all further cup products.

Theorem 4.12 The ring structure of the group cohomology H�.P48IZ3/ is given by
H�.P48IZ3/� Z3Œı3; ˛4�=.ı

2
3
D 0/. For p > 3, H�.P48IZp/� Zp Œ˛4�.

Theorem 4.13 Let M be a 3–dimensional Seifert manifold with �1.M / � P48 .
Then we have the following:

(1) H�.M IZ/� ZŒ2; ı3�
?=.22 D 0/.

(2) H�.M IZ2/� Z2Œˇ1; 2; ı3�
?=.ˇ2

1
D 2; ˇ12 D ı3/.

(3) H�.M IZp/� Zp Œı3�
? , for p ¤ 2.

4.3 Binary icosahedral group

Following Coxeter–Moser [13], the presentation we use for the binary icosahedral group
is P120 D hA;B jAB2AD BAB;BA2B DABAi. This is the fundamental group of
the homology sphere discovered by Poincaré, and this is the only known homology
3–sphere with a finite fundamental group. Of course, the fact that H1.P120IZ/D 0

(and hence it is a homology sphere) follows from .P120/ab D 0. Once again, it can be
regarded as a double cover, in this case, of the simple group A5 (which is the rotation
group of a regular icosahedron or dodecahedron), as shown by the commutative diagram

1 ! C2

C
,! P120

p
� A5 ! 1

k #� #�

1 ! C2

C
,! Spin.3/

p
� SO.3/ ! 1 :
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Here, we can take p.A/ D .1 2 3 4 5/, p.B/ D .1 3 4 2 5/, and C2 D f1; zg where
z WD .ABA/3 D .BAB/3 .

Proposition 4.14 A 4–periodic resolution C for P120 is given by:

C0 D hai ".a/ D 1 ;

C1 D hb; b
0i d1.b/ D .A� 1/a ;

d1.b
0/ D .B � 1/a ;

C2 D hc; c
0i d2.c/ D .1�BCAB2/bC .�1CACAB �BA/b0 ;

d2.c
0/ D .�1CBCBA�AB/bC .1�ACBA2/b0 ;

C3 D hdi d3.d/ D .1�BA/cC .1�AB/c0 ;

C4 D ha4i d4.a4/ DNd :

For any n� 4, we define Cn � Cn�4 with appropriate subscripts.

For this group, the construction of a contracting homotopy s seems daunting, since
the corresponding work for P48 took nearly 100 pages. However, exactness of the
resolution C has been verified using a computer (cf Section 2).

Proposition 4.15 A diagonal map �W C! C˝C , through dimension 3, for the group
P120 is given by:

�0.a/D a˝ a ;

�1.b/D b˝AaC a˝ b ;

�1.b
0/D b0˝BaC a˝ b0 ;

�2.c/D a˝ cC c˝BABa� b0˝Bb� b0˝BAb0�Bb˝BAb0

CABb0˝AB2bC b˝Ab0CAb0˝ABb0CAb0˝AB2b

Cb˝AB2bC b˝ABb0 ;

�2.c
0/D a˝ c0C c0˝ABAa� b˝Ab0� b˝ABb�Ab0˝ABb

CBAb˝BA2b0C b0˝BbCBb˝BAbCBb˝BA2b0

Cb0˝BA2b0C b0˝BAb ;

�3.d/D a˝ d C d ˝ .BA/2Ba� c˝BABb� b˝ABc0�Ab0˝ABc0

�Bb˝BAc � b0˝BAc � c0˝ .AB/2b� c0˝ABAb0

�c˝ .BA/2b0 :

We remark that for computing ring structures of H�.P120IA/ with twisted coefficients
A, one probably requires an explicit formulation of �4 .

From the above, we have the next theorem.
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Theorem 4.16

H l.P120IZ/D

8<:
Z ; if l D 0;

0 ; if l 6� 0. mod 4/;

Z120 ; if l � 0. mod 4/ and l > 0:

It follows that H�.P120IZ/�ZŒ˛4�=.120˛4 D 0/ and H�.P120IZn/�ZnŒ˛4� with
n any divisor of 120. Also H�.M IZ/DZŒı3�

? , where M DS3=P120 is the Poincaré
homology sphere.

5 The groups P 0
8�3k

and B2k.2nC1/

In this chapter we compute the ring structures of cohomology groups of the groups
P 0

8�3k and B2k.2nC1/ . For these groups, we employ a more geometrical approach,
using appropriate Seifert manifolds. We assume some general familiarity with Seifert
manifolds (good references are Seifert [38], Hempel [24] and Orlik [35]), and will
merely introduce Seifert’s notation for them. One writes

M D
�
fO;N g; fo; ng;g W eI .a1; b1/; � � � ; .aq; bq/

�
;

where Table 1 describes the meaning of each symbol. The resolutions of Z over the

fO;N g: the orientability of the Seifert manifold M :
O means that M is orientable, and
N means that M is nonorientable,

fo; ng: the orientability of its orbit surface V :
o means that V is orientable, and
n means that V is nonorientable

g: if o, then g � 0 equals the genus of V ,
if n, then g � 1 equals number of cross-caps of V ,

e: the Euler number, obtained from a regular fibre;
q: the number of singular fibres;

.ai ; bi/: the relatively prime integer pairs characterizing the i–th
singular fibre with 0< bi < ai .

Table 1: Presentation of Seifert manifolds

group ring R, and the diagonal �, are based on the methods of Bryden, Hayat-Legrand,
Zieschang and Zvengrowski in [6; 7; 9], appropriately modified to account for the
universal cover �M now being S3 instead of R3 . We verified that the chain complexes
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provided below are indeed resolutions by using a computer program in GAP, at least
for small orders.

In Table 2, we list Seifert manifolds with finite fundamental group and the corresponding
presentation as a Seifert manifold. This table is based on Orlik [35, p 112], with minor
notational changes and three small corrections: in the first case n 6D0 is added, otherwise
�1.M /�Z is infinite, in the second case B2kC3a3

is incorrectly given as B2kC2a3
in

[35], and in the third case the equation mD 3k�1m0 is incorrectly given as mD 3km0

in [35]. Finiteness implies g D 0 in the .O; o/ case and g D 1 in the .O; n/ case.
Denoting the number of singular fibres by q , the fundamental groups [9, Section 2] are
then given by

�1.M /D h s1; :::; sq; h j Œsj ; h�; s
aj

j hbj ; s1 � � � sqh�e
i; .O; o/� case;

�1.M /D h s1; :::; sq; h; v j Œsj ; h�; s
aj

j hbj ; vhv�1h; s1 � � � sqv
2h�e

i; .O; n/� case :

Note that the same group may appear more than once since fibre-inequivalent Seifert
spaces can have the same fundamental group, this is characteristic of “small” Seifert
manifolds [35, p 91]. Also note B2k.2nC1/ is defined for n � 0, with the group
isomorphic to Z2k when nD 0, and for k D 2 there is an isomorphism B4�.2nC1/ �

Q4�.2nC1/ [32]. For this reason, in Section 5.2 below, we only consider B2k.2nC1/ for
n� 1, k � 3.

The following elements in G D �1.M /, RD ZG , and in C are necessary to define
the resolutions for these groups used in Section 5.1 and Section 5.2.

(1) (in G , M D .O; o; 0 W eI .a1; b1/; :::.aq; bq//) Choose positive integers cj and
dj satisfying aj dj � bj cj D 1, 1 � j � q , and let tj D scj

j hdj . Also define
a0 D 1, b0 D e , c0 D 1, d0 D e C 1, and s0 D h�e . As a consequence,
a0d0� b0c0 D 1, t0 D sc0

0
hd0 D h, sj D t�bj

j , hD taj
j , 0� j � q .

(2) (in G , M D .O; n; 1 We; .a1; b1/; :::.aq; bq//) The relation vhv�1hD1 implies
hivhi D v , i 2 Z; as well as hv2 D v2h.

(3) (in G ) Let r�1 D 1, rj D s0s1 � � � sj ; 0 � j � q; in the .O; n/–case also
rqC1 D s0s1 � � � sqv

2 .

(4) (in C ) Let �1
j D rj�1.�

1
j C�

1
j /�rj�

1
j , in the .O; n/–case, �1

qC1
D rq.1Cv/�

1
1

.

(5) (in C ) Let �2
j D�rj�1.�

2
j C�

2
j /Crj�

2
j , in the .O; n/–case, �2

qC1
D rq.hv�

1/�2
1

.

(6) (in ZG ) Let Fj D .t
aj

j � 1/=.tj � 1/ and Gj D .1� t
�bj

j /=.tj � 1/.
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Seifert structure Fundamental Group
.O; o; 0 W eI .a1; b1/; .a2; b2// �1.M /� Zn, n WD jea1a2C a1b2C b1a2j;

n 6D 0 (.aj ; bj /D .1; 0/ is allowed).
.O; o; 0 W eI .2; 1/; .2; 1/; .a3; b3// Let mD j.eC 1/a3C b3j.

If m is odd, then �1.M /� Zm �Q4a3
.

If m is even, then 4jm and .a3; 2/D 1.
Set mD 2kC1m00, m00 odd.
Then �1.M /� Zm00 �B2kC3a3

.
.O; o; 0 W eI .2; 1/; .3; b2/; .3; b3// Let mD j6eC 3C 2.b2C b3/j and

mD 3k�1m0 with .m0; 3/D 1.
If k D 1, then .m; 6/D 1, b2 D 1D b3,
and �1.M /� Zm �P 0

24
� Zm �P24.

If k � 2, then .m0; 6/D 1, b2 D 1, b3 D 2,
and �1.M /� Zm0 �P 0

8�3k .
.O; o; 0 W eI .2; 1/; .3; b2/; .4; b3// �1.M /� Zm �P48,

where mD j12eC 6C 4b2C 3b3j.
.O; o; 0 W eI .2; 1/; .3; b2/; .5; b3// �1.M /� Zm �P120,

where mD j30eC 15C 10b2C 6b3j.
.O; n; 1 W eI .a1; b1// Let mD jea1C b1j.

If a1 is odd, then �1.M /� Z˛1
�Q4m.

If a1 is even, then �1.M /� Za0
1
�B2kC2m,

where a1 D 2ka0
1
, k � 1, and .a0

1
; 2/D 1.

Table 2: Seifert manifolds with finite fundamental groups (following Orlik
[35, p 112])

5.1 The groups P 0
8�3k

The group P 0
8�3k , k � 1, are given by the following presentation:

P 0
8�3k D hx;y; z jx

2
D .xy/2 D y2; zxz�1

D y; zyz�1
D xy; z3k

D 1i:

One can also represent these groups as semidirect products; namely,
P 0

8�3k �Q8 ÌC3k . Equivalently, one has a split short exact sequence

1 - Q8,!
C P 0

8�3k
�pi

s
C3k

- 1

where Q8 is the subgroup generated by x , y , C3k is the cyclic group with z as
generator, p.x;y/ D 1, p.z/ D z , and s.z/ D z . We remark that P 0

8�3
� P24 , the

binary tetrahedral group, and .P 0
8�3k /ab D Z3k .
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Since P 0
8�3
� P24 , we are only concerned with the case k � 2 (also, as shown by

Table 2, the Seifert structure is slightly different when k D 1). Let M D .O; o; 0 W

eI .2; 1/; .3; 1/; .3; 2// where e D .1=2/.3k�2 � 3/, k � 2. Then, again following
Table 2, m0 D 1 and �1.M /� P 0

8�3k . We now outline a proof of this, partly because
none of the isomorphisms in Table 2 are explicitly proved in [35], and also because
[35] has a minor error in this case.

Proposition 5.1 With M and e as above, �1.M /� P 0
8�3k .

Proof outline The fundamental group �1.M / is given by

�1.M /D hs; t;u; hjŒs; h�D Œt; h�D Œu; h�D s2hD t3hD u3h2
D stuh�e

D 1i:

Here, we have used s , t , u instead of the notation s1 , s2 , s3 used in [7]. Let mD 3k�1

and nD 3eC 5, and define 'W �1.M /! P 0
8�3k by

'.s/D x2eC1z3.7�3e2/; '.t/D x3zn; '.u/D z; '.h/D x2z3.n�1/

and  W P 0
8�3k ! �1.M / by

 .x/D sm;  .y/D s2m�3tst2;  .z/D u:

One can show (for full details see Tomoda [43]) that the maps ' and  are well
defined and inverse isomorphisms between the fundamental group �1.M / and the
group P 0

8�3k , k � 2.

Proposition 5.2 A resolution C for P 0
8�3k is given, with 0� j � 3, by:

C0 D h�
0
j i ;

C1 D h�
1
j ; �

1
j ; �

1
j i ; with �1

0
D 0

C2 D h�
2
j ; �

2
j ; �

2
j ; ı

2i ; with �2
0
D 0

C3 D h�
3
j ; ı

3i ;

C4 D h�
4
0
i;

along with

d1.�
1
j / D �

0
j � �

0
0
; d1.�

1
j / D .sj � 1/�0

0
;

d1.�
1
j / D .h� 1/�0

0
;

d2.�
2
j / D �

1
0
� �1

j C .h� 1/�1
j ; d2.�

2
j / D .1� sj /�

1
j C .h� 1/�1

j ;

d2.�
2
j / D Fj�

1
j CGj�

1
j ; d2.ı

2/ D
P3

jD0 �
1
j ;

d3.�
3
j / D �

2
j C .1� tj /�

2
j ; d3.ı

3/ D .1� h/ı2�
P3

jD0 �
2
j ;

d4.�
4
0
/ DN � .ı3�

P3
jD0 rj�1�

3
j / :
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We define Cn � Cn�4 for n� 5 with appropriate subscripts.

It is instructive to compare this resolution with the case jGj D1; treated in [6; 7; 9],
for which Cj D 0, j � 4. Here the finiteness of G is reflected by the new class
�4

0
2 C4 whose boundary generates Ker.d3/, which is no longer f0g. The diagonal

�, taken from these same references, suffices through dimension 3, and therefore for
computations of the cup products into dimensions � 3. Thus, the following theorems do
not give the cup products into dimensions � 4, these will have to wait until �4; �5; :::

are computed (which at present seems very difficult), or some other method applied.

Theorem 5.3

H l.P 0
8�3k IZ/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z D

D
1 WD

hP3
jD0 y�

0
j

i E
; if l D 0;

0 ; if l D 1;

Z3k D h2 WD Œy�
2
3
�i ; if l D 2;

0 ; if l D 3;

Z8�3k D h˛4 WD Œy�
4
0
�i ; if l D 4:

H l.P 0
8�3k IZ3/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z3 D

D
1 WD

hP3
jD0 y�

0
j

i E
; if l D 0;

Z3 D hˇ1 WD Œy�
1
3
� y�1

2
�i ; if l D 1;

Z3 D h2 WD Œy�
2
2
�i ; if l D 2;

Z3 D hı3 WD Œyı
3�D�Œy�3

0
�D � � � D �Œy�3

3
�i ; if l D 3;

Z3 D h˛4 WD Œy�
4
0
�i ; if l D 4:

Furthermore, ˇ2
1
D 0, ˇ11 D�ı3 .

Theorem 5.4 Let M D S3=P 0
8�3k .

H�.M IZ/� ZŒˇ2; ı3�
?=.3kˇ2 D 0/ :

H�.M IZ3/� Z3Œˇ1; 2; ı3�
?=.ˇ2

1 D 0; ˇ12 D�ı3/ :

If p 6D 3, then

H�.M IZp/� Zp Œı3�
? :

5.2 The groups B2k.2nC1/

The groups B2k.2nC1/ , k � 2, n� 0, have the presentation

B2k.2nC1/ D hx;y jx
2k

D y2nC1
D 1;xyx�1

D y�1
i :

They also have the semidirect product structure B2k.2nC1/ � C2nC1 ÌC2k , as seen
from the split short exact sequence
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1 - C2nC1,!
C

B2k.2nC1/�
p

i
s

C2k
- 1

where C2nC1 is generated by y , C2k by x , p.y/D 1, p.x/D x , s.x/D x . Further-
more,

�
B2k.2nC1/

�
ab
D Z2k .

As mentioned before Table 2, the cases n D 0 or k D 2 reduce to groups that have
already been studied (respectively Z2k or Q4.2nC1/ ), so we assume henceforth that
n � 1 and k � 3. Table 2 then gives two cases, the second and sixth, which give
B2k.2nC1/ as the fundamental group �1.M /. Specifically, both

M D .O; o; 0 W eI .2; 1/; .2; 1/; .a3; b3//; with a3 D 2nC 1; 2k�2
D.eC 1/a3C b3 ;

M 0
D .O; n; 1 W eI .a1; b1//; with a1 D 2k�2; 2nC 1D ea1C b1 ;

have B2k.2nC1/ as fundamental group for k � 3. We will choose M for the computa-
tions in this subsection, and briefly remark about M 0 in Remark 5.7 below.

Indeed, choosing M , the resulting resolution is formally identical to that in Proposition
5.2 (with different structure constants e; aj ; bj ). And the diagonal � is similarly taken
from [6; 7; 9]. The results are as follows.

Theorem 5.5

H l.B2k.2nC1/IZ/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z D

D
1 WD

hP3
jD0 y�

0
j

i E
; if l D 0;

0 ; if l D 1;

Z2k D h2 WD Œy�
2
2
�i ; if l D 2;

0 ; if l D 3;

Z.2nC1/�2k D h˛4 WD Œy�
4
0
�i ; if l D 4:

H l.B2k.2nC1/IZ2/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z2 D

D
1 WD

hP3
jD0 y�

0
j

i E
; if l D 0;

Z2 D hˇ1 WD Œy�
1
2
� y�1

1
�i ; if l D 1;

Z2 D h2 WD Œy�
2
2
�i ; if l D 2;

Z2 D hı3 WD Œyı
3�D�Œy�3

0
�D � � � D �Œy�3

3
�i ; if l D 3;

Z2 D h˛4 WD Œy�
4
0
�i ; if l D 4:

Theorem 5.6 Let M D S3=B2k.2nC1/ .

H�.M IZ/� ZŒˇ2; ı3�
?=.2kˇ2 D 0/ :

H�.M IZ2/� Z2Œˇ1; 2; ı3�
?=.ˇ2

1 D 0; ˇ12 D ı3/ :

Remark 5.7 If the above calculations are done using the resolution based on the
manifold M 0 instead of M , the resultant cohomology rings are isomorphic to those
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given in Theorem 5.5 and Theorem 5.6 but with different generators for the cohomology.
Namely, following the notation in [9], the classes ˇ1; 2 are replaced respectively by
classes �; ' . It would be interesting to know whether M and M 0 are homeomorphic.

6 Applications and further questions

In this section, we give a brief description of some applications of the cohomology
ring calculations in Section 3–Section 5 to spherical space forms. We conclude with
some questions and potentially interesting directions for further research, including the
Q.8n; k; l/ groups.

The first application (not new) is to existence of a degree 1 map of an orientable, closed,
connected 3–manifold M to RP3 , which in turn is related to the theory of relativity.
Indeed, it was shown in Shastri, Williams and Zvengrowski [41] that the homotopy
classes ŒM;RP3� of maps from M to the real projective 3–space RP3 are bijectively
equivalent to the homotopy classes of Lorentz metric tensors over the 4–dimensional
space-time manifold M �R.

Let M be a closed orientable connected 3–manifold. We say that M is of type 1 if it
admits a degree 1 map onto real projective 3–space RP3 ; otherwise, it is of type 2.

We have the following theorem from [41]:

Theorem 6.1 Let M be a closed orientable connected 3–manifold. The following are
equivalent:

(1) The short exact sequence 0! ŒM;S3�! ŒM;RP3�!H 1.M IZ2/! 0 does
not split.

(2) The manifold M is of type 1.

(3) There exists ˛ 2H 1.M IZ2/ with ˛3 ¤ 0.

Among the Clifford–Klein space forms, the paper [42] determined all those having
type 1; ie admitting a degree 1 map onto RP3 . They are the space forms corresponding
to the groups C2.2mC1/ , Q16n , and P48 .

Of course, RP3 can be thought of as the lens space L.2; 1/. Let us now consider degree
1 maps onto L.p; q/, p > 2. We will use the following theorem of Hayat-Legrand,
Wang and Zieschang [19].

Theorem 6.2 Let M be a closed connected orientable 3–manifold. Assume that
there is an element ˛ 2 H1.M / of order p > 1 such that the linking number aˇ a

is equal to Œr=p� 2Q=Z where r is prime to p . Then there exists a degree-one map
f W M !L.p; s/ where s is the inverse of r modulo p .

Geometry & Topology Monographs, Volume 14 (2008)



552 Satoshi Tomoda and Peter Zvengrowski

We remark that the application of this theorem uses the mod p Bockstein homomor-
phism BW H 1.X IZp/!H 2.X IZp/, which can be simply described as arising from
the connecting homomorphism of the long exact sequence induced by the short exact
sequence 0! Zp! Zp2 ! Zp! 0 of coefficients.

Theorem 6.3 The spherical space form M D S3=P24 admits a degree one map onto
L.3; 1/.

Proof The 1–dimensional cohomology class x 2H 1.M IZ3/ is represented by the
Z3 cocycle yb�yb0 . This lifts to the Z9 cochain denoted also by yb�yb0 . Now ı2.yb�yb0/

D .�ycC2yc0/�.2yc�yc0/ D�3ycC3yc0 D 6yc0 , since �ycD yc0 , and dividing this by 3 we
obtain B.x/D 2Œyc0�D 2y . Thus, x[B.x/D x[2y D 2.x[y/D 2 �2zD z .mod 3/,
and applying Theorem 6.2, completes the proof.

We remark that this is related to Theorem 1:1 of [9]. Similarly, we can show that for
M D S3=P 0

8�3k , B3.x/D 0, k � 2, hence there does not exist any degree one map
M !L.3; q/.

We now give an application to Lusternik–Schnirelmann category. To be clear, we
speak of the normalized Lusternik–Schnirelmann category cat.X / of a connected
topological space X , defined to be the smallest integer n such that nC 1 open sets,
each contractible in X , cover X . It is well known that the cup length of X (with
any coefficients) furnishes a lower bound for cat.X /, while the dimension n, for X a
finite connected CW-complex of dimension n, furnishes an upper bound. As a simple
consequence, we have the next theorem.

Theorem 6.4 Suppose M is a type 1 closed orientable connected 3–manifold. Then
cat.M /D 3.

Proof Since M is of type 1, there exists ˛ 2H 1.M IZ2/ with ˛3¤ 0 which implies
that cat.M /� 3. Since M is a closed 3–manifold, there exists a finite 3–dimensional
CW-decomposition of M which implies that cat.M / � 3. Combining these results,
we have cat.M /D 3.

Corollary 6.5 For G D C2.2mC1/ , Q16n , or P48 , cat.S3=G/D 3.

Remark 6.6 Similar results about the category of orientable Seifert manifolds with
infinite fundamental groups were obtained in [9]. However, those results also follow
from work of Eilenberg–Ganea [14] because these manifolds are aspherical. The
present results in Corollary 6.5 would seem to be entirely new.
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To conclude, one obvious direction for further research is to complete all calculations for
the groups P120 , P 0

8�3k , and B.2nC1/2k , as was done for the other finite fundamental
groups. Another interesting direction is to study the cohomology rings with other (in
particular twisted, ie nontrivial R–module structure) coefficients. It seems likely that
such a study could lead to further information about degree 1 maps and Lusternik–
Schnirelmann category, similar to Theorem 6.3 and Theorem 6.4 above.

Finally, the cohomology ring of the 4–periodic groups Q.8n; k; l/, mentioned in
Section 2, is of interest. These groups have the presentation

Q.8n; k; l/D h x;y; z j x2
D y2n

D .xy/2; zkl
D 1;xzx�1

D zr ;yzy�1
D z�1

i ;

where n, k , l are odd integers that are pairwise relatively prime, n> k > l > 1, and
r � �1.mod k/, r � 1.mod l/. Indeed, it is known that it suffices to consider the
subfamily Q.8p; q/ WDQ.8p; q; 1/ with r D�1, p , q distinct odd primes. For these
groups, an interesting balanced presentation is given by B Neumann [34]:

Q.8p; q/D h A;B j .AB/2 DA2p; B�qABq
DA�1

i :

A proof that the two presentations for Q.8p; q/ give isomorphic groups is given in
Tomoda [43]. The authors attempted, but did not succeed, to construct a 4–periodic
resolution for Q.8p; q/ using the Neumann presentation. Of course, a demonstration
that no 4–periodic resolution exists would give an algebraic proof that Q.8p; q/ cannot
act freely on S3 (again, as mentioned in Section 2, a geometric proof of this result is
contained in the work of Perelman [36] and his successors).
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